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Abstract: An edge-coloring σ of a connected graph G is called rainbow if there exists a
rainbow path connecting any pair of vertices. In contrast, σ is monochromatic if there is a
monochromatic path between any two vertices. Some graphs can admit a coloring which is
simultaneously rainbow and monochromatic; for instance, any coloring of Kn is rainbow
and monochromatic. This paper refers to such a coloring as dual coloring. We investigate
dual coloring on various graphs and raise some questions about the sufficient conditions
for connected graphs to be dual connected.
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1. Introduction
The edge coloring of graphs is a fundamental topic of graph theory that includes

various interesting concepts. Recent studies have concentrated on modifying or extending
the concept of coloring to special kinds of graphs. For instance, the proper coloring of
graphs is a well-studied concept referring to the assignment of colors to the edges such that
no two adjacent edges share the same color. Recently, Richard Behr [1] and Zhang et al. [2]
independently extended the proper coloring to signed graphs. Similarly, the Ramsey
number R(s, t) is an extensively studied concept of the well-known Ramsey theory, which
asks about the smallest positive integer r such that edge 2-colored Kr contains either a
monochromatic Ks of color 0 or Kt of color 1. Recently, Mutar et al. [3] modified this concept
to signed graphs in which r±(s, t) is the smallest positive integer r, such that signed Kr

contains +Ks or −Kt.
Let G be a simple undirected connected graph of order n and size m. Let Nk denote the

set of non-negative integers up to k − 1. An edge k-coloring is a function σ : E(G) −→ Nk

that assigns colors to the edges of G with no restrictions in the way adjacent edges are
allowed to have the same color. The coloring σ is called rainbow if, for any pair of
vertices, there exists a rainbow path joining that pair (that is, a path in which all the edges
are colored with distinct colors). The concept of edge rainbow coloring was introduced
by Chartrand et al. [4]. Later, Caro et al. in [5] introduced monochromatic coloring as
the opposite concept of rainbow coloring. That is, the coloring σ is monochromatic if,
for any pair of vertices, there exists a monochromatic path joining the pair. By simply
assigning distinct colors or exactly one color to the edges of any connected graph, one
always ends up with a rainbow or monochromatic coloring. Although such colorings
might seem trivial for some graphs, like trees, these assignments are the only possible
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option. The minimum number of colors required for ensuring rainbow coloring is called
the rainbow connection number and is denoted by rc(G). Correspondingly, mc(G) denotes
the monochromatic connection number, which is the maximum number of colors required for
obtaining a monochromatic coloring. We refer to [6–9] for their significant contributions to
both concepts, as well as to the well-established surveys [10,11].

Both concepts have been extensively studied over the years. A total coloring refers
to assigning colors to both the vertices and edges of a graph. In 2015, Yuefang Sun [12]
introduced total rainbow coloring, which requires the existence of a path between every
pair of vertices such that the edges and the internal vertices of the path all have distinct
colors. The total rainbow connection number of G is then automatically defined and denoted
as trc(G). Recently, Zhang et al. [13] studied this concept on families of connected graphs.
In contrast, Hui Jiang et al. [14] introduced the so-called total monochromatic coloring
where every pair of vertices is connected by a path whose vertices and edges are assigned
the same color. The total monochromatic connection number is denoted by tmc(G).

Some graphs can admit a coloring that is simultaneously rainbow and monochromatic.
This observation motivated us to investigate connected graphs admitting such a coloring.
In this paper, we call this coloring dual. That is, for any pair of vertices, there exist both
rainbow and monochromatic paths connecting this pair. If G admits dual coloring, then the
minimum number of colors needed to obtain a dual coloring will be denoted ldc(G) and
called the lower dual connection number. Moreover, the inequality rc(G) ≤ ldc(G) ≤ mc(G)

holds. Note that any coloring of complete graphs is simultaneously rainbow and monochro-
matic. However, it turns out that a tree T of order n ≥ 3 does not admit dual coloring,
because of the next two results.

Theorem 1 ([5]). If G is K3-free, then mc(G) = m − n + 2.

Proposition 1 ([4]). Let G be a connected graph.

1. If G is a cycle on n ≥ 4 vertices, then rc(G) = ⌈ n
2 ⌉.

2. If G is a tree, then rc(G) = m.

2. A Discussion on Necessary and Sufficient Conditions
An obvious necessary condition for G to admit dual coloring is that rc(G) ≤ mc(G).

For instance, if Cn is a cycle with n ≥ 5 vertices, then Cn does not admit dual coloring.
Theorem 1 shows that mc(Cn) = 2, while Proposition 1 assures that rc(Cn) =

⌈ n
2
⌉
> mc(Cn).

However, this condition is not enough, as we will see shortly. Let us consider the
generalized Petersen graph, denoted by Gn,k, which is a class of graphs characterized by
the positive integers n ≥ 3 and k ≥ 1. This graph is a 3-regular connected graph on 2n
vertices, which are divided into two sets: an outer set V = {v0, v1 . . . , vn−1} and an inner
set U = {u0, v1 . . . , un−1}. The construction of this graph is as follows: each vertex vi in the
outer set is adjacent to vi+1 and vi−1 (with indices taken modulo n). In other words, the
outer vertices induce a cycle. In addition, every vertex ui in the inner set is adjacent to the
corresponding vertex vi in the outer set as well as to the vertex ui+k in the inner set (with
indices taken modulo n). The graph Gn,1 is called a prism; it consists of an outer cycle and
an inner cycle connected by the edges (vi, ui).

Figure 1 exhibits three examples of dual colorings of prisms with n = 3, 4, 5. For n ≥ 6, the
graph Gn,1 is Hamiltonian and K3-free with 3n edges. Thus, rc(Gn,1) ≤ n < n+ 2 = mc(Gn,1).
However, Theorem 2 shows that Gn,1 is not dual connected.
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Figure 1. Dual coloring of prisms with n = 3, 4, 5. The colors black, red, blue, green, yellow, brown,
and cyan correspond the numbers 0, 1, 2, 3, 4, 5, and 6, respectively.

Theorem 2. For n ≥ 6, the graph Gn,1 is not dual connected.

The proof of Theorem 2 will follow from the following several intermediate claims.

Lemma 1. The vertices of Gn,1 can be partitioned into n pairs such that the distance between the
vertices in each pair is ⌊ n

2 ⌋+ 1.

Proof. Let V = {v0, v1 . . . , vn−1} and U = {u0, v1 . . . , un−1} be the sets of vertices in Gn,1

that form the outer and inner cycles, respectively. For i = 0, 1, . . . , n − 1, define f : V −→ U
as f (vi) = uj where j = i + ⌊ n

2 ⌋ (mod n). This is a bijection where the distance between vi

and uj is ⌊ n
2 ⌋+ 1 for all i = 0, 1, . . . , n − 1.

Claim 1. For a fixed n ≥ 6, a monochromatically colored Gn,1 has a monochromatic spanning tree.

Proof. If the incident edges at some vertex v are assigned same color, then monochromatic
connectivity implies that the graph Gn,1 must have a monochromatic spanning tree rooted
at v. Thus, assume that a monochromatically colored Gn,1 has no vertex v whose incident
edges are identically colored. We will show that Gn,1 has a monochromatic path of length
2n − 1.

Let P be the longest monochromatic path with length l. First, we claim that l ≥ ⌊ n
n ⌋+ 2.

Otherwise, the longest monochromatic path will be of length ⌊ n
2 ⌋+ 1. By Lemma 1, let Pi

denote the monochromatic path connecting vi to uj for all i = 0, 1, . . . , n − 1 and j = i + ⌊ n
2 ⌋

(mod n). Clearly, for any i ̸= j, the paths Pi and Pj cannot share edges. If they do, it would
either result in a vertex with its incident edges assigned the same color, or one of the paths
would not remain monochromatic. Hence, they are pairwise edge-disjoint. This yields that
the total edges are at least n(⌊ n

2 ⌋+ 1), contradicting the fact that Gn,1 has only 3n edges.
Therefore, l ≥ ⌊ n

2 ⌋+ 2.
Now, we will prove that l = 2n − 1. Suppose, by contradiction, that l < 2n − 1. Then,

there exists a vertex x0 that is not on the path P, which contains at least four internal vertices
x1, x2, x3, x4. Let P1, P2, P3, and P4 be four monochromatic paths connecting x1, x2, x3 and
x4 to x0, respectively. Since Gn,1 has no vertex with its incident edges identically colored,
each path is colored differently from P. Moreover, since each vertex has degree 3, the
paths P1, P2, P3, and P4 must emanate from x1, x2, x3, and x4, respectively. This implies
that either some of the paths P1, P2, P3, and P4 share edges, or x0 has degree 4, which is a
contradiction.

Claim 2. A coloring σ of Gn,1 is not rainbow if the colored Gn,1 contains a monochromatic spanning
tree having degree 3.
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Proof. Let σ be a coloring of Gn,1. Suppose that H is a monochromatic spanning tree of the
colored Gn,1. That is, at least 2n − 1 edges of Gn,1 are assigned a color i. Let v be a vertex
which has degree 3 in H, or equivalently, the incident edges to v in Gn,1 have the same
color i. Since v is not adjacent to 2n − 4 vertices in Gn,1, it follows that, in order for v to
be rainbow connected to all other vertices, there must be at least 2n − 4 edges of colors
different to i. This is impossible because the size of Gn,1 is 3n. Thus, σ is not rainbow.

Claim 3. A coloring σ of Gn,1 is not rainbow if the colored Gn,1 contains a monochromatic path of
length 2n − 1, where n ≥ 6.

Proof. Let P be a monochromatic path of length 2n − 1 given as P : x1, x2, . . . , x2n−1, x2n,
and H = Gn,1 − P, a spanning subgraph obtained by removing from Gn,1 the edges of P.
Clearly, the subgraph H has 2n vertices, each of degree 1 except x1 and x2n, which are of
degree 2. Moreover, H consists of n − 1 components because it has only n + 1 edges.

If x1 and x2 are not adjacent, then for some distinct vertices xr, xs and xt, the paths
C1 : xr, x1, xs and C2 : xt, x2n, xu are the only components consisting of more than one edge
in H; see Figure 2. Recall from Lemma 1 that the vertices can be partitioned into n pairs of
vertices, such that the distance between the vertices of each pair is ⌊ n

2 ⌋+ 1. That is, there
are at least 6 such pairs, each with a distance of at least 4. Therefore, either x1 is at a distance
at least 4 from a vertex in C2, and consequently, there exists a pair of distinct vertices xi and
xj at a distance of at least 4, belonging to two distinct single-edge components Ci and Cj,
respectively. As a result, any path connecting xi to xj cannot be rainbow, as it must traverse
at least two edges of P. Or x1 is at a distance of at least 4 from the vertex xw in a single-edge
component Cw. Now, since any path connecting x1 to xw will use, at most, either the edge
x1xr or x1xt, such a path cannot be rainbow as well.

x1 xr xs xt xu x2n

Figure 2. Dashed edges represent the edges of P while the solid ones represent those of H.

Otherwise, x1 and x2n are adjacent, see Figure 3. Then for some distinct vertices xi

and xj, the path C3 : xi, x1, x2n, xj is the only component with more than one edge in H.
This leaves a pair of vertices in two distinct single-edge components, where the distance
between the vertices of that pair is at least 4. Therefore, they cannot be rainbow connected,
as we wanted to prove.

x1 xt xr xs xu x2n

Figure 3. Dashed edges represent the edges of P while the solid ones represent those of H.

Claim 1 shows that any monochromatic coloring of Gn,1 will always result in a
monochromatic spanning tree. Claims 2 and 3 together show the coloring will not be
rainbow as long it has a monochromatic spanning tree. Thus, no coloring of Gn,1 can be
monochromatic and rainbow at the same time, which proves the statement of Theorem 2.
This raises the following natural questions.

Question 1. Let G be a connected K3-free graph. Does every monochromatic coloring of G induce
a monochromatic spanning tree?
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Question 2. Does every connected graph G with rc(G) ≤ mc(G) and diam(G) ≤ 3 admit
dual coloring?

Question 3. Is Gn,k dual connected when k = ⌈ n
2 ⌉ − 1?

3. Lower Dual Connection Number of Some Graphs
In this section, we will focus on the lower dual connection number of wheels and

complete bipartite graphs.

Theorem 3. Let Wn be a wheel where n ≥ 3; then,

ldc(Wn) =


1 if n = 3,

2 if 4 ≤ n ≤ 6,

3 if n ≥ 7.

Proof. For n ≥ 3, let {v0, v1, . . . , vn} be the vertices of the wheel Wn, where the vertices
{v1, . . . , vn} induce a cycle C and v0 is adjacent to every vertex in C. If n = 3, then W3 = K3

and a single color is sufficient to ensure dual connectivity. Thus, ldc(W3) = 1.
For 4 ≤ n ≤ 6, Wn is not a complete graph. In this case, there exists a pair of vertices

at distance 2. Therefore, ldc(Wn) ≥ 2. For i ≥ 1, consider the coloring below:

σ(vi, vi+1) = σ(vi, v0) =

0 if i is even,

1 if i is odd.

This coloring is monochromatic since the subgraph induced by the edges of color 1 is a
connected spanning subgraph. Consider two non-adjacent vertices vi and vj on the cycle C.
If i and j have a different parity, then they are connected by a rainbow path through the
vertex v0 because σ(vi, v0) ̸= σ(vj, v0). If i and j have the same parity, then, since the cycle
C has length l ≤ 6, vi and vj must be at a distance of 2 on the cycle. Thus, there exists a
vertex vk in C between vi and vj such that k has a different parity from i and j. Consequently,
the path vi, vk, vj is rainbow. Therefore, the coloring is rainbow and, consequently, is dual.

For n ≥ 7, we claim that ldc(Wn) ≥ 3. Suppose that σ is any 2-coloring of Wn. Then, at
least ⌈ n

2 ⌉ of the edges incident to v0 will receive the color x for some x ∈ N2. Equivalently,
at least ⌈ n

2 ⌉ vertices of the cycle C will be the endpoints of edges colored by x. With respect
to C, two of these ⌈ n

2 ⌉ vertices, say, u and v, will be at distance greater than 2 because
⌈ n

2 ⌉ ≥ 4 for n ≥ 7. Therefore, there is no rainbow path connecting u to v which either goes
through v0 or is completely contained within the cycle C. Hence, ldc(Wn) ≥ 3.

It remains to be shown that ldc(Wn) ≤ 3. To this end, consider the 3-coloring σ,
defined as follows:

σ(vi, vj) =


0 if i even and j = 0,

1 if i odd and j = 0,

2 otherwise.

This coloring is monochromatic because all edges of C are assigned color 2 and all
vertices of C are adjacent to v0. Additionally, let vi and vj be a pair of non-adjacent vertices
on the cycle C. If i and j have a different parity, then vi and vj are connected by a rainbow
path through the vertex v0 because σ(vi, v0) ̸= σ(vj, v0). Otherwise, i and j have the same
parity. Without the loss of generality, suppose i < j. Then, the path vi, vi+1, v0, vj is rainbow.
Therefore, σ is dual, which finishes the proof.

Example 1. Figure 4 illustrates the coloring used in Theorem 3.



Mathematics 2025, 13, 229 6 of 10

v0
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v6

v7

v8

Figure 4. Dual coloring of wheel graph W8, where black, red, and blue represent 0, 1, and
2, respectively.

Theorem 4. Let Kr,s be a complete bipartite graph with 2 ≤ r ≤ s and t = r
√

s + 1 and
u = r

√
s + 3. If r = 2, then ldc(Kr,s) = ⌈ s+1

2 ⌉. Otherwise,

ldc(Kr,s) =


2 if t ≤ 2,

3 if t > 2 and u ≤ 3,

4 if u > 3.

The proof of Theorem 4 will be presented later, after the establishment of several
necessary concepts and results.

Definition 1. An r × s matrix Σ over Nk is called transitive if the following conditions hold:

1. The columns of Σ are distinct.
2. For any pair of columns v and u, there exists an element x ∈ Nk and a sequence of vectors

v = w1, w2, . . . , wl = u, such that for each consecutive pair wi and wi+1, there exists at least
one position where wi and wi+1 have the value x.

Example 2. For r ≥ 3, the identity matrix Ir over N2 is transitive.

Lemma 2. For r ≤ s ≤ 2r − 1 and r ≥ 3, there exists an r × s matrix Σ over N2 such that both Σ
and ΣT are transitive.

Proof. Let Σ be an r × s matrix consisting of all r-dimensional column vectors over N2,
where each vector contains at least one 0 entry. Consequently, Σ has 2r − 1 columns,
including the identity matrix Ir as a block. Suppose u and v are two distinct columns of
Σ with 0 entries in non-corresponding positions i and j, respectively. Then, there exists a
standard basis vector w in Ir that has 0 at positions i and j, allowing for a sequence u, w, v
for every such pair of columns. Therefore, Σ is transitive, and so is its transpose ΣT , thanks
to the existence of the block Ir in ΣT . Furthermore, any submatrix obtained by removing
columns from Σ other than those in Ir, along with its transpose, will also be transitive.

Lemma 3. For 2r ≤ s ≤ 3r − 3 and r ≥ 3, there exists a transitive r × s matrix over N3.

Proof. Aside from the all-zeros column vector, let Σ0 be an r × s matrix consisting of all r-
dimensional column vectors over N3 where each vector contains at least one 0 entry. That is,
Σ0 consists of 3r − (2r + 1) distinct columns, including the identity matrix Ir as a block. In a
manner similar to the argument made in the proof of Lemma 2, for any r ≤ s ≤ 3r − 2r − 1,
there exists an r × s matrix that is transitive, and its transpose is also transitive.
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For 3r − 2r ≤ s ≤ 3r − 3, let Σ be a matrix consisting of distinct column vectors from

Nr
3 such that Σ includes Σ0 as a block but no vector like

[
x x . . . x

]T
for all x ∈ N3.

Thus, the transpose ΣT is transitive because Σ includes Ir. Now, let u and v be two columns.
Then, u and v contain a same entry y (not necessarily in corresponding positions, say, in
position i and j, respectively). This implies that there exists a standard vector w having y as
entry at both positions i and j. Therefore, Σ is transitive.

Proof of Theorem 4. Let the vertices of Kr,s be partitioned into two independent sets
A = {a1, . . . , ar} and B = {b1, . . . , bs}. For a k-coloring σ, let Σ = [σij] be an r × s matrix
and ΣT denote the transpose of Σ, where σij = σ(ai, bj).

First of all, let us note that σ is dual if Σ and ΣT are transitive. To verify this statement,
suppose that v and u are two column vectors of Σ. Then, v and u must differ in at least
one coordinate, say, at coordinate c. This implies that the corresponding vertices bv and
bu are connected by a rainbow path of length 2 through the vertex ac. Additionally, the
transitivity guarantees the existence of a vector sequence v = w1, w2, . . . , wl = u such that
for some x ∈ Nk, two consecutive vectors wi and wi+1 agree in at least one coordinate by
the element x. In other words, for i = 1, . . . , l − 1, both wi and wi+1 have x at a coordinate
ci. Consequently, there is a monochromatic path of color x connecting bv to bu, given as
bv = bw1 , ac1 , bw2 , . . . , bwl−1 , acl−1 , bwl = bu. A similar argument applies to ΣT , leading to the
same conclusion. That is, there exist rainbow and monochromatic paths between any pair
of vertices in the same partition. Hence, σ is a dual coloring.

If r = 2, then σ is a dual coloring if and only if Σ is transitive and contains a column

vector v =
[

x x
]T

for some x ∈ Nk. To prove this claim, suppose that σ is a dual coloring.
Since all paths between a1 and a2 are of lengths 2, there is a monochromatic path joining a1

to a2 through a vertex bv. Hence, σ(a1, bv) = σ(a2, bv) = x and such a vector v exists. Now
suppose that there is a column vector u which does not coincide with the vector v at any
coordinate. Then, there exists no monochromatic path joining bv to bu since the two incident
edges at bu share no common color with the incident edges at bv. This is a contradiction.
Therefore, all column vectors must coincide in at least a coordinate with v. Furthermore,
if u = w for some column vectors u and w, then there is no rainbow path joining bu to bw.
To verify this point, suppose without the loss of generality that u and w coincide with v in
their first position. That is, σ(a1, bu) = σ(a1, bw) = x and σ(a2, bu) = σ(a2, bw). One can see
immediately that there is no rainbow path of length 2 passing through a1 or a2. Moreover,
assuming that there is a rainbow path of length at least 4, yielding that this path must start
with color σ(a1, bu) and end with color σ(a2, aw). Therefore, there must be a vertex bl on
the path with a column vector l not coinciding with v in any of its coordinates. This is
a contradiction.

Conversely, suppose that Σ is transitive and contains a column vector v =
[

x x
]T

for
some x ∈ Nk. Since the columns of Σ are distinct and have x at one of their two coordinates,
the two columns of ΣT are also distinct but coincide with x at one coordinate. Thus, the
matrix ΣT is also transitive.

Now, the maximum number of two-dimensional columns that a transitive matrix Σ

over Nk, containing a vector like v =
[

x x
]T

, can have is given by k2 − (k − 1)2. Therefore,
the lower dual connection number of K2,s must be the smallest positive integer k satisfying
the following inequality.

(k − 1)2 − (k − 2)2 < s ≤ k2 − (k − 1)2. (1)

Basic simplifications of inequality (2) yields

s + 1
2

≤ k <
s + 1

2
+ 1. (2)
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Therefore, ldc(K2,s) = ⌈ s+1
2 ⌉, the smallest positive integer greater or equal s+1

2 . Lastly,
we will address the cases when r ≥ 3, as follows:

Case 1 Suppose that t ≤ 2. This implies that s ≤ 2r − 1. By Lemma 2, there exists an r× s
matrix Σ over Nr

2, such that both Σ and ΣT are transitive. The 2-coloring induced
by Σ is dual; thus, ldc(Kr,s) ≤ 2. In general, ldc(Kr,s) ≥ 2 because the distance
between any two vertices in the same partition is 2. Therefore, ldc(Kr,s) = 2.

Case 2 If t > 2 and u ≤ 3, then 2r − 1 < s ≤ 3r − 3. Lemma 3 guarantees the existence
of an r × s matrix Σ over N3, such that both Σ and ΣT are transitive. Thus,
ldc(Kr,s) ≤ 3. It remains to be shown that ldc(Kr,s) ≥ 3. Since s ≥ 2r, using the
elements of N2 to color the edges of Kr,s results in Σ having either two identical
columns or the columns share no entry. Assume that vi and vj are two identical
columns in Σ. Then, the corresponding vertices bi and bj cannot be connected by
a rainbow path of length 2 because every path of length 2 will be monochromatic.
In addition, if vi and vj share no entry, then the corresponding vertices bi and bj

will not be connected by any monochromatic path. Thus, ldc(Kr,s) ≥ 3.
Case 3 If u > 3, then s > 3r − 3. In a manner similar to the argument presented

in Case 2, using the elements of N3 would result in two identical columns or
columns sharing no common entry. Thus, ldc(Kr,s) ≥ 4.
Consider the 4-coloring σ given as follows: for i = 1 or j = 1, σ(ai, aj) = 0, and
for i ≥ 2 and j ≥ 2,

σ(ai, bj) =


0 if i is odd and j is even,

1 if i is even and j is even,

2 if i is even and j is odd,

3 if i is odd and j is odd.

Note that the incident edges at a1 and b1 are colored with 0, making σ monochro-
matic. Furthermore, for i ≥ 2 and j ≥ 2, the vertices a1 and b1 are connected
to ai and bj through the rainbow paths a1, b3, ai and b1, a2, bj, respectively. Ad-
ditionally, let aα, aβ ∈ A and bλ, bσ ∈ B, where 1 < α < β and 1 < λ < σ.
If α and β have different a parity, and similarly, λ and σ have different parity,
then the paths aα, b2, aβ and bλ, a2, bσ are also rainbow. Otherwise, the paths
aα, b2, aα+1, b3, aβ and bλ, a2, bλ+1, a3, bσ are rainbow. Therefore, the coloring σ is
dual, and ldc(Kr,s) = 4.

Example 3. Figure 5 illustrates the dual coloring proposed in case 3 of Theorem 4.

a1

b2
b3 b4

b5

a2

a3 a4
a5

b1

Figure 5. Dual coloring of K5,5, where black, red, blue, and green represent 0, 1, 2, and 3, respectively.
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4. Conclusions
An edge coloring of a complete graph will always be rainbow and monochromatic,

while a tree does not enjoy this property. This observation motivated us to study dual
connectivity on some graphs. Clearly, if a connected graph can be decomposed into two
disjoint spanning trees, it is dual connected. This condition is sufficient but not necessary.
For instance, the prism on 10 vertices is dual connected, but it cannot be decomposed
into two spanning trees. Furthermore, one might conjecture that dense graphs are more
likely to admit dual coloring. However, this claim is not always true. Consider the graph
formed by the union of a path with vertices {v1, v2, v3} and a complete graph with vertices
{v3, . . . , vn+2}. This graph G is not dual connected because the segment v1, v2, v3 exists in
every path connecting v1 to the vertices of Kn; see Figure 6. Moreover, we showed that
the prism Gn,1, where n ≥ 6 is not dual connected neither. This naturally poses questions
mentioned in Section 2.

v3

vn+1

v4

vn+2

v2v1

Figure 6. An example of a dense graph that is not dual connected.

As a correspondence to the rainbow connection number, we defined the lower dual
connection number of a dual connected graph G, denoted by ldc(G), as the minimum number
of colors needed to obtain a dual coloring. We then investigated this number in some graphs
that admit dual colorings. We can also define the upper dual connection number of a dual
connected graph G, denoted as udc, as the maximum number of colors required for G to
obtain a dual coloring. Clearly, the inequality rc(G) ≤ ldc(G) ≤ udc(G) ≤ mc(G). For
future work, two questions need to be investigated:

1. What is the upper dual connection number of a complete graph Kr,s, i.e, udc(Kr,s)?
2. Are there graphs where ldc(G) = udc(G)?

A biorientation of G is the process of replacing each undirected edge e connecting
vertices u to v with the two directed edges (u, v) and (v, u). Wang et al. most recently
investigated the rainbow connection number of bioriented graphs; see [15]. In contrast,
a bidirection of graph refers to assigning two directional arrows to every edge in the
graph. This concept was introduced by Edmonds and Johnson [16] and recently studied
by Busch et al. [17]. Directed, bioriented, and bidirected graphs offer a framework for
investigating dual connectivity in future research.
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