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Abstract

Understanding what drives protein abundance is essential to biology, medi-

cine, and biotechnology. Driven by evolutionary selection, an amino acid

sequence is tailored to meet the required abundance of a proteome, underscor-

ing the intricate relationship between sequence and functional demand. Yet,

the specific role of amino acid sequences in determining proteome abundance

remains elusive. Here we show that the amino acid sequence alone encodes

over half of protein abundance variation across all domains of life, ranging

from bacteria to mouse and human. With an attempt to go beyond predictions,

we trained a manageable-size Transformer model to interpret latent factors

predictive of protein abundances. Intuitively, the model's attention focused on

the protein's structural features linked to stability and metabolic costs related

to protein synthesis. To probe these relationships, we introduce MGEM

(Mutation Guided by an Embedded Manifold), a methodology for guiding pro-

tein abundance through sequence modifications. We find that mutations

which increase predicted abundance have significantly altered protein polarity

and hydrophobicity, underscoring a connection between protein structural fea-

tures and abundance. Through molecular dynamics simulations we revealed

that abundance-enhancing mutations possibly contribute to protein thermosta-

bility by increasing rigidity, which occurs at a lower synthesis cost.
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1 | INTRODUCTION

The intricate interplay between protein synthesis and
degradation defines intracellular protein levels, with
implications for therapeutic strategies, protein and cellu-
lar engineering. The complex regulation of protein
homeostasis suggests that multiple factors contribute to
the overall proteome makeup, with the evolutionarily
encoded sequence potentially playing a pivotal role in
proteome composition. For instance, protein synthesis is
strongly regulated at the initiation step (Laursen
et al. 2005; Merrick and Pavitt 2018; Verma et al. 2019),
whose rate varies broadly between mRNAs, depending
not only on the transcript sequence features (Vogel
et al. 2010; Zur and Tuller 2013) but also on the amino
acids at the N-terminal (Goodman et al. 2013; Zhao
et al. 2019). In bacteria, the amino acid composition of
the C-terminal is a strong determinant of protein degra-
dation rates, explaining a wide range of protein abun-
dances (Correa Marrero and Barrio-Hernandez 2021;
Weber et al. 2020). These, along with the multiple mecha-
nisms of post-translational regulation (Müller 2018; Tok-
makov et al. 2012), suggest that this rather tight
regulation occurs at the degradation level and is encoded,
at least partially, in the amino acid sequence. Empiri-
cally, amino acid composition and sequence features
were seen to correlate with protein abundance
(Cascarina and Ross 2018; Riba et al. 2019; van den Berg
et al. 2012), protein sequence redesign led to an order of
magnitude higher increase of protein abundance com-
pared with codon optimization (van den Berg et al. 2014),
transcending mere codon composition influences on pro-
tein abundance (Ikemura 1985). While the importance of
protein sequence in determining abundance is recog-
nized, the quantitative relationship between sequence
and abundance remains elusive, as does the link between
the evolutionary mechanisms that underlie this
relationship.

On a broader scale, proteins situated as central
players in cellular processes or as critical nodes in inter-
action networks often exhibit higher abundances (Jeong
et al. 2001). Evolutionarily, these highly abundant pro-
teins face stringent constraints, evolving at a slower pace
due to their potential large-scale impact on cellular fit-
ness (P�al et al. 2006; Zhang and Yang 2015). Remarkably,
the conservation of steady-state protein abundances
spans diverse evolutionary lineages, ranging from

bacteria to humans (Laurent et al. 2010; Schrimpf
et al. 2009; Tuller et al. 2010a). Theoretical models sug-
gest that increasing protein abundance slows evolution
due to reduced fitness, with the least stable proteins
adapting the fastest (Agozzino and Dill 2018). Yet, under
strong selection, proteins can evolve faster by adopting
mutations that enhance stability and folding (Zheng
et al. 2020). Experimental evidence also suggests that a
protein's capacity to evolve is enhanced by the muta-
tional robustness conferred by extra stability (Bloom
et al. 2006; Bloom et al. 2007; Youssef et al. 2022), mean-
ing that protein stability increases evolvability by allow-
ing it to accept a broader range of beneficial mutations
while still folding to its native structure. Thermostability
gains of highly expressed orthologs are often accompa-
nied by a more negative ΔG of folding, indicating that
highly expressed proteins are often more thermostable
(Luzuriaga-Neira et al. 2023), as often explained by the
so-called misfolding avoidance hypothesis (MAH),
because stable proteins are evolutionarily designed to tol-
erate translational errors (Drummond et al. 2005; Drum-
mond and Wilke 2008; Leuenberger et al. 2017). On the
contrary, several empirical studies revealed no substan-
tial correlation between protein stability and protein
abundance (Plata and Vitkup 2018; Usmanova
et al. 2021). Likewise, the overall cost (per protein) of
translation-induced misfolding is low compared to the
metabolic cost of synthesis (Nisthal et al. 2019; Yang
et al. 2010), suggesting that MAH does not explain why
highly abundant proteins evolve slower (Usmanova
et al. 2021). On the other hand, cells may have fine-tuned
protein sequences to balance their functional importance
with the metabolic costs they incur, reflecting an optimi-
sation between functional necessity and energy efficiency
(Akashi and Gojobori 2002; Cherry 2010; Gout
et al. 2010). Given the intricate interplay of evolutionary
constraints, protein stability, abundance, and protein syn-
thesis metabolic cost, it remains unclear how cells
evolved their sequences to strike an optimal balance
between functional demands of proteome and cellular fit-
ness associated with the synthesis and maintenance of
protein abundance.

In this study, we explore the relationship between a
protein's amino acid sequence and its abundance by ask-
ing: “How much does the protein sequence (as opposed to
amino acid composition) predict protein abundance?”
Using a large protein language Transformer (Lin
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et al. 2023), we showed that >50% of protein abundance
variation can be predicted solely from the amino acid
sequence, as shown in at least 38 species from all
domains of life, including Homo sapiens. To understand
details, we focused on the model organism Saccharomy-
ces cerevisiae, and trained an interpretable deep neural
network Transformer architecture (R2 test = 56%) to pre-
dict protein abundance. Delving into the neural net-
work's self-attention mechanism with post hoc analyses
to understand which protein sequence features predict
their abundances, we found that the network indirectly
identified multiple physicochemical features related to
protein's structural properties and the overall metabolic
features, such as synthesis costs, which the model pays
attention to when predicting abundance. We then intro-
duced MGEM (Mutation Guided by an Embedded Mani-
fold) to probe sequence space. Mutations that increase
predicted abundance using only Transformer-derived
positional residue importance values notably affected
protein polarity and hydrophobicity, hinting at a
stability-abundance connection. Molecular dynamics
simulations gave further evidence for the enhanced rigid-
ity of abundance-increasing mutants, a phenotype pro-
nounced for thermo-stabilizing mutations (Yu et al. 2017;
Yu and Huang 2014). Importantly, we found that
mutants with increased abundance had lower amino acid
synthesis metabolic costs than their native versions,
underscoring the fitness benefits of abundant proteins.
Our results show that besides the amino acid composi-
tion, the sequence is a crucial factor predicting intracellu-
lar protein levels. Based on the factors we identified, this
is conceivably achieved in part potentially by protein sta-
bilization (through the increase of rigidity) and by cost-
effective amino acid substitutions, providing evolutionary
benefits by reducing the metabolic costs of protein
synthesis.

2 | RESULTS

2.1 | The amino acid sequence is
generally predictive of protein abundance

Cellular protein levels are determined by the balance
between multiple processes (Ho et al. 2018; Vogel and
Marcotte 2012), but steady-state abundances may be
roughly approximated by the interplay between protein
synthesis (involving transcriptionally related processes)
and degradation, which can be exemplified by a simple
model that incorporates the two key proxy factors: pro-
tein translation efficiency (Weinberg et al. 2016) (ribo-
some density normalized by transcript abundance) and
protein half-life (Christiano et al. 2014). A random forest

model we trained on these two factors explains a
relatively large proportion (R2 test = 36%) of protein
abundance variation, with 65% model contribution from
translation efficiency and 35% from protein half-life,
respectively (Figure S1) (section 4.1). While it is evident
that a protein's primary structure, its amino acid
sequence, is related to protein synthesis and degradation,
it is unclear to what extent the information about protein
levels is encoded in the sequence. Thus, to investigate the
relationship between amino acid sequence and protein
abundance, we used a compendium of protein abun-
dance estimates from PaxDb (Huang et al. 2023) of over
800 experimental studies across 136 species representing
all domains of life, ranging from bacteria to humans.
Namely, for each organism, we formulated a regression
problem by utilizing protein sequences to model intracel-
lular protein levels, by training a neural network using
sequence representations derived from a pretrained large
protein language model (Lin et al. 2023) (section 4.2).
The predictive performance on independent test data
(Figure 1a), using only an amino acid sequence as input,
measured by R2 overall, predicts 44% (median) of abun-
dance variation across all domains of life (Figure 1b),
including human tissues (Figures S2–S4), suggesting that
the amino acid sequence encodes protein abundance.

We next attempted to look deeper to develop an inter-
pretable model, as models derived from deep neural net-
works are often difficult to interpret (Savage 2022).
Although protein sequence representations, so-called
embeddings, including sequence representations learned
from structural models (Jumper et al. 2021), are useful
for multiple tasks in protein science (Johnson et al. 2023;
Kroll et al. 2023; Littmann et al. 2021), such vectorised
protein sequence representations have been shown to
have limited generalization to all protein functions and
properties (Hu et al. 2022; Johnson et al. 2023), making it
especially difficult to use for all-purpose interpretation,
that is, abundance prediction. Thus, in our case, to
increase interpretability, we utilized a relatively small
Transformer model trained entirely from scratch to
obtain a direct map of sequence-to-protein abundances,
as opposed to using pre-trained large protein language
models (Brandes et al. 2022; Ferruz et al. 2022; Madani
et al. 2023; Rives et al. 2021). By training the model from
scratch in a regression setting (section 4.3), we ensured
that our model learned relevant sequence representations
only aligned to protein abundance, thus easing further
interpretation. To learn from the sequence, we chose
Transformer with its multi-head attention architecture
(Devlin et al. 2018; Rao et al. 2019), which allows for
some transparency in weighing the contributions of
amino acid residues on protein levels and can provide
insights into the most relevant sequence features the
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model uses (Rao et al. 2019; Rao et al. 2020; Vig
et al. 2020) to make predictions about protein abun-
dances, using an intrinsic attention mechanism (Vaswani

et al. 2017). As for data, independently of the PaxDb data-
set (Huang et al. 2023), we used a curated compendium
of 21 experimental systematic studies employing mass

FIGURE 1 Legend on next page.
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spectrometry and microscopy techniques to estimate
absolute protein abundances (copy numbers per cell) of
over 5000 proteins in S. cerevisiae grown predominantly
in the exponential phases across multiple conditions,
essentially capturing known yeast proteome variation
(Ho et al. 2018). Due to deep learning's need for extensive
training data and the yeast dataset's limited size, we used
repeated measurements (up to 21 sequence copies from
all experiments in the dataset) to account for inter-
experimental variation (equivalent to regression with rep-
licates). Our augmented dataset included 199,206 training
examples, with 10% of sequences uniquely (and ran-
domly) chosen (the same sequence is only in one data
split) for validation during model training and 10% for a
hold-out test during the final model evaluation (sec-
tion 4.3). Similarly, as with the protein language model,
by training the smaller Transformer model from scratch,
we found that the model predicts 56% of protein abun-
dance variation (R2 test = 56% on a holdout test set,
RMSE = 14,303 [molecules per cell] corresponding to <1
of this set's standard deviation) using only an amino acid
sequence as input (Figure 1c, again supporting that the
sequence predominantly encodes protein abundance). In
contrast, the model predictions failed when performing a
randomization control with shuffled versions of the same
test set sequences (R2 = �73%, Figure S5), confirming
that the model relies on residue interdependencies in a
sequence rather than simply learning amino acid fre-
quencies when predicting protein levels, and is thus com-
plementary to composition-based partial predictors.

Further support of the network's ability to pick up infor-
mation encoded in the sequence contrasts the above
result with composition as a predictor of abundance.
A multiple linear regression model using amino acid fre-
quencies had an R2 = 21% on the same test set. Indeed,
the amino acid frequency varies only slightly across
abundance deciles (Figure S6d).

2.2 | The attention mechanism connects
sequence and structural features to protein
abundance

By focusing on the model organism S. cerevisiae, for
which a high-quality protein copy numbers dataset span-
ning 21 experiments was available (Ho et al. 2018), we
next attempted to identify abundance-related links to var-
ious physicochemical, biochemical, and functional pro-
tein features using the attention values derived from
yeast protein sequences (Figure 1d). We extracted the
attention weights of each input sequence. We obtained
one-dimensional per-residue attention profiles, reflecting
the average percentage of attention each residue receives
from all others in the sequence when making the corre-
sponding abundance prediction (see Figure S7 and
section 4.4).

To examine the determinants of protein abundance,
we first correlated attention profiles with amino acid
metabolic costs (Barton et al. 2010) (section 4.5), as
amino acid synthesis cost is known to be a determinant

FIGURE 1 The amino acid sequence is predictive of protein abundance. (a) Sequence-to-abundance predictive performance on a hold-

out test set of large protein language models (LLMs) (Lin et al. 2023), using species with at least four proteome datasets from the PaxDb

(Huang et al. 2023). (b) Overall predictive performance of fine-tuned LLM Transformers using all datasets from the PaxDb. (c) Transformer

performance on a hold-out test set trained on the yeast dataset (Ho et al. 2018), colored by density. (d) A protein sequence is passed through

the model to extract attention matrices from all layers. A Transformer attention matrix example and derived attention profile for a protein

sequence. Attention matrices consist of directional association weights between pairs of residues, normalized as a percentage. The profiles

were obtained by averaging along the “attends-to” axis, as the “attended-by” variation is generally more informative, resulting in one-

dimensional attention profiles that are then correlated to multiple protein features. (e) Attention profiles correlate with amino acid

metabolic costs (see also Table S1 for full description). Shown are distributions across all sequences of maximum (absolute) Pearson

correlations of any attention profile with p-value <1e-5, as well as a random control (gray, dashed) consisting of correlations produced the

same way for shuffled versions of the same sequences. (f) Attention profiles correlate with 10 non-redundant AAindex variables (colored by

index type), showing that profiles capture information pertaining to backbone conformation, physicochemical properties, domain linkage,

and secondary structure. While some AAindex types correlate with attention profiles both positively and negatively (e.g., backbone

conformation), individual AAindex variables within these types are overall either positively or negatively correlated. The categories shown

span AAindex variables that are both positively and negatively correlated with attention. Shown is also a random control (gray, dashed)

consisting of correlations produced the same way for shuffled versions of the same sequences. As the mean abs correlation threshold (0.3)

was removed for these, the plot shows the distributions for all 18 initial AAindex variables. (g) Proteins are split into two subpopulations of

sequences with high attention values (z-score >1) that are either enriched in turns and helices (S, I, G, and T in DSSP notation) and, to a

lesser extent, extended strand (E), or largely depleted in extended strand (E) and turn (T), as assessed with one-sided hypergeometric tests (p-

value <0.05). (h) Overlap of attention patterns with protein domains from the yeast InterPro database, grouped by member databases. The

attention coverage of domains (fraction overlapping with attention profiles) is significantly higher than the control for 10 out of 12 member

databases (Wilcoxon two-sided signed-rank test, p-value <0.05), with the highest coverage in PRINTS and PROSITE.
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of protein abundance (Akashi and Gojobori 2002; Raiford
et al. 2008; Swire 2007; Wagner 2005). The strongest cor-
relations were found between attention profiles and the
energetic cost of amino acids (craig_energy) (Craig and
Weber 1998) averaged over all proteins (mean Pearson's
r = 0.32, BH adj. p-value <1e-5). Conversely, anticorrela-
tions were observed with synthetic cost under both
respiratory and fermentative growth (wagner_resp,
wagner_ferm, respectively) (Wagner 2005) as well as the
number of synthesis steps (craig_steps) (Craig and
Weber 1998) (mean Pearson's r = �0.35, �0.33, and
�0.31, respectively, BH adj. p-value <1e-5). Additionally,
some of the systemic costs introduced by Barton et al.
(2010) using genome-scale flux balance analysis calcula-
tions (Orth et al. 2010) showed positive and negative cor-
relations with attention, such as the impact of the
relative change of the amino acid requirement on
the minimal intake of glucose (yeast_car_rel, mean Pear-
son's r = 0.32 over 1855 proteins and �0.33 over 705 pro-
teins, BH adj. p-value <1e-5) and the absolute change of
the amino acid requirement on the minimal intake of
ammonium (yeast_nit_abs, mean Pearson's r = 0.25 over
1833 proteins and �0.28 over 1165 proteins, BH adj. p-
value <1e-5, Figure 1e and Table S1). A negative correla-
tion with synthesis cost implies that the model assigns
more weight to “cheaply” synthesized amino acids. In
contrast, a positive correlation with energy cost implies
paying attention to more energy-rich amino acids when
predicting protein abundance. As random control, we
performed the same procedure for shuffled versions of
the same sequences, which yielded minuscule correla-
tions, once again highlighting that attention captures
positional information (Figure 1e). We stress that the cor-
relations reported here do not directly link cost values to
the predicted abundance but rather underline the rele-
vant latent features learned from protein sequence that
the model picked up intrinsically when mapping
sequence to protein levels.

Based on our observation that amino acid frequency
remains relatively constant across the entire dynamic
range of protein abundances (Figure S6d), we did not
expect to find specific single amino acids that would
determine abundances. Instead, we hypothesized that the
neural network would capture higher-order interactions
important for structural and functional protein features.
Thus, we correlated attention profiles with a subset of
18 non-redundant AAindex values representing various
physicochemical and biochemical protein properties
(Kawashima and Kanehisa 2000) (see section 4.6). We
identified significant correlations with measures of back-
bone conformation propensity (both positively and nega-
tively correlated indices, with the strongest mean
correlations being 0.38 and �0.38, respectively, BH adj.

p-value <1e-5), preference for position at α-helix cap (both
positively and negatively correlated indices, with the
strongest mean correlations per sequence being 0.37 and
�0.33, respectively, BH adj. p-value <1e-5), polarity
(highest mean correlation = 0.35, BH adj. p-value <1e-5),
domain linker propensity (mean correlation = �0.31, BH
adj. p-value <1e-5), and the composition of extracellular
domains seen in membrane proteins (two protein subpop-
ulations, one with mean correlation = 0.36, the other
with mean anticorrelation = �0.33, BH adj. p-value <1e-
5) (Figure 1f and see Tables S2 and S3 for a detailed
description). Physicochemical properties of amino acids,
such as polarity, have been shown to affect translation
speed (Riba et al. 2019) and protein stability (Panja
et al. 2020; Tsuboyama et al. 2023). As opposed to ran-
dom control (Figure 1f), the identified correlations with
backbone conformation and preference for α-helix cap
indicators suggest a link to secondary structure. In con-
trast, the correlation with domain linker propensity
points to the model having learned the boundaries of
domain separation to some extent.

Next, we assessed the connection between secondary
structure and attention profiles by analyzing the enrich-
ment of per-residue DSSP annotations (Kabsch and
Sander 1983; Touw et al. 2015) in high-attention posi-
tions using AlphaFold2-generated (Jumper et al. 2021)
structures for 4745 yeast proteins. We counted the anno-
tations at positions with attention profile z-scores >1 and
compared them to background annotation counts across
all proteins (using one-sided hypergeometric tests for
enrichment and depletion, p-value <0.05) (section 4.7).
The results showed that attention values were enriched
in turns and helices (S, I, G, and T in DSSP notation) but
depleted in extended strands (E) for most proteins (3254
proteins) (Figure 1g). For turns (T), the protein subpopu-
lations were more evenly split, with this structure
enriched in 505 proteins and depleted in 754 proteins.
These findings suggest that helical structures may be
implicated in protein abundance, while the contribution
of turns and sheets towards the model prediction may be
more complex.

As structural properties imply function, we also inves-
tigated whether abundance-driven attention specifically
focuses on any functional regions of protein sequences.
We examined the extent to which the attention patterns
cover the domains from the S. cerevisiae InterPro (Blum
et al. 2021) database. To allow for comparison with con-
trols, we focused only on domains with a length less than
half of the protein sequence, analyzing a total of 18,000
domains (section 4.8). For 10 out of 12 member data-
bases, domains were significantly more covered by high
attention than random regions of the same length
(Wilcoxon two-sided signed-rank test, adj. p-value <0.05)
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(Figure 1h). The results are particularly striking as our
Transformer model was trained from scratch, not pre-
trained on domains as in the study by Rao et al. (2019).
We next performed a GO enrichment analysis on pro-
teins with well-covered domains (chosen as at least 30%
domain length overlapping with attention patterns, well
above the random control), a total of 832 domains in
517 proteins (section 4.9). From the enriched terms, GO-
slim terms were produced for summarization (Table S4).
The enriched (Hypergeometric test, adj. p-value <0.05)
biological processes are diverse and, among others,
include translation, protein folding, modification, and
metabolic processes; the molecular functions include
cytoskeletal protein binding, unfolded protein binding,
DNA and RNA binding, transmembrane transporter
activity and others. This variety points at widespread
domain patterns to which the model attends across differ-
ent protein classes rather than specific functional motifs,
which hints at the role of sequence across the entire pro-
teome. On the technical side of the attention mechanism
itself, it is interesting to note that domains were predomi-
nantly captured by a single (and deeper) network layer
(Figure S8).

2.3 | Navigating the sequence space to
control protein abundance

Next, we hypothesized that our model could facilitate
control over protein abundance by introducing targeted
changes to the protein sequence. To achieve this, we
developed a Mutation procedure Guided by an Embed-
ded Manifold (MGEM), which enables us to navigate the
Transformer model's embedded sequence manifold and
perform individual amino acid substitutions that increase
predicted abundance using only positional values derived
from the embedded space. The approach involves travers-
ing a uni-dimensional UMAP projection of the Trans-
former encoder's high-dimensional embedded space,
which assigns a scalar importance value to each residue
in a sequence based on its impact on protein abundance
(i.e., as determined by both position and amino acid that
the model learned) (Figure 2a). This is intended as a way
to peer inside the neural network's black box and explore
sequence space, allowing per-residue comparisons of
sequences (and their variations) in terms of predicted
value. MGEM uses the projections and substitutes low-
importance residues in a starting wild-type sequence with
high-importance residues from a set of guide sequences
selected based on their topmost abundance levels
(Figure 2b; see details in sections 4.10 and 4.11). Thus,
borrowing important amino acids (as measured by their
order in the UMAP projection) from highly abundant
proteins makes the modified sequence “move” towards

higher predicted abundance. This principle is based on
the posited property of the high-dimensional Trans-
former embedded space by which the sequence represen-
tations are approximately ordered (or “ranked”)
according to the target value (Figure 2a). The per-residue
importance values obtained with UMAP are a good
approximation of this ordering (Spearman's ρ = 0.8, p-
value <1e-16) (Figure 2c), enabling the sorting of all resi-
dues on a univariate scale that spans all sequences,
according to their importance towards prediction (see
section 4.10). Our novel method relies on the learned
relationship between sequences and changes wildtypes
by deterministically substituting the individual amino
acids deemed most impactful to abundance without rely-
ing on probabilistic or stochastic optimisation searches.

We next performed a series of in silico MGEM
sequence perturbation experiments by introducing substi-
tutions that would increase predicted protein abundance.
This was done across the entire set of protein sequences in
different substitution schemes, each consisting of changing
a given number of lowest importance residues per
sequence (a fixed number of 2, 5, 10, and 20 residues, as
well as 10%, 20%, and 30% of residues in each sequence).
We observed that MGEM enables control of target values
(protein abundance) significantly more than a random
control (paired t-test, adj. p-value <1e-16 for all schemes)
in which a random set of residues of the same size as the
MGEM set for the given scheme was selected and mutated
to random amino acids (Figure 2d). Indeed, on average,
random mutations yielded a decrease in predicted protein
abundance. The greatest MGEM increase was obtained
when mutating 20% of the sequence, achieving an average
675% predicted abundance increase.

By inspecting MGEM mutants, we discovered that in
terms of sequence position, the N-terminus is the most
important for abundance prediction. The average wild-
type embedded ordering (importance) profile peaks over
the leading 20% of the sequence (Figure 2e), and as a con-
sequence of the MGEM selection process, results in most
amino acids being left unchanged in this region
(Figure 2f). Additionally, there is a much shorter hotspot
of frequently mutated amino acids at the very last posi-
tions of the C-terminus. In accordance with other studies
(Orth et al. 2010; Tuller and Zur 2015), this would suggest
that the N-terminus is generally evolutionarily optimized
for expression efficiency, though our results point towards
this optimisation having taken place at the amino acid
level as well, besides the codon usage level and in terms of
mRNA folding strength, which is in accordance with pre-
vious assessments (Tuller and Zur 2015). Indeed, the com-
position of the first 30% of sequences significantly differs
from the composition of the full sequences (one-sided
hypergeometric test, p-value <1e-3), with the leading
region enriched in Ala (A), His (H), Met (M), Pro (P), Gln
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(Q), Arg (R), Ser (S), Thr (T) (Table S5). The observation
that distributions of substituted amino acids differ from
the above (some are replaced uniformly across the entire
sequence length) indicates the role of the amino acid's
position and nature. In terms of replacement amino acids,
we observed that the vast majority are A, G, and V
(Figure 2g). In terms of physicochemical AAindex vari-
ables, mutants show significant perturbations (paired
t-test, p-value <1e-80) (see Table S6 and Figure S9), espe-
cially in indices that describe polarity (specifically amphi-
philicity, with a 19% average decrease), backbone
conformation propensity (with the largest index average
decrease by 18% and the highest average index increase by

9%), and in the preference for position at α-helix cap (aver-
age decrease by 5%), which suggests a change in the likely
secondary structure and a shift towards higher hydropho-
bicity in the mutants.

2.4 | Mutant proteins with high
predicted abundance show greater stability
at a lower metabolic cost

The analysis of MGEM mutants indicates that sequences
with increased predicted protein abundance were primar-
ily obtained using non-polar A, G, V amino acid

FIGURE 2 Legend on next page.
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substitutions (Figure 2g). We note here that substitutions
are based purely on how the model ranks amino acids
and their positions contributing to the abundance predic-
tion within a given sequence. Alanine is known to stabi-
lize helices, while glycine varies in its effects (Pace
et al. 1998). Glycine can enhance rigidity in β-turns
(Trevino et al. 2007). Valine is common in thermophilic
proteins (Panja et al. 2020), and alanine and valine sub-
stitutions often show similar helix impacts (Gregoret and
Sauer 1998). Cysteine, infrequently substituted by our
procedure (Figure 2g), is vital for thermostability due to
its potential for disulfide bridge formation (Sevier and
Kaiser 2002). Likewise, it has been observed that highly
expressed proteins are often more thermostable
(Luzuriaga-Neira et al. 2023; Serohijos et al. 2012). Note
that we use the term “stability” in referring only to ther-
mostability, as the correspondence between

thermostability and thermodynamic stability is not lin-
ear. Using our method, which allows for mutations that
increase predicted protein abundance, we sought to
determine if the model-learned sequence-to-abundance
mapping is anyhow linked to protein stability. To corrob-
orate this, we applied molecular dynamics
(MD) simulations to 100 pairs (mutant and wildtypes,
WTs) of non-membrane yeast proteins (Figure 2d, 20%
mutation regime). Both mutated and their original WT
versions were modeled using AlphaFold2 structures (sec-
tion 4.12), and molecular systems were simulated for
100 ns. Our model does not account for 100% of protein
(Figure 1c) abundance variation nor is aware of protein
language, as such, there is a risk that introduced muta-
tions could destabilize proteins (Johnson et al. 2024).
Therefore, we only considered WT and mutant pairs that
converged over 100 ns of the simulation trajectory

FIGURE 2 Navigating the sequence space to control protein abundance through guided mutation. (a) Conceptual illustration showing

the posited structure of the Transformer encoder embedded space and the embedded ordering construction that supports our guided

mutation procedure. The encoder maps each residue in a sequence to a high-dimensional point in the embedded space E and sequences thus

appear as point clouds. From a point cloud, a thin feedforward predictor yields an abundance prediction. The embedded space is posited to

be structured in such a way as to allow a “traversal” of the point clouds, on a path or geodesic between all points (curved red line) connecting

the points that are part of the lowest abundance sequences to the highest, in an increasing order of predicted values. This path in high-

dimensional space is approximated with a parametric UMAP projection from the embedded space E to a single dimension, thus giving a

simple linear ranking (or ordering) oi
j for each residue j, in each sequence i. This ranking serves to indicate the global weight of a given

residue towards the final prediction, compared with all other residues across all sequences. (b) Simplified illustration of MGEM (mutation

guided by embedded manifold) procedure, which takes advantage of the global embedded order value (“importance”) obtained for each

residue, across all sequences. The residues with the lowest order value in a sequence are selected for substitution (the “I” residue at position
4 in the illustration) and their order values are increased by a large amount, as a higher value would yield a greater abundance. As we do not

have an inverse mapping from this new value to an amino acid, we find the substitute by taking “inspiration” from guide sequences, chosen

as the top 10 highest abundance sequences. The residue with closest ordering value to the newly increased value (“O” in the example) is

taken and this amino acid replaces the original one in the wildtype sequence. (c) The UMAP projection is a good approximation of the

embedded manifold, as it generally correlates well with abundance (Spearman p-value <1e-308) (the plot is colored by density). Each point

corresponds to the centroid of a sequence point cloud, projected through the learned UMAP function. The horizontal axis is normalized to

the smallest and largest values in the set of projected points. The centroid of the lowest abundance sequence is marked with a black square

and that of the highest abundance sequence with a black triangle. The approximation is worse for lower abundance sequences, as the red

square should have appeared as the minimum ordering value. (d) Predicted abundance increase on sequences mutated with MGEM (black

bars showing averages, with 95% confidence intervals). An increasingly higher number of residues with lowest ordering (2, 5, 10, 20 residues,

as well as 10%, 20%, and 30% of the sequence) were selected in each scheme shown in the figure. The highest overall increase occurred for

the scheme consisting of mutating the 20% lowest-order residues. All schemes showed significantly higher values than random control

(blue), which on average decreases predicted abundance. (e) The most important part of the sequence for the model is the N-terminus, as

measured by the embedded ordering value, here normalized to the inverse ranking of residue values (as the relative order is the important

information) divided by sequence length. The plot shows the average such profile for sequences of length 200–400, the profiles of which
were upsampled by linear interpolation to maximum length. (f) The high importance of the N-terminus for abundance leads to fewer

residues being mutated by MGEM, as a consequence of the embedded ordering values (shown in F). Except for the first few positions in the

sequence, most amino acids in the leading 20% of the sequence are generally untouched (the leading M is avoided by MGEM). The plot

shows for each amino acid the normalized MGEM substitution rate over sequence length bins spanning the leading 30% of sequences

(computed over all sequences and mutation schemes). The position has been normalized to sequence length and binned to 2 decimals

(resulting in 100 bins). For each amino acid, the number of times MGEM has replaced it in a bin was divided by the wildtype count of that

amino acid in the same bin. The z-scores of these values were obtained separately for each amino acid. (g) Average fraction of wildtype (left)

and MGEM mutant (right) amino acid over the leading 30% of all mutated sequences (error bars showing 95% confidence intervals). The

amino acids are colored by their normalized hydrophobicity (Cid et al. 1992), which highlights the overall mutation shift towards more

hydrophobic proteins. The binning was performed as in F), that is, over 30 of the position 100 bins for each sequence.
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FIGURE 3 Legend on next page.
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(Figure S10 and section 4.12), resulting in �46% of the
simulations in our subsequent analyses. To quantify the
degree of protein backbone conformational changes, we
first started by comparing atomic position fluctuations,
expressed as the standard deviation of residue alpha car-
bons across the entire course of the MD trajectory (root-
mean-square fluctuations, RMSF) between mutant and
WT sequences. Thirty-three percent of converged systems
showed significantly lower RMSF in comparison to WT
proteins (Wilcoxon rank sum test, adj. p-value <1e-2)
(Figures 3a and S11). Decreases in protein backbone fluc-
tuations are a sign of protein rigidity (Karshikoff
et al. 2015), which is frequently pronounced in thermo-
philes when compared to their homologous mesophilic
variants (Frappier and Najmanovich 2015; Rader 2009;
Radestock and Gohlke 2008; Sen and Sarkar 2022; Zhang
and Lazim 2017); reducing protein's flexibility is often
used strategy for increasing protein thermostability and
half-life (Pucci et al. 2014; Rader 2009; Radestock
and Gohlke 2008; Yu and Huang 2014; Zhang and
Lazim 2017). Fifty-nine percent of atomic fluctuations of
mutants predicted to be highly abundant were at least
two standard deviations lower than the corresponding
positions of the WT trajectory (Figure 3b). About 81% of
mutations had no direct impact on atomic fluctuations,
that is, we observed changes in fluctuations in residues as
high as two standard deviations away from correspond-
ing WT positions with no mutations, suggesting that
changes in atomic fluctuations caused by abundance-
changing mutations affect overall global protein dynam-
ics, rather than just local residues (Figure 3c).

Although large structural changes from mutations
can destabilize proteins (Luo and Baldwin 2001; Zhang
and Lazim 2017), backbone conformational changes
do not directly indicate protein stability. To
corroborate further, we inferred the effects of predicted

abundance-increasing mutations using the DeepET
model (Li et al. 2022) trained on organism growth tem-
perature and protein melting data (Jarzab et al. 2020;
Leuenberger et al. 2017). We estimated TOGT (OGT,
organism growth temperature, which is highly correlated
with protein melting temperature Tm (Li et al. 2022)) in
mutants. Increasing protein abundance showed a signifi-
cant (paired t-test, p-value = 0.021) average 17% increase
in TOGT compared to WT sequences (section 4.13 and
Figure S12). We also examined intermolecular interac-
tions, specifically the number of contacts between neigh-
boring amino acids (section 4.14). Stable proteins with
robust hydrophobic cores generally have more native
contacts (Dill et al. 2008). In our comparison, 84% of the
mutants predicted to be highly abundant exhibited signif-
icantly more contacts than corresponding wildtypes
(Wilcoxon rank sum test, adj. p-value <1e-4) (Figures 3d
and S13). It is known that proteins which easily denature
expose their hydrophobic core, resulting in lost hydro-
phobic interactions and increased solvent accessibility
(Eisenhaber et al. 1995; Pace et al. 1996; Zhang and
Lazim 2017). Investigating the effects of A, G, and V sub-
stitutions on hydrophobic cores, we computed the Sol-
vent Accessible Surface Area (SASA) for all proteins. We
found a significant decrease (Wilcoxon rank sum test, p-
value <1e-4) in SASA for abundance-increasing mutants
versus wildtypes, corroborating the link between rigidity,
conformations that are also observed in thermotolerant
mutants (Frappier and Najmanovich 2015; Rader 2009;
Radestock and Gohlke 2008; Sen and Sarkar 2022; Zhang
and Lazim 2017), and abundance (Figure 3e).

Next, we closely examined the strongest effects of
mutations as observed in the ICO2 protein (UniprotID:
Q12072), which had the highest RMSF perturbations
(Figure 3a). Although the mutant and WT IOC2 started
similarly, they diverged dynamically over 100 ns of

FIGURE 3 Abundant proteins exhibit higher conformational stability and are synthesized at a lower cost. (a) Differences between root

mean square fluctuations (RMSF) between abundance-increasing mutants and wildtype (WT) structures over 100 ns of molecular dynamics

trajectory. (b) Fraction of atomic fluctuation that are at least 2 standard deviations lower in mutant (red) versus wt (blue). (c) Fraction of

total significant (absolute z-score >2) changes in RMSF per introduced mutation. Indirect denotes the regions of protein sequence with no

mutations. (d) Comparison of contacts between WT and abundance-increasing mutants. Normalization is done with reference to WT using

frames after half of the 100 ns trajectory, contacts are considered at 8 Å proximity of the carbon backbone (section 4.14). (e) Comparison of

solvent accessible solvent area (SASA) between WT and abundance-increasing mutants. Normalization is done with reference to WT using

frames after half of the 100 ns trajectory. (f) Structure (top) and DSSP plot (bottom) of the wildtype (left) and the mutant (right) of IOC2

yeast protein. The structures represent the last frame of the respective simulation (100 ns). The coloring denotes the amino acid index as

shown by the color bar in the center (N-terminus: blue to C-terminus: red). In the DSSP plot, helical structures are highlighted in blue,

extended structures in red and everything else (e.g., coil, turn, unstructured) in yellow. The bar plot represents the mutation rate per �32

amino acids per bar; the dashed line represents the average mutation rate per bar. On the right-hand side, the mutated spots are highlighted.

(g) MGEM reduces protein cost. The average sequence costs of mutants obtained with MGEM (20% mutated sequence) show a significant

overall decrease compared with random control (paired t-test, p-value <1e-308), particularly in terms of synthesis costs (see also Table S7).

The exceptions were two systemic costs from Barton et al. (2010), one having the lowest correlation with attention (12% cost increase on

average), and the other having both weakly positively and negatively correlated subpopulations (2% cost increase on average).
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simulation (Figures 3f and S14). The stable core, largely
less mutated, differed from the more mutated C-terminal
region (Figure 3f, bar plot). A notable change was the
breaking of an alpha-helix in the mutant, enabling
the C-terminus to fold closer to the protein core. This
change led to an increase (WT: 53.0%, mutant: 59.9%;
Mann–Whitney U test, p-value <1e-16) in the median
unstructured secondary structure (Figure 3f, DSSP) but
formed a more compact shape than its WT counterpart.
Despite imperfect alignment in the C-terminal region, an
overall increase in hydrophobicity is seen in the mutant
(mean �0.07 with the WT vs. 0.17 with the mutant,
Mann–Whitney U test p-value <1e-4), reflected in a
reduced RMSF (Figures 3a and S11).

Finally, we analyzed the metabolic cost implications
of predicted abundance-increasing mutants compared to
wildtypes, given concerns that increased protein copies
might affect fitness (Agozzino and Dill 2018). Overall,
predicted abundance-increasing mutant metabolic costs
decreased significantly compared to random controls
(Figure 3g, paired t-test, p-value <1e-16). The most nota-
ble reductions were in synthesis under fermentative
growth (wagner_ferm, �14% average) (Wagner 2005) and
biosynthetic steps from central metabolism to the result-
ing amino acid (craig_steps, �13% average) (Craig and
Weber 1998). Both factors had a strong inverse relation-
ship with Transformer attention (Figure 1e and
Table S1), confirming that the embedded space ordering
(Figure 2a) and the model's attention indirectly pick up
the same evolutionary phenomenon. The exceptions were
the impact of the relative change of the amino acid
requirement on the minimal intake of ammonium
(Barton et al. 2010) (yeast_nit_rel, 11% increase on aver-
age), which had the lowest correlation with attention,
and the impact of the relative change of the amino acid
requirement on the minimal intake of glucose (Barton
et al. 2010) (yeast_car_rel, 2% increase on average, see
Table S7 for a full list). In summary, the significant cost
reduction observed is especially striking since neither the
neural network nor the MGEM procedure were specifi-
cally trained with cost as a factor. This suggests that the
neural network inherently recognized the connection
between sequence cost and protein abundance, aligning
with earlier observations on the cost-effective metabolism
of highly abundant proteomes (Akashi and
Gojobori 2002).

3 | DISCUSSION

Intracellular protein levels are determined by a delicate
interplay of synthesis, regulation, and degradation.
Despite the vast codon variability and regulatory

sequence divergence seen both within and between spe-
cies at the DNA level (Cutter et al. 2006; Plotkin and
Kudla 2011), the conservation of protein ortholog abun-
dances across diverse evolutionary lineages suggests an
evolutionary imprint on amino acid sequences (Laurent
et al. 2010; Schrimpf et al. 2009; Tuller et al. 2010a).
While intricate cellular dynamics play a role in immedi-
ate protein concentrations, significant evolutionary infor-
mation likely resides within the primary sequence itself.
Supporting this notion, our analysis of over 800 proteome
datasets (Huang et al. 2023), representing species from
the entire tree of life shows that in at least 38 species,
including mouse and human protein, the amino acid
sequence predicts over half of protein abundance
(Figure 1a,b).

Given that proteins have such a changing nature it is
natural to ask how it is possible to predict the dynamic
nature of protein abundance from a constant protein
sequence? To explain this phenomenon we analyzed
cross-experimental copy number variation using a con-
solidated proteomics dataset from a comprehensive list of
yeast studies (Ho et al. 2018). It appeared that the gene-
wise dynamic range of protein abundances spanned an
average of 5 orders of magnitude, while individual pro-
tein expression values for 95% of measured yeast proteins
vary only within one relative standard deviation (RSD)
across all experimental conditions (Figure S6). While pro-
teins vary across experimental conditions, their copy
numbers on average stay within the same order of expres-
sion values, explaining the deterministic nature of pro-
teomes. A similar phenomenon has been observed
previously with mRNA levels encoded in the DNA
sequences (Agarwal and Shendure 2020; Zrimec
et al. 2020). These results led us to postulate that amino
acid sequences may inherently encode protein
abundance.

By observing that amino acid composition across dec-
iles of the dynamic range of protein expression is rather
uniform (Figure S6), we inferred that the amino acid
arrangement in the sequence and not merely composi-
tion coding for protein abundance (Figure S5). To study
this further, we trained a deep neural network from
scratch to predict protein abundance accounting for over
half of the variability in abundance of the entire prote-
ome dynamic range (Figure 1c, R2 test = 56%). Addi-
tional validation that it is a sequence that encodes for
abundance came from our model failing to predict shuf-
fled sequences (Figure S5) and attention profiles from
these randomized sequences no longer correlated to pro-
tein features (Figure 1e,f).

It is naturally intriguing to make more explicit how
positional and compositional features differ towards the
prediction of protein abundance. Here, one is frustrated
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by the significant overlap in “information” and the
remaining unknowns regarding the physical dependen-
cies between all relevant variables, which are likely to be
complex and nonlinear (as is the case between amino
acid composition and codon usage bias for instance, as
selection at the amino acid level influences codon usage
(Błażej et al. 2017; Morton 2001)). To try to elucidate
what our model has learned in terms of structural and
compositional information at the nucleotide level (as the
question arises of how much of this carries over to its pre-
dictions), we examined the associations with mRNA fold-
ing strength (Kertesz et al. 2010) and tRNA adaptation
index (Tuller et al. 2010b), as both are known to strongly
correlate with protein abundance. To better understand
what each variable contributes independently, we calcu-
lated partial correlations to the model predictions and
residuals separately (section 4.15). We saw that the infor-
mation captured is split between the predictions and
residuals, codon usage being the factor that (indepen-
dently) contributes to both (Figure S15). For predictions
especially, mRNA folding strength does not contribute
significantly. Codon usage (as tRNA adaptation index)
thus explains only about 45% of our model results.

The contributions of the various protein features on
abundance have been studied mostly in isolation using
linear models based on numerical summarization of
nucleotide or amino acid composition, giving predictors
of varying strengths, of which the most significant for
S. cerevisiae are mRNA levels (R2 = 52% on average),
codon usage bias (R2 = 56%) translation rates (R2 = 58%
on average) (Cascarina and Ross 2018; Ho et al. 2018;
Riba et al. 2019; Vogel and Marcotte 2012; Zur and Tul-
ler 2012; Zur and Tuller 2013). However, given the
dynamic nature of protein synthesis, degradation pro-
cesses, and their interactions, nonlinear models that inte-
grate or abstract over the multiple levels are desired,
especially given the loose coupling between some of these
(e.g., the dynamic range of protein abundance is larger
than that of mRNA and the former have longer half-lives
(Vogel and Marcotte 2012)). Thus, to decipher the biolog-
ical insights gained by the neural network in predicting
protein abundance, we analyzed the patterns within the
Transformer self-attention mechanism. Notably, atten-
tion profiles showed correlations with known protein
abundance determinants (Figure 1e), including amino
acid synthesis costs, suggesting that the model recognized
the cell's energetic currency concerning protein synthesis.
The attention mechanism identified multiple associations
between residues throughout the sequence, hinting at the
neural network's ability to discern overarching structural
and physicochemical sequence patterns (Figure 1f). Our
analysis further revealed that the network prioritizes
regions with distinct secondary structure elements and

functional domains when predicting protein abundance
(Figure 1g,h). Moreover, the correlations found between
attention, sequence, and physicochemical properties like
polarity and hydrophobicity underscore the potential
relationship between protein abundance and a protein's
structural features (Figure 1f). These findings, together
with the validation using randomized sequences, lend
more credence to the network having learned sequence
patterns and interactions, complementing the various
other predictors based on compositional summarization.

While attention links specific residue positions to
abundance prediction, understanding the encoder
embedded space—a reflection of the sequence grammar
grasped by the Transformer—is more challenging. This
high-dimensional space encapsulates intricate sequence
semantics but is not straightforward to interpret, result-
ing in a “semantic gap” between features and (human)
meaning, often seen in deep neural networks (Duan and
Kuo 2021; Wiegreffe and Pinter 2019). Thus, to enhance
our model's explainability, we introduced the MGEM
analytical framework. It simplifies the sequence space
exploration by first establishing a one-dimensional refer-
ence (Figure 2a,b), then guiding mutations towards target
sequence regions. Unlike methods that can produce
unreliable predictions (predictor pathologies) (Linder
et al. 2020; Nguyen et al. 2014; Szegedy et al. 2013) or
local minima problems (Bogard et al. 2019), MGEM
deterministically modifies sequences based on their
mapped target value, offering a deterministic solution for
amino acid substitutions beneficial for multiple
applications.

We applied the MGEM framework to perform a series
of control-perturbation experiments to identify amino
acids and protein properties that are intrinsically related
to abundance (Figure 2a,b). Compared to the random
control, which resulted in a decrease in protein abun-
dance, MGEM-guided mutations achieved an average
abundance prediction increase of over six times com-
pared to the wild-type sequences (Figure 2d). By inspect-
ing MGEM mutants, we discovered that in terms of
sequence position, the N-terminus was the most impor-
tant, with the majority of amino acids remaining
unchanged in this region (Figure 2e,f). This suggested
that the N-terminus is generally evolutionarily optimized
for expression efficiency, which is known to impact trans-
lation efficiency (Verma et al. 2019), and which also sup-
ports why it is widely used for protein expression
optimization (Wang et al. 2022; Wu et al. 2020; Xu
et al. 2021). A short hotspot at the very last position in
the C-terminus was frequently mutated, which is known
as a signal involved in protein degradation (Correa Mar-
rero and Barrio-Hernandez 2021; Weber et al. 2020).
Besides the C-terminus, however, most of the amino
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acids were substituted uniformly across the entire
sequence length, based solely on their model-induced
importance ranking, mainly with the amino acids A (ala-
nine), G (glycine), and V (valine) (Figure 2g), which are
hydrophobic. The introduction of hydrophobic amino
acid residues into protein secondary structural compo-
nents, such as helices, sheets, and turns, is known to
affect a protein's thermostability (Gregoret and
Sauer 1998; Pace et al. 1998; Panja et al. 2020). We there-
fore wanted to see if our model captured a link between
the predicted increase in abundance and protein struc-
ture, and hence its stability.

We investigated this using extensive molecular
dynamics (MD) simulations, an established technique for
studying protein dynamics at the atomic level
(Pikkemaat et al. 2002; Zhang and Lazim 2017). Our data,
derived from 200 MD simulations of randomly chosen
yeast proteins, showed that the majority of abundance-
increasing mutations had increased the number of pro-
tein contacts and reduced solvent accessibility as
reflected in reduced root mean square fluctuations
(Figure 3a,d,e), phenotypes representative of thermosta-
ble proteins (Kumar et al. 2000; Razvi and Scholtz 2006;
Robinson-Rechavi and Godzik 2005) (Figures 3d,e and
S13). We independently confirmed using a neural net-
work trained on measures of thermostability
(Li et al. 2022) that abundance-increasing mutations
increase predicted protein stability temperatures
(Figure S12). In addition, we performed a proteomics
experiment on the most pronounced protein (ICO2 pro-
tein, UniprotID: Q12072) identified from MD experi-
ments, by comparing protein expression fold-changes in
mutant and wildtype between growth phases (Data S1
and section 4.16). The results indicate that the mutant
has up to 50% lower protein degradation propensity in
comparison to the wildtype, which could be due to
increased stability. The abundance increase observed
here is comparable to the effects due to open reading
frame (amino-acid synonymous) nucleotide substitutions
performed on non-native proteins in a S. cerevisiae host.
Using different techniques and changing varying frac-
tions of their target gene coding sequences, differences of
on average 3-fold in protein expression have been
achieved with such nucleotide substitutions (Ben-
Yehezkel et al. 2015; Cripwell et al. 2019; Kim et al. 2013;
Lanza et al. 2014). We note that the aim of the current
work was to investigate a fundamental relationship
between sequence and abundance rather than use amino
acid mutation strategy as a way to engineer protein
expression (van den Berg et al. 2012; van den Berg
et al. 2014). While we kept codon frequencies the same as
in the wildtype strain, focusing solely on amino acid sub-
stitutions without modifying native gene regulatory

regions, for example, promoters, likely leaving gene syn-
thesis, transcription, and translation unaffected, however
observations from a single experiment should be
approached with caution, that is, it would require much
more experimentation to figure out if the introduced
mutations directly reduce in vivo protein degradation via
stabilization of its conformation or operate through other
mechanisms. Nevertheless, these results together with
the predictions from MGEM sequence perturbation
experiments, as well as the results from MD simulations
align well with previous observations that highly abun-
dant proteins are generally more thermostable (Agozzino
and Dill 2018; Serohijos et al. 2012; Serohijos et al. 2013;
Yang et al. 2010). This phenomenon is often explained by
the so-called misfolding avoidance hypothesis and related
hypotheses, which have dominated evolutionary discus-
sions for the past decade, all aimed at explaining the
slower evolutionary rates observed with highly abundant
proteomes (P�al et al. 2006; Zhang and Yang 2015). An
alternative explanation for the slow evolution of abun-
dant proteins suggests that higher benefits come with
higher costs (Cherry 2010; Gout et al. 2010; Zhang and
Yang 2015). However, our findings indicate that proteins
with mutations enhancing their rigidity, and potentially
stability (Figure S12), are not only more abundant but
also more cost-effective to produce. This would explain
their evolutionary advantage, as a structurally stable pro-
tein incurs fewer synthesis-associated costs to maintain
consistent protein levels. Finally, relating back to the
model expressing protein abundance (Figure S1) as
the joint contribution of translation efficiency and pro-
tein half-life, we see our Transformer model, in conjunc-
tion with the MGEM procedure, recovers synthesis cost
(from sequence), rigidity (from molecular dynamics) and
thermostability (DeepET model) as a link to abundance.

In conclusion, while the primary goal of our study
was to investigate the relationship between a protein's
amino acid sequence and its abundance by interpreting
learned latent features of a neural network, our analysis
revealed connections between amino acid sequence, pro-
tein abundance, and metabolic cost related to protein
thermostability and synthesis. Remarkably, even without
explicit conditioning on synthesis cost, both our Trans-
former model and MGEM procedure succeeded in unco-
vering these latent relationships. This demonstrates the
power of deep neural networks to decode complex biolog-
ical systems. By manipulating the deep model's semantics
of these latent relationships, we unintentionally pro-
duced sequences optimized for cost. We demonstrated in
silico that mutations leading to increased predicted abun-
dance also have evolutionary advantage through reduc-
ing the metabolic costs of protein synthesis and at the
same time making proteins more rigid. In addition,
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the MGEM approach opens new avenues in protein engi-
neering by providing a robust, targeted method for amino
acid substitution mapped to any continuous (real-valued)
property. This has the potential for the design of proteins
that are not only functionally efficient but also metaboli-
cally cost-effective, beneficial for biotechnological appli-
cations as well as for facilitating interpretation of disease
related mutations (Beltran et al. 2024; Topolska
et al. 2024). While no single theory can likely fully
explain the complex relationships between protein
sequence, abundance, synthesis and stability, our work
identifies a critical link among these factors. By integrat-
ing insights from neural network predictions, extensive
MD simulations, we propose a hypothesis that suggests
the evolutionary advantage of stable, abundant proteins:
they may offer functional efficacy at a reduced
synthesis cost.

4 | METHODS

4.1 | Random forest abundance model as
synthesis and degradation

Ribosome profiling data—specifically, ribosome density
R (the number of ribosome-protected fragments as RPKM)
and mRNA abundance m (as RPKM)—from Weinberg
et al. (2016) and protein half-life values from Christiano
et al. (2014) were used to predict the median protein abun-
dance values from the Ho et al. dataset (Ho et al. 2018).
Intersecting these datasets and filtering out effectively zero
(lower or equal to float32 machine epsilon 1.192e-07) and
missing values resulted in a set of 3574 protein values. All
variables were log10-transformed. Translation efficiency
TE (Weinberg et al. 2016) was calculated as R/m (indeed,
log10(R) � log10(m)). A random forest regression model
using the scikit-learn (Pedregosa et al. 2011) implementa-
tion was trained on TE and half-life to predict protein
abundance, using 20% of the data (715 proteins) as a
hold-out test subset. The best random forest parameters,
found through a grid search on the training subset
using 5-fold cross-validation, were n_estimators = 200,
min_samples_leaf = 50, and max_features = 1.

4.2 | Training the ESM embeddings
model on PaxDb

Protein sequences and abundance measurements were
downloaded from PaxDb on August 7th, 2024. Organism
specific data sets were constructed by combining experi-
mental abundance values and computing medians for
each gene. For H. sapiens the experiments were also split
into tissue specific and cell line specific experiments, for

which medians were calculated, resulting in 57 and
42 data sets, respectively. After this process, organisms
with less than 300 experimental values were dropped.
For computational simplicity, sequences longer than
2048 amino acids were also removed. To remove data
leakage that could potentially arise due to sequence
homology, MMseqs2 was used to cluster the sequences at
30%. For each respective data set, 20% of the clusters con-
taining single sequences were then set aside as test
sequences for the respective organism and the remaining
80% were used for training. ESM-2 was used to calculate
average embeddings for all sequences (Lin et al. 2023) in
each organism specific data set. To make the abundance
value mass-centered before training, Box-Cox transforma-
tions were used with lambda values calculated based on
the expectation maximization procedure on the training
set partition of the data. The neural network models use
two hidden layers with 512 and 128 neurons, respec-
tively, and ReLU activation. A dropout of 0.3 was applied
after the first hidden layer. The output used a single neu-
ron with linear activation. The models were trained using
the Adam optimizer with a learning rate of 0.001,
beta1 = 0.9, beta2 = 0.999, and mean squared error
(MSE) as the loss function. The performance of the
models was evaluated by calculating the coefficient of
determination (R2) between the predicted values and the
Box-Cox-adjusted values.

4.3 | Neural network training

Saccharomyces cerevisiae (strain S288C) protein
sequences were obtained from the UniProt (UniProt Con-
sortium 2019) reference proteome UP000002311 on 20th
January 2020. To avoid technical challenges when train-
ing neural networks, we restricted the set of proteins to
those with a length between 100 and 1000 residues (yield-
ing 5202 out of 6049 proteins). The intersection of this set
with the proteins with available abundance values from
Ho et al. (2018) resulted in 4750 unique sequences in our
initial sequence-abundance dataset. To assemble the final
dataset we added repeated measurements for each pro-
tein sequence, namely each sequence appeared up to
21 times, each time with a different experimental target
value from the Ho et al. dataset, as in a regression with
replicates, resulting in 99,603 training examples used as
input/independent variable. In order to steer the model
towards learning sequence (positional) information, as
opposed to amino acid composition, subsequently, for
each sequence, a shuffled version was introduced with an
“effective null” target value, a very small fractional value
of 1e-5 (the unit for absolute abundance is molecules per
cell), to allow for power transformations, resulting finally
in 199,206 sequences (thus, up to 21 shuffled versions of
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each unique sequence appear as counter-examples). This
was performed in order to expose the neural network to
nonsense counter-example sequences so that it may learn
to distinguish and to facilitate sequence interpretation,
similar to training for classification problems (Elliott
et al. 2021; Gulshad and Smeulders 2020) (here, with real
and nonsense classes) or similar to using decoy sequences
for distinguishing signal from noise in mass spectrometry
(Käll et al. 2008). The data was randomly partitioned as
80% training, 10% validation, and 10% test, by splitting on
unique sequences, that is, ensuring repeated measure-
ments of the same sequence were placed in the same data
partition to avoid data leakage. Protein sequences (X's/
independent variable) and their corresponding target raw
abundances (Y's/dependent variable) were loaded as-is to
model as input lists without masking. To make the abun-
dance distribution mass-centered, the preprocessing was
configured to Box-Cox transform the raw abundances
with λ = �0.05155 using the expectation–maximization
procedure as implemented in SciPy, on data based on
medians of the initial dataset.

The training task's preprocessing routine tokenized
the sequences with the TAPE IUPAC (Rao et al. 2019)
tokenizer, each amino acid being assigned a unique inte-
ger value and the sequence flanked with special start and
stop integer tokens. The TAPE (Rao et al. 2019) imple-
mentation of the BERT ProteinBertForValuePrediction
class was adapted for the model training. The model was
trained as a regression task to minimize mean squared
error (MSE). The model performance reported here was
calculated by taking the median abundance across exper-
iments for the proteins in the hold-out test set
(436 values), as the test set obtained as above contained
sequence repeats. The coefficient of determination was
calculated on median values of the hold-out test using
the Scikit-learn function. Hyperparameters search was
performed using the BOHB algorithm (Falkner
et al. 2018) of the HyperBand scheduler (Li et al. 2017)
provided by the Ray library (Moritz et al. 2018). Details
about model architecture and hyperparameters are pro-
vided in Tables S9 and S10. The best hypermodel thus
found was then retrained. The best model consisted of
8 attention layers with 4 heads each (see Table S8). The
model was trained and optimized on a multi-GPU cluster
using a mixture of A100 and V100 NVIDIA GPUs.

4.4 | Attention profile analysis

As it is generally unclear (Rogers et al. 2020) at which
depth one might find lower or higher level features in
such architectures, we considered all non-redundant
attention profiles for a given sequence when measuring

matches. Specifically, as Transformers are known to have
relatively high redundancy (i.e., different layers and
attention heads learn very similar weights), we per-
formed pairwise Pearson correlation of attention matrices
from all layers and heads and kept only those that were
uncorrelated (r < 0.01) with the majority (at least 90%) of
other matrices, for each sequence. This left on average
4 non-redundant attention matrices per sequence. More-
over, attention matrices exhibited strong asymmetry (see
Figure S3), often consisting of effectively uniform vertical
streaks (i.e., the majority of residues “attend to” a single
residue near-uniformly), thus making the “attended-by”
values more informative (i.e., which residues receive such
attention from all others). These “attended-by” values
were averaged to produce one-dimensional attention pro-
files, which could be correlated with various per-residue
measures. To match against qualitative data such as pro-
tein domains, we extracted residue attention patterns by
keeping only the sequence positions with an attention
value z-score of at least 1 in the corresponding profile to
keep only those positions with the most signal.

4.5 | Cost analysis

Per-residue cost profiles were computed for all proteins
in the dataset (N = 4750) using the S. cerevisiae amino
acid costs from Barton et al. (2010), with the exception of
yeast_sul_abs and yeast_sul_rel, which were deemed triv-
ial for this task since they featured zero cost for all but a
few amino acids. These profiles were then Pearson-
correlated to all attention profiles for each protein
(on average 4 attention profiles per protein), keeping only
the maximum correlation with p-value <1e-5 for each
protein, since we do not know beforehand which head
will give the strongest response for a given input
sequence, as the attention information is distributed
across all heads. The p-value was set using the Bonferroni
correction for multiple testing at a target threshold of
0.05, thus resulting in 0.05/4750 = 1.053e-05. The same
procedure was repeated with randomly shuffled versions
of the same sequences to produce control distributions.

4.6 | AAindex correlations

All 544 AAindex measures (https://www.genome.jp/
aaindex/, release 9.12006) were computed on a subsam-
ple of 1000 S. cerevisiae proteins using the R package
Bio3D 2.4-3 (Grant et al. 2006). An average absolute cor-
relation matrix was computed across the protein
sequence subset and the AA indices were filtered using
the R findCorrelation function (with a cutoff of 0.5) from
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the caret package 6.0–88, to only keep an non-redundant
subset of 18 AA indices: BUNA790103, FINA910104,
GEOR030103, GEOR030104, LEVM760103, MITS020101,
NADH010107, NAKH920107, PALJ810107, QIAN880138,
RICJ880104, RICJ880117, ROBB760107, TANS770102,
TANS770108, VASM830101, WERD780103,
WOEC730101. These per-sequence profiles for these indi-
ces were then computed for all proteins in the dataset
(N = 4750) and Pearson-correlated to all attention pro-
files. Only the maximum correlation with p-value <1e-5
was kept for each protein. The p-value was set using the
Bonferroni correction for multiple testing at a target
threshold of 0.05, thus resulting in 0.05/4750 = 1.053e-
05. Note that the polar requirement (WOEC730101) was
not part of the non-redundant list and was added manu-
ally due to its frequent description in the literature and
the low correlation (r < 0.4) to the other indices. The
resulting correlation distributions were filtered to only
those AA indices with an absolute mean correlation of
above 0.3 across all proteins. The same procedure was
repeated with randomly shuffled versions of the same
sequences to produce control distributions, except the
correlation threshold was removed in order to show the
small resulting values. As a result, all 18 AAindex vari-
ables are plotted for the control.

4.7 | Secondary structure
analysis (DSSP)

Available S. cerevisiae PDB files (4745) generated by
AlphaFold2 were downloaded from RCSB-PDB
(on 2022-03-18). For each of these, DSSP 3.0.0 annota-
tions were obtained using the BioPython 1.79 (Cock
et al. 2009) dssp_dict_from_pdb_file function. For each
protein and all its attention profiles (4/protein, on aver-
age), DSSP annotations at positions with attention
z-scores >1 were counted. To avoid small numbers for
significance testing, only structures with counts >10 were
kept. For all attention profiles, one-sided hypergeometric
tests with a threshold p-value of 0.05 were performed
both for enrichment and depletion of structure annota-
tion counts, against the total background count of anno-
tations across all proteins. Finally, this was summarized
as the number of proteins that have attention profiles
enriched or depleted in each type of DSSP structural
annotation.

4.8 | Domain analysis

Each InterPro domain was overlapped with the attention
patterns produced for its protein (i.e., the positions of the

sequence with attention z-score >1), recording the high-
est overlap fraction (i.e., the largest fraction of attended-to
domain residues) among all patterns produced for the
sequence (output from all network layers and heads). To
have a balanced control set, only domains that stretched
to at most 50% of their protein length were kept (18,000
domains), so that the attention coverage inside the
domain could be weighted against that outside of it. This
was done (for each domain) by taking the number of
high-attention positions outside the domain and dividing
it by the number of times the domain could fit in the out-
side region (i.e., the number of windows the same length
as the domain). This yielded an expected count corre-
sponding to repeatedly randomly sampling subsequences
the same length as the domain. The coverage fractions
were taken as the number of high-attention positions
(either in the domain or the expected value outside)
divided by the length of the domain. To assess the signifi-
cance of the difference in domain coverage fraction distri-
bution between attention and control, we performed a
two-sided Wilcoxon signed-rank test separately for each
domain member database. The adjusted p-values were
<0.05 for 10 out of 12 member databases, where SFLD
and HAMAP differences were not significant.

4.9 | GO term enrichment analysis

The GO enrichment analysis for domains that overlap
with attention was performed considering the proteins
that have well-covered domains (>=30% of their posi-
tions overlapping attention patterns) against the full set
of proteins, with the Python library GOATOOLS 1.0.15
(Klopfenstein et al. 2018) using the Holm-Bonferroni p-
value correction method and a significance threshold of
0.05. To summarize the results, GOATOOLS was used to
obtain yeast GO slim terms (Table S4).

4.10 | Embedded ordering

In order to assess how individual amino acids in a
sequence affect the abundance prediction, we probed the
embedded space that the Transformer encoder maps
to. We call an embedded ordering the parametric UMAP
projection (Sainburg et al. 2020) that we trained to map
from this space down to a one-dimensional scale. The
encoder's embedded space contains 1024-dimensional
point clouds (one cloud for each sequence) (Figure 2a),
with every amino acid being assigned a (1024-dimen-
sional) point. And because the Transformer uses a
learned positional encoding, each residue in the sequence
may be assigned a different value depending on position

BURIC ET AL. 17 of 25

 1469896x, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/pro.5239 by V

ilnius U
niversity, W

iley O
nline L

ibrary on [18/03/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



(i.e., regardless of the type of amino acid). From this
space, a relatively simple feed-forward network
(2 weight-normalized linear layers) is used for predicting
values on the real line (Box-Cox-transformed protein
abundances). The fundamental assumption of our con-
struction is that (good) training induces a structure on
the embedded encoder space that reflects the total order
of abundance values (i.e., all scalar values are comparable
and arranged in a strict succession). Under this assump-
tion, we posit there exists a relatively low-dimensional
manifold on which a geodesic connects all points in the
(full) embedded space, resulting in an arrangement from
lowest-prediction-value point clouds to highest-
prediction-value point clouds (Figure 2a). The geodesic
thus gives a total order within the embedded space. To
retrieve a manageable approximation of the geodesic
(and thus, of the order), we trained a parametric UMAP
projection down to one-dimensional space. The embed-
ded ordering thus constructed assigns a scalar value to
each residue in the sequence, reflecting its contribution
to the prediction. Moreover, these scalar values reflect a
global ranking across the entire sequence space, that is,
lower abundance sequences will have residues with over-
all low order values, and the converse for higher abun-
dance sequences. This enables easy assessment of the
importance of each residue and enables mutation
procedures.

The training set for the parametric UMAP consisted
of the embedded start token point of each sequence, as
information from the entire sequence is “routed” through
these network nodes in the attention layers, and 10% of
these were kept as a hold-out test set. The training was
performed over multiple values of the UMAP number of
neighbors hyperparameter, spanning an inclusive range
from 1% to 25% of the number of sequences in the train-
ing set (aiming to balance local versus global structure).
The performance was evaluated as the Spearman correla-
tion between the centroids of the UMAP-projected point
clouds and the corresponding abundance targets over test
sequences.

4.11 | Mutation guided by an embedded
manifold

The guided mutation was performed by sorting the resi-
dues according to their embedded ordering value and
selecting the lowest of these for substitution, a different
number for each scheme: the lowest 2, 5, 10, and 20 resi-
dues in each sequence, as well as the lowest 10%, 20%,
and 30% of residues in each sequence. The 10 highest
abundance sequences were selected as guides. This gives
a pool of 4480 points distributed on the higher range of

ordering values, available for substitution. For each resi-
due selected to be substituted, its order value was
increased by a large value, set as the width of the interval
containing 99% of the embedded ordering
(UMAP-projected) values, intuitively inducing a large
shift in contribution to the prediction. To obtain a substi-
tute residue that would match this shifted value, the
guide sequences were used. The residue with the closest
ordering value to this shifted value in each guide
sequence was then chosen as a substitution candidate.
This substitution was repeated for 10 guide sequences,
and the one resulting in the highest prediction increase
was finally selected. Both, for the guided and the random
substitution, the leading M residue was avoided.
Random control was performed by choosing random resi-
dues (the same number as for each respective scheme)
and substituting them with random amino acids.

4.12 | Molecular dynamics simulations

We randomly subsampled 100 proteins with an increased
abundance of at least 100% (from the 20% mutation
regime; Figure 2d), ignoring transmembrane proteins.
We applied molecular dynamics (MD) simulations to
100 mutated non-membrane yeast proteins showing
higher abundance (Figure 2d; 20% mutation regime).
Structures were generated for mutated sequences and
their corresponding wildtypes using AlphaFold2 (Jumper
et al. 2021). The structures were generated utilizing the
full big fantastic database (BFD) and all five CASP
14 models (Jumper et al. 2021). The structures with the
highest average pLDDT score for each sequence were
then selected for molecular dynamics simulations. Simu-
lations were carried out using the GROMACS simulation
package 2022 (Berendsen et al. 1995; Hess et al. 2008;
Van Der Spoel et al. 2005), the AMBER99*-ILDN force
field (Aliev et al. 2014) and the TIP3P water model
(Jorgensen et al. 1983). The protein was centered in a
dodecahedron box with 1 nm distance to the box's bound-
aries, solvated and neutralized by adding ions. The
energy of the solvated system was minimized using
the steepest descent algorithm (steps = 50,000,
emtol = 1000 kJ/mol/nm, emstep = 0.01). Afterwards,
the system was equilibrated for 100 ps in an NVT ensem-
ble, followed by a 100 ps equilibration in an NpT
ensemble. For the productive run, an NpT ensemble was
chosen using the Parrinello-Rahman barostat
(ref_p = 1 bar, tau_p = 2 fs, compressibility = 4.5e-
5 bar(�1)) (Parrinello and Rahman 1981). The tempera-
ture was set to 300 K using the v-rescale thermostat
(tau = 0.1) (Bussi et al. 2007). For all steps periodic
boundary conditions were applied in all dimensions. For
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the simulations, a leap-frog integrator (Hockney
et al. 1974) with a time-step of 2 fs was chosen. Covalent
bonds involving hydrogens were constrained using the
LINCS algorithm (lincs_iter = 1, lines_order = 4) (Hess
et al. 1997). Short-range non-bonding interactions were
cut off at 1 nm. For the van-der-Waals interactions, a
Verlet-cutoff scheme (ns_type = grid, nstlist = 10 steps,
DispCorr = EnerPres), for the electrostatic interactions a
Particle-Mesh-Ewald summation (pme_order = 4,
fourierspacing = 0.16 nm) (Darden et al. 1993) was
applied. For each protein, simulations were run for
100 ns. Protein coordinates were written to file every
1 ps. Simulations were considered converged if the RMSD
was within a 10% error margin for 80% of the time points
in the final quarter (Figure S10). Only these converged
simulations (entire 100 ns) were selected for RMSF pro-
file comparisons (Figure 3a).

4.13 | Thermostability prediction based
on TOGT

The optimal growth temperature and optimal enzyme
activity temperature for the wildtype and abundance
increasing mutant sequences were predicted using
models developed by Li et al. (2022). For predictions, the
model required sequences to be no longer than 512 resi-
dues, as such 21 proteins exceeding this length were
excluded from the analysis. To assess the significance of
the difference in predicted temperatures between the
wildtype and variant sequences, a paired t-test was
conducted.

4.14 | Analysis of MD simulations

For the analysis, first the periodic boundary conditions
were fixed and afterwards, the frames were rotationally
and translationally fitted onto the protein atoms of the
last frame of the trajectory using a least-square fit as
implemented in GROMACS gmx trjconv. RMSF values
were extracted using the GROMACS simulation package.
Solvent accessible surface area (SASA) was computed
using the implementation in GROMACS gmx sasa. The
fraction of native contacts (Q2) was calculated from
the last frame of the trajectory using the Python module
MDAnalysis 2.2.0 (Gowers et al. 2016; Michaud-Agrawal
et al. 2011). Contacts were defined as pairs of residues
with an alpha carbon distance of 8 Å or less. For the cal-
culation of the DSSP (Kabsch and Sander 1983) and the
solvent accessible surface area (Shrake and Rupley 1973)
for the analysis of the protein UniprotID:Q12072 python

package MDTraj 1.9.7 (McGibbon et al. 2015) was used.
Dynamics were analyzed using VMD 1.9.4 and ChimeraX
1.4 (Goddard et al. 2018; Meng et al. 2006; Pettersen
et al. 2021). The structural images shown in Figure 3
were made with VMD. VMD is developed with NIH sup-
port by the Theoretical and Computational Biophysics
group at the Beckman Institute, University of Illinois at
Urbana-Champaign.

4.15 | Partial correlations with
nucleotide features

For both the model predictions and residuals, separately,
we computed partial correlations with mRNA folding
strength (mF) and tRNA adaptation index (tAI). The for-
mer was taken as the geometric mean of PARS score
along the mRNA sequence, as provided in Kertesz et al.
(2010), and the latter obtained from Tuller et al. (2010b).
Partial correlation between a variable X and Y is defined
as their correlation after linearly removing the effect of a
set of controlling variables Z. This was computed as the
correlation of the residuals of X � Z and Y � Z, using
the partial_corr method with Pearson correlation in the
Pingouin 0.5.4 Python package (Vallat 2018). The results
in Figure S11a show partial correlation between predic-
tions and mF while controlling for tAI, and between pre-
dictions and tAI while controlling for mF. Similarly,
results are shown substituting predictions with residuals
(Figure S11b) and actual protein abundance values
(Figure S11c).

4.16 | Proteomics analysis

The S. cerevisiae IOC2 knockout strain (ioc2Δ::kanMX) in
the BY4741 (MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0)
background was requested from the Yeast Knockout
(YKO) Collection (Winzeler 1999) in Gothenburg Univer-
sity and used for genomic engineering in the following
procedures. Predicted mutant (UniprotID: Q12072) DNA
sequences flanking with 90 bp overlap to the specific
genome sites on both ends were ordered as gene frag-
ments from either TWIST Bioscience (www.
twistbioscience.com). The mutant DNA sequence was
designed to not change original wildtype codons to mini-
mally affect the translation. The predicted mutated
amino acids were substituted using the most frequent
corresponding codon.

To replace the kanMX gene (Winzeler 1999) with the
mutant gene in the genome, a gRNA plasmid targeting
kanMX was constructed based on an All-In-One plasmid
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pML104 (Laughery et al. 2015). The 20 bp gRNA
sequence targeting at the kanMX gene
(GCCGCGATTAAATTCCAACA) was designed with the
CRISPR tool in Benchling (https://benchling.com).
Primer sets pFA6-KanMX 488–507 FWD/pML_F and
pFA6-KanMX 488–507 REV/f1 ori_R (Table S11) were
used to amplify pML104 into 2 fragments pML104.part1
and pML104.part2 with 20 bp homologous sequences on
both ends and gRNA sequence integrated in the
pFA6-KanMX 488–507 FWD/pFA6-KanMX 488–507
REV primers. pML104.part1 and pML104.part2 were
ligated into a circular plasmid named as pML104.gRNA_-
kanMX by Gibson Assembly (Gibson et al. 2009) and was
sequence-verified by Eurofins (https://www.eurofins.
com/) with M13R primer (Table S11). pML104.gRNA_-
kanMX and mutant gene was transformed into a knock-
out strain with PEG/LiAc method (Gietz 2014) and
selected on synthetic minimal medium without uracil
(SD-URA) plates. Colonies were verified with PCR using
the primer set YLR095C_F/YLR095C_R (Table S1), and
the amplified fragments were sequence-verified by Euro-
fins (https://www.eurofins.com/) with YLR095C_F/
YLR095C_R primer set. SD medium supplemented with
5-fluoroorotic acid (SD + 5-FOA) (Boeke et al. 1984) was
used to select colonies for loss of pML104.gRNA_kanMX.

Recombinant colonies without plasmids and the
wild-type BY4741 colony were picked into the YPD
medium. After overnight growth, 1% was inoculated
into 1.5 mL YPD medium in a 48-well flower plate (M2P
labs), and each sample had triplicates. The 48 well
flower plates were cultured in 30�C, 1200 rpm for either
around 10 h in a Biolector (M2P labs) until the cell
growth reached the mid-exponential phase or 24 h until
the cell growth reached the stationary phase. One milli-
liter cells from both phases were collected and washed
with MilliQ water once. After centrifugation, the super-
natant was removed, and cell pellets were kept at �80�C
until sent to perform proteomics analysis at High
Throughput Mass Spectrometry Core Facility, Charité
(Berlin, Germany). The data-independent acquisition
was performed using the TimsTOF PRO mass spectrom-
eter (Bruker) coupled to the UltiMate 3000 RSL
(Thermo). The peptides were separated using the Waters
ACQUITY UPLC HSST3 1.8 μm column at 40�C using a
linear gradient ramping from 2% B to 40% B in 30 min
(Buffer A: 0.1% FA; Buffer B: ACN/0.1% FA) at a flow
rate of 5 μL/min. The column was washed by an
increase in 1 min to 80% and kept by 6 min. In the fol-
lowing 0.6 min, the composition of B buffer was chan-
ged to 2%, and the column was equilibrated for 3 min.
For MS calibration of ion mobility dimension, three ions
of Agilent ESI-Low Tuning Mix ions were selected (m/z

[Th], 1/K0 [Th]: 622.0289, 0.9848; 922.0097, 1.1895;
1221.9906, 1.3820). The dia-PASEF windows scheme
was ranging in dimension m/z from 400 to 1200 and in
dimension 1/K0 0.6–1.43, with 32 � 25 Th windows
with Ramp Time 100 ms. Data quantification was per-
formed using the DIA-NN 1.8 software (Demichev
et al. 2020), using library-free mode. Q12072 protein's
expression analysis in exponential and stationary phases
(Data S1) was carried out using only the peptides that
were detected in both growth phases in mutant and
wildtypes correspondingly, that is, the protein changes
are calculated as fold-changes of corresponding Q12072
measured peptides in each strain. For the expression
experiment, three biological replicates from mutant and
wildtype were analyzed in each growth phase. The raw
mass spectrometry data have been deposited to the Pro-
teomeXchange Consortium via the PRIDE partner
repository (Perez-Riverol et al. 2019) with the dataset
identifier PXD053435.

4.17 | Statistical analyses

All statistical analyses were performed using the Python
(3.9) package Scipy 1.8.1 (Virtanen et al. 2020) and R
4.2.0. For data manipulation and visualization, we used
pandas 1.4.0 (The Pandas Development Team 2023) sea-
born 0.12.2, (Waskom 2021) scikit-learn 0.24.2
(Pedregosa et al. 2011), and the R tidyverse 2.0.0
(Wickham et al. 2019) package collection. Hypothesis
testing was performed using the nonparametric Wilcoxon
Rank Sum test unless indicated otherwise.
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