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Abstract: In this paper, the asymptotic behavior of the modified Mellin transform Z(s),
s = o + it, of the fourth power of the Riemann zeta function is characterized by weak
convergence of probability measures in the space of analytic functions. The main results
are devoted to probability measures defined by generalized shifts Z,(s + i¢(7)) with a real
increasing to +oo differentiable functions connected to the growth of the second moment of
Z,(s). Itis proven that the mass of the limit measure is concentrated at the point expressed
as h(s) = 0. This is used for approximation of i(s) by Z,(s +i¢(7)).

Keywords: limit theorem; Mellin transform; Riemann zeta function; space of analytic
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1. Introduction

Various transforms play an important role in the investigation of functions. Among
them, Fourier and Mellin transforms occupy a central place. In analytic number theory, the
Mellin transforms of powers of zeta-functions are useful for moment theory.

Let s = o + it be a complex variable and x € R. Suppose that the function f(x)x7 ! is
integrable over (0, c0). The Mellin transform My (s) of f(x) is given by

[e9)

Mg (s) :/f(x)xsfl dx. 1)

0
We observe that M¢(s) is a partial case of Fourier transforms. Actually, after a change of
variables x = e¥ in (1), we find

[e9)

Mg (s) = /eiytf(ey)egydy.

—00

This shows that M¢(s) is the Fourier transform of the function f(e*)e”.
In (1), some convergence problems can arise at the point of x = 0. To avoid those
problems, Y. Motohashi introduced [1] the modified Mellin transform M £(s) defined by
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A7If(s) /f(x)x_S dx.
1

Thus, the modified Mellin transform is an integral form of Dirichlet series

which are widely used tools in analytic number theory.
There exists a close relation between M¢(s) and M £(s). Let

~ 1) X
f(x):{f( ) fO< <1,

0 otherwise.

Then, in [2], it was found that

~

Mg (s) = M, 175 (s).

Functions f(x) and ]\7If(s) are related by an inverse formula. Let x =7 f(x) € L(1, c0),
where f(x) is continuous for x > 1. Then, it is known [2] that

o+ico
flx) = ﬁ / M(s)x ™5 ds. ()

Sometimes, it is more convenient to consider ]\71(5), then, using (2), to investigate f(x). This
approach is confirmed in [1-11].

Modified Mellin transforms were introduced for the moment problem of the Riemann
zeta function {(s). Recall that {(s), for ¢ > 1, is defined by

o= o= )

where the product is taken over all prime numbers and is analytically continuable to the
whole complex plane, except a simple pole at the point s = 1 with residue 1.
In [1], the modified Mellin transform of |{(1/2 + it)|*

Z5(s) = 7 @(; + ix)
1

was introduced, studied, and applied for investigation of the fourth moment
(1
my(T) = / 5(2 + it)
0

Ex(T) = ma(T) = Tp(T),

where p(log T) is a polynomial of degree 4. Then, it was found in [1] that

4
x°dx, o>1,

4
dt, T — oo.

Let

E2(T) <, T2/3+€
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with arbitrary fixed e > 0. Here, “<” is equivalent to “O(...)” with an implied constant
depending on e. The latter estimate and other moment results show the importance of the
transform Z,(s) in the theory of the Riemann zeta function.

Modified Mellin transform of powers of the {(s) function were extensively studied
in [3-15] in connection with the moment problem (meromorphic continuation, estimates,
and mean square estimates). We recall some known results for Z;(s). Motohashi meromor-
phically continued the Z;(s) to the whole complex plane [1] (see also [8]). More precisely,
let {A; = K]2 +1/4} U {0} be the discrete spectrum of the non-Euclidean Laplacian acting
on automorphic forms for the full modular group. Then, it was proven that Z,(s) has a
pole at s = 1 of order five, simple poles at s = 1/2 + ix;, and simple poles at s = p/2, where
p are non-trivial zeros of {(s), i.e., zeros lying in the strip {s € C: 0 < ¢ < 1}. Moreover,
in [8], the following estimate

Zy(o+it) < 272 (log )81, ¢ Gl) t>ty, (3)

was given. Important results related to the mean square of Z;(s)

T

Jo(T) d:Ef/|Zz(U+it)|2dt

0

were obtained in [3-15]. In [5], for a fixed o € (1/2,1), the following estimate
Jo(T) <« THO-89)3100c T, ¢ >0,

was given. In [11], it was proven that, for a fixed ¢ € [5/6,5/4], the following bound
is valid:
]U’(T) <e T(15—120')/5+8' (4)

Earlier, it was conjectured in [2] that
]O'(T) <<S T27217+€

for fixed a o € (1/2,1). Unfortunately, the asymptotics as T — oo for the quantity J,(T) is
not known.

In this paper, we focus on probabilistic value distribution of the Mellin transform
Z,(s); therefore, we recall some probabilistic results in function theory. The application of
the probabilistic approach in function theory was proposed by H. Bohr in [16] and realized
in [17,18] for the Riemann zeta function. Let R C C be a rectangle with edges parallel to
the axis and 901; denote the Jordan measure on R. Then, roughly speaking, it was obtained
in [17,18] that, for o > 1/2, a limit

Tlgr;o%i)ﬁ] {t€[0,T]:log (o +it) € R}
exists and depends only on R and ¢. This result shows that the chaotic behavior of {(s)
obeys statistical laws. In modern terminology, it is convenient to state Bohr—Jessen results
in terms of weak convergence of probability measures. Let B(X) denote the Borel ¢ field
of a topological space X and P, n € N, and P be probability measures on (X, 5(X)). We
recall that P, converges weakly to P as n — oo (P, n_}%) P) if, for every real continuous
bounded function x on X,

Iim [ xdP, = /de.

n—oo
X X
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Then, the Bohr—Jessen theorem can be stated as follows: Suppose that ¢ > 1/2 is fixed;
then, the probability measure expressed as

%gﬁL{t €[0,T]:{(c+it) € A}, AeB(C),

converges weakly to a certain probability measure P, on (C, B(C)) as T — co. Here, M A
stands for the Lebesgue measure of A € R.

More interesting are limit theorems for {(s) in functional spaces. Let G = {s € C :
o > 1/2}, and H(G) be the space of analytic functions on G endowed with the topology of
uniform convergence on compacta. In this case, we can consider the weak convergence for

%gmL{T €[0,T):f(s+it) € A}, A€ B(H(G)).

Limit theorems for zeta functions in the space of analytic functions were proposed by
B. Bagchi in [19] and are very useful for proof of universality theorems on approximation of
analytic functions by shifts of zeta functions. Theorems of such a type have several theoreti-
cal and practical applications, including the functional independence of zeta functions [20-22]
and description of the behavior of particles in quantum mechanics [23,24].

In [25-32], some probabilistic results were obtained on the value distribution of the
modified Mellin transform defined, for o > 1, by

Z1(s) :75(;—1—1&()
1

and by analytic continuation for ¢ > —3/4, except for a double pole at the point s = 1. Let

2
xSdx,

D = {s € C:1/2 < ¢ < 1}. Then, in the abovementioned works, the weak convergence for
1 ,
fsz{t €[0,T]: Z1(c+it) e A}, A€ B(C),

and
%S)JIL{T €[0,T]: Zi(s+it) € A}, A€ B(H(D)),

as T — oo was considered. Since the limit measure for the latter measures is degener-
ated at zero, the probability measures defined by generalized shifts Z; (o + i¢(t)) and
Z1(s+i¢p(7)) were also studied [33,34]. In [33], it was required that ¢(t) be increasing to
+oco differentiable function with a monotonically decreasing derivative ¢'(t) such that, for

e >0,
Ir—e(9(T))

T, T— . 5
g1 S - ©

Here,

T
Io(T) = /\21(0'+it)|2dt.
1

In [34], hypothesis (5) was replaced by

wp le2902T)

<1, T— oo
1/2<0<1 T9'(T)

A natural problem arises to give to the probabilistic characterization of the transform Z,.
Moreover, it is interesting to study approximation properties of Z,(s). Since the function
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{(s) with the Riemann conjecture is one of the important Millennium objects [35], all results
on its value distribution have a significant value.

In this paper, we study the weak convergence of the following measures with some
functions ¢:

1 .
PT,C,a,q)(A) = ?QﬁL{t € [T,2T]: Zy(c +ip(t)) € A}, A€ B(C),
and 1
Prj,e(A) = TQJ?L{T € [T,2T): Zo(s+ip(T)) € A}, A€ B(H),
where H = H(D),D={s € C:5/6 <o <1}.

2. Caseof p(t) =t

Let X be an X-valued random element defined on a certain probability space (Q, B, v).
If the distribution of X is

1 ifxeA,
0 otherwise,

v{XeA}:{ A € B(X),

then X is said to be degenerated at the point of x € X.
Suppose that X;;, n € N, are X-valued random elements. If the distribution

v{X, € A}, AeB(X),

converges weakly to the distribution of X as n — oo, then we say that X, converges to X in
distribution (X, %) X).
Suppose that space X is metrisable and p is a metric inducing the topology of X. If, for
every ¢ > 0,
lim v{p(X,, ) > ¢} =0,
then we say that X, converges to x € X in probability (X, n_%) x).
It is known [36] that X, % x if and only if X, % X, where X is degenerated at

point x.

Proposition 1. For 5/6 < o < 1, Py converges weakly to the measure on (C,B(C)),
degenerated at the point s = 0as T — co.

Proof. In view of the above remarks, it suffices to show that, for every ¢ > 0,

lim v{dc(Xr,0) > €} =0, ©6)
T—o00

where X1 = Z;(0 + ié7), dc is the metric in C and {7 is a random variable on (Q), B, v)
uniformly distributed in [T, 2T]. According to (4), we have

2T

1 1

ZOMu{t € [T,27] s de(Za(o +it),0) > ¢} < S—T/|Zz(0+it)|dt
T

Y]
< —
< (ST '/\Zz((r+zt)| dt)

T
et T0-120)/10+e1 — (1), T — oo,
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and this proves (6). O

To obtain a similar result in the space H = #(D), recall the metric in H. Let
{K; : 1 € N} be a sequence of compact embedded subsets of D such that D is the union of
the sets K; and every compact set K C D lies in some K. Then,

hl/ hZ

i supge, [h1(s) — ha(s)| by € H

1+supgey, [l (s) = ha(s)|”
is the metric in H that induces its topology of uniform convergence on compacta.

Proposition 2. Pr 3, converges weakly to the measure on (H,B(H)) degenerated at the point
h(s) =0as T — oo.

Proof. Let Y7 = Z5(s +ifr). We have to prove that, for every € > 0,
lim v{dy(YT,0) > e} =0, (7)
T—o0

or
1
Tlim ?SﬁL{T € [T,2T] : dy(Z22(s +i1),0) > e} = 0.
—00

According to the Chebyshev-type inequality,

2T
%ﬂﬁL{T € [T,2T) : dy(Z2(s +1i71),0) > ¢} < % /dH(Zz(s +1i7),0)dT. (8)
T

In view of the definition of the metric dy, it suffices to consider

/sup|Zz s+it)|dt
sek

for compact subsets K C D. Let £ be a simple closed curve lying in D and enclosing set K
such that

inf mf |z—s| >, 1. 9)
seKze

According to the Cauchy integral formula,

ZZ(S+1T) — L/Mdz

27t zZ—38
L

Hence, (9) yields

sup| Z5(s +it)| <z /\zz 2 +i7)| |dzl.
seK

Thus, according to the Cauchy-Schwarz inequality and (4),
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2T
/sup|Zz(s+iT)\dT <Lz //|Zz (z+it)|dt|dz]

T seK

2T 1/2
< (T/Zz z+i7))| dr) |dz|

T
2T+|Imz\ 1/2
<<5 | Z5( Rez+17)| dt |dz|

T— \Imz|

1/2
< (T 2T+|Imz|(15 12Rez)/5)) dz|

<z, T (20—12Rez)/10+¢€; _ O(T), €1 >0,
because Rez > 5/6. This shows that quantity (8) is estimated as o(1) and (7) holds. I

3. General Case

For brevity Pc g and Py, o denote the probability measures on (C, B(C)) and (#H, B(H))
degenerated at s = 0 and g(s) = 0, respectively. We consider weak convergence for Pr,c s ¢
to Pco and Pr, to Py o, respectively, as T — oo. First, we observe that the case of Pr 3,
implies that of Pr,c ¢,,. Actually, let u : H — C be given by

u(g(s)) =g(o), s=oc+it, g€ H.

Since the topology in H is of uniform convergence on compacta, the mapping u is continu-
ous. Moreover, for A € B(C),

Prog(A) = 2{t € [T,2T] : u(Za(s +ig(H)) € A}
= 2o {r € [T,2T]: Z(s +ig(v)) € u™'A)
= PT/H,¢(u71A).

Hence,
Prcog = Praen ", (10)

where
Pragou '(A) = Pryo(utA), A€ B(C).

Therefore, if Pr 3, TL> Py o, then the continuity of u, relation (10), and the well-known
—00
principle of preservation of weak convergence under continuous mappings (see [36],
Theorem 5.1) imply that Pr ¢ » P SN Py ou~ L. Since
P T e Y
_ _ 1 if(g(s) =0) cu'A, 1 if0€A,
Pyou"'(A) =P 14) = =
ot~ (A) o1 ) { 0 otherwise, 0 otherwise.

The latter remark shows that the weak convergence of Prc ¢, to Pcp is a necessary
condition for that of Pty to Pyas T — oo,

In this paper, we present some sufficient conditions of the weak convergence for
Pr 34, to Py 9 as T — oo. These conditions are connected to J,(T) and the derivative of the
function ¢(7). We prove the following statement.
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Theorem 1. Suppose that ¢(T) is a differentiable function increasing to 4+oo with a decreasing
derivative ¢'(T) on [Ty, 00), Ty > 1 such that

sup L2O2D) oo

ce(5/6,1) ¢'(27)
Then, PTH ¢ —>W PH 0-
T T—oo !

We notice that Theorem 1 does not follows directly from the estimate of the second
moment for Z(s 4+ ip(7)).
Actually, let K C D be a compact set. We then try to estimate
21
[ df / sup|Za(s +ig(7))| dr.

T seK

Let £ be the same simple closed contour as in the proof of Proposition 2. Then, we have

o/ ooT 1/2
I<<‘/<T/|32(Z+ifp(T))lzdr) dz|

L
1/2
_/< /|z2 Rez + ilmz + ig(T ))|2dr) |dz|. (11)

Using properties of the function ¢(7) and the second mean value theorem, we find

2T -
/|ZZ(ReZ +ilmz +ig(7))[* dr = /|Zz(Rez +ilmz + ig(7)) > c(ip(p(r)
T T

¢(2T)+|Imz|
|Z5(Rez + iT)|* dt

@(T)—|Imz|
2¢(2T)

N2
J01 | Z>(Rez +iT)|"dT

¢(T—[Imz|)
Jo(2¢(2T))

Jrez(¢(2T))
—————— K su — LT
¢'(2T) 06(5/12,1) ¢'(2T)

for a large T. Thus, in view of (11),

I <, /T|dz| <, T.

This shows only that

/sup|zz s+ ip(1))|dt
T seK

is bounded by a constant depending on K. Hence, we find that, in the notation of
Proposition 2,
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2T
! /dH(Zz(s +ip(t)),0)dt

v{d3y(Za(s +ip(En),0) > ) < =
T

2T ‘
1 [ & SuPek, | Za(s +ip(T))]
= —/ Y 2 . dr
Te 1 0 1+ sup,eg, | 22(s +ig(T))]
| o 2T
< T ) Z_k/sup|Zz(S +igp(7))|dt
Ek=0  f seKq
1 e}
< - 2_kck,
=

and this does not mean that
v{dy(22(s +ip(Zr)),0)} = 0.

Thus, for the proof of Theorem 1, we need another approach

4. Limit Lemmas
We start with a limit lemma for a certain integral over a finite interval. For brevity, we
use the following notation. Let « > 1/6 be a fixed number; then, for x,y € [1, +c0),

wwn=enf (2]}
4

7

Lo(x) = ‘é(im)

a

and, fora > 1,
Z2ay(s) = /Qz(x)b(x,y)x_s dx.
1

For A € B(H), we define
1 )
PT,,J,y(A) = ?gﬁL{T S [T,ZT] : Zz/a,y(s + lq)(T)) c A}

Lemma 1. Suppose that the function ¢ () satisfies the hypotheses of Theorem 1. Then, for every

fixed a and y, Pr s Py
T—c0 !
Proof. As we saw in Section 2, it suffices to find that, for each compact subset K C D,

2T
1
lim —/sup|22,a,y(s+i(p(r))| dt = 0.
T—oo seK

According to the Cauchy integral formula, the latter equality is implied by
(12)

lim

2T
1 . . 2
Jlim /’Zzla,y(0+ iu+ip(t))|"dr =0
T
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with certain 5/6 < ¢ < 1 and a bounded u. We have

| 22,0y (0 + i1 +ig(1))|* = Za0y(0 + it +i(T)) B0y (0 + it + i(7))
:/g ( ) (x ]/) —or—iu—ip(t dx/éz y> —o+iu+tip(T) dx
1

a

a
= // // 02(x1)2(x2)b(x1, ¥)b(x2,y)x f"‘i"‘i‘P(T)xz—”+iu+lsv(r)dxlde
1 1

1=X2 Xl #Xz

Hence,

/|ZZay(T+1u+zqo | dt

%/ /(CZ x1)82(x2)b(x12, y)b(x2, y) (x1%2) "(2>iuT/(;‘j)i¢(T) dT) dx; dx,. (13)

xl #X2

The application of the second mean value theorem yields

Joeloom(z)r- ((2)) " [etgen(romm(z)

T

with T < 0 < 2T. Similarly,

2T 1
. X2 X2 1
T/sm(go(r) log<xl)> dr <« 10g(3{1> 7 2T)
Therefore, in view of (13),

1 ) ) 2
7 /]Zz,aly(o+zu+zgv(r))\ dr

T

1 a a -1
_ X
< ey | [ b0 ) o) tog(22)|ar e 19

X132

According to Theorem 1 of [2], for1/2 < o < 1,
Jo(T) > T?7207¢,

Thus, J,(T¢(2T)) — co as T — co. From this and

Jo(29(2T))

To'2T)
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we find that 1
—_— 1
Tg/(2T) —0 (15)

as T — co. This and (14) prove (12). The Lemma is proven. [

Now, we will deal with

[e9)

ZZ,y(s) = /éz(x)b(x,y)xfs dx.

1

For A € B(H), we set
1 .
Pry(A) = fme{T € [T,2T]: Z5,(s +ig(7)) € A}.
In order to pass from Pr,, to Pr,, we apply the following general statement.

Lemma 2. Let (X, d) be a separable metric space and X, and Y, be X-valued random elements
in the same probability space with measure v. Suppose that

Xnk L) Xk, Vk,
n—oo

and

D
X, —2-5 X.
k—oc0

If, for every e > 0,
lim lim sup v{p(X, Yn) > €} =0,

k—oo peo

then
Y, -2 X.
n—00
The proof of the lemma is given in Theorem 4.2 of [36].

Lemma 3. Suppose that the function ¢(T) satisfies the hypotheses of Theorem 1. Then, for every
y>1,Pry, —— Pyy.
T—00

Proof. Let {1 be the same random variable as in the proof of Proposition 1. We define the
‘H-valued random element as

Xray = XT,a,y(5> = ZZ,a,y (s +ip(3T)),

and denote the #-valued random element with distribution P3 g as X, . Then, Lemma 1

implies the following relation:

D
XT,a,y H—w> Xa,y- (16)

The distribution of X,y is Py o for all 2 and y. Thus,
D
Xa,y a——;og) PH,O- (17)

Since b(x,y) decreases to zero exponentially, the following integral

[0 9)

/gz(x)b(x,y)xfs dx

1
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is absolutely convergent for ¢ > ¢y with all finite 0p. Hence,

o]

/ Co(x)b(x,y)x*dx = 0y(1)

a

foro > 5/6 asa — oo. Let K C D be a compact set. Then, for s € K,

(e )

Z2,y(s +ip(1)) = Zaay (s +igp(1)) < [ Ca(x)blar,y)x R dx = 0,(1)

a
as a — oo. Therefore,

2T

lim lim sup 1 /sup‘ery(s +i9(7)) = Zaay(s +ip(1))|dT < lim o,(1)=0. (18)
seK o

a—00 T—s

Let
X1y = X1y(s) = Z24(s + ¢(81))-

Then, in view of (18), for every e > 0,

4im, lim sup v{dy(X1y, X1a0y) > €}

1 . .
= lim limsup ?SﬁL{T € [T,2T) : dy(Z2y(s +i9(T)), 220y (s + ip(T))) > €}

T—o0
2T

a—o0 T—

1 . )
< lim limsup T /dH (Z2(s +i9(7)), Z24y(s +ig(T)))dT =0
T

according to the definition of the metric d4;. The latter remark, relations (16) and (17) and

Lemma 2 lead to the relation
D
X1y — Py,
T—c0

which is equivalent to the weak convergence of Pr, to Py gas T — co. [

5. Integral Representation

In this section, we present the representation for 25, (s) by a contour integral. Denote

by I'(s) the Euler gamma function, and

where « is from the definition of b(x, y).

Lemmad. Fors € D,

a+ico

zz,y(s):% [ z6+21e) d

a—ioo

Proof. We use the classical Mellin formula:

1 B+ico
— / T(2)62dz=e?, §,6>0.
B—ico

For brevity, let

(19)



Axioms 2025, 14, 34 13 of 21
_ 1 1 : —s—a—iT
g(x, 1) = 50 y(a+it)0o(x)x .
Then, forall T > 1 and X > 1, we have
X T T X
/ dx /g(x, T)dt = / dt /g(x, T) dx. (20)
1 -T -T 1
The application of (19) and the definition of I, (s) yield
K+ico K+ico 1+ico
1 . 1 1 7z\[(x\ * 1 x\ ¥
— = — “T(=)(= dz = — r = d
27i / y(z)x = dz 27ti / ar<a)<y> “7 omi / (Z)<y) z
a—ico a—ioo 1—ioco
x 14
= exp{— () } =b(x,y). (21)
y
It is well known that, uniformly in o € [0y, 03],
[(o+it) < exp{—c|t|}, c¢>0. (22)
Moreover,
X
/z;z(x) dx < Xlog X.
1
The latter estimate, together with (22), shows that
oo X
[ ar [ (g +1g(x ~)l) dx < BX,T)
T 1
and
/dx/ lg(x, T)| + |g(x, —7)|)dt < B(X, T),
T
where
o0 X
c o
T) :y"‘/exp{—&T} dT/@z(x)x 7% dx
T 1
X X
< yrexp{—cT} /x*”*“ d (/ 0o (u) du) dx
1 1
< yrexp{—ciT} (Xl_”_"‘ + 1) log* X. (23)

Therefore, by virtue of (20),
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|
g —y3
[oN
1-.]
py
=
A
(oW
R

T +o00 — X
/+/+/,)dT/g(deT
1

[e9)

T
T

dx / g(x,7)dt+O(B(X,T))
=T

400 —

dx (7— / - /,)g(x,r)dr—i-O(B(X,T))

— 00 T —00
dx / g(x,7)dT + O(B(X,T)).
Thus, according to (23), as T — oo, for every X > 1, we obtain

b'e X oo
dr 1/g(x,’r) dT—l/ dx_Zo g(x,T)dr.

The latter equality, together with (21), yields

Ela\g

a-+ico ) oo oo

! ! . /Cz(x)ly(tx+ir)x_s_"‘_irdxdr: / dr/‘g(x,r) dx

27ti / Z(s+2)ly(z)dz = 271

a—ioo —o0 —00 1

w+-ico

= /gz(x)x*S L / ly(z)x *dzdx = /ooéz(x)b(x,y)xs dx
1

O

6. Difference Between Z,(s) and 2, ,(s)
Recall that dy is the metric in the space H.

Lemma 5. Suppose that the function ¢(7) satisfies the hypotheses of Theorem 1. Then,

1
lim lim sup -~ / dyy(Z2(s + ig(1)), Zay(s +ig(1))) dT = 0.

Y=7° Toeo

Proof. According to the definition of dy, it suffices to prove that, for every compact set
KcD,

ylgn hmsup /sup|Zz(s +i9(1)) — 22, (s +ig(7))| dT = 0. (24)
*© seK

Fix a compact set K C D. Then, there exists 0 > 0 satisfying 5/6 + 26 < o < 1 — ¢ for all

s = 0 +it € K. Take w = 1/6 + ¢ in the definition of b(x,y) and

5
—g—6— 2.
15} o 6
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Thus, a1 > 0. The point z = 1 — s is a pole of order five, and z = 0 is a simple pole of the
following function in the strip of —a; < Rez < a:

s
Zy(s+2)T (&)
because (5/6 +6 —0)/(1/6+ ) > —1. This, Lemma 4, and the residue theorem yield

—nq+ioco

Zz,y(s)—Zz(s):ﬁ [ 2b+aue)d+r6),

where

r(s) = ZI:{ﬁS Z5(s +z)1y(z).

Hence, for all s € K,

Zay(s +ip(1)) = Z2(s +ig(7))

1

=5 /Zz<a U+Z+5+zt+w+z¢( ))@(Z+5—a+iv>dv+r(s+i(p(r))

—00

1 [ (5 .y 5 . .
=5 /22(6+c5+zv+zgo(r))ly<6+5—s+lv)dv—i—r(s—i—zgo(r))

ly(g—f—é—s—i-iv)’dv

sup
seK

< /‘Zz<0'—(7+2+5+it+iv+i(p(’f)>

+sup|r(s +ip(1))|-

seK

Thus,

T
1 .
f/sup|Zz(s+zqo(T)) Zzy(s+zq) |dT
T,T seK

< /(;/ ( ot ivtip(t ))‘d’r) - ly<2+5s+iv>’dv
o T seK
def
/sup|r s+ig(t))|dt =1L+ . (25)
T seK

Clearly, forallv € R,

ar(v de”/‘éﬁ( +o+iv+ip(t ))

L2 s ) 172
dr < (T/Zz(6+(5+iv+iqo(r)) dr) .
T

Properties of the function ¢(7) yield
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2T 5 oy
/ Zz< +o+iv+ip(t ))
¢'(7)
T
T 2

2
1 5
Zz< +o+iv+ip(t ))
(2T /
¢'(2T) J
¢(2T)+[o| »

5 .
T¢/(2T) ‘ZZ 6 *‘””‘)
o(T)—|v]

do(7)

de(7)

H

<

du <5 7o s/srs(9@T) + o). 26)

In the case of |v] < ¢(2T), we have

1 Jo(29(2T))
( ) <5 T¢'(27) e J5/64+6(29(2T)) <5 U:(;l/lz ) W

ot 27)

In the case of |[v| > ¢(2T), according to (4), we find

1 1 _
QZT(U) <5 W]5/6+5(2|v|) <se WM“S 12(5/6+9))/5+e

Soe roamilol =o(ol), T,

1
T¢'(2T)
because of (15). This, together with (26) and (27), shows that
ar(v) <5 (1+ [o])'/2. (28)

Applying (22), we find that, for all s € K,

5 ) _ _
ly<6+5—s+w> <560 ”exp{—i\v—ﬂ} <sk Yy lexp{—calo|}, c>0.

This, together with (28), yields

I <ok~ [ (o) 2explealol} do <oy 29)
We have
. . , 5 (1v)
r(s+ip(1) = (225 +ip(r) +2)(z s — ig(7)) Ly (2)) (30)
z=1—s—i@(T)
For brevity, let
V(s,z, (1)) = Za(s +ip(T) +2)(z — s — ip(1))°.
Then, according to the Leibnitz formula and (30),
: (k) 5ok (k)
r(s+ip(n) = 3 (5) v Hsz 0@ . 6
k=1 5 z=1—s—i¢(T)

The function (s + i@(7)) is analytic in strip D. Therefore, according to the Cauchy inte-
gral formula,

seK

suplr(s +ip(1))| <x [ Ir(z+ig(x))| Idz], )
l
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where [ is a suitable simple closed contour lying in D and enclosing set K. Using (3), (22),
(31), and (32), we find

2T
L <ks [ (;/ <qo<r>>3ylogyexp{c3|t+go<r>|}df) dz]

1 T

2T
<o VOBV [(p(1)" expl-cip(0)}dr

<Ks ylogyexp{—( 04/2 D} / )B exp{—(ca/2) (1) }dx,

where c3, ¢4, and B are certain positive constants. This, (29), and (25) show

T
1 .
7 [ suplCZa(s +ig(1)) = Za, (s +igp(T))] dT <is v + ylogyexp{—(ca/2)g(T)},
TSEK

and we have (24). O

7. Proof of Theorem 1

We apply the same scheme as in the proof of Lemma 3. Let {7 be defined in the proof
of Proposition 1.

Proof of Theorem 1. We define the following #-valued random element:
Xr = Xr(s) = Za(s +ig(Sr))-
According to Lemma 3,

X1y —2 X (33)
Y Y

T—o0

for all y, and the distribution of Xy is Py ¢ for all y > 0. Hence,
D
Xy —— Pyp. (34)

Moreover, Lemma 5 implies that, for every e > 0,

lim limsup v{dy (X, X1,) > €}

Y7 Toeo

< lim hmsup—/d;..l (Z2(s +ig(7)), Z24(s +ig(7))) dT = 0.

]/ P T
This, together with (33), (34), and Lemma 2, yields the following relation:
Xr —2— Py,
T—00 !
which implies the assertion of the theorem. [

8. Approximation by Shifts Z,(s + i@(7))

It is well known that some zeta functions, including the Riemann zeta function, Dirich-
let L functions, etc., are universal in the approximation sense, i.e., their shifts approximate
a wide class of analytic functions (see [19,37—41]). A similar property remains valid for
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generalized shifts (see [42-60]). Approximation results for modified Mellin transforms
of the Riemann zeta function were discussed in [30-32,34]. In this paper, we prove the
following approximation statement of zero for the Mellin transform Z(s).

Theorem 2. Suppose that ¢(T) is a differentiable function that increases to +oo with a decreasing
derivative on [Ty, 00), Ty > 1 such that

wp Jo(2000)

LT, T— oo.
ceren) ¢ (2T)

Then, for every compact set K C D and e > 0,

T—o0 seK

liminf;,EmL{T € [T,2T] : sup|Za2(s +ip(T))| < e} > 0.
Moreover, the limit

lim ,}m{r € [T,2T] : sup|Z(s +ig(T))| < s}

T—00 seK
exists and is positive for all but, at most, countably many e > 0.

Proof. The theorem is a simple consequence of Theorem 1 and the properties of weak
convergence of probability measures.
According to Theorem 1, Pr 3, 4 HLOJ Py 0. According to this, denoting

Ge = {f(s) € H:sup|f(s)] < S},

seK

we have
liminf Pr3,4(Ge) > Pr0(Ge)- (35)

The support of Py is the set denoted as {h(s)}, h(s) = 0. Therefore, G, is an open
neighborhood of an element of the support of Py, g. Hence,

Py 0(Ge) > 0. (36)

This, together with (35) and definitions of Pr 3, , and G, proves the first part of the theorem.

In order to prove the second part of the theorem, we apply the equivalent of weak
convergence in terms of continuity sets, i.e., of sets A € B(X) such that Py ((dA) = 0,
where dA is the boundary of A. We observe that the boundaries of G with different € values
do not intersect. Therefore, set G is a continuity set of Py, o for all but, at most, countably
many & > 0. Thus, according to Theorem 1, the equivalence of weak convergence in terms
of continuity sets, and (36), we have

lim Pr310(Ge) = Py ,0(Ge) > 0
T—c0
for all but, at most, countably many & > 0, and the proof is complete. [

9. Conclusions

We considered the asymptotic behavior of the modified Mellin transform,
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4
x Sdx,

Z5(s) = 17‘@(; + ix)

where {(s) is the Riemann zeta function, by using a probabilistic approach. Let D = {s €
C:5/6 < 0 < 1} and H = H(D) denote the space of analytic on D functions with a
topology of uniform convergence on compacta. We studied the weak convergence of the
probability measure,

1
TQJTL{T € [T,2T]: Zo(s+ig(1)) € A}, A€ B(H), (37)
as T — oo, to the measure degenerated at the point of /i(s) = 0. We proved that this follows

for a differentiable function increasing to +oco with a decreasing derivative on [Ty, c0) and
Ty > 0 such that

2¢(27)
Y
sup / |Za(c+it)|"dt < T, T— 0.
ve(s/61) ¢ (2T) J

This shows that the asymptotic behavior of the Z;(s) follows strong mathematical laws.
From a limit theorem for (37), we derived that there are infinitely many shifts Z,(s +i¢(7))
that approximate the function expressed as h(s) = 0.

An example is the function expressed as ¢(7) = exp{(loglog )}, T > €2, a > 1.
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