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Abstract: The evaluation of low-degree hypergeometric polynomials to zero defines al-
gebraic hypersurfaces in the affine space of the free parameters and the argument of the
hypergeometric function. This article investigates the algebraic surfaces defined by the
hypergeometric equation 2F1(−N, b; c; z) = 0 with N = 3 or N = 4. As a captivating
application, these surfaces parametrize certain families of genus 0 Belyi maps. Thereby, this
article contributes to the systematic enumeration of Belyi maps.
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1. Introduction
The systematic cataloging of Belyi maps is an active research undertaking [1–3]. Con-

tributing to this venture, this article considers comprehensively Belyi maps φ : P1 → P1 of
the form

φ(x) = (1 − x)p(1 − λx)q Gm(x)r (1)

or
φ(x) = (1 + αx + βx2)p Gm(x)r, (2)

where Gm(x) is a polynomial of degree m without multiple roots, and

φ(x) = 1 + O(xm+2) (3)

asymptotically. This implies Gm(0) = 1. The powers p, q, r are allowed to be positive or
negative integers, and they are assumed to be different. If the powers are positive integers,
then φ(x) is a polynomial. Recall that polynomial Belyi maps are called Shabat polynomi-
als ([4] §2.2) or generalized Chebyshev polynomials [5]. We are particularly interested in Belyi
maps defined over Q.

Assuming that the point x = ∞ is above φ ∈ {0, ∞}, the distinct points in the three
canonical fibers φ ∈ {0, 1, ∞} are as follows:

• Two roots of (1 − x)(1 − λx) or 1 + αx + βx2, of branching order |p| or |q|, above
φ = 0 or φ = ∞ depending on the signs of p, q;

• The roots of Gm(x), of branching order |r|, above φ ∈ {0, ∞};
• The point x = ∞, of branching order |p + q + mr| ̸= 0 or |2p + mr| ̸= 0, respectively,

for the two forms, above φ ∈ {0, ∞};
• The point x = 0, of branching order m + 2, above φ = 1;
• d − (m + 2) non-branching points above φ = 1, where d is the degree of φ.

In total, we count
2 + m + 1 + 1 + (d − m − 2) = d + 2 (4)
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distinct points in the three fibers, which is the minimal number of points in three fibers for
a covering P1 → P1 by the Riemann–Hurwitz formula ([6] Theorem 5.9), and the number
of points that Belyi maps of genus 0 must have in the three fibers. This will be recapped in
Lemma 3.

As it turns out, the considered families of Belyi maps are parametrized by the zero
sets of hypergeometric polynomial equations, namely

2F1

(
−m − 1, q

r
−m − p

r

∣∣∣∣∣ λ

)
= 0 (5)

for the Belyi maps of the form (1), and

2F1

(
−m+1

2 ,−m
2

−m − p
r

∣∣∣∣∣ 4β

α2

)
= 0 (6)

for the form (2). These hypergeometric equations were derived earlier by Adrianov ([5]
Propositions 3.5, 3.8) in the context of Shabat polynomials. The equations give the generic
number of distinct Belyi maps (up to Möbius transformations) of the considered branching
patterns, namely, m + 1 for fixed p, r, q, m in the form (1), or ⌈m/2⌉ for fixed p, q, m in the
form (2). As we show in Lemmas 1 and 2, this number is smaller when one of the quotients
p/r, q/r is a larger negative integer. It appears that the hypergeometric polynomials in (5), (6)
are irreducible over Q typically, giving the maximal Galois orbits of Belyi maps with the
considered branching patterns.

The considered Belyi maps constitute a borderline easy case that continues extensively
the examples in ([4] §2.2) and [7]. The new examples and methodology will not be radically
novel for active readers of [4,7]. In particular, we encounter new families of Belyi maps
defined over Q that are parametrized by the following:

• Rational points on an elliptic curve, as in ([4] §2.2.4.3); see Examples 8, 13 and 14 here.
• Integer solutions of Pell’s equation, as in ([7] Ch. 10); see Example 18.
• Rational points on a cubic surface or a cubic pencil; see Examples 4, 5.
• Integral points on elliptic curves or elliptic surfaces; see Example 9.

The investigation of this article starts with recalling the relevant properties of hyper-
geometric functions. Section 2 introduces the hypergeometric 2F1-function, the Pochham-
mer symbol (α)m, and the key properties of hypergeometric polynomials that we use.
Sections 3 and 4 consider the algebraic surfaces defined by the equation

2F1

(
−N, b

c

∣∣∣∣ z
)
= 0 (7)

with N = 3 or N = 4. We modify the lower parameter to −c + 1 − N, so that after clearing
the denominators, we have the symmetric identity

(c)m 2F1

(
−N, b

−c + 1 − N

∣∣∣∣ z
)
= (b)m zN

2F1

(
−N, c

−b + 1 − N

∣∣∣∣ 1
z

)
(8)

of the same hypergeometric summation in the opposite directions. The parameters b, c
are, thereby, interchangeable in combination with the Möbius transformation z 7→ 1/z.
These equations with N ∈ Z define algebraic surfaces in the affine space defined by the
parameters b, c, z as coordinates. Further symmetries of these hypergeometric polynomials
are presented in (11)–(14).

The technical contribution of this article is the careful consideration of the hypergeo-
metric polynomial equations, including their degenerations, and analysis of their algebraic
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structure and elliptic fibrations. The algebraic surfaces defined by the cubic or quartic
Equation (7) are investigated in Sections 3 and 4, respectively. As Belyi maps are defined
for b, c ∈ Q and z ∈ Q (but preferably for us, z ∈ Q), we are particularly interested in the
rational points and elliptic fibrations on these algebraic surfaces.

The later sections describe the Belyi maps of the forms (1) and (2). Section 5 presents
the easy examples of Belyi maps that the considered two forms generalize. These easy
examples are largely covered in ([4] §2.2). Section 6 considers Belyi maps of the form (1)
using rational parametrizations of the examined surfaces (7). The cases with fewer than
N Belyi maps in Examples 8 and 9 are parametrized by particular elliptic curves on the
same surfaces. Section 7 considers Belyi maps of the form (2). This leads to considering
rational or integral points on some other elliptic curves on the same surfaces. Our thorough
investigation of algebraic surfaces (7) allows to refine the examples in ([4] §2.2.4.3) and ([7]
Ch. 10), and to explore beyond them.

2. Hypergeometric Details
The Gauss hypergeometric function ([8] Ch. 2) is defined by the series

2F1

(
a, b

c

∣∣∣∣ z
)
=

∞

∑
k=0

(a)k (b)k
(c)k k!

zk. (9)

Here, (α)k = α (α+ 1)(α+ 2) . . . (α+ k− 1) denotes the Pochhammer symbol , or the “raising”
variant of the factorial. Using the Γ-function ([8] Ch. 1) we can write

(α)k =
Γ(α + k)

Γ(α)
. (10)

The standard analytic continuation of the 2F1-function is onto C \ [1, ∞). This function
is undefined when c equals zero or a negative integer.

2.1. Hypergeometric Polynomials

If well defined, the hypergeometric series (9) is a polynomial in z when a or b are
non-positive integers. In addition to (8), we have these symmetries of hypergeometric
polynomials:

(c)N 2F1

(
−N, b

−c + 1 − N

∣∣∣∣ z
)
= (−1)N(b + c)N 2F1

(
−N, b
b + c

∣∣∣∣ 1 − z
)

(11)

= (b + c)N (−z)N
2F1

(
−N, c
b + c

∣∣∣∣ 1 − 1
z

)
(12)

= (c)N (1 − z)N
2F1

(
−N, e

−c + 1 − N

∣∣∣∣ z
z − 1

)
(13)

= (b)N (z − 1)N
2F1

(
−N, e

−b + 1 − N

∣∣∣∣ 1
1 − z

)
. (14)

where e = −b − c + 1− N. The following expression defines a polynomial of degree ⌊N/2⌋
for any integer N ≥ 0:

2F1

(
−N

2 ,−N−1
2

c

∣∣∣∣∣ z

)
. (15)

If c is a non-negative integer but a or b is a non-negative integer ≥ c, the hypergeomet-
ric summation (9) can be considered a polynomial of degree −a or −b. This interpretation
is often used in theory of orthogonal polynomials [9]. We adopt this interpretation of
hypergeometric functions like
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2F1

(
−n, b
−n − m

∣∣∣∣ z
)

(16)

with integer n, m ≥ 0. The well-known identities

2F1

(
a, b

c

∣∣∣∣ z
)
= (1 − z)−a

2F1

(
a, c − b

c

∣∣∣∣ z
z − 1

)
(17)

= (1 − z)c−a−b
2F1

(
c − a, c − b

c

∣∣∣∣ z
)

(18)

of Pfaff and Euler ([8] Th. 2.2.5) should not be automatically applied then; see ([10]
Lemma 3.1). Yet these identities are valid when all three numbers a, b, c are non-negative
integers, and −c ≥ max(−a,−b); see ([10] §9).

2.2. Distinctive Roots of Hypergeometric Polynomials

The distinctiveness of the roots of hypergeometric polynomials is easily proved by
using contiguous relations ([8] §2.5, §3.7) of 2F1-functions. In particular, we use the obser-
vations in the following two lemmas. Complementarily, one may consider the relation of
hypergeometric polynomials to classical orthogonal polynomials [9] and the interlacing
properties of the zeroes of orthogonal polynomials ([8] §5.4).

Lemma 1. Consider the sequence of hypergeometric polynomials

P(k) = 2F1

(
−k, b

1 − k − c

∣∣∣∣ z
)

, (19)

with some b, c ∈ C. Suppose that for a positive integer k, we have (b)k ̸= 0, (c)k ̸= 0, and
(b + c)k ̸= 0. Then, we have the following:

(i) The polynomials P(k) and P(k − 1) do not have common roots.
(ii) The polynomial P(k) has k distinct roots.
(iii) z = 1 is not a root of P(k).

Proof. The sequence P(k) satisfies the recurrence relation

k(k − 1 + b + c)z
k − 1 + c

P(k − 1) = (kz + k + bz + c) P(k)− (k + c) P(k + 1). (20)

This follows from the contiguous relations [11], or by applying Zeilberger’s algorithm ([8]
§3.11), or by checking the series expansion. We apply the recurrence with decreasing k, and
use the assumption that (b + c)k ̸= 0. The recurrence implies that a common root of P(k)
and P(k − 1) is either z = 0, which conflicts with the hypergeometric values 1 at z = 0, or
it would be a common root of P(k − 2), . . ., and of P(0) = 1 contradictorily.

The second statement follows from the degree of k of P(k) thanks to (b)k ̸= 0, and the
fact that another contiguous relation

1 − z
k

dP(k)
dz

+ P(k) =
k − 1 + b + c

k − 1 + c
P(k − 1) (21)

implies that a multiple root of P(k) would be also a root of P(k − 1), leading to the estab-
lished first statement.

The last statement follows from the Chu–Vandermonde identity ([8] p. 67)

2F1

(
−k, B

C

∣∣∣∣ 1
)
=

(C − B)k
(C)k

, (22)
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giving the value (b + c)k/(c)k for P(k) evaluated at z = 1.

Lemma 2. Consider the sequence of hypergeometric polynomials

P(k) = 2F1

(
− k

2 , − k−1
2

1 − k − c

∣∣∣∣∣ z

)
, (23)

with some c ∈ C. Suppose that for a positive integer k we have (c)k ̸= 0 and (2c)k ̸= 0. Then, we
have the following:

(i) The polynomials P(k) and P(k − 1) do not have common roots.
(ii) The polynomial P(k) has ⌊k/2⌋ distinct roots.
(iii) z = 1 is not a root of P(k).

Proof. The sequence P(k) satisfies the recurrence relation

P(k)− P(k + 1) =
kz (2c + k − 1)

4(c + k)(c + k − 1)
P(k − 1). (24)

Under the assumption that (b + c)k ̸= 0, the recurrence shows that a common root of
P(k) and P(k + 1) is either the rejectable z = 0, or it would be a common root of P(k − 1),
P(k − 2), . . ., and of P(0) = 1 contradictorily.

The second statement follows from the degree of k of ck, thanks to (a)k ̸= 0, and the
fact that another contiguous relation

2(1 − z)
k

dP(k)
dz

+ P(k) =
2c + k − 1

2(k + c − 1)
P(k − 1) (25)

implies that a multiple root of P(k) would be also a root of P(k + 1), leading to the estab-
lished first statement.

The last statement follows from applying the Chu–Vandermonde identity (22). The
evaluation at z = 1 is (

c +
1
2

)
⌊ k

2 ⌋

/(
c +

⌈
k
2

⌉)
⌊ k

2 ⌋
(26)

for both even and odd k.

3. Cubic Hypergeometric Polynomials

After clearing the denominators in the equation 2F1

(
−3, b
−c−2

∣∣∣ z
)
= 0 , we obtain

b(b + 1)(b + 2)z3 + 3bc(b + 1)z2 + 3bc(c + 1)z + c(c + 1)(c + 2) = 0, (27)

or rather more compactly,

(bz + c)3 + 3(bz + c)(bz2 + c) + 2(bz3 + c) = 0. (28)

Let S3 denote the algebraic surface defined by (27), of degree 6.
Fixing z leads to a cubic equation in b, c. For z ∈ {0, 1}, the equation factorizes into

three linear factors. For z ∈ {−1, 2, 1
2}, it factorizes into quadratic and linear parts. For

other fixed z, we obtain an irreducible cubic curve of genus 0. Here is a parametrization of
those cubic curves by e = bz + c:

b =
e (e + 1) (e + 2)

z (1 − z) (3e + 2z + 2)
, c =

e (e + z) (e + 2z)
(z − 1) (3e + 2z + 2)

. (29)
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This also gives a birational parametrization of S3 by z and e. If 3e + 2z + 2 = 0 in the
denominators, then the polynomial in (27) can be factored as

− 4
27

(z + 1)(z − 2)(2z − 1). (30)

Both numerators in (29) equal 0 as well at the exceptional three points (e, z) ∈ {(0,−1),
(−2, 2), (−1, 1

2 )}. The three points are blown up to these lines on S3:

b = c, z = −1; 2b + c + 2 = 0, z = 2; b + 2c + 2 = 0, z =
1
2

. (31)

We are interested in the points on S3 with both b, c being positive, while z ̸∈ {0, 1}
and b ̸= c. The dependence of the signs of b, c on the parameters e, z by the parametrization
(29) is depicted in Figure 1a. There are two regions marked by + where b and c are positive;
they are delineated by

z < 0 and e (3e + 2z + 2) < 0. (32)

The exceptional lines (30) do not apply to this interest.

e

z

y

t

= ± =

+

+

= ∓

=

± =
± ∓

∓ ±

= ∓

∓

=

±
∓

∓ ±

= ±

±

∓
=

±
∓

=

∓

=

∓ ±
=

=

±

∓

±
=

∓

=

∓

=

∓±
=
∓

=

±

(a) (b)

Figure 1. The signs of b and c depending on (a) e, z in formula (29), and (b) t, y in formula (40). The
upper sign in ±,∓,= is for b, while the lower one is for c. There sign + indicates that both b, c are
positive.

3.1. Complete Factorization for Some b, c

Suppose that the parameters b, c have the form (29) for some z = s ∈ Q and e ∈ Q.
Considering (27) as a cubic polynomial in z, it then has the root z = s. For generic values of
e, s, the other two roots solve the quadratic equation

e2 − 2es − 2s2 + 3e + 2
e + 2s − 2

z2 − (2e + s + 1)sz +
e2 + 3es + 2s2 − 2e − 2

e − 2s + 2
s2 = 0. (33)

We are interested when those other roots are in Q as well. For that, the discriminant

3s2(s − 1)2(e + 2s + 2)(3e + 2s + 2)
(e + 2s − 2) (e − 2s + 2)

(34)
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must be a full square. We apply the birational transformation

e = 2
ξ − 1
η − ξ

, s =
η + 1
η − ξ

, (35)

and the discriminant becomes

3η(1 − ξ − η)(ξ + 1)2(η + 1)2

ξ (η − ξ)4 . (36)

The values ξ, η should therefore determine a Q-rational point on the cubic surface

3ϱ2 = ξη(1 − ξ − η). (37)

This cubic surface has three singularities (ξ, η, ϱ) ∈ {(0, 0, 0), (0, 1, 0), (0, 0, 1)}. By intersect-
ing this surface with the pencil of lines ξ = tϱ, η = yϱ through the singularity (0, 0, 0), we
obtain this birational parametrization by (t, y) ∈ P2:

ξ =
ty − 3

y(y + t)
, η =

ty − 3
t(y + t)

, ϱ =
ty − 3

ty(y + t)
. (38)

This translates to

e =
2t (y2 + 3)

(t − y)(ty − 3)
, s =

y (t2 + 2ty − 3)
(y − t)(ty − 3)

, (39)

and ultimately to

b = − (t2 + 3)(y2 + 3) (ty + 3)
3(t2 + 2ty − 3)(y2 + 2ty − 3)

, c =
(y2 + 3)(t2y − 3y − 6t)
3(y − t)(y2 + 2ty − 3)

. (40)

This parametrizes the cases when the cubic polynomial (27) factors completely. The special
case y = −t gives the following neat family:

b = 1
3 t2 − 1, c = − 1

6 t2 − 1
2 . (41)

The algebraic map (39) is 2-to-1 generically, as the central symmetry (y, t) 7→ (−y,−t)
keeps e, s invariant and permutes the roots of (33). Up to this symmetry, the inverse map
to (39) is

y =

√
3(e + 2s + 2)(e − 2s + 2)
(e + 2s − 2)(3e + 2s + 2)

, t =

√
3(e + 2s − 2)(e − 2s + 2)
(e + 2s + 2)(3e + 2s + 2)

. (42)

There is no point (y, t) ∈ R2 where both b and c are positive by the parametrization (40);
see Figure 1b, and note that the only points (y, t) ∈ {(3,−1), (−3, 1)} where both b, c are
undetermined by (40) give (e, s) = (−1,−3) in (39) and hence are rejectable (b, c) = (0,−1)
in (29).

The following map moves z = s to another root of (27):

(y, t) 7→
(

y − 3
y + 1

,
t − 3
t + 1

)
. (43)

By composition with the central symmetry (on either or both sides), one realizes all six per-
mutations of the roots of (27) by fractional linear transformations of the parameters y, t.
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3.2. Elliptic Fibration by b or c

For fixed b ̸∈ {0,−1,−2}, Equation (27) defines a cubic curve of genus 1. Its j-
invariant equals

−27 b2 (9b2 + 32b + 32)3

64 (b + 1)3 (b + 2)2 . (44)

We can consider S3 as an elliptic surface ([12] III.11) over Q(b). We are interested in its basic
Q-arithmetic properties [6,12]. The following propositions give an isomorphic Weierstrass
form for the elliptic surface, and a characterization of rational curves on it in terms of the
Mordell–Weil group.

Proposition 1. For b ̸∈ {0,−1,−2}, the cubic relation (27) between c and z defines a curve of
genus 1, isomorphic to the elliptic curve

E3 : v2 = u3 + b2 (3u − 16b − 16)2 (45)

by the isomorphism

c = −(b + 2)
v + 3bu − 16b(b + 1)

2v
, z =

v + (3b + 4)u − 16b(b + 1)
2v

. (46)

The Mordell–Weil group for (45) of rational points over Q(b) is isomorphic to (Z/3Z)×Z. It is
generated the torsion point

(
0, 16b(b + 1)

)
and the point

(
8b, 8b(b + 2)

)
.

Proof. It is straightforward to check the isomorphism (46). The inverse map is given as

u =
16b(b + 1)(bz + 2z + c)

bc + (b + 2)(3bz + 2c + 2)
, v =

32b(b + 1)(b + 2)
bc + (b + 2)(3bz + 2c + 2)

. (47)

As a side note, the elliptic involution v 7→ −v corresponds to the hypergeometric symmetry
(11) under this isomorphism.

The canonical Weierstrass form v2 = u3 + Au + B can be obtained by applying
the shift u 7→ u − 3b2 in (45). The discriminant ([12] III.1) of the elliptic surface equals
∆ = 21833b4(b + 1)3(b + 2)2. By considering A, B, ∆ and the j-invariant in (44), we can use
([13] Table 5.1) and conclude that the singular fibers b ∈ {0,−1,−2, ∞} have the Kodaira
types IV, I3, I2, I3, respectively. By [13] (Fig. 5.1–5.2), they have, respectively, mv = 3, 3, 2, 3
irreducible components in the Kodaira–Neron model. By the Shioda–Tate formula ([13]
Corollary 6.7), the Mordell–Weil rank equals 10 − 2 − 7 = 1, as the Neron–Severi rank ρ is
10 for rational elliptic surfaces ([13] §7.2). By [13] (Theorem 8.33), the Mordell–Weil group
is generated by polynomial points (u, v) with deg u ≤ 2, deg v ≤ 3. Direct computation
with undetermined coefficients gives eight possibilities for such u:

u ∈ {0, 8b,−16b, 4(b + 1), 16(b + 1),−8b(b + 1), 16b(b + 1), 16
9 (1 − b)(1 + 2b)}. (48)

The points with u = 0 are flex points with the tangents ±v = 3bu − 16b(b + 1); hence, they
are 3-torsion points. An investigation of the group relations between all candidate points
shows that we can take a point with u ∈ {8b, 16(b+ 1), −8b(b+ 1)} for a free generator.

Taking b ∈ Q \ {0,−1,−2} in (45) gives an elliptic curve over Q, with the same
Mordell–Weil group typically ([12] III.11). But the Mordell–Weil group group over Q could
be larger than the projected set of points from the elliptic surface. For example, b = −7
gives the Mordell–Weil group (Z/3Z)×Z2, as we will consider in Example 8.
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It is instructive to consider several of the simplest sections (u, v) on E3, parametrized
by b, and map them to the original surface S3 defined by (27). Here are a few obtained
non-degenerate c-values of low degree in b:

b + 2
4b − 1

, −4b(b + 2)
5b + 1

, − 27b(b + 1)
16b2 + 19b + 1

, − (2b + 1)3

7b2 + b + 1
, − 2(b − 1)3

2b2 + 17b − 1
. (49)

After substituting these values into (27), there is a linear factor in z. That parametrizes fully
the corresponding section in (c, z) on S3.

If we have a root described by (46) of the cubic hypergeometric polynomial with fixed
c (and possibly b), the other two roots are equal to

z2,3 =
1

2v

(
v + (3b − 2)u − 16b(b + 1)± u

√
3u

b + 1
− 12

)
. (50)

To seek the rationality of these roots, we may replace u = (b + 1)(w2 + 12)/3 and obtain
a family of hyperelliptic curves (w, v) of genus 2. One may go through a limited list of
Mordell–Weil points on S3 (be it specialized, with b = −5/2 for example) and check that
apparently, the complete factorization of the cubic polynomial happens generically only
in degenerate cases such as c ∈ {−1,−b − 1}. We need b to be expressible as in (40). The
family (41) corresponds to the infinite point on the elliptic surface.

For fixed c ̸∈ {0,−1,−2}, Equation (27) has degree six, but it defines an isomorphic
elliptic surface by the symmetry (8) of hypergeometric polynomials. One can take b ↔ c,
z 7→ 1/z in Proposition 1.

4. Quartic Hypergeometric Polynomials

A compact polynomial form of the equation 2F1

(
−4, b
−c−3

∣∣∣ z
)
= 0 is

(
(bz + c)2 + 3bz2 + 3c

)2
+ 2(bz2 + c)2 + 8bcz(z − 1)2 + 6(bz4 + c) = 0. (51)

Let us denote this surface by S4. We will associate two elliptic surfaces E4 and E∗
4 to it.

4.1. Elliptic Fibration by z

For fixed z, the curve has genus 1 generically. We identify S4 directly as an elliptic
surface. As such, it is isomorphic to

E4 : v2 = u3 − 20Z u2 + 108Z2 u − 648(Z − 1)2, (52)

where Z = z2 − z + 1. The j-invariant is rather untidy in the denominator:

− 28 193 Z6

34 (72Z6 − 860Z5 + 3907Z4 − 9608Z3 + 13122Z2 − 8748Z + 2187)
. (53)

An isomorphism is given by

b = −1 + φ4(z, u, v), c = −1 + φ4

(
1
z

,
u
z2 ,

v
z3

)
(54)

with

φ4(z, u, v) =
2
(
u2 − 4Z2 u + 8Z3 − 12Z2)(1 − 2z)v + 2W1

z(1 − z)
(
u2 − 12Zu + 12Z2

)2 , (55)
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where

W1 = (5Z − 3)u3 + 6 (2Z3 − 24Z2 + 27Z − 9)u2 (56)

− 4Z(20Z3 − 159Z2 + 171Z − 5)u + 72Z2(Z − 1)(2Z2 − 12Z + 9).

The infinite point on (52) is mapped to the central point (b, c) = (−1,−1) among the
degenerations. The parametric expression for bz + c simplifies to

bz + c =
2Zv − (z + 1)

(
u2 − 2(8Z − 3z) u + 36(z − 1)2Z

)
u2 − 12Zu + 12Z2 . (57)

As we consider in the next subsection, E4 is a rational elliptic surface. Its Mordell–Weil
group has no torsion, and the maximal rank 8 for elliptic surfaces over CP1, as is evident
([13] §7.3) from the irreducible degree 12 denominator of the j-invariant (53), meaning
that the surface E4 has 12 singular fibers of Kodaira type I1. By [13] (Theorem 7.12 (i)),
there are 240 candidate points with a polynomial coordinate u(z) ∈ C[z] of degree ≤ 2 to
generate the Mordell–Weil group. Computations show that 60 of them are defined over
Q(z). They have

u ∈ {6, 9, 18, 54, 9z2 − 6z + 9, 18z2 + 12z + 18, 2z2 + 4z + 6, 6z2 + 12}, (58)

or can be obtained by further applying the hypergeometric symmetries (8), (11)–(14),
generated by u(z) 7→ z2 u(1/z) and u(z) 7→ u(1 − z). Further, the two points with
u = 8z2 − 8z + 8 are defined over Q(

√
6, z), and the points with u = 0 are defined over

Q(
√
−2, z). Additionally, 64 points have u ∈ Q(

√
6)[z], 64 points have u ∈ Q(

√
−2)[z],

and 48 points have u ∈ Q(
√

6,
√
−2)[z]. The Mordell–Weil group over Q(z) has rank 6. It

is generated by points with u ∈ {6, 6z2, 6(z − 1)2, 9, 9z2, 9(z − 1)2}. Examples of simpler
rational sections on the original surface (51) have these non-degenerate values of b:

(z + 1)(z + 2)
3z (1 − z)

,
3(z + 1)(3z + 2)

z (1 − z)
,

6(z + 1)(3z − 2)
25z (1 − z)

,
2(2z + 1)(4z − 3)
z (1 − z)(2z2 − 3)2 ,

(2 − z)(z2 − 4z + 1)(z2 − 6z + 3)
z (5z2 − 2z − 1)2 ,

2z (2z + 1)(6z3 + z2 − 2)
(1 − z)(3z2 − 2)2 . (59)

The corresponding c -coordinate is obtained from a linear factor of (51) that arises after
substituting b. Due to the hypergeometric symmetry (8), some possible values for c can be
obtained by substituting z 7→ 1/z in (59).

4.2. The Rational Surface

The discriminant of the elliptic surface (52) is of degree 12 in z; see the denominator
of (53). Therefore, it is a rational surface ([13] §7.5) that can be obtained from a pencil of
cubic curves in P2 (linearly parametrized by z) by blowing up the nine intersection points
of the pencil. Rather equivalently [14], it is a del Pezzo surface in the weighted projective
space with weights(z : 1 : u : v) = (1 : 1 : 2 : 3), of degree 1.

The surface S4 is birational to the elliptic surface (52) in the Weierstrass form; hence, it
can also be obtained from the pencil of cubic curves in P2. To obtain a rational parametriza-
tion of S4, we first notice the simpler defining equation

f (3 f + 6(z2 + z + 1) + 8ez + 6e2 + 14e) + e(e + 1)(e + 2)(e + 3) = 0 (60)

in the coordinates
e = bz + c, f = bz(z − 1). (61)
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The new equation defines a del Pezzo surface in the weighted projective space with weights
(z : e : 1 : f ) = (1 : 1 : 1 : 2), of degree 2. It contains four lines in the hyperplane f = 0.
Choosing the line f = e = 0 to blow down, we apply a standard step (called unprojection in
([14] §5)) in resolving del Pezzo surfaces by introducing the coordinate

w =
f + 2(z2 + z + 1)

e
. (62)

We can eliminate f straightaway and obtain the following non-singular cubic surface in P3:

(ew − 2z2 − 2z − 2)(3w + 8z + 6e + 14) + (e + 1)(e + 2)(e + 3) = 0. (63)

Subsequently, we can blow down one of the lines on the plane 3w + 8z + 6e + 14 = 0, or
apply a classical parametrization recipe ([13] §10.5.3) using two skew lines on the cubic
surface, say, e = 3w + 8z = −2 and w = e + 1 = −z − 1. Eventually, a suitable simplified
cubic pencil is defined by U + zV = 0, where

U = 2t2y − 6t2 + 4ty − 3y2 + 3y, (64)

V = ty2 + 4t2 − 2ty + 3t − 6y. (65)

A parametrization of S4 is given by z = −U/V and

b =
3(y2 − 2t + y)(ty2 − 8t2 + 4ty − 3y2 + 3t + 3y)

U (U + V)
, (66)

c = − 6(4t2 + 2t − 3y − 3)(t2y − t2 + ty − y2)

V (U + V)
. (67)

The inverse map is given by

t =
3(b + 1)

2
− 3(c + 1)(c + 2)

2bz
+

3(b + c + 1)(b + c + 2)
2b (z − 1)

, (68)

y = − c +
(b + 2)(b + 3)z

c
+

(b + c + 2)(b + c + 3)z
c (z − 1)

. (69)

Computations with two versions of (t, y) in (64)–(66) show that the hypergeometric symme-
tries (8), (11)–(14) are realized by non-linear Cremona [15] transformations of the parameters
t, y. For example, (8) is realized by

(t, y) 7→
(

t(y2 − ty2 − 3t + 3y)
2(t2y − t2 + ty − y2)

,
(3 − 2t)(ty2 − y2 + 3t − 3y)

ty2 − 8t2 + 4ty − 3y2 + 3t + 3y

)
, (70)

while (11) is realized by

(t, y) 7→
(

t,
ty − 4t2 − 3t + 3y

ty − t − 3

)
. (71)

4.3. The Fibration by b

Equation (51) with fixed b defines a quartic curve of the generic genus 3. We can
reduce the genus to 1 by factoring out the hypergeometric symmetry (11). This gives an
elliptic surface isomorphic to

E∗
4 : v2 = u

(
u2 − 4b(5b + 9)u + 108 b(b + 1)2(b + 2)

)
. (72)
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The symmetry invariants are parametrized as follows:

z(1 − z) =− 6
v + 2(2b + 3)u − 36 b(b + 1)(b + 2)

W2
, (73)

c (b + c + 3) =− 216
b (b + 1)(b + 2)(b + 3)2

W2
, (74)

cz+(b+c+3)(z−1) =−(b+3)
u2+2(4b+3)v−4b(b+3)u+108b(b+1)(b+2)(b+5)

W2
, (75)

where W2 = 8bv + u2 − 4b(b + 9)u + 108 b(b + 1)(b + 2)(b + 9). The inverse projection is
given by

u = − 6b(b + 1)(b + 2)
(bz + c + 3z)2

c (b + c + 3)
, (76)

v = 12b (b + 1)(b + 2)(b + 3)
(bz + c + 3z)(2bz + 2c + 3)

c (b + c + 3)
. (77)

Rational points on the quartic curves can be found by trying to lift from the rational fibers
on the elliptic surface. Its Mordell–Weil group can be determined similarly to the proof of
Proposition 1. The discriminant of the elliptic surface equals 21336b3(b+ 1)4(b+ 2)2(b+ 3)3,
and the j-invariant equals

−32 (19b3 + 36b2 − 81b − 162)3

729 (b + 1)4(b + 2)2(b + 3)3 . (78)

Using ([13] Table 5.1), we conclude that the singular fibers b ∈ {0,−1,−2,−3} have the
Kodaira types III, I4, I2, I3, respectively. They have, respectively, mv = 2, 4, 2, 3 irreducible
components. The Mordell–Weil rank equals 10 − 2 − 7 = 1. The candidates for the
generators have

u ∈ {0, 9(b + 1)2, 9
4 (b − 1)2, 6b(b + 1), 54b(b + 1), 12b(b + 2), (79)

2(b + 1)(b + 2), 18(b + 1)(b + 2)}.

The Mordell–Weil group is isomorphic to (Z/2Z) × Z. The group is generated by the
2-torsion point (0, 0) and a point having u ∈ {6b(b + 1), 18(b + 1)(b + 2)}. The point(

6b(b + 1), 12b(b + 1)(b + 3)
)

(80)

can be taken as a free generator.
The discriminant of the quadratic Equation (73) for z equals

(v + 4bu + 12u)2

(v + 4bu)2 + 864b(b + 1)(b + 2)u
(81)

on E∗
4 . To find rational sections on the genus 3 curve, we need the denominator

(v + 4bu)2 + 864b(b + 1)(b + 2)u (82)

to be a full square on E∗
4 . The point (u, v) = 0 leads to

c = − b + 3
2

(
1 ±

√
b + 1
b + 9

)
, z =

1
2
± 1

2

√
b + 1
b + 9

. (83)

A rational section is obtained after the base change b = (9ζ2 − 1)/(1 − ζ2).
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5. Belyi Maps
Recall that Belyi maps are algebraic coverings φ : C → P1 that branch in the three

fibers φ ∈ {0, 1, ∞}. We consider Belyi of genus 0 only. The following characteristic
property of Belyi maps of genus 0 follows from the Riemann–Hurwitz formula.

Lemma 3. A Belyi map of genus 0 and degree d has exactly d + 2 distinct points in the 3 fibers
{0, 1, ∞}.

As summed up in (4), the considered maps (1) and (2) satisfy the condition of this
lemma. The degree of (1) equals

d = max(|p|, |q|, |p + q|, m|r|, |p + mr|, |q + mr|, |p + q + mr|),

while the degree of (2) equals max(2|p|, m|r|, |2p + mr|). Without loss of generality, we
may assume max(|p|, |q|) ≤ |p + q + mr|.

Easy Maps

The simplest Belyi maps are the power functions φ(x) = xp. They have just two points
in the two fibers φ = 0 and φ = ∞. Our considered rational maps can be viewed as a close
neighborhood of this exemplar in the landscape of Belyi maps.

Example 1. The Belyi maps with exactly three points in two fibers are easy to find; see [7] §6.6.2
with k = 2. These maps necessarily have two points with some branching orders p, q in one fiber
(say, φ = 0) and one point (say, x = ∞) of branching order p + q in the other fiber (say, φ = ∞).
There must be then p + q − 1 distinct points in the third fiber φ = 1 by Lemma 3; hence, there, we
have exactly one branching point, of order two. The most compact expression for the Belyi map is
obtained after choosing this branching point to be x = 0:

φ(x) = (1 − qx)p(1 + px)q (84)

= 1 + O(x2). (85)

This form matches the case m = 0, λ = p/q of (1), where we take p, q to be positive, and rescale
x 7→ x/q.

Example 2. Consider Belyi maps of the more general form

φ(x) = (1 − qx)p Fm(x)q (86)

= 1 + O(xm+1), (87)

where Fm(x) is a polynomial or degree m, as in [7] §6.6.2. If p, q are positive integers, then these
maps have one point of order p, m points of order q above φ = 0, a single point of order p + mq
above φ = ∞, and a branching point of order m + 1 above φ = 1. The other points above φ = 1 are
non-branching by Lemma 3. By the equality of (86) and (87), we have

Fm(x) = (1 − qx)−p/q mod xm+1. (88)

This means that the polynomial Fm(x) equals the truncated Taylor series of
(1 − qx)−p/q at x = 0. Explicitly,

Fm(x) =
m

∑
k=0

qk(p/q
)

k
k!

xk. (89)
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Following our interpretation of hypergeometric polynomials (16), we can write

Fm(x) = 2F1

(
−m, p

q
−m

∣∣∣∣∣ qx

)
. (90)

Remark 1. We may allow p or q to be negative integers in (86). That just means that the
corresponding point(s) are above φ = ∞ rather than above φ = 0. Formula (88) still holds
then. The point x = ∞ remains above φ = ∞ if p + mq > 0, and it moves to the fiber φ = 0 if
p + mq < 0.

Remark 2. If we take p = 0 or p + mq = 0, then we have m + 1 (rather than m + 2) points in
the two fibers φ ∈ {0, ∞}. The branching order of x = 0 can be at most m then, and (88) should
be modified to Fm(x) = 1 + O(xm). We obtain the Belyi maps φ(x) = (1 − xm)q, after scaling
x additionally.

Example 3. Now we look at the Belyi maps of the form

φ(x) = (1 − x)p(1 − λx)q(1 − µx)r, (91)

with φ(x) = 1 + O(x3). This is the case m = 1 of (1). The series expansion of (91) starts with

1 − (p + λq + µr) x +
1
2

(
(p + λq + µr)2 − p − λ2q − µ2r

)
x2 + . . . . (92)

The coefficients to x, x2 must vanish. Eliminating λ, we obtain a quadratic equation for µ. Its
discriminant equals −pqr(p + q + r); hence, the Belyi maps are expressed with the radical σ =

±
√
−pqr(p + q + r). Explicitly,

φ(x) =
(
1 − x)p

(
1 +

pq + σ

q(q + r)
x
)q (

1 +
pr − σ

r(q + r)
x
)r

. (93)

These Belyi maps with the definition field Q(σ) are obtained in [4] (Example 2.2.25). If p, q, r are
positive integers, the definition field is an imaginary quadratic extension of Q. But the Belyi maps
could be defined over Q if both positive and negative powers are prescribed. For example, here is a
nice family of paired Belyi maps with p = (n+1

2 ), q = (n
2), r = −1:

(1 + x)p (1 − x)q

1 + nx
,

(
1 + (n − 2)x

)p (1 − (n + 2)x
)q

1 − n2x
. (94)

A general rational parametrization of the triples (p, q, r) with ρ ∈ Q is obtained by parametriz-
ing the singular cubic surface y2 + st(s + t + 1) = 0, identifying s = p/r, t = q/r. Here is such
a parametrization by u = σ/qr, v = σ/pr, up to the simultaneous scaling of p, q, r:

p = u(uv + 1), q = v(uv + 1), r = −u − v. (95)

Then, σ = −uv(u + v)(uv + 1). After rescaling x in the two forthcoming Belyi maps, we obtain
the expressions

(
1 − (v + 1)x)u (1 + (u − 1)x

)v (1 − (uv + 1)x
)−(u+v)/(uv+1), (96)(

1 + (v − 1)x)u (1 − (u + 1)x
)v (1 − (uv + 1)x

)−(u+v)/(uv+1), (97)

which are to be raised to a common power so as to make the three powers integral. The cases
with σ = 0 fall outside the considered shape (91), and the cases (u + v)(u2 − 1)(v2 − 1) = 0



Mathematics 2025, 13, 156 15 of 30

with coalescing branching points require special attention. In the latter situation, we have
(p + q)(q + r)(q + r) = 0.

Remark 3. If p + q = 0 in the last example, then σ = ±pr. Taking σ = pr gives the trivial
function φ(x) = 1. Taking σ = −pr gives

φ(x) =

(
1 − (p − r)x)p (1 − 2px)r

(1 − (p + r)x)p . (98)

In the cases p + r = 0 or q + r = 0, we also have just one Belyi map analogously. If simultaneously
p + q = p + r = 0, both candidate functions collapse to φ(x) = 1.

6. Belyi Maps of the Form (1)
Belyi maps of the shape (1) generalize Example 3 from m = 1. We assume that the

numbers p, q, r, p + q + mr are non-zero such that there are indeed m + 3 distinct points
above φ = 0 and φ = ∞. The points x = 1, x = 1/λ, x = ∞ and their branching orders p,
q, −p − q − mr are permutable. We also assume p ̸= q, p ̸= q + mr, q ̸= p + mr, as these
cases are considered in Section 7 with the smallest field of definition.

The condition (3) translates into the power series relation

Gm(x) = (1 − x)−p/r(1 − λx)−q/r mod xm+2. (99)

The power series term with xm+1 has to equal 0 then. The polynomial Gm(x) is determined
uniquely by the power series

(1 − x)−p/r(1 − λx)−q/r =
∞

∑
k=0

hkxk (100)

truncated at the (m + 1)-th term.

Lemma 4. No Belyi map of the form (1), (3) exist when p = −ℓ1r and q = −ℓ2r for some positive
integers ℓ1, ℓ2 satisfying ℓ1 + ℓ2 ≤ m.

Proof. The left-hand side of (100) is the polynomial (1 − x)ℓ1(1 − ax)ℓ2 under the stated
conditions. When ℓ1 + ℓ2 < m, the polynomial Gm(x) is forced to be of a smaller degree
than m. If ℓ1 + ℓ2 = m, then Gm(x) has the undue roots x = 1, x = 1/λ.

The coefficients hk in (100) can be expressed as follows:

hk =
k

∑
j=0

(p/r)k−j (q/r)j λj

(k − j)! j!
, (101)

or

hk =
(p/r)k

k! 2F1

(
−k, q

r
1 − k − p

r

∣∣∣∣∣ λ

)
(102)

=
(q/r)kλk

k! 2F1

(
−k, p

r
1 − k − q

r

∣∣∣∣∣ 1
λ

)
. (103)

We must have hm+1 = 0, which leads to Equation (5), generically.
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6.1. Full Sets of Belyi Maps

Here we consider examples of the generic case (104) with m + 1 Belyi maps. We are
interested in the cases λ ̸∈ {0, 1} and p ̸= q. The degenerate value λ = 1 would coalesce
the points of branching order p and q, but this point is excluded by Lemma 1 (iii). By
Lemma 1 (ii), the hypergeometric polynomial hm+1(λ) has m + 1 distinct roots when

( p
r

)
m+1

̸= 0,
( q

r

)
m+1

̸= 0,
(

p + q
r

)
m+1

̸= 0. (104)

The condition ((p + q)/r)m+1 ̸= 0 is equivalent to(
− p + q + mr

r

)
m+1

̸= 0, (105)

underscoring the symmetry of the branching orders p, q, and −p − q − mr.
The following examples investigate the Belyi maps with m = 2 and m = 3. The case

m = 1 is considered in Example 3.

Example 4. In the case m = 2, we consider Equation (27) specialized by b = q/r, c = p/r,
z = λ:

q(q + r)(q + 2r)λ3 + 3pq(q + r)λ2 + 3pq(p + r)λ + p(p + r)(p + 2r) = 0. (106)

The discriminant

−108p2q2r3 (p + r) (q + r)(p + q + r)(p + q + 2r)2

is proportional to (p/r)3(q/r)3((p + q)/r)3, and it indeed vanishes only when we have fewer than
three distinct roots, and those roots λ ̸∈ {0, 1} as in Lemma 1 (ii).

Belyi maps defined over Q can be found using the parametrization (29), identifying q = br,
p = cr, and λ = z. Polynomial Belyi maps defined over Q are obtained from the + regions (32)
in Figure 1a. For example, e = −z = 1

5 and e = −z = 1
6 produce these Shabat polynomials,

respectively:

(1 − 5x)2(1 + x)20(1 − 2x + 9x2)5, (107)

(1 − 6x)(1 + x)20(1 − 2x + 6x2)7. (108)

Their companions with the same p, q, r are defined, respectively, over Q(
√
−35) and Q(

√
−2).

There are no triples of Shabat polynomials defined over Q, as there is no point (t, y) ∈ R2 giving
positive values for b = q/r and c = p/r by Figure 1b. The family (41) with t ∈ Q provides most
of the triples of Belyi maps defined over Q with small absolute values of p, q, r. For example, t = 2
gives the case (p, q, r) = (2,−7, 6) with these three Belyi maps defined over Q:

(1 − x)2(1 − 2x − 1
6 x2)6

(1 − 2x)7 ,
(1 − x)2(1 + 5x + 10

3 x2)6

(1 + 4x)7 ,
(1 − 5x)2(1 − 3x − 2

3 x2)6

(1 − 4x)7 . (109)

Here are a few projective ratios (p : q : r) giving three Belyi maps defined over Q outside the family
(41):

(1 : − 7
8 : 1

19 ), (2 : − 1
5 : 1

37 ), (1 : − 26
31 : 1

37 ), (1 : − 11
41 : 1

43 ), (1 : − 14
17 : 1

61 ),

(7 : − 5
2 : 4

13 ), (7 : − 65
19 : 3), (19 : − 35

8 : 1), (−19 : − 37
7 : 1

2 ). (110)
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Families of Belyi maps can be obtained from sections on the elliptic surface E3, particularly
from the c-values in (48). Taking c = (b + 2)/(4b − 1) with the reparametrization t = 4b − 1
and independent rescaling of x and of the powers p, q, r gives

(1 − 2tx)t+9 (1 + 6x
)t(t+1)

(
1 − (t − 3)x − (t + 3)2x2

)4t
. (111)

Similarly, taking c = −4b(b + 2)/(5b + 1) and t = (5b + 1)/(3b) gives

(1 − tx)12−8t (1 − 2(t − 1)x
)t
(

1 − 2x − 2(t − 2)2

3t − 5
x2
)t(3t−5)

. (112)

Or one may employ the whole two-parameter uniformizations (29) or (41).

Example 5. Similarly, for m = 3, we obtain the surface S4 in (51) with b = q/r, c = p/r, z = λ.
We can use the full parametrization (66) and (67), or a section of the elliptic surface E4 in (52).
For example, the first b-value from (59) gives the family

(1 − x)2t(t−2)(t+2) (1 − tx
)(t+1)(t+2)

×
(

1 − (t + 2)x − (t + 1)(t + 2)
3

x2 − (t + 1)(t − 2)(t + 2)
9

x3
)3t(1−t)

, (113)

with t = z. Here are some values of b, c, with one of them being a positive integer, found by an
extensive search through the parametrization (66):

(5,− 7
2 ), (5,− 7

11 ), (5,− 14
13 ), (13,− 13

3 ), (13,− 26
5 ), (14,− 7

2 ), (15,− 45
43 ), (19,− 28

3 ),

(19,− 19
7 ), (20,− 92

11 ), (22,− 40
7 ), (23,− 25

2 ), (24,− 117
47 ), (45,− 256

13 ), (45,− 207
19 ),

(45,− 47
51 ), (51,− 442

71 ), (54,− 135
7 ), (55,− 35

2 ), (55,− 99
4 ), (56,− 29

5 ), (56,− 133
5 ),

(68,− 92
7 ), (68,− 355

33 ), (68,− 85
131 ), (76,− 143

5 ), (77,− 79
2 ), (84,− 192

5 ), (91,− 188
41 ).

The negative integer values of b, c are considered in Example 9. Here are some other found
values of b, c, excluding the values {−1/2,−3/2,−5/2,−7/2,−9/2} with reference to
Examples 15 and 16:

( 1
2 ,− 8

3 ), (
1
2 ,− 7

5 ), (
7
2 ,− 26

5 ), ( 17
2 ,− 3

10 ), (
4
3 ,− 27

7 ), ( 7
3 ,− 13

9 ), ( 7
3 ,− 26

5 ), ( 14
3 ,− 34

9 ),

( 20
3 ,− 23

9 ), ( 29
3 ,− 63

5 ), ( 74
3 ,− 37

2 ), ( 11
4 ,− 40

7 ), ( 15
4 ,− 45

7 ), ( 15
4 ,− 46

7 ), ( 4
5 ,− 19

7 ),

( 7
6 ,− 35

9 ), ( 8
5 ,− 13

4 ), ( 1
6 ,− 9

22 ), (
5
6 ,− 2

9 ), (
1
7 ,− 1

4 ), (
1
7 ,− 11

5 ), ( 3
7 ,− 17

5 ), ( 6
7 ,− 18

5 ),

(− 2
3 ,− 7

5 ), (−
5
3 ,− 2

9 ), (−
8
3 ,− 3

8 ), (−
1
4 ,− 7

5 ), (−
5
4 ,− 8

11 ), (−
3
5 ,− 4

7 ), (−
7
6 ,− 9

10 ).

6.2. Cases with Fewer Belyi Maps

The number of Belyi maps (1) with λ ̸∈ {0, 1} is smaller than m + 1 when at least one
of the conditions (104) is not satisfied. Indeed, if q = −ℓr for a positive integer ℓ ≤ m, the
polynomial hm+1(λ) has the degree ℓ rather than m + 1, as the terms with j > ℓ in (101)
vanish then. If p = −ℓr for a positive integer ℓ ≤ m, then the first m + 1 − ℓ terms in (101)
vanish, and

hm+1 =
(−1)ℓ (q/r)m+1−ℓ

(m + 1 − ℓ)!
λm+1−ℓ

2F1

(
−ℓ, q

r + m + 1 − ℓ

m + 2 − ℓ

∣∣∣∣ λ

)
. (114)

The factor λm+1−ℓ reduces the number of relevant roots to ℓ. If p + q = −ℓr for a positive
integer ℓ ≤ m but (p/r)m ̸= 0 and (q/r)m ̸= 0, then we apply Euler’s transformation (18)
to the hypergeometric polynomial hm+1(λ) and obtain
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hm+1 =
(p/r)m+1

(m + 1)!
(1 − λ)ℓ+1

2F1

(
−m + ℓ, 1 + p

r
−m − p

r

∣∣∣∣∣ λ

)
. (115)

The factor (1− λ)ℓ+1 reduces the number of relevant roots to m− ℓ. If p/r ∈ Z and q/r ∈ Z,
then these possibilities may combine, giving a lower degree of hm+1(λ) and multiple undue
roots λ = 0 and λ = 1. Figure 2 depicts the regions and line segments or rays on the integer
lattice for the values of p/r and q/r where the number of Belyi maps (1) is fixed ≤ m + 1.
Lemma 4 applies to the visible triangle inside the dark middle region.

p/r

q/r

1
2
3

m−1
m

m+1

m−1
m

1
2
3

m−1
m

m+1

1
2
3

m+1

m+10

0

Figure 2. The number of Belyi maps (1) for integer values of p/r and q/r. The dark region in the
middle, and the lines emanating from it, represent the cases with no Belyi maps. The light grey regions
represent m + 1 Belyi maps; the dashed lines—unique Belyi maps; the dense dotted lines—pairs of
Belyi maps; the sparser dotted lines—triples of maps; the two kinds of dashed–dotted lines: (m − 1)
or m maps.

Let us consider the cases of reduced sets of distinct Belyi maps of size at most 4. Let us
use b∗ = q/r and c∗ = p/r for shorthand.

Example 6. The cases of single Belyi maps are represented by some lattice points on the lines
p = −r, q = −r, p + q = (1 − m)r or p = 2r, q = 2r, p + q = −(m + 2)r in Figure 2.
It is enough to consider two cases, that is, one from both displayed triples of lines, due to the
hypergeometric symmetries (8), (11)–(14). When q = −r and (c∗− 1)m ̸= 0, the hypergeometric
polynomial hm+1 is linear in λ. It gives λ = (m + c∗)/(m + 1). Following (99), consider the
power series

(1 − x)−c∗
(

1 − m + c∗

m + 1
x
)
= 1 +

1
m + 1

∞

∑
k=1

(c∗− 1)k
k!

(m + 1 − k)xk. (116)

The term with xm+1 indeed vanishes, and the earlier terms define Qm(x).
When p = 2r and (b∗)m+1 = 0, then (115) reads

2F1

(
−m − 1, b∗

−m − 2

∣∣∣∣ λ

)
= (1 − λ)−b∗−1

2F1

(
−1,−b∗− m − 2

−m − 2

∣∣∣∣ λ

)
. (117)
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The hypergeometric polynomial on the right-hand side is linear, and gives λ = (m + 2)/(b∗+ m + 2).
The implication for the power series of

(1 − x)−2
(

1 − m + 2
b∗+ m + 2

x
)−b∗

(118)

is remarkable: the k-th term is divisible by (b∗+ 1)k when m = k − 1. Here is a revealing form of
the starting terms:

1 +
m(b∗+ 2) + 4(b∗+ 1)

b∗+ m + 2
+

(m − 1)(b∗+ 3)
(
m (b∗+ 2) + 9b∗+ 10

)
+ 27(b∗+ 1)(b∗+ 2)

2 (b∗+ m + 2)2

+
(m − 2)(b∗+ 4)

(
m2(b∗+ 2)(b∗+ 3) + . . .

)
+ 256(b∗+ 1)(b∗+ 2)(b∗+ 3)

6 (b∗+ m + 2)3 + . . . . (119)

Example 7. Here, we consider the cases with two Belyi maps. They are represented by some
lattice points on the lines p = −2r, q = −2r, and p + q = (2 − m)r or p = 3r, q = 3r,
and p + q = −(m + 3)r in Figure 2. It is enough to consider two cases. When q = −2r and
(c∗− 2)m ̸= 0, the hypergeometric polynomial hm+1 is quadratic in λ:

m(m + 1)λ2 − 2(m + 1)(m + c∗− 1)λ + (m + c∗)(m + c∗− 1). (120)

The two solutions are

λ =
m + c∗− 1

r
±
√
(m + 1)(c∗− 1)(m + c∗− 1)

m(m + 1)
. (121)

We have two Belyi maps that are defined over Q when

c∗ =
m + 1 + (m − 1)u2

m + 1 − u2 . (122)

for some u ∈ Q. Then, the λ-values are (m + 1 ± u)/(m + 1 − u2). The power series then looks
like this:

(1 − x)−c∗
(

1 − m + 1 + u
m + 1 − u2 x

)
= 1 +

(
c∗− 1 − m + (u + 1)2

m + 1 − u2

)
x

+
1
m

∞

∑
k=2

(c∗− 1)k−1
k!

(
c∗− 1 − m + k(u + 1)2

m + 1 − u2

)
(m + 1 − k) xk. (123)

Note that if c∗ = 2 then u = ±1, and we have just one Belyi map with u = 1, which is a special
case of (118).

Like in the previous example, we apply (115) to the case p = 3r and (q/r)m+1 = 0:

2F1

(
−m − 1, b∗

−m − 3

∣∣∣∣ λ

)
= (1 − λ)−b∗−2

2F1

(
−2,−b∗− m − 3

−m − 3

∣∣∣∣ λ

)
. (124)

We obtain a quadratic equation analogous to (120). It has solutions λ ∈ Q when

b∗ = − (m + 3)u2

m + 2 + u2 (125)

for some u ∈ Q. Then, the λ-values are (m + 2 + u2)/(m + 2 ± u).

Example 8. Now we consider the cases with larger m that have three Belyi maps. Suppose that
q = −3r. Then, the hypergeometric polynomial (114) for hm+1 defines a cubic relation between λ

and p/r. This cubic relation defines a curve of genus 1 as stated in Proposition 1. The elliptic curve
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has the Mordell–Weil group isomorphic to (Z/3Z)×Z for general m. The isomorphism (46) has
to be adjusted with

b = −m − 1, c = 3 − m − p
r

. (126)

Analysis with the database [16] found the examples with m ∈ {6, 11, 13, 17, 23, 25} giving the
Mordell–Weil group (Z/3Z)× Z2, though the cases m∈{14, 20, 21, 22} are not in the database
yet. In particular, the elliptic curve for the case m = 6 has the label 39690.bj2 in [16]. The equation
specialized from (45) is

y2 = x3 + 49(3x + 96)2. (127)

Besides the specialized generators (0, 672) and (−56, 280) of Proposition 1, its Mordell–Weil group
has also the generator (−48, 48) over Q. This extra generator corresponds to the hypergeometric
evaluation

2F1

(
−7,−3

13

∣∣∣∣ − 1
)
= 0, (128)

and the Belyi map

1 − 16x + 117x2 − 512x3 + 1463x4 − 2736x5 + 2907x6

(1 − x)19(1 + x)3 . (129)

It is interesting to observe that the expanded polynomial (1 − x)19(1 + x)3 does not have the terms
with x7 (as we just used) and with x11, x15. Therefore, we can obtain two more Belyi maps by
extending the numerator of (129) to polynomials of degree m = 10 or m = 14. This phenomenon is
typical for integer points on our hypergeometric surfaces as the next example suggests.

Example 9. Here we look at the cases with larger m that have four Belyi maps. For q = −4r,
the parametrization (66) and (67) has to be adjusted by (126). We seek negative values of b or
c,−b − c − m due to the hypergeometric symmetries (8), (11)–(14). Here are some cases for (b, c)
being found:

(−5,− 4
7 ), (−7,− 7

5 ), (−9,− 9
2 ), (−14,− 26

5 ), (−14,− 22
19 ), (−19,− 3

20 ),

(−19,− 17
31 ), (−22,− 5

31 ), (−22,− 57
107 ), (−24,− 77

4 ), (−24,− 33
10 ),

(−33,− 33
7 ), (−36,− 20

3 ), (−43,− 43
2 ), (−43,− 168

127 ), (−54,− 39
85 ), (130)

(−54,− 51
233 ), (−59,− 19

85 ), (−59,− 63
139 ), (−65,− 52

7 ), (−68,− 871
19 ),

(−71,− 180
19 ), (−78,− 22

3 ), (−78,− 190
7 ), (−79,− 247

5 ), (−80,− 231
23 ).

Of particular interest are the points with both b, c negative integers. Found instances are

(−7,−10), (−14,−66), (−28,−65), (−14,−52), (−30,−36), (−22,−35),

(−63,−64), (−41,−247), (−78,−210), (−115,−210), (−247,−780), (131)

(−341,−715), (−901,−1856), (−1730,−8478), (−2795,−16512).

They give two Belyi maps though for different cases of m, p/r. For example, the first instance gives
the hypergeometric evaluations

2F1

(
−7,−4

7

∣∣∣∣ − 1
)
= 0, 2F1

(
−10,−4

4

∣∣∣∣ − 1
)
= 0. (132)

They both lead to consider the polynomial

(1 − x)4(1 + x)13 = 1 + 9x + 32x2 + 48x3 − 12x4 − 156x5 − 208x6 (133)

+ 286x8 + 286x9 − 208x11 − 156x12 − 12x13 + 32x15 + 9x16 + x17
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as a power series without the terms x7 or x10.

Remark 4. The cases like (128), (132) of hypergeometric equations with integer parameters can be
expressed in terms of Krawtchouk polynomials ([9] §9.11):

Kn(x; p, N) = 2F1

(
−n,−x
−N

∣∣∣∣ 1
p

)
. (134)

Following (11), hypergeometric polynomials in (128), (132) are identified by

2F1

(
−m,−n

M

∣∣∣∣ 1 − 1
p

)
=

(M + m)n

(M)n
Kn(m; p, M + m + n − 1). (135)

Finding the integer roots of Krawtchouk polynomials is an active field of research ([17,18] §7.2) with
special implications for graph and coding theories [19], algebraic geometry [20], Padé approximations
([21] §2.2), and quantum entanglement [22].

7. Belyi Maps of the Form (2)
The form (2) of Belyi maps is the compacted case q = p of the form (1), where

(1 − x)p(1 − λx)p is replaced by the aggregate power (1 + αx + βx2)p. This grouping of
points with the same branching order is routinely used to maximally simplify the field
of definition of Belyi maps [4]. Similarly, here we are not interested in the case r = p.
These maps correspond to the cases (1 − xm+2)p of Remark 2, with a quadratic factor of
1 − xm+2 separated.

Let us denote H2(x) = 1 + αx + βx2. The condition (3) translates into the power
series relation

Gm(x) = H2(x)−p/r mod xm+2. (136)

The power series term with xm+1 has to equal 0. The polynomial Gm(x) is determined
uniquely by the power series

H2(x)−p/r =
∞

∑
k=0

gkxk (137)

truncated at the (m + 1)-the term. The power series of can be computed by expanding
(−α − βx)j in

H2(x)−p/r =
∞

∑
j=0

1
j!

( p
r

)
j
(−α − βx)jxj. (138)

Explicitly,

gk =
⌊k/2⌋

∑
j=0

(−1)k−j(p/r)k−j αk−2jβj

(k − 2j)! j!
. (139)

If (p/r)k ̸= 0 and α ̸= 0, we have the hypergeometric expression

gk =
(−α)k

k!

( p
r

)
k

2F1

(
− k

2 ,− k−1
2

1 − k − p
r

∣∣∣∣∣ 4β

α2

)
. (140)

Distinct Belyi maps correspond to the roots of gm+1(α : β), identified up to the (1 :2)-
weighted homogeneous action of scaling x. There is a Belyi map with α = 0 when m is
even. It is obtained from Example 2 after the substitution x 7→ x2, q = r (with q, m over
there equal to the current r, m/2).

The following degeneratated cases are encountered:
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• There are no Belyi maps when p = −ℓr for a positive integer ℓ ≤ ⌊m/2⌋ because then
Gm(x) = H2(x)j, and possibly of lesser degree than m.

• If p = −ℓr for a positive integer satisfying ⌊m/2⌋ < ℓ ≤ m, then the first m + 1 − ℓ

terms for the sum (139) for gm+1 are zero, and gm+1 has the degenerate root β = 0 of
that multiplicity. After shifting the summation index by k − ℓ,

gk =
α2ℓ−kβk−ℓ ℓ!

(k − ℓ)! (2ℓ− k)! 2F1

(
k
2 − ℓ, k+1

2 − ℓ

1 + k − ℓ

∣∣∣∣∣ 4β

α2

)
. (141)

There are ℓ− ⌈m/2⌉ proper Belyi maps then, including the α = 0 case for even m.
• If p = −ℓr/2 for a positive odd integer ℓ ≤ m, then

gm+1 =
(−α)m+1(− ℓ

2
)
m+1

(m + 1)!

(
1 − 4β

α2

)ℓ+1
2

2F1

(
ℓ−m

2 , ℓ+1−m
2

ℓ
2 − m

∣∣∣∣∣ 4β

α2

)
. (142)

by Euler’s formula (18). The root β = α2/4 corresponds to the degeneration of H2(x)
to a full square. The transformed hypergeometric sum can be identified as gm−ℓ with
the substituted p/r = 1 + ℓ/2. There are then ⌈(m − ℓ)/2⌉ Belyi maps, including the
α = 0 case for even m. In particular, there are no Belyi maps when the odd ℓ = m, and
there is only the map with α = 0 when the odd ℓ = m − 1.

Otherwise, that is when p ̸= −ℓr for all positive ℓ ≤ m and p ̸= −ℓr/2 for all positive odd
ℓ ≤ m, the 2F1-factor in (140) for gm+1 gives ⌈m/2⌉ distinct values with β ̸∈ {0, α2/4} by
Lemma 2. Together with α = 0, in total, we then have ⌈(m + 1)/2⌉ Belyi maps.

7.1. Full Sets of Belyi Maps

Let us explore Belyi maps of the form (2) with m ≤ 8. We are principally interested in
Belyi maps defined over Q.

Example 10. For m = 2, there is a Belyi map defined with α = 0. When p ̸= −r/2, there is
another map. We can scale x to obtain

H2(x) = 1 + rx + 1
6 r(p + 2r) x2, (143)

G2(x) = 1 − px + 1
6 p(2p + r) x2.

Example 11. For m = 3, the Belyi maps are defined by

H2(x) = 1 + rx + 1
6 r
(
3p + 6r + R3

)
x2, (144)

G3(x) = 1 − px + 1
6 p
(
3r + R3

)
x2 + 1

6 p(p + r)
(
2p + 4r + R3

)
x3,

where R3 = ±
√

3(p + 2r)(2p + 3r). There are no Belyi maps for p/r ∈ {−1,−2,− 3
2}. For

p = −r/2 or p = −3r, we have single Belyi maps, respectively:

(1 + 2x + 5x2)p

(1 + x + 2x2 − 2x3)2p ,
(1 + 3x − 5x3)r

(1 + x − x2)3r . (145)

The cases when R3 ∈ Q are parametrized as

p
r
=

9 − 2s2

s2 − 6
, s ∈ Q. (146)
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Example 12. For m = 4, the Belyi maps with α ̸= 0 are defined by

H2(x) = 1 + rx + 1
30 r
(
5p + 15r + R4

)
x2, (147)

G4(x) = 1 − px + 1
30 p

(
10p − R4

)
x2 + 1

30 p(p + r)
(
5r + R4

)
x3

− 1
180 p(p + r)(2p + 3r)

(
2p + 6r + R4

)
x4,

where R4 = ±
√

5(p + 3r)(2p + 3r). There are no Belyi maps for p/r ∈ {−1,−2,−3,− 3
2}. For

p = −r/2 or p = −4r, we have single Belyi maps, respectively:

(1 + 6x + 21x2)p

(1 + 3x + 6x2 − 18x3 + 36x4)2p ,
(1 + 12x + 42x2 − 189x4)r

(1 + 3x − 3x2)4q . (148)

The cases when R4 ∈ Q are parametrized as

p
r
=

15 − 3s2

2s2 − 5
, s ∈ Q. (149)

Example 13. The case m = 5 is considered in ([4] §2.2.4.3). The cubic hypergeometric relation

2F1

(
−3,− 5

2

− p
r − 5

∣∣∣∣∣ 4β

α2

)
= 0 (150)

can be analyzed within the context of Section 3.2 with b = −5/2, c = 3 + p/r, and z = 4β/α2.
We combine Proposition 1 with a simple transformation

(u, v) 7→
(

u − 75
4

,
v
8

)
. (151)

The obtained elliptic curve is the same as in [4]:

E5 : v2 = u3 − 2475u − 5850. (152)

The isomorphism obtained from (46) is simpler than that in ([4] pg. 105):

p
q
=

645 − 15u − 11v
4v

, z =
45 − 7u + v

2v
. (153)

The database of elliptic curves [16] identifies this curve by the label 4050.y2, and confirms that
the Mordell–Weil group of E1 is isomorphic to Z× (Z/3Z). Any Q-rational point on E1 can be
expressed using the addition law on the elliptic curve as

n (−5, 80) + ε (75, 480), with n ∈ Z, ε ∈ {0, 1,−1}. (154)

Several of the rational points correspond to the degenerate cases p/r ∈ {0,−3,−5/2} of no
Belyi maps, p/r ∈ {−4,−3/2} of single maps, and p/r ∈ {−5,−1/2} of coupled maps. The
elliptic involution represents the hypergeometric identity (11), and acts as

( p
r

, z
)
7→
(
− p

r
− 11

2
, 1 − z

)
.

There are rational points with p/r ∈ {−11/2,−11/4}. Here are some other values of p/r that
give Belyi maps defined over Q:

− 28
11 ,− 65

22 ;− 59
23 ,− 135

46 ;− 65
107 ,− 1047

214 ;′ 33
124 ,− 715

124 ;− 251
169 ,− 1357

338 . (155)
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This list has only one positive value, representing a Shabat polynomial defined over Q. A rarity of
positive values for p/r is observed in [4]. Here are the next few:

2008145
1653242 , 1317156026567

649800344821 , 487834953714776556005
104793834699948131134 , 1999297558019926898176821908516

208841813498019535906845150263 .

Following (153), the positivity region in Figure 3a is cut out by the lines v = 0 and
15u + 11v = 645. We have three separate small regions on E5 between these lines, the one with
u > 0 being especially tiny. The rational points are distributed ergodically on E5, with the density
proportional to invariant holomorphic differential du/v. The whole measure is the real period over
the finite oval or the infinite piece. It can be computed avoiding numeric issues near v = 0 or u = ∞
by integrating du/v between points that differ by a three-torsion point, and then multiplying by
three. For example,

ϱ5 = 3
∫ −5

−45

du
v

= 3
∫ 315

51

du
v

≈ 0.732116211. (156)

(a) (b)

Figure 3. (a) The elliptic curves (152), with the numerator (153) line that together with the horizontal
line v = 0 determines the sign of p/r. (b) The elliptic curves (159), with the numerator (160) line that
together with the horizontal line v = 0 determines the sign of p/r.

The integrals over the three small regions could be stably computed by shifting the integration
range by a three-torsion point. The two integrals on the finite oval evaluate to ≈ 0.0564864103 +
0.0524120276. After division by ϱ5, we can compute the percentage and conclude that positive
values of p/q asymptotically occur about 5.72 less frequently than the negative ones on the finite
oval. The points (154) with |n| < 200 give 46 and 43 positive values in the two regions. This is
within the rounding error from the asymptotic prediction. The tiny integral on the infinite branch
is ≈ 0.00407438266. This gives the odds ratio ≈ 179 for positive values. The points (154) with
|n| < 200 give 3 positive values of p/q, with n ∈ {54, 162,−188}. Their denominators have 736,
6640 or 8944 decimal digits, respectively. The same search looks for complete factorizations of the
cubic polynomial in z, but only predictable degenerations are found. By (50) and (151), we need√

102 − 2u ∈ Q for those factorizations.

Example 14. Similarly, for m = 6, we can investigate the cubic relation

2F1

(
−3,− 7

2

− p
r − 6

∣∣∣∣∣ z∗
)

= 0 (157)

between p/r and z∗= 4β/α2 by applying Proposition 1 with b = −7/2, c = 4 + p/r. Addition-
ally, we apply the simple transformation
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(u, v) 7→
(

u − 147
4

,
v
8

)
(158)

and derive the elliptic curve

E6 : v2 = u3 − 17787u + 692566 (159)

with the isomorphism

p
r
=

5901 − 63u − 13v
4v

, z∗=
791 − 13u + v

8v
. (160)

The database of elliptic curves ([16] 13230.dp1) tells that the Mordell–Weil group is Z× (Z/3Z)
here as well. The generators of Q-rational points are (u, v) = (35, 336) and a torsion point
(147, 1120). The elliptic involution acts as

( p
r

, z∗
)
7→
(
− p

r
− 13

2
, 1 − z∗

)
.

Here are some values of p/r that give Belyi maps defined over Q:

− 13
4 , 1,− 15

2 ,− 13
5 ,− 39

10 ,− 30
11 ,− 83

22 ,− 52
37 ,− 377

74 ,− 20
29 ,− 337

58 , 41
16 ,− 145

16 . (161)

Positive values appear more frequently than in the m = 2 case. Besides the discardable p/r = 1
representing a quadratic factor of 1 − 16x8 in Q[x], we see 41

16 as well. Here are the next few
positive values:

83031
5198 , 572982199

35574034 , 66779978696204
16641846371989 , 77057440650930450189

148795415472621031586 , 559984659717697802475460
36618976557904027122191 .

Following (160), the positivity region in Figure 3b is cut out by the lines v = 0 and
63u + 13v = 5901. Again, we have three separate small regions on E6 between these lines. The
whole real period can be computed to be

ϱ6 = 3
∫ 35

−133

du
v

= 3
∫ 707

107

du
v

≈ 0.541858251. (162)

The two integrals on the finite oval evaluate to ≈ 0.0507070923 + 0.0430448636. After division by
ϱ6, we can compute the odds ratio for positive p/r to be ≈ 4.78 for a rational point with u < 50.
The small integral on the infinite branch is ≈ 0.00766222865, giving the odds ratio ≈ 69.7. For
a complete factorization of the cubic polynomial we need

√
30(107 − u) ∈ Q, but only a few

predictable degenerations are found.

Example 15. The case m = 7 gives a genus 3 polynomial relation

2F1

(
−4,− 7

2

− p
r − 7

∣∣∣∣∣ z∗
)

= 0 (163)

between p/r and z∗= 4β/α2. The Faltings theorem [23] implies that the genus 3 curve has only
finitely many Q-rational points. Section 4.3 implies that it could be projected to an elliptic curve
(72) with b = −7/2, which is

E7 : v2 = u
(
u2 − 119u + 14175

4
)
. (164)

The database of elliptic curves ([16] 94080.el2) tells that the Mordell–Weil group of this curve
has rank two and is isomorphic to Z2 × (Z/2Z). Besides the 2-torsion point (u, v) = (0, 0) and
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the generator ( 105
2 ,− 105

2 ) specialized from (80), another free generator is (60, 15). To obtain
rational points on the genus 3 curve, we need rational points (u, v) on E7 giving a full square
in (82). That means (v − 14u)2 − 11340u must be a full square. An extensive search through
2 · 61 · 51 > 6000 points on E7 gives the following 12 values of p/r = c − 4, paired by (74):

1,− 17
2 ; 10,− 35

2 ;− 7
3 ,− 31

6 ;− 14
5 ,− 47

10 ;− 79
11 ,− 7

22 ;− 34
11 ,− 97

22 . (165)

The value 1 should be discarded along with the degenerate p/r ∈{−5,−6,−7, − 1
2 ,− 3

2 ,− 5
2}. The

positive value 10 gives the Shabat polynomial

(1 + 2x + 4x2)10 (1 − 20x + 180x2 − 880x3 + 1760x4 + 6336x5 − 59840x6 + 183040x7). (166)

Example 16. Similarly, the case m = 8 gives a genus 3 polynomial relation

2F1

(
−4,− 9

2

− p
r − 8

∣∣∣∣∣ z∗
)

= 0 (167)

between p/r and z∗= 4β/α2. Section 4.3 implies that this curve could be projected to an elliptic
curve (72) with b = −9/2, which is

E8 : v2 = u
(
u2 − 243u + 59535

4
)
. (168)

The database of elliptic curves ([16] 40320.bf2) tells that the Mordell–Weil group is isomorphic to
Z2 × (Z/2Z). Besides the generator ( 189

2 ,− 567
2 ) specialized from (80), another free generator

is ( 945
4 , 14175

8 ). We need rational points (u, v) on E8 giving a full square in (82). That means
(v − 18u)2 − 34020u must be a full square. An extensive search through 2 · 61 · 41 > 5000 points
on E8 gives these 13 pertinent values of p/r = c − 5 from (74):

− 17
2 ;−14, 11

2 ;− 8
3 ,− 35

6 ;− 16
5 ,− 53

10 ;− 17
5 ,− 51

10 ;− 17
7 ,− 85

14 ;− 371
151 ,− 1825

302 . (169)

The positive value p/r = 11
2 gives the Shabat polynomial

(1 + 2x + 5x2)11 (1 − 11x + 44x2 − 715x4 + 2717x5 − 572x6 − 29172x7 + 97240x8)2. (170)

7.2. Cases with Fewer Belyi Maps

Let us explore reduced sets of Belyi maps (2). We look at the cases when the hypergeo-
metric polynomials in (141) or (142) have degree at most 4 in z∗= 4β/α2.

Example 17. We start with sampling linear hypergeometric polynomials in (141) or (142). For
odd m > 2, we obtain a single Belyi map when, respectively,

ℓ = − p
r
∈
{

m + 3
2

, m − 2
}

. (171)

Indeed, setting ℓ = (m + 3)/2 in (141) gives z∗= −m − 1. Then, H2(x) = 1 + 2x − (m + 1)x2

up to x-scaling. According to (136), the terms to x2k in the power series

(
1 + 2x − (m + 1)x2

)m+3
2

= 1 + (m + 3)x − (m+1)(m+2)(m+3)
3 x3

− (m+1)(m+2)(m+3)
12 (m − 3)x4 + (m+1)(m+2)(m+3)(m−1)(m+5)

20 x5

+ (m+1)(m+2)(m+3)2(m−1)
45 (m − 5)x6 − (m+1)(m+2)(m+3)(m−1)(m−3)(m2+19m+42)

252 x7

− (m+1)(m+2)(m+3)(m−1)(m−3)(m+5)(11m+26)
3360 (m − 7) x8 + . . . . (172)
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must be divisible by (m − 2k + 1). Setting ℓ = m − 2 in (142) gives z∗= m + 2. Here as well, the
terms to x2k in the power series

(
1 + 2x + (m + 2)x

)m−2
2 = 1 + (m − 2)x + (m − 2)(m − 1)x2 + 2m(m−2)(m−4)

3 x3

+ (m−2)(m−4)(5m+2)
12 (m − 3) x4 + (m−2)(m−4)(m−6)(13m2−9m−10)

60 x5

+ (m−2)(m−4)(m−6)(19m2+5m−6)
180 (m − 5) x6 + . . . . (173)

must be hypnotically divisible by (m− 2k+ 1). For even m > 2, we obtain isolated Belyi maps when

ℓ = − p
r
∈
{

m + 4
2

, m − 3
}

. (174)

We obtain then z∗= −m/3 or z∗= m/3+ 1 from (141) or (142), respectively. The terms to x2k+1

in the following power series must be divisible by (m − 2k):

(
1 + 2x −m

3 x2
)m+4

2
= 1 + (m + 4)x + (m+3)(m+4)

3 x2 − m(m+2)(m+3)(m+4)
36 x4

− m(m+2)(m+3)(m+4)
180 (m − 4) x5 + m(m+2)(m+3)(m+4)(m2+15m−36)

1620 x6

+ m(m−2)(m+2)(m+3)(m+4)(m+6)
2835 (m − 6) x7 + . . . , (175)(

1 + 2x +m+3
3 x2

)m−3
2

= 1 + (m − 3)x + 2(m−3)2

3 x2 + (m−3)(m−5)
3 (m − 2)x3

+ (m−3)(m−5)(5m2−33m+36)
36 x4 + (m−3)(m−5)(m−7)(m−1)

20 (m − 4) x5

+ (m−3)2(m−5)(m−7)(13m2−105m+72)
810 x6

+ (m−3)(m−5)(m−7)(m−9)(53m2−153m+72)
11340 (m − 6) x7 + . . . . (176)

Example 18. Here, we look at the cases when the hypergeometric polynomials in (141) or (142)
are quadratic in z∗. For odd m, we then have

ℓ = − p
r
∈
{

m + 5
2

, m − 4
}

. (177)

Setting ℓ = (m + 5)/2 in (141) gives this equation for z∗:

3(z∗)2 + 6(m + 1) z∗+ m2 − 1 = 0. (178)

It has roots in Q when the discriminant 24(m + 1)(m + 2) is a square. An equivalent condition is
the existence of integer solutions of the Pell equation

(2m + 3)2 − 6 d2 = 1, (179)

as observed in ([7] Ch. 10). These solutions correspond to the units in the field Q(
√

6), which are
generated by 5 + 2

√
6. We should express them as(

5 + 2
√

6
)n

= (2m + 3)±
√

6 (z∗+ m + 1), (180)

leading to two integer values of z∗ for suitable m. For n ∈ {2, 3, 4}, we obtain the suitable values
m ∈ {23, 241, 2399}. The case m = 23 gives two Belyi maps with p/r = −14 defined Q, with
H2(x) = 1 + x − x2 or H2(x) = 1 + x − 11x2.

Setting ℓ = m − 4 in (142) gives this equation for z∗:

3(z∗)2 − 6(m + 2) z∗+ (m + 2)(m + 4) = 0. (181)
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It has the same discriminant as (178), leading to the same Pell Equation (179). The case
m = 23 gives two Belyi maps with p/r = −19/2 defined Q, with H2 = 1 + 2x + 5x2 or
H2 = 1 + 2x + 45x2.

For even m, we have

ℓ = − p
r
∈
{

m + 6
2

,
m − 5

2

}
. (182)

Setting ℓ = (m + 6)/2 in (141) gives this equation for z∗:

15(z∗)2 − 10m z∗+ m(m − 2) = 0. (183)

It has roots in Q when the discriminant 40m(m + 3) is a square. An equivalent condition is the
existence of integer solutions of the equation

(2m + 3)2 − 10 d2 = 9. (184)

If m is divisible by 3 (and thus by 6), we have a reduction to Pell’s equation( 2
3 m + 1

)2 − 10 (d∗)2 = 1. (185)

The solutions correspond to units in the field Q(
√

10), which are generated by 3 +
√

10. We should
express the solutions as (

3 +
√

10
)n

=
( 2

3 m + 1
)
±
√

10
(
z∗+ 1

3 m
)
, (186)

leading to two integer values of z∗ for suitable m. But the norm of 3+
√

10 in Q(
√

10) is −1 rather
than 1; thus n should be even. Further, m is prescribed to be even (while n = 2 gives m = 27, for
example). For that, we need n to be divisible by 4. The smallest possibility n = 4 gives m = 1080.

If m is not divisible by 3, Equation (184) is solved by considering the numbers of the norm 9
in Q(

√
10):

(1 +
√

10)
(
3 +

√
10
)n, (1 −

√
10)
(
3 +

√
10
)n. (187)

The two options correspond to the fact that Q(
√

10) is not a unique factorization domain; its class
number equals 2. In the first case, we need n = 3 mod 4 for even m; the smallest n = 3 gives
m = 242. In the second case, we need n = 1 mod 4; the smallest interesting n = 5 gives m = 4802.

Setting ℓ = m − 5 in (142) gives this equation for z∗:

15(z∗)2 − 10(m + 3) z∗+ (m + 3)(m + 5) = 0. (188)

It has the same discriminant as (183), leading to the same Equation (184).

Example 19. Let us consider hypergeometric polynomials (141) of degree 3 or 4. Note that the
lower parameter 1 + k − ℓ is supposed to be a positive integer for k = m + 1. With odd m and
ℓ = (m + 7)/2, we are considering

2F1

(
−3, − 5

2
ℓ− 5

∣∣∣∣∣ z∗
)

= 0. (189)

Comparing with (150), we conclude that we need integer values p/r = −ℓ of Example 13 satisfying
p/r < −5. That excludes the discarded p/r ∈ {0,−1,−2,−3, −4,−5} again. The number of
points on E5 that give integer values of p/r (or any other regular function) is finite by Siegel’s
theorem ([6] IX.3). In this case, there appear to be no relevant integer values.
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Similarly, the consideration of integer ℓ ∈ {m+8
2 , m+9

2 , m+10
2 } in (141) leads to the hypergeo-

metric polynomials

2F1

(
−3, − 7

2
ℓ− 6

∣∣∣∣∣ z∗
)

, 2F1

(
−4, − 7

2
ℓ− 7

∣∣∣∣∣ z∗
)

, 2F1

(
−4, − 9

2
ℓ− 8

∣∣∣∣∣ z∗
)

, (190)

comparable to (157), (163), and (167), respectively. We need sufficiently negative integer values of
p/r = −ℓ from Examples 14–16. Only the value p/r = −14 of Example 16 suits us. The pivotal
hypergeometric evaluation is

2F1

(
−4, − 9

2
6

∣∣∣∣∣ − 4

)
= 0. (191)

This gives ℓ = 14, m = 18 and H2(x) = 1 + x − x2. The expansion of H2(x)14 misses the term
with x19 accordingly. The polynomial G18(x) is defined by the lower-degree terms:

1 + 14x + 77x2 + 182x3 − 910x5 − 1365x6 + 1430x7 + 5005x8 − 10010x10 − 3640x11

+ 14105x12 + 6930x13 − 15625x14 − 6930x15 + 14105x16 + 3640x17 − 10010x18. (192)

The terms with x4, x9 are missed as well. The broken symmetry around the term with x14 is notable.
The Belyi map is H2(x)14/G18(x).

Example 20. Hypergeometric polynomials (142) of degree 3 or 4 are considered similarly. The
consideration of odd ℓ ∈ {m − 6, m − 7, m − 8, m − 9} in (142) leads to the hypergeometric
polynomials

2F1

(
−3,− 5

2

− ℓ
2 − 6

∣∣∣∣∣ z∗
)

, 2F1

(
−3,− 7

2

− ℓ
2 − 7

∣∣∣∣∣ z∗
)

, 2F1

(
−4,− 7

2

− ℓ
2 − 8

∣∣∣∣∣ z∗
)

, 2F1

(
−4,− 9

2

− ℓ
2 − 9

∣∣∣∣∣ z∗
)

,

comparable to (150), (157), (163), and (167), respectively. The relation with p/r of Examples
13–16 is always p/r = 1 + ℓ/2. We look for positive half-integer values p/r. Again, only Example
16 provides an instance: p/r = 11/2. This gives ℓ = 9, m = 18, and also H2(x) = 1 + 2x + 5x2.
The expansion of H2(x)9/2 misses the term with x19 indeed. We have

G18(x) = 1 + 9x + 54x2 + 210x3 + 630x4 + 1386x5 + 2394x6 + 2394x7 + 2655x8 (193)

+ 1195x9 + 252x10 − 252x11 + 168x12 − 180x14 + 228x15 − 18x16 − 378x17 + 560x18.

For some reason, the coefficients 2394 and ±252 repeat twice consequently. The Belyi map
is G18(x)2/H2(x)9.
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