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Abstract
We consider a Gentzen-type cut-free sequent calculus GS5 for the modal logic S5 with a restriction on backward applications
of modal rule (� ⇒). Using Schütte’s method of reduction trees, we prove that the calculus is complete for S5. We also prove
that all rules are invertible and the cut rule is admissible in the calculus. We show that any backward proof search terminates,
obtaining a decision procedure for S5 using the introduced calculus GS5.
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1 Introduction

Cut-free Gentzen-type sequent calculi are rather convenient tools for proof search analysis and
construction of decision procedures. Such calculi can be relatively easily constructed for logics
weaker than S5, such as T or S4, see e.g. [22]. S5 is more problematic in this aspect. The first sequent
calculus for S5 was presented in [14, 15]. Cut is not admissible in the calculus. The Gentzen-type
sequent calculi in [19, 23] are rather extended sequent calculi; the calculus in [19] does not have the
subformula property. A proof in the sequent calculus in [5] involves a constraint of dependency of
occurrences of formulas in the proof. The use of this calculus for a decision procedure is problematic
since the check for dependency is performed for ready proof trees. A cut-free Gentzen-type sequent
calculus G3S5 for S5 is presented also in [1]. Cut admissibility in G3S5 is proved syntactically
by using its modified version G3S5;, which is obtained by imposing partitions on sequents. The
termination of proof search is not considered in [1].

There are also various proof systems for S5 that are proposed in the literature as extensions of
Gentzen-type sequent calculi. Such are e.g. labelled sequent calculi [12, 13]. Labels in such systems
represent states in a model and are used along with formulas in derivation rules. Hypersequent calculi
[3, 11, 16, 17], where some finite collections of sequents, called hypersequents, are used instead of
ordinary sequents. Display calculi [4, 24], which include some structural connectives of fixed arity in
addition to logical formulas. Deep inference systems [6, 21], using nested sequents that are slightly
more complex than hypersequents. We also mention the double sequent calculus in [9], where two
types of sequents instead of one are used. Extensions of Gentzen-type calculi are aimed mainly at
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2 Alonderis and Giedra

obtaining cut-free proof systems for S5. A rather thorough survey and analysis of S5 proof systems
based on sequent calculi can be found in the book [10]. They usually allow us to prove syntactically
proof-theoretic properties, such as cut elimination.

Gentzen-type calculi have a simpler syntax compared to their extensions. For this reason, they are
often more convenient to use for decision procedures. In the present work, we seek a proof search
system with ordinary sequents and the termination of backward proof search rather than the syntactic
proofs of proof-theoretic properties. Our goal is a sound and complete Gentzen-type sequent calculus
that can be used for both a decision procedure of S5 and in a construction of cut-free and decidable
proof search systems of other logics involving S5, e.g. the logic of common knowledge over S5
(LCKS5). Cut-elimination from sequent calculi of the logic of common knowledge (and of fixpoint
logics in general) is problematic [2]. Loop-type (or cyclic) sequent calculi are used to get decidable
proof-search systems in such cases. Ordinary (one- or two-sided) sequents are usually used in cyclic
and analytic proof systems of fixpoint logics, e.g. the mentioned LCKS5 [18]. This has to do with
the fact that the extension of syntax by e.g. labels or more complex sequents makes it more difficult
to obtain and check loops in a proof search.

The Gentzen-type sequent calculus GS5 with ordinary sequents is considered in the present paper.
Each logical and modal connective in the antecedent (succedent) of a sequent is handled by a
corresponding left-hand side (right-hand side, respectively) rule of GS5. The rules for propositional
connectives are traditional. The rule (� ⇒) is well known. For the sake of the backward proof
search strategy, we introduce a restriction on backward applications of (� ⇒). The rule (⇒ �)

for ‘�’ in the succedent is constructed by making use of the rule (R�) of G3S5 in [1]. We directly
prove the completeness of GS5 for S5, using a variant of Schütte’s reduction tree method [20]. The
admissibility of cut in GS5 is proved using the soundness and completeness of GS5. We prove that
any GS5 backward proof search terminates, obtaining a decision procedure for S5. The procedure,
together with the proof of Theorem 3, allows us to construct counter-models for non-valid sequents.

The layout of the present paper is as follows. In Section 2, we present the syntax used in the paper
and recall the semantics of S5. The calculus GS5 is defined in Section 3. In Section 4, we prove
the height-preserving invertibility of all rules of GS5, except (⇒ �), and soundness of GS5. In
Section 5, we prove that GS5 is complete for S5; making use of the soundness and completeness
of GS5, we prove the invertibility of rule (⇒ �), and the admissibility of the structural rules of
weakening and contraction and cut rule in GS5. At the end of this section, we describe a decision
procedure for S5 using the calculus GS5, and show that the procedure together with the proof of
Theorem 3 allow us to obtain counter-models of non-derivable sequents.

2 Syntax and semantics

2.1 Syntax

We use the following language: a set of propositional symbols {p, p1, p2, . . . , q, q1, q2, . . .}; the
propositional connectives ¬, ∨, ∧, →; the modal operator �. The formulas φ are defined as usual
by the following grammar:

φ ::= p | ¬φ | φ ∨ ψ | φ ∧ ψ | φ → ψ | �φ.

We use the letters φ and ψ , possibly with subscripts, to denote arbitrary formulas. The modal
operator ♦ is not included in the language: any formula of the shape ♦φ can be expressed by ¬�¬φ.

The letter Σ (possibly subscripted) denotes a multiset of propositional symbols.
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Gentzen-type sequent calculus for modal logic S5 3

Sequents are objects of the shape Γ ⇒ Δ, where Γ and Δ are finite, possibly empty, multisets of
formulas. The letter S (possibly subscripted) denotes a sequent.

If Γ = (φ1, . . . , φn), then θΓ = (θφ1, . . . , θφn), where n ≥ 1 and θ ∈ {¬,�}; if Γ = ∅, then
θΓ = Γ . Also, ηΓ = (φ1η . . . ηφn), where n ≥ 2 and η ∈ {∨, ∧}; if n = 1 or Γ = ∅, then ηΓ = Γ .

2.2 Semantics

In this section, we recall the semantics of S5. A Kripke model M for S5 is a pair (W , V), where W is
a set of states, and V : W 
→ 2P is a valuation function, where P is the set of propositional symbols
and 2P is the set of subsets of P. The semantics of formulas is defined using the satisfaction relation
|� between (M, w) and formulas, where w ∈ W .

1. M, w |� p, iff p ∈ V(w);
M, w |� ¬φ, iff M, w �|� φ;
M, w |� φ ∨ ψ , iff M, w |� φ or M, w |� ψ ;
M, w |� φ ∧ ψ , iff M, w |� φ and M, w |� ψ ;
M, w |� φ → ψ , iff M, w �|� φ or M, w |� ψ ;
M, w |� �φ, iff M, v |� φ for all v ∈ W .

(Such semantics is enough for S5 [7].)
M, w |� (Γ ⇒ Δ), iff M, w �|� φ, where φ ∈ Γ , or M, w |� ψ , where ψ ∈ Δ. If M, w �|� S,

then M is a counter-model for S.
A formula φ (sequent S) is called valid, |� φ (|� S) in notation, iff M, w |� φ (M, w |� S) for

any M, w.

3 Sequent calculus GS5

The multiset |Γ | is obtained from Γ by contracting coincident members, e.g. if Γ = (p, p, φ, φ, ψ),
then |Γ | = (p, φ, ψ). Also, |Γ ⇒ Δ| def= |Γ | ⇒ |Δ|.

The Gentzen type sequent calculus GS5 for S5 is defined as follows:

1. Axioms: Γ , p ⇒ Δ, p.
2. Propositional rules:

φ, ψ , Γ ⇒ Δ

φ ∧ ψ , Γ ⇒ Δ
(∧ ⇒),

Γ ⇒ φ, Δ Γ ⇒ ψ , Δ

Γ ⇒ φ ∧ ψ , Δ
(⇒ ∧),

φ, Γ ⇒ Δ ψ , Γ ⇒ Δ

φ ∨ ψ , Γ ⇒ Δ
(∨ ⇒),

Γ ⇒ φ, ψ , Δ

Γ ⇒ φ ∨ ψ , Δ
(⇒ ∨),

Γ ⇒ φ, Δ

¬φ, Γ ⇒ Δ
(¬ ⇒),

Γ , φ ⇒ Δ

Γ ⇒ ¬φ, Δ
(⇒ ¬),

Γ ⇒ φ, Δ ψ , Γ ⇒ Δ

φ → ψ , Γ ⇒ Δ
(→⇒),

Γ , φ ⇒ ψ , Δ

Γ ⇒ φ → ψ , Δ
(⇒→).

3. Modal rules:

φ,�∗φ, Γ ⇒ Δ

�φ, Γ ⇒ Δ
(� ⇒),

�Γ ⇒ � ∨ (¬|Σa|, |Σs|),�Δ, φ

�∗Γ , Σa ⇒ Σs,�Δ,�φ
(⇒ �).
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4 Alonderis and Giedra

Here: Π , Γ , Δ are finite, possibly empty, multisets of formulas. It is required that conclusions
of the rules are not axioms.

The rule (⇒ �) is called special. Any sequent of the shape of a premise (conclusion) of (⇒ �)

is called p-special (c-special, respectively).
The explicit formula in the conclusion of a non-special rule is called the principal formula of that

rule. For example, �φ is the principal formula of (� ⇒). The formula �φ is the principal formula
of (⇒ �). The expression (⇒ �φ) denotes an application of (⇒ �) with the principal formula �φ.

REMARK 1
The calculus with the rule

�Γ ⇒ � ∨ ¬|Σa|,� ∨ |Σs|,�Δ, φ

�∗Γ , Σa ⇒ Σs,�Δ,�φ
(⇒ �)′

instead of (⇒ �) is not complete. Lemma 4 cannot be proved and, e.g. the valid in S5 sequent

p ⇒ q,�¬�(¬p ∨ q)

is not derivable in such a calculus.

The letter V denotes a proof search tree obtained by applying backward the derivation rules of
GS5, starting from the root. The expression V(S) denotes a proof search tree V the root of which is
the sequent S.

A branch of a backward proof search tree is a path from the root to a leaf. The length of a path is
the number of rule applications in it. The height of a tree V (h(V) in notation) is the length of the
longest branch of V .

A sequent S is called derivable in GS5 (GS5 � S in notation), iff there is V(S) each leaf of which
is an axiom. Such V(S) is a derivation of S.

The asterisk mark on the modal operator in the premise of (� ⇒) is introduced for the sake of the
strategy of backward proof search; �∗ does not differ semantically from �. The following useless
backward proof search is possible if the mark is not used (read bottom-up this and all proof search
trees in the present paper):

· · ·
(� ⇒)

p, p,�p, Γ ⇒ Δ
(� ⇒)

p,�p, Γ ⇒ Δ
(� ⇒)�p, Γ ⇒ Δ

The mark is removed in the premise of (⇒ �). Hence (� ⇒) with the same principal formula
can be applied backward for the second time on the same branch only if the second application
is preceded by an application of (⇒ �). Let us consider the following derivation of the sequent
�(¬�p ∧ p) ⇒:

¬�p, p,�∗(¬�p ∧ p) ⇒ p,�¬p
(∧ ⇒)¬�p ∧ p,�∗(¬�p ∧ p) ⇒ p,�¬p
(� ⇒)�(¬�p ∧ p) ⇒ p,�¬p

(⇒ �)
p,�∗(¬�p ∧ p) ⇒ �p

(¬ ⇒)¬�p, p,�∗(¬�p ∧ p) ⇒
(∧ ⇒)¬�p ∧ p,�∗(¬�p ∧ p) ⇒
(� ⇒)�(¬�p ∧ p) ⇒
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Gentzen-type sequent calculus for modal logic S5 5

The root-sequent is derived using two applications of (� ⇒) with the principal formula
�(¬�p ∧ p), where the second application of (� ⇒) is preceded by (⇒ �).

A sequent is called closing if no derivation rule can be applied backward to it. Such are axioms
and sequents of the shape Σa,�∗Γ ⇒ Σs.

A path in a proof search tree that starts with S1 and ends with S2 is denoted by S1 ↗ S2. The
expression S ↗ denotes a path that starts with the sequent S.

We introduce the restriction that

S†

S′ (⇒ �φ)

cannot be applied backward to S′ in S ↗ S′ if there is S1 in S ↗ S′ such that |S1| and |S†| coincide.
Such an occurrence of S1 in S ↗ S′ is called a restrictor of S′. If S′ is c-special and (⇒ �) cannot
be applied backward to it, then S′ is called terminating. For example, S1 is a restrictor of S′ in

S′ : ⇒ p,�¬p
(⇒ �)

p ⇒ �p
(⇒ ¬)

S1 : ⇒ �p, ¬p
(⇒ �)⇒ �p,�¬p

because

S† : ⇒ �p, ¬p

S′ (⇒ �)

and |S1| and |S†| coincide. S′ is terminating because it is c-special and (⇒ �) cannot be applied
backward to it.

4 Some properties of GS5

The size of a formula φ (sz(φ) in notation) is defined as follows: sz(p) = 1,
sz(φ1γφ2) = sz(φ1) + sz(φ2) + 1, and sz(μφ) = sz(φ) + 1, where γ is a binary propositional
connective and μ is ¬ or a (marked) modal operator. The size of a sequent is the sum of the sizes of
all members of its antecedent and succedent.

A backward proof search tree V(S) is called a reduction tree iff 1) each its leaf is a closing sequent
or a conclusion of (⇒ �), and 2) there is no application of (⇒ �) in it.

LEMMA 1
Any sequent Γ , φ ⇒ Δ, φ′, where 1) φ′ = φ, or 2) φ = �∗ψ and φ′ = �ψ , is derivable in GS5.

PROOF. The proof is by induction on sz(φ). If sz(φ) = 1, then the considered sequent is an axiom.
Assume that sz(φ) > 1. Let φ = φ′ = φ1 ∨ φ2. We have:

S1 : φ1, Γ ⇒ Δ, φ1, φ2 S2 : φ2, Γ ⇒ Δ, φ1, φ2
(∨ ⇒)

φ1 ∨ φ2, Γ ⇒ Δ, φ1, φ2
(⇒ ∨)

S : φ1 ∨ φ2, Γ ⇒ Δ, φ1 ∨ φ2

S1 and S2 are derivable, according to inductive hypothesis. Hence, S is derivable. The cases when
φ = ¬φ1 or φ = φ1γφ2, where γ stands for a binary propositional connective, are considered in the
same way. Let φ ∈ {�ψ ,�∗ψ} and φ′ = �ψ . Let us consider a reduction tree

V(φ, Γ ⇒ Δ,�ψ).
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6 Alonderis and Giedra

Each leaf of the tree is an axiom or a c-special sequent of the shape

�∗ψ , Γ1 ⇒ Δ1,�ψ .

We have:

S2 : ψ ,�∗ψ , Γ2 ⇒ Δ′
2, ψ

(� ⇒)�ψ , Γ2 ⇒ Δ2, ψ
(⇒ �)

S1 : �∗ψ , Γ1 ⇒ Δ1,�ψ

S2 is derivable according to inductive hypothesis. It follows that S1 is derivable. Hence

φ, Γ ⇒ Δ,�ψ

is derivable. �
A derivation rule is called height-preserving invertible if it is invertible and the premise(s) is (are,

respectively) derivable with no greater derivation height than the conclusion.
The expression �V S denotes that V is a derivation of S.

LEMMA 2
All GS5 non-special rules are height-preserving invertible.

PROOF. The lemma is proved by induction on the derivation height h of the conclusion of a rule.
The proof is trivial if h = 0 because both the conclusion and premise(s) of any considered rule are
axioms in this case. Assume that h > 0. Let us consider the rule

S′ : φ,�∗φ, Γ ⇒ Δ

S : �φ, Γ ⇒ Δ
(� ⇒).

Let V :

· · ·
Γ1 ⇒ Δ1

(· · · )
(Γ2 ⇒ Δ2) r

S

be a derivation of S, where r is not (⇒ �) (r cannot be (⇒ �) because S is not a c-special
sequent). We want to show that there is a derivation V ′ of S′ such that h(V ′) ≤ h(V). If r is (� ⇒)

with the principal formula �φ, then the proof is obtained. Otherwise, Γ1 = �φ, Γ ′
1 (Γ2 = �φ, Γ ′

2)
and we have

�V1 (φ,�∗φ, Γ ′
1 ⇒ Δ1)

( �V2 (φ,�∗φ, Γ ′
2 ⇒ Δ2)

)
,

where h(V1) ≤ h(V) − 1 (h(V2) ≤ h(V) − 1), according to inductive hypothesis. Hence

V1

{ · · ·
φ,�∗φ, Γ ′

1 ⇒ Δ1

(
V2

{ · · ·
φ,�∗φ, Γ ′

2 ⇒ Δ2

)

S′ : φ,�∗φ, Γ ⇒ Δ
r,

obtaining the derivation V ′ of S′ such that h(V ′) ≤ h(V). The height-preserving invertibility of the
remaining non-special rules is proved in the same way. �

THEOREM 1
The calculus GS5 is sound for S5.
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Gentzen-type sequent calculus for modal logic S5 7

PROOF. We prove by induction on h(V) that �V S implies |� S for any S. The proof is obvious if
h(V) = 0. Assume that h(V) > 0. The tree V has the following shape:

· · ·
S

(r).

Let (r) = (⇒ �) :
· · ·

�Γ ⇒ � ∨ (¬|Σa|, |Σs|),�Δ, φ
(⇒ �)

S : �∗Γ , Σa ⇒ Σs,�Δ,�φ

and

M, w |� ∧(�∗Γ , Σa).

The latter fact implies M, w |� ∧Σa. If M, w |� ∨Σs, then M, w |� S. The theorem is proved in
this case. If M, w �|� ∨Σs, then M, w �|� � ∨ (¬|Σa|, |Σs|). Hence M, w |� ∨(�Δ, φ), according
to inductive hypothesis. If M, w |� ∨�Δ, then M, w |� S. If M, w �|� ∨�Δ, then M, w′ �|� ∨�Δ

for all w′ ∈ W . Hence M, w′ |� φ, by inductive hypothesis. Hence M, w |� �φ. We get M, w |� S.
The remaining cases of (r) are traditional. �

5 Completeness of GS5

PROPOSITION 1
If there is a finite number n ≥ 0 of applications of (⇒ �) in S ↗, then the length of S ↗ is finite.

PROOF. The proof follows from the shapes of GS5 rules. The size of any premise of any propositional
rule is less than the size of conclusion. Repeated backward applications of (� ⇒) with the same
principal formulas are blocked by the asterisk mark. The mark is removed only in premises of (⇒ �).
Hence, an infinite number of backward applications of (⇒ �) is needed to get an infinite path S ↗.�

A sequent S1 is modulo-contraction coincident with S2 if |S1| and |S2| coincide.

LEMMA 3
The length of any upward path S ↗ in any V(Γ ⇒ Δ) is finite.

PROOF. Let P be the set of all sub-formulas of formulas in Γ ⇒ Δ. The set is finite because Γ ⇒ Δ

is finite. Each sequent of in V(Γ ⇒ Δ) consists of formulas in P , formulas in some finite set of
formulas of the shape � ∨ (¬|Σa|, |Σb|), and sub-formulas of these formulas. We have that there
is only a finite number of sequents in V(Γ ⇒ Δ) that are not modulo-contraction coincident. In
particular, there is a finite number of p-special sequents that are not modulo-contraction coincident.
Hence, no path in V(Γ ⇒ Δ) has an infinite number of backward applications of (⇒ �). We get
that the length of S ↗ is finite, based on Proposition 1. �

THEOREM 2
Any GS5 backward proof search terminates.

PROOF. The proof follows from Lemma 3. �
Let Γ = (φ1, . . . , φn) (n ≥ 1). The expression M, w |� Γ denotes that M, w |� φi (1 ≤ i ≤ n)

and M, w �|� Γ denotes that M, w �|� φi (1 ≤ i ≤ n).
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8 Alonderis and Giedra

LEMMA 4
Let M = (W , V) be any model, and Sp and Sc be a premise and conclusion, respectively, of any GS5
rule. If M, w �|� Sp, then there is w′ ∈ W such that M, w′ �|� Sc.

PROOF. Let us consider e.g. rule (∨ ⇒). If M, w �|� (φ, Γ ⇒ Δ), then M, w |� (φ, Γ ) and
M, w �|� Δ. Hence M, w |� (φ ∨ ψ , Γ ). We get M, w �|� (φ ∨ ψ , Γ ⇒ Δ). The remaining
propositional and (� ⇒) rules are considered identically. Let us consider the special rule

�Γ ⇒ � ∨ (¬|Σa|, |Σs|),�Δ, φ

�∗Γ , Σa ⇒ Σs,�Δ,�φ
(⇒ �).

It is given that

M, w �|� �Γ ⇒ � ∨ (¬|Σa|, |Σs|),�Δ, φ,

i.e. M, w |� �Γ and M, w �|� (� ∨ (¬|Σa|, |Σs|),�Δ, φ). Hence M, w′ |� �Γ and
M, w′ �|� (� ∨ (¬|Σa|, |Σs|),�Δ,�φ) for any w′ ∈ W . The fact M, w �|� � ∨ (¬|Σa|, |Σs|)
implies that M, w1 |� ∧(Σa, ¬Σs) for some w1. Hence M, w1 |� Σa and M, w1 �|� Σs. We attain

M, w1 �|� �∗Γ , Σa ⇒ Σs,�Δ,�φ. �

THEOREM 3 (Completeness of GS5).
If |� S, then GS5 � S, where the asterisk mark does not occur in S.

PROOF. We prove that if GS5 �� S, then �|� S. The proof is by the Schütte’s method of reduction
trees. Let � = (S ↗ L) be any branch in some V(S), where L is a non-axiom closing or terminating
sequent. First, we assume that L is not terminating, e.g. S = (⇒ �p) or (⇒ �) is not applied in �.
Let

L = �∗Γ , Σa ⇒ Σs.

An S5 Kripke model M = (W , V) is constructed as follows: W = {w} and V(w) = Σa. Using
induction on sz(φ), we prove that M, w |� φ (M, w �|� φ) if φ ∈ Γ ′ (φ ∈ Δ′, respectively), where

S′ = Γ ′ ⇒ Δ′

is any sequent in �. The proof is obvious if sz(φ) = 1.
Let sz(φ) > 1, φ ∈ Γ ′, and φ = �φ′ (φ = �∗φ′); it is true that there is an application of (� ⇒)

with the principal formula �φ′ in S′ ↗ L (S ↗ S′, respectively). Hence M, w |� φ′ by inductive
hypothesis. It follows that M, w |� �φ′.

Let φ ∈ Δ′ and φ = �φ′. It is true that there is (⇒ �φ′) in S′ ↗ L. Hence M, w �|� φ′ by
inductive hypothesis. It follows that M, w �|� �φ′.

The outermost symbol of φ is a propositional connective in the remaining cases. We skip these
cases since they are considered traditionally. We attain M , w �|� S. Hence �|� S.

Now we consider the case when L is terminating. Let �Γ consist of all formulas of the shape
�φ that occur in antecedents of sequents in �. Let S† = (�Π ⇒ Λ) be the first from the bottom
p-special sequent in �, where |�Π | = |�Γ |. All restrictors of L are within �† = (S† ↗ L), based on
the fact that the antecedent of L contains �∗Γ . Hence L is terminating in �†.

Let

Si = �∗Γ i, Σ i
a ⇒ Σ i

s,�Δi
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Gentzen-type sequent calculus for modal logic S5 9

(1 ≤ i ≤ n) be the i-th from the bottom c-special sequent in �†. Let πi = (Si ↗ Si), where
Si is a p-special and there are no applications of (⇒ �) in πi for 1 ≤ i ≤ n. (It is true, that
S1 = S†, Sn = L, and �† = π1 . . . πn.) A Kripke model M = (W , V) is constructed as follows:
W = {wi | 1 ≤ i ≤ n} and V(wi) = {Σ i

a} (1 ≤ i ≤ n). We prove by induction on sz(φ) that if
Γ ′ ⇒ Δ′ is in πι (ι ∈ {1, . . . , n}), then M, wι |� φ (M, wι �|� ψ) for each φ ∈ Γ ′ (each ψ ∈ Δ′,
respectively). If sz(φ) = 1, then φ is a propositional symbol. The proof follows from the fact that
M, wι |� φ only if φ ∈ Σι

a.
Let φ ∈ Γ ′ and φ = �ψ or φ = �∗ψ . There is an application of (� ⇒) with the principal

formula �ψ in each πj because �ψ is a member of the antecedent of Sj (1 ≤ j ≤ n), where
πj = (Sj ↗ Sj). Hence ψ is a member of the antecedent of a sequent in each πj; it follows that
M, wj |� ψ , according to inductive hypothesis. Hence M, wι |� φ.

Let φ ∈ Δ′ and φ = �ψ . It is true that (⇒ �) with the principal formula φ is applied in �† or
succedent of some restrictor of L has the member ψ . In both cases, M, wj �|� ψ (j ∈ {1 . . . , n}),
according to inductive hypothesis. Hence M, wι �|� φ.

The outermost symbol of φ is a propositional connective in the remaining cases, consideration of
which is skipped. We obtain M, w1 �|� S†. Hence M, wj �|� S (j ∈ {1 . . . , n}), based on Lemma 4. It
follows that �|� S. �

LEMMA 5
Let S′ and S be a premise and conclusion, respectively, of (⇒ �). It is true that |� S implies |� S′.

PROOF. The proof follows from the fact that �|� S′ implies �|� S, according to Lemma 4. �
A derivation rule is called invertible if whenever its conclusion is derivable, the premise(s) is (are,

respectively) derivable as well.

THEOREM 4
The rule (⇒ �) is invertible.

PROOF. Let

S′

S
(⇒ �)

be any instance of (⇒ �). We have that GS5 � S implies |� S, according to Theorem 1. Hence
|� S′, based on Lemma 5. It follows that GS5 � S′, according to Theorem 3. �

(⇒ �) is not height-preserving invertible, e.g. the derivation height of the c-special sequent
p ⇒ p,�q is 0, while the derivation height of the corresponding p-special sequent ⇒ q,�(¬p ∨ p)

is 3:

p ⇒ �q, p
(⇒ ¬)⇒ ¬�q, ¬p, p
(⇒ ∨)⇒ �q, ¬p ∨ p
(⇒ �)⇒ q,�(¬p ∨ p)

A derivation rule is called admissible in GS5 if the derivability of its premise(es) implies the
derivability of the conclusion.
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10 Alonderis and Giedra

THEOREM 5
The structural rules of weakening

Γ ⇒ Δ

Π , Γ ⇒ Δ, Λ
(W)

and contraction

φ, φ, Γ ⇒ Δ

φ, Γ ⇒ Δ
(C ⇒),

Γ ⇒ Δ, φ, φ

Γ ⇒ Δ, φ
(⇒ C),

where the asterisk mark does not occur in the conclusions, are admissible in GS5.

PROOF. The admissibility of (W) is proved as follows. If GS5 � Γ ⇒ Δ, then |� Γ ⇒ Δ,
by Theorem 1. This fact implies |� Π , Γ ⇒ Δ, Λ. Hence GS5 � Π , Γ ⇒ Δ, Λ, according to
Theorem 3.

The admissibility of (C ⇒) and (⇒ C) is proved in the same way. �

THEOREM 6
The cut rule

Γ ⇒ Δ, φ φ, Π ⇒ Λ

Γ , Π ⇒ Δ, Λ
(cut),

where the asterisk mark does not occur in the conclusion, is admissible in GS5.

PROOF. If GS5 � Γ ⇒ Δ, φ and GS5 � φ, Π ⇒ Λ, then |� Γ ⇒ Δ, φ and |� φ, Π ⇒ Λ,
according to Theorem 1. Hence |� Γ , Π ⇒ Δ, Λ. It follows that GS5 � Γ , Π ⇒ Δ, Λ, based on
Theorem 3. �

Let S be an arbitrary sequent. Any backward GS5 proof search of S terminates, according to
Theorem 2. If a tree V(S) has a closing non-axiom or terminating leaf, then GS5 �� S, by the fact
that all rules of GS5 are invertible. Hence �|� S, according to Theorem 3. If all leaves of V(S) are
axioms, then GS5 � S. It follows that |� S, according to Theorem 1. We attain a decision procedure
for S5, based on the calculus GS5. If �|� S, then the proof search tree generated by the procedure can
be used to construct M = (W , V) such that M, w �|� S for some w ∈ W , in the same way as in the
proof of Theorem 3. Let us take e.g. the sequent

S = �(p ∨ q) ⇒ �p,�q

and consider the following branch of a backward proof search tree with S at the root:
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Gentzen-type sequent calculus for modal logic S5 11

· · ·

· · ·

S5
c : p, p,�∗(p ∨ q) ⇒ �(¬q ∨ p), q · · ·

(∨ ⇒)
p ∨ q, p,�∗(p ∨ q) ⇒ �(¬q ∨ p), q

(� ⇒)
p,�(p ∨ q) ⇒ �(¬q ∨ p), q

(⇒ ∨), (⇒ ¬)
S4

p : �(p ∨ q) ⇒ �(¬q ∨ p), ¬p ∨ q
(⇒ �)

S4
c : q, q,�∗(p ∨ q) ⇒ �(¬p ∨ q), p

(∨ ⇒)
p ∨ q, q,�∗(p ∨ q) ⇒ �(¬p ∨ q), p

(� ⇒)
q,�(p ∨ q) ⇒ �(¬p ∨ q), p

(⇒ ∨), (⇒ ¬)
S3

p : �(p ∨ q) ⇒ �(¬p ∨ q), ¬q ∨ p
(⇒ �)

S3
c : p,�∗(p ∨ q) ⇒ �(¬q ∨ p), q · · ·

(∨ ⇒)
p ∨ q,�∗(p ∨ q) ⇒ �(¬q ∨ p), q

(� ⇒)
S2

p : �(p ∨ q) ⇒ �(¬q ∨ p), q
(⇒ �)

S2
c : q,�∗(p ∨ q) ⇒ p,�q

(∨ ⇒)
p ∨ q,�∗(p ∨ q) ⇒ p,�q

(� ⇒)
S1

p : �(p ∨ q) ⇒ p,�q
(⇒ �)�(p ∨ q) ⇒ �p,�q

S5
c is terminating because S3

p is its restrictor. Using the proof of Theorem 3, we construct
M = (W , V): a state wi is added in W for each path Si

p ↗ Si+1
c , where 1 ≤ i ≤ 4; hence

W = {w1, w2, w3, w4}; finally, V(w1) = {q}, V(w2) = {p}, V(w3) = {q}, and V(w4) = {p}. It
is true that

M, w1 �|� �(p ∨ q) ⇒ �p,�q.

6 Conclusion

The cut-free Gentzen-type sequent calculus GS5 for S5 with a restriction on backward applications
of (� ⇒) has been considered in the paper. The termination of any backward proof search has been
achieved by introducing the notion of a restrictor for sequents that have the shape of a conclusion of
(⇒ �). Using the termination, we have proved that GS5 is complete for S5. It has been proved that
all rules of GS5 are invertible. Using GS5, we have described a decision procedure for S5 based on
the soundness and completeness, termination of backward proof search, and invertibility of rules of
GS5. If a sequent is not valid, then the decision procedure and proof of Theorem 3 allow us to get
its counter-model.

Loops are easy to define and use in GS5 backward proof-search trees. For example, a path S ↗ S′
is a loop if the sequents |S| and |S′| coincide. Such loops were used in Section 3 to define restrictors.
For future work, we plan to use the calculus GS5 in the construction of cyclic, cut-free and decidable
proof systems of logics involving S5, such as the logic of common knowledge over S5 or the fixpoint
logic for reasoning about knowledge and time [8].
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