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INTRODUCTION
Background on HCC and current prognostic challenges

Hepatoellular Carcinoma (HCC) ranks as the third leading cause of cancer-
related deaths worldwide, with a staggering 70% increase in incidence from
1990 to 2019 [1]. The global burden of HCC is significant, resulting in 480,000
attributable deaths in 2019, and this situation is further exacerbated by late
diagnoses and advanced disease stages at presentation [2]. While early detection
can lead to a five-year survival rate exceeding 70%, this rate plummets to a mere
18% in the later stages, underscoring the critical importance of an early
diagnosis and accurate prognostication [3]. Liver cirrhosis, often induced by
viral hepatitis B and C, alcohol consumption, chemical toxins, or metabolic liver
diseases, precedes HCC in at least 80% of cases [4]. Furthermore, the global
rise of obesity and type 2 diabetes has led to an increased incidence of Non-
Alcoholic Fatty Liver Disease (NAFLD), which has emerged as a primary cause
of HCC even in the absence of cirrhosis [5].

Normal Inflammation Fibrosis, Hepatocellular
liver (chronic cirrhosis, and carcinoma
hepatitis) dysplasia (HCC)

Figure 1. HCC is a prototypical inflammation-associated cancer; in 80% of

the cases, the disease follows a similar pattern of evolution

The current prognostic models for HCC are facing several challenges.
Unlike many other cancers, post-treatment clinical outcomes in HCC patients
do not rely solely on the tumor properties and the success of its therapy [6].
An equally important determinant is the pathology and functional capacity of
the residual liver tissue, thus highlighting the need for comprehensive
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assessment of both tumor and non-tumor components [7]. The Barcelona
Clinic Liver Cancer (BCLC) staging system attempts to address this
complexity by incorporating multiple parameters of the tumor burden, liver
function, and cancer-related symptoms [8]. However, even this system suffers
from limitations in an attempt of accurately predicting the loss of the liver
function specifically in the context of HCC [9].

The heterogeneity of HCC in terms of its etiology, molecular
characteristics, and clinical presentation further complicates prognostication
[10]. Additionally, the dynamic nature of the disease, with the potential for
rapid progression and the development of portal vein invasion or extrahepatic
spread, poses challenges for any long-term outcome prediction [11]. These
factors collectively highlight the urgent need for more refined and
personalized prognostic tools in HCC management.

Brief overview of Al and machine learning in pathology

The field of pathology is witnessing a paradigm shift with the integration of
Artificial Intelligence (Al) and Machine Learning (ML) technologies, offering
new avenues for diagnosis, prognosis, and personalized medicine [12]. Digital
pathology, which involves the digitization of Whole Slide Images (WSI), has
paved the way for the application of advanced computational techniques to
histopathological analysis [13].

Convolutional Neural Networks (CNNs), a class of deep learning
algorithms, have shown remarkable success in tasks such as automated tissue
segmentation, cell detection, and classification of histological patterns [14].
These Al models can process vast amounts of visual data, while identifying
subtle patterns and features that may get missed even by the best-trained
human observers [15]. In the context of HCC, CNNs have been employed for
tasks ranging from automated detection of tumor regions to the assessment of
the histological grade and microvascular invasion [16].

Beyond simple classification tasks, Al techniques are being used to extract
quantitative features from histological images, which is a field known as
computational pathology [17]. These approaches can capture complex tissue
architectures, cellular distributions, and morphological characteristics,
providing a vast array of potential biomarkers [18]. For instance, Al-based
analysis of tumor-infiltrating lymphocytes and stromal features has shown
promise in predicting patient outcomes across various cancer types [19].

Machine learning algorithms, including support vector machines, random
forests, and gradient boosting methods, are being used to integrate these
image-derived features with the clinical and molecular data, creating
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comprehensive prognostic models [20]. These models offer the potential to
outperform the traditional staging systems and provide more personalized risk
stratification [21].

Despite these advancements, the integration of Al in the pathology practice
faces several challenges, including the need for large, diverse datasets for
training, issues of interpretability and explainability of Al decisions, and the
requirement for rigorous validation before clinical implementation [22].
Nonetheless, the continued development of Al tools in pathology holds great
potential for enhancing the diagnostic accuracy, improving prognostic
predictions, and ultimately guiding personalized treatment decisions in
diseases like HCC [23].

Multimodal tissue analysis in HCC prognostication

The complex interplay between tumor cells, the immune system, and the
extracellular matrix in HCC necessitates a multifaceted approach to
prognostication. Our study focuses on three key aspects of the tumor
microenvironment: CD8 lymphocytes, collagen (Type I and Type III)
architecture, and the overall tissue patterns. Each of these components offers
unique and complementary insights into the tumor biology and the potential
disease outcomes.

CDS8 lymphocytes play a crucial role in the anti-tumoral immune response
and have shown prognostic significance across various cancer types [24]. In
HCC specifically, the density and spatial distribution of CD8 cells have been
associated with the patient outcomes, although the results have been somewhat
inconsistent [25,26]. By employing advanced spatial analytics to characterize
CD8 infiltration patterns, we aimed to resolve these inconsistencies and extract
more nuanced prognostic information [27].

The extracellular matrix, particularly Type I collagen and Type III collagen
(also called reticulin) fibers, forms a critical component of both the tumor
microenvironment and the surrounding liver tissue. In HCC, alterations in the
reticulin framework are a key diagnostic feature, while changes in the collagen
deposition reflect both tumor-associated processes and underlying liver fibrosis
[28,29]. Quantitative analysis of these fiber patterns by using Al-based
approaches offers the potential to capture subtle architectural changes that may
be of prognostic relevance [30].

Lastly, the concept of tissue ‘fingerprinting’ using deep learning algorithms
aims to capture specific tissue patterns that may be complicated and challenging
to quantify through predefined features. This approach has shown promise in
other cancer types for identifying subtle prognostic signatures [31]. By applying
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this technique to HCC, we sought to potentially uncover novel tissue
characteristics associated with the disease outcomes.

By integrating these diverse aspects of tissue analysis — immune cell
infiltration, extracellular matrix architecture, and the overall tissue patterns — we
aimed to develop a more comprehensive and robust approach to HCC
prognostication. This multimodal strategy reflects the complex biology of HCC
and has the potential to provide a more accurate and personalized risk
stratification for patients [32].

Study hypothesis

The integration of artificial intelligence-based analyses of tumor
microenvironment, immune response, and tissue architecture will improve the
prognostic accuracy for hepatocellular carcinoma compared to the traditional
clinicopathological factors alone.

Objective of the study

To develop comprehensive Al-driven prognostic models for hepatocellular
carcinoma by integrating digital pathology analyses of tumor
microenvironment, immune response, and tissue microarchitecture in patients
after surgical treatment.

Tasks of the study

1. To develop a prognostic model based on the spatial distribution and density
of CD8 lymphocytes at the tumor and residual parenchyma tissue
compartments using Al-driven image classification and hexagonal grid
subsampling techniques.

2. To develop a prognostic model for hepatocellular carcinoma by employing
Al-driven morphometric analysis of collagen patterns in the tumor
microenvironment and the adjacent liver parenchyma.

3. To develop a prognostic model for hepatocellular carcinoma by using deep
learning neural networks with the objective to identify and analyze
distinctive microarchitectural signatures (‘fingerprints’) of the tumor.

4. To integrate the developed models and assess their combined prognostic
performance for hepatocellular carcinoma.
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MATERIALS AND STAINING
Bioethics permit and funding

Vilnius Regional Biomedical Research Ethics Committee approved (permit
number 2021/6-1354-843, issued 29 June 2021) the study design. Patient
consent was waived according to the International Ethical Guidelines for
Health-Related Research Involving Humans.

This research is in part funded by the European Social Fund resources
allocated for the project Development of Doctoral Studies implemented by the
Research Council of Lithuania, project No. 09.3.3-ESFA-V-711-01-0001,
under the Specific Objective Strengthen the Skills and Capacities of Public
Sector Researchers for Engaging in High Level R&D Activities of Priority
Axis 9 Educating the Society and Strengthening the Potential of Human
Resources within the framework of the Operational Program for the
European Union Funds’ Investments in 2014-2020.

Patient cohort and sample collection

The complete cohort of the study included a total of 134 patients with
Hepatocellular Carcinoma (HCC) who underwent a surgical intervention —
either a liver resection or transplantation — at Vilnius University Hospital
Santaros Clinics (Vilnius, Lithuania) between 2007 and 2020. The patient
characteristics are presented in Table 1.

Table 1. Summary of patient characteristics

Characteristic Value
Gender Male: 101 (75.4%)
Female: 33 (24.6%)
Age Mean: 60.45 years (range: 13—82)
Tumor Grade G1: 13 (9.7%)

G2: 101 (75.4%)

G3:20(14.9%)
pT Stage T1: 53 (39.6%)

T2: 73 (54.5%)

T3: 7 (5.2%)

T4: 1 (0.7%)
Intravascular Invasion Present: 59 (44%)

Absent: 75 (56%)
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Characteristic Value

Cirrhosis Present: 89 (66.4%)
Absent: 45 (33.6%)
Multiple Tumors Yes: 37 (27.6%)
No: 97 (72.4%)
Tumor Size >2cm: 108 (80.6%)
>5cm: 30 (22.4%)
Viral Status HBV: 12 (9%)
HCV: 74 (55.2%)
Liver Transplantation Yes: 28 (20.9%)
No: 106 (79.1%)
Recurrence After Treatment Yes: 57 (42.5%)

No: 77 (57.5%)

The initial analysis revealed significant (p=0.0011) Overall Survival (OS)
differences between the transplanted (N=28) and the non-transplanted
(N=106) patient subgroups.

Kaplan-Meier Survival Curve

1.0
p = 0.0011 — Resection
Transplantation

0.8

o
o

Survival probability
o
'S

0.2

0.0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

timeline

Figure 2. Overall survival following liver transplantation versus resection in
hepatocellular carcinoma patients

15



The decision was made to analyze the transplanted and non-transplanted HCC
patients separately in further prognostic modeling. This decision is backed by
several arguments:

1. Patients selected for transplantation often have different disease
characteristics compared to those undergoing resection. They may have
more advanced cirrhosis but earlier stage tumors due to adherence to the
Milan criteria which define patients eligible for transplantation.

2. Liver transplantation and resection are fundamentally different
treatments with different risks involved, as well as different impacts on
the tumor microenvironment and the residual liver tissue.

3. The subsequent univariate analysis of prognostic factors revealed that the
predictors of outcomes may differ between these groups. For instance,
the tumor size was more predictive in the transplanted group, while the
immune response parameters were more relevant in the non-transplanted
group.

4.  With only 28 transplanted patients compared to 106 non-transplanted,
combining the groups could mask important prognostic factors specific
to the larger resection cohort.

5. Separate models for transplanted and non-transplanted patients could
provide more tailored prognostic information, potentially guiding
treatment decisions between these two options.

6. The immune microenvironment and its prognostic significance may
differ in the context of total liver replacement (transplantation) versus
partial liver resection.

Tissue selection, preparation and staining techniques

Archived Formalin-Fixed Paraffin-Embedded (FFPE) tissue samples stored
at the National Center of Pathology (Vilnius, Lithuania) were utilized in this
study. A pathologist (Rokas Stulpinas, the author of this thesis) reviewed the
available archived slides for each case to select the single most representative

FFPE block, aiming to include both the viable tumor and the adjacent non-

neoplastic liver tissue (i.e., containing the tumor-liver interface), for the

subsequent specialized staining and analysis. The selected FFPE blocks were
cut, mounted on positively charged slides, and stained while using the
following techniques:

1.  Hematoxylin-Eosin (H&E) staining was performed by using a standard
protocol: sections were deparaffinized in xylene, rehydrated through a
graded ethanol series, and stained with Harris hematoxylin solution.
After differentiation in acid alcohol and washing, the sections were
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counterstained with eosin solution. Finally, the slides were dehydrated,
cleared in xylene, and mounted with a permanent mounting medium.
H&E staining provides a general morphological overview of the tissue,
with cell nuclei stained in blue, and cytoplasm and extracellular matrix
appearing in shades of pink.

2. The Gordon and Sweet’s silver impregnation with Picric Acid—Sirius Red
(GSPS) staining was performed as follows: sections were deparaffinized,
hydrated, oxidized with potassium permanganate, decolorized with
oxalic acid, and sensitized with ammonium iron sulfate. After
impregnation with ammoniacal silver solution and toning with gold
chloride, the sections were fixed with sodium thiosulfate. The slides were
then stained with Weigert’s iron hematoxylin and Picric Acid—Sirius Red
solution. Finally, the sections were dehydrated, cleared, and mounted.
This staining procedure results in black reticulin fibers and red Type [
collagen fibers, providing a clear contrast for the assessment of the
connective tissue architecture in HCC and the adjacent liver tissue.

3. Immunohistochemical staining for CD8 was performed by using an
automated staining platform: sections were subjected to heat-induced
epitope retrieval and then incubated with a primary monoclonal anti-CD8
antibody (clone C8/144B, Dako) at a 1:100 dilution. Detection was
performed by using a universal DAB detection kit, followed by
counterstaining with hematoxylin. This immunohistochemical staining
procedure specifically highlights CD8-positive cytotoxic T lymphocytes
within the tumor (tumor-infiltrating lymphocytes) and the surrounding
liver tissue (liver-infiltrating lymphocytes), allowing for the assessment
of the local immune response in HCC.

All stained slides were digitized at 20x magnification (0.5 pm/pixel
resolution) while using a Leica Aperio AT2 scanner to generate whole slide
images. The generated digital images were then annotated by a pathologist to
mark the regions of interest — HCC and the adjacent liver tissue — and exclude
the necrotic tumor areas or tissue artifacts. This ensured that only informative
regions were included in the downstream computational analysis pipelines.
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TASK 1: CD8 LYMPHOCYTE SPATIAL DISTRIBUTION
ANALYSIS

The spatial distribution of CD8 lymphocytes within the tumor
microenvironment provides valuable insights into the local immune response,
which has been shown to have prognostic significance in various cancers.
However, the precise quantification and characterization of this spatial
distribution remains a challenge due to the complexity of the tumor-stroma
interface and the limitations of manual annotation methods. To address these
challenges, Rasmusson et al. [33] developed a novel computational approach
called the Immunogradient method, which enables automated detection of the
tumor-stroma Interface Zone (1Z) and the extraction of the immune cell
density profiles. The Immunogradient analysis was utilized in this study with
some minor alterations (most notably, because of using two — the tumor-
stroma and the liver-stroma — interface zones).

(brown-stained cells) are the main effectors involved in both the antitumoral
response (left) and hepatocyte damage in the remaining functional liver
parenchyma (right)
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Methodology

The pipeline begins by training the HALO® Al (Indica Labs, USA) system to
segment the tissue into hepatocytes (both malignant and non-malignant),
stroma (fibrous tissue including the vasculature and the bile ducts), and
background/debris classes, with a subsequent segmentation of CD8 cells via
the HALO® Multiplex IHC algorithm (I/ndica Labs, USA); see Figure 4.
Analysis continues with applying a hexagonal grid to subsample the classified
tissue regions into hexagonal tiles. The use of a hexagonal grid offers several
advantages over the traditional rectangular grids, thus including an improved
spatial resolution and more isotropic sampling [34]. The optimal hexagon size
was determined to be 65 um based on empirical evaluation and previous

experience.

Task A: deep learning-based Task B: deep learning-based
detection of tumor and non- detection of CD8-positive and
neoplastic tissue negative cells

Figure 4. Commercial artificial intelligence-based tool HALO® Al (Indica
Labs, USA) was utilized to A) detect the different parts of the tissue (tissue
segmentation) and B) detect the CD8-positive cells with their coordinates

Next, the method automatically extracts the Epithelial Edge (EE, originally
called Tumor Edge (TE), but in this study we were detecting malignant and
benign edges, see Figure 5) by using a set of explicit, data-driven rules based
on abrupt changes in the epithelial and stroma area fractions across the
hexagonal grid. This automated EE extraction eliminates the need for time-
consuming precise manual annotations and ensures reproducibility across
different samples and studies. The rules for EE detection are based on the
principle that the interface between the epithelium and the stroma regions
exhibits sharp transitions in the tissue composition, which can be detected by
analyzing the area fractions of epithelium and stroma within each hexagonal
tile [33].
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EPITHELIAL STROMAL
immune response CDRE TISSUE

Benign interface

Figure 5. Hexagonal grid-based cell density analysis. We have defined two
separate interface zones for each case: one for the border between the tumor
and the surrounding fibrous stroma (representing the antitumoral immune
response) and one more for the border between the non-neoplastic hepatocytes
and the fibrous tissue (representing chronic hepatitis)

Once the EE has been identified, the hexagonal tiles are ranked on each side of
the EE based on their shortest distance to the EE. The EE itself is assigned a
rank of 0, while the tiles on the epithelial (meaning either a tumor or liver
parenchyma; it depends on the area of the slide that is being analyzed) side are
assigned positive ranks, whereas those on the stromal side are assigned negative
ranks. We then aggregate the CD8 cell counts within the hexagons of each rank
to generate CDS8 density profiles across the IZ. Subsequently, the
Immunogradient indicators representing the whole 1Z are calculated, including
the Center of Mass (CM) and Immunodrop (ID). The CM can serve two
purposes: it either represents an increase in the CD8 density toward the
epithelial aspect when calculated by using the means, or indicates a higher CD§
variance along the IZ when using the standard deviation. The ID indicator
functions as a ratio between the mean CD8 density in ranks -/ (the stromal
aspect) and / (the epithelial aspect), capturing an abrupt decrease in the CDS8
density across the tumor edge — hence the term ‘Immunodrop’. These indicators
provide a concise, quantitative characterization of the immune cell density
gradient and can be utilized as biomarkers for further modeling [33].

The automated, data-driven nature of the ‘Immunogradient’ method offers
several advantages over the manual edge annotation approaches. First, it
allows for comprehensive and reproducible assessment of the immune
response at the epithelial-stromal interface, while eliminating the subjectivity
and variability associated with manual annotations of the precise tumor edge.
Second, it enables high-throughput analysis of large cohorts of samples, thus

20



facilitating the discovery of robust biomarkers and the validation of clinical
applications. Finally, by providing a quantitative characterization of the
spatial distribution of immune cells, the method opens up new opportunities
for integrating spatial information with other omics data to gain a more
comprehensive understanding of the tumor-immune ecosystem.

Statistical analysis

The statistical analysis in our studies focused on investigating the associations
between the immunogradient indicators, clinicopathological variables, and the
patient outcomes (Overall (OS) and/or Recurrence-Free (RFS) survival). Due
to the left-skewed distribution of CD8 cell densities, a logarithmic
transformation was applied to these variables before conducting parametric
statistical tests. To dichotomize the patient cohorts for univariate survival
analysis, optimal cut-off values for each indicator were determined by using
the Cutoff Finder tool [35].

Survival analysis was performed by using the Kaplan-Meier method, and
log-rank tests were employed to assess differences in survival between patient
subgroups. Multivariate Cox proportional hazards regression models were
constructed to evaluate the independent prognostic value of the CD8 spatial
indicators while accounting for the conventional clinicopathological
parameters. Variable selection for these models was performed by using a
stepwise likelihood ratio test with a value of p<0.05.

The statistical analyses were carried out by using SAS and R software
packages. Computation of the hexagonal grid subsampling, IZ detection, and
immunogradient indicators was implemented in C++ using the OpenCV and
Boost libraries.

Key findings

In the resected HCC cohort, a higher variance (represented by the Standard
Deviation (SD)) of CD8 density at the tumor edge was found to be an
independent predictor of a longer Overall Survival (OS). This finding suggests
that irregular CD8 cell infiltrates along the tumor edge may represent
localized, denser immune cell clusters, potentially indicating a more effective
anti-tumoral response. In contrast, a higher mean CDS density in the epithelial
aspect of the non-neoplastic liver parenchyma was associated with worse OS,
possibly reflecting ongoing liver damage driven by the immune system in the
context of chronic viral hepatitis.
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Figure 6. Kaplan-Meier Overall Survival (OS) plots for independent
prognostic indicators identified by multiple Cox regression analysis [36]:
patient age; duration of surgery; Aspartate Transaminase (AST); peripheral
blood basophil count; standard deviation of CD8 density at the tumor edge
(HCC sd TE); mean CD8 density within the epithelial aspect of the
perineoplastic liver-stroma interface (Liver m_T)

The study developed a comprehensive overall survival scoring system which
integrates five independent prognostic variables: the duration of the surgery,
the aspartate transaminase level, the blood basophil count, the standard
deviation of CDS density at the tumor edge, and the mean CD8 density in the
epithelial aspect of non-neoplastic liver. For each variable, patients received a
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score of 0 (indicating good prognosis) or / (indicating poor prognosis). These
individual scores were then combined to create a total risk score. Based on
their total score, patients were stratified into three distinct prognostic
categories: low risk (total score (—I), intermediate risk (total score 2), and
high risk (total score 3—5). This stratification system demonstrated a strong
prognostic value, with 4-year overall survival rates of 100% for low-risk, 51%
for intermediate-risk, and 12% for high-risk patients. These results validate
the effectiveness of combining CDS spatial distribution indicators with the
traditional clinicopathological parameters in order to create a more accurate
prognostic model for HCC patients following resection.
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Figure 7. OS risk stratification based on combined prognostic scores [36]: a
comprehensive HCC OS score derived from five independent predictors

In the transplanted HCC cohort, two parameters emerged as independent
predictors of a better overall survival: a higher mean CDS cell density at the
epithelial edge of the non-malignant interface in the explanted liver
parenchyma (HR: 0.15, 95% CI: 0.03-0.82, p=0.01) and a higher preoperative
peripheral blood platelet count (HR: 0.15, 95% CI: 0.03-0.81, p=0.01).
Specifically, patients with platelet counts above 70.8 x 10°/L and a higher CD8
density showed significantly better survival outcomes. Both parameters
demonstrated equal hazard ratios, indicating that higher values of either
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predictor were associated with a similar magnitude of the survival benefit.
This finding emphasizes the potential prognostic value of both immune cell
infiltration patterns and basic hematological parameters in predicting the
outcomes after liver transplantation for HCC patients.

Furthermore, in a subgroup of resected HCC patients meeting the Milan
criteria preoperatively, low standard deviation of the CD8 density along the
tumor edge and a positive (R1) resection margin were identified as
independent predictors of early post-resection recurrence. Notably, patients
presenting with both adverse predictors exhibited a 100% risk of relapse
within 200 days. This finding suggests that integrating CDS8 spatial
distribution indicators with the resection margin status could help identify
high-risk patients who might benefit from prioritization for liver
transplantation, potentially improving the overall treatment outcomes.
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Figure 8. HCC Recurrence Risk Score in the subgroup of patients fulfilling
the Milan criteria preoperatively [37]. Risk Score 0—1 indicates patients with
either no risk factors or one risk factor (low CDS8 density variation or R1
resection margin), while Risk Score 2 indicates patients with both risk factors
present.

Limitations

Our research has several limitations that should be acknowledged. First, the
sample sizes of the cohorts, particularly the transplanted HCC cohort (N=28)
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and the subgroup of Milan criteria-fulfilling resected HCC patients (N=41),
are relatively small, which may limit the generalizability of the findings.
Second, the retrospective nature of the studies and the heterogeneity of the
patient cohorts could introduce potential biases and confounding factors that
might impact the robustness of the results. Third, the lack of complete data on
the viral hepatitis status and the cause of death in the resected HCC cohort
limits the ability to investigate their potential influence on disease-specific
survival and to further discriminate the impact of both neoplastic and non-
neoplastic components of the liver disease. Finally, as the studies were based
on surgical resection and explanted liver samples, the applicability of the
immunogradient method to the preoperative biopsy material remains to be
validated. Despite these limitations, we believe that these studies provide
proof-of-concept for the prognostic value of CDS8 spatial distribution
indicators in HCC and highlight the potential for their integration with the
conventional clinicopathological parameters to improve the risk stratification
and guide the treatment decisions.
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TASK 2: AI-EXTRACTED TISSUE FIBER FRAMEWORK
MORPHOMETRICS

Type I collagen and Type III collagen, despite their structural similarities, play
distinct roles in the progression of chronic liver disease and hepatocellular
carcinoma. While the accumulation of Type I collagen characterizes
advancing fibrosis and cirrhosis, the disruption of the delicate Type III
collagen (reticulin) network is a hallmark of HCC development (see Figure
9). By virtue of recognizing the prognostic potential of these
microarchitectural changes, our study aimed to quantitatively assess the
spatial patterns of both collagen types within the tumor and the surrounding
liver tissue, seeking to uncover novel predictors of the outcomes in patients
undergoing liver resection for HCC.

2000 um

Figure 9. Conventional H&E staining (top row) is not highly suitable to
visualize the fibrous structures; to highlight them, we use the GSPS staining
protocol (bottom row), based on silver impregnation and picric acid—Sirius
Red. GSPS stains Type III collagen (reticulin) is shown in black, and Type I
collagen is visualized in red

Methodology

At the second leg of our study, we aimed to extract prognostic information
from the fiber architecture in the tumor microenvironment of HCC by using a
Convolutional Neural Network (CNN) from bright-field histology images,
building upon the methodology developed by Morkunas et al. for breast
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carcinoma [38]. A key aspect was the differentiation between reticulin (black
silver-impregnated fibers) representing Type III collagen, and thicker red-
staining fibers in the fibrous septae representing Type I collagen. Similar to
Morkunas et al., we have trained a modified U-net (a fully convolutional
encoder-decoder network originally developed for biomedical image
segmentation) CNN architecture to segment these two fiber types, generating
pixel-precise collagen segmentation masks (CSMs, see Figure 10). Our
modifications included the use of exponential linear units instead of rectified
linear units in the convolutional layers, and adding a ‘bottleneck’ block to the
encoder path after each max-pooling layer. This block splits the tensor into
two parallel flows before concatenating, allowing the network to learn both

compressed and expanded representations.

Figure 10. The resulting Collagen Segmentation Mask (CSM) of red (Type I
collagen), green (Type III collagen or reticulin) and yellow (ambiguous areas)
fibers set against a contrasting black background, optimized for viewing and
morphometric feature extraction. Note the reduction of green fibers in the
HCC area (top right)
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Figure 11. Hexagonal tiling and ranking: (left) HALO® Al (Indica Labs,
Albuquerque, NM, USA) classifier result on the manually placed HCC (top)
and peritumoral liver (bottom) annotations; (right) ranking of the hexagonal
tiles according to their shortest distance from the epithelial edge (rank 0), with

positive ranks for epithelial-side, and negative ranks for stromal hexagons

The ground truth for training was generated by the manual annotation of image
patches by two blinded experts capturing the direction of collagen fibers, as
well as a semi-automated thresholding approach. We augmented the training
data with rotations, flips, blurring, zooming and varying amounts of dilation
applied to the annotations. Inference was done by splitting whole-slide images
into overlapping patches, running the CNN on each patch, and merging the
probability maps with thresholding to generate the final CSMs for reticulin
and Type I collagen.

In parallel, we again applied the hexagonal grid subsampling to the whole
slide images, as described in detail in the previous section, by ranking each
tile based on its distance from the automatically detected epithelial-stromal
interface. Briefly, in the ranking process, hexagons at the epithelial-stromal
boundary (including both benign hepatocytes and neoplastic HCC cells) are
assigned rank 0, with positive ranks for epithelial-side hexagons and negative
ranks for stromal hexagons, based on their shortest distance from the interface.
This approach offers two crucial advantages over the whole-image analysis.
First, it enables localized analysis of tumor features, while capturing gradual
changes and heterogeneity that might otherwise be overlooked. Second, the
spatially ranked tiles allow targeted extraction of specific regions of interest.
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In the next step, we sampled the mapped hexagonal tiles from the CSMs
for further analysis. From each hexagonal region, we computed 11 features at
the pixel, fiber, and image levels to characterize the fiber microarchitecture.
These features were selected based on their potential relevance and
interpretability from a larger set of 37 features previously used by Morkunas
et al. in their study of breast cancer collagen networks [38]. The selected
features (see Table 2) included metrics related to fiber orientation,
morphology, density, texture, and fractal properties, aiming to capture key
aspects of the fiber microarchitecture within each hexagonal tile. During the
data aggregation process, the mean and the standard deviation of each feature
measurement were calculated for every case, considering all hexagons within
each region of interest. This compiled case-level dataset contained the
potential fiber-derived predictors, which were derived as follows:

* 2 annotations per case (tumor and peritumoral liver);

* 3 regions per annotation (core, epithelial edge, and stroma);

* 2 summary metrics (mean and standard deviation) per region;

» 2 types of fibers (reticulin and collagen Type I) per summary metric;

» 11 fiber features per fiber type.
The combination of these factors (2 x 3 x 2 x 2 x 11) resulted in the total of
264 potential predictors for each case.

Table 2. List of features used to characterize the fibrous matrix, calculated
twice per each hexagon: for green (reticulin or Type 3 collagen) and red (Type
1 collagen) fibers separately

Feature Description

Orientation:
Circular Standard Deviation (CSD) Dispersion of circular angles of the
individual fibers

Magnitude, mean (mMag) Average strength or intensity of
vectors (e.g., gradients) in the fiber
mask

Morphometry:

Fiber length, mean (mFL) Average Euclidean distance between
the endpoints of each skeletonized
fiber

Fiber path, mean (mFP) Average pixel length of a line
dividing a fiber into two equal parts
along its longer axis

Fiber straightness, mean (mFS) A ratio of fiber length over fiber path
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Feature Description

Density:
Fiber density (FD) Number of pixels in the mask
Endpoints (nENDP) Number of fiber endpoints in the

hexagon mask
Texture (Haralick’s):

Homogeneity (hom) The closeness of the distribution of
elements in the gray-level co-
occurrence matrix to the matrix
diagonal

Entropy (ent) Amount  of information or
randomness in the texture

Correlation (cor) Linear dependency of gray levels on
those of neighboring pixels

Fractal:

Lacunarity (lac) A measure of both gaps and
heterogeneity: the variation in space
around objects in the image and their
irregular distribution

Statistical analysis

An updated comprehensive statistical analysis pipeline was utilized to identify
prognostic features and build predictive models for the overall survival in the
cohort of 105 HCC patients (one patient was lost from the initial pool of 106
due to the poor quality of the tissue), of whom, 56 died during the follow-up
period. The 264 fiber-derived features were first scaled by using min-max
normalization to a range of 0 to /. Univariate Cox regression with LASSO
regularization was then applied to assess the performance of individual
variables, and the tumor stage T2—T4 (vs. T1) was identified as the strongest
individual predictor of a worse overall survival (HR 4.81, 95% CI 2.40-9.64,
p<0.0001). From the initial analysis, we selected 36 features which showed a
potential prognostic value (p<0.1) for inclusion in the subsequent modeling
steps. These were combined with clinicopathological variables including the
age, stage, gender, lymphovascular invasion, and tumor multifocality.
Adhering to the ‘rule of ten’ guideline of having at least 10 events per variable
in the model, all possible combinations of up to 6 features were systematically
generated, resulting in over 2.8 million candidate models. These models were
evaluated by using multivariate Cox regression with LASSO penalization and
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5-fold cross-validation. Only 139 models (approximately 0.005%) in which
all the variables had p<0.05 were retained. The concordance index (C-index)
on the test split was used as the performance metric to rank these models, with
two models achieving a C-index above 0.7, indicating good discriminative
ability. The variables comprising these 139 models were further analyzed by
counting the number of occurrences of each unique feature, revealing 30 key
features that were recurrently selected. Factor analysis was additionally
performed on the fiber-derived features in order to identify latent relationships
and the underlying biological processes.

Key findings

We developed two comparable penalized Cox regression models which
incorporated the patient age, tumor multifocality, and fiber-derived features
to predict the overall survival in patients with Hepatocellular Carcinoma
(HCC). Both models achieved a concordance index (C-index) greater than 0.7,
indicating good discriminative ability. These models outperformed those
solely reliant on the conventional clinicopathologic parameters, emphasizing
the utility of Al-extracted microarchitectural features for the management of
HCC.

Table 3. Fiberomics-derived Overall Survival (OS) models with a C-index
above 0.7

Features HR 95% CI p-value
Model A, test set C-index 0.7094, AIC 359.3840

Age >55 years 4.05 1.67-9.80 0.00194

Multiple tumors 1.92 1.11-3.31 0.01895

Green _mean_lacunarity HCC 1Z3 6.36 1.69-23.87 0.00615

Red _mean_correlation LVR 173 0.21 0.05-0.92 0.03802
Model B, test set C-index 0.7061, AIC 359.2425

Age >55 years 4.33 1.73-10.81  0.0017

Multiple tumors 2.24 1.30-3.83 0.0035

Green _mean _lacunarity HCC 1Z3 5.58 1.48-21.06 0.0113
Red sd mean straightness LVR 1Z3  0.02 0.00-0.84 0.0396
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Interestingly, we discovered that the prognostic value at the tumor edge was
derived from the reticulin structure, while Type I collagen characteristics were
significant at the epithelial edge of the peritumoral liver. Specifically, the high
mean lacunarity of the reticulin framework at the tumor edge was associated
with a shorter OS. In contrast, Type I collagen features in the peritumoral liver
— a high mean texture correlation, a high variance in density, and a high
variance of fiber straightness — emerged as significant predictors of longer OS.
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Figure 12. Kaplan-Meier overall survival plots and the cutoff values for the
components of models with good discriminative ability (C-index >0.7).
Tumor stage T2-T4 (vs. T1), which was the strongest predictor in univariate
analysis (HR 4.81, p<0.0001), is also included for comparison

All of these indicators were measured at the interface zone between the
epithelial and fibrous tissue, highlighting the importance of assessing the
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spatial aspects of collagen deposition in the context of liver fibrosis and
cirrhosis.

In the factor analysis, we identified six factors which explained 85.12% of
the variance in the data, revealing the underlying relationships among the
fiber-derived features.

Although the first five factors exhibited cutoff values that divided the
cohort into groups with statistically significant differences in the overall
survival duration, as indicated by p<0.05 in univariate analysis, they did not
outperform the individual features in the multivariate Cox regression models.
After applying the LASSO Cox regression, none of these factors were found
to be significant predictors of the overall survival.

Limitations

Besides the same limitations that were discussed in the previous section on
CDS8 lymphocyte infiltration, further validation using other collagen-specific
imaging techniques, such as Second Harmonic Generation (SHG) microscopy
or polarized light microscopy, would strengthen our findings. These
techniques could provide additional insights into the collagen fiber
architecture and serve as a reference for evaluating the performance of our
CNN-based approach.
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TASK 3: DEEP LEARNING-BASED TISSUE ‘FINGERPRINT’
EXTRACTION

The following sections (Task 3 and Task 4) present preliminary findings from
the final phases of our study, which are still ongoing. This part of the research
is not yet complete, and the data have not been formally published. The
information provided here is intended to offer insights into the direction and
the potential outcomes of this leg of the study. However, it should be noted
that these results are subject to change as the research is progressing and
undergoing further analysis and peer review.

Methodology
Initial MISL approach

Before settling on our current methodology, we explored an attention-guided
Multiple Instance Survival Learning (MISL) approach, building upon the base
pipeline that was successfully employed by Drachneris et al. to predict a
relapse of non-muscle invasive papillary urothelial carcinoma [39]. This
method involved simultaneously feeding patches and survival data into the
model. However, this approach did not produce satisfactory results, prompting
us to develop the current feature extraction and clustering pipeline.

Data preparation and feature extraction

The third leg of our study utilized the conventional hematoxylin and eosin-
stained Whole Slide Images (WSls) from 105 patients who underwent liver
resection for HCC. The patch selection process was again guided by the
manual annotations marking all viable HCC tissue within each WSI. We then
employed a systematic sampling approach:
*  The annotated regions were split to create 256x256-pixel patches.
*  Patches containing less than 95% tissue were discarded to ensure the
quality and relevance of the analyzed areas.
*  Vahadane (library: tiatoolbox version 1.5.1) color normalization was
applied.
This process resulted in a collection of 416,928 high-quality 256x256-pixel
patches representing a viable HCC tissue for each patient (range 384-8656,
median 3568 patches/patient). We then employed CTransPath [40], a hybrid
deep learning foundation model integrating Convolutional Neural Networks
(CNNs) and multi-scale Swin Transformers, that is pretrained on a large set
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of unlabeled histopathological images to learn domain-specific feature
representations. This model served as a general feature extractor, capturing
both fine-grained and contextual information from our histopathological
images (HCC patches). Specifically, we extracted 768 features corresponding
to the activations of the penultimate layer of the Convolutional Neural
Network (CNN). No fine tuning of the model, or any post-processing of the
results were applied.
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Figure 13. CTransPath designed by integrating a Convolutional Neural
Network (CNN) and a multi-scale Swin Transformer architecture, diagram
shown as originally published by Xiyue Wang et al. [40]

Clustering

To identify distinct tissue ‘fingerprints’ within the HCC samples, we applied
two clustering algorithms to the extracted feature vectors of the patches:
*  Gaussian Mixture Model (GMM) (Python ‘scikit-learn’ library version
1.3.2, default settings)
*  K-means clustering (Python ‘scikit-learn’ library version 1.3.2, default
settings)
For each algorithm, we explored a range of patch cluster numbers (k=2, 3, 4,
5,6,7,8,9, 10) to determine the optimal granularity of tissue classification.
This approach allowed us to capture various levels of tissue heterogeneity
within the tumor samples.
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Patient-Level Fingerprint Quantification

Following the clustering process, we quantified the tissue composition for
each patient by calculating the percentage of patches assigned to each cluster.
This resulted in a patient-specific ‘fingerprint’ represented as a vector of
cluster proportions. For instance, in a 4-cluster analysis, if a patient’s tissue
has the following composition:

*  Cluster 1: 10%

*  Cluster 2: 0%

*  Cluster 3: 35%

*  Cluster 4: 55%
it might be represented as a ‘fingerprint’ vector (0.1, 0.0, 0.35, 0.55) in the
double-precision floating-point format.

Statistical Analysis

To investigate the prognostic significance of these tissue ‘fingerprints’, we
conducted univariate Cox proportional hazards regression analyses. We
examined two primary clinical outcomes, the Overall Survival (OS) and the
Recurrence-Free Survival (RFS). For each cluster in each clustering scheme,
we assessed whether a higher proportion of patches belonging to that cluster
was associated with improved survival outcomes. This approach allowed us
to identify specific tissue patterns which may serve as prognostic indicators in
HCC.

All statistical analyses were performed by using R version 4.4.1 (Race for
Your Life). Cox regression models were fitted using the survival package. The
statistical significance was set at p<0.05, and hazard ratios with 95%
confidence intervals were reported for each analyzed cluster proportion.

Results
Clustering Maps

As evident from the clustering result maps (see Figure 14), the identified
clusters represent specific tissue types or microenvironments within HCC,
thereby demonstrating that this unsupervised approach yields interpretable
and biologically meaningful results. The spatial distribution and composition
of these clusters reveal distinct patterns which likely correspond to different
tumor regions, tissue classes, or histological features.
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Figure 14. Spatial distribution of tissue microenvironments in Hepatocellular
Carcinoma (HCC) using Gaussian Mixture clustering with 6 clusters (GM®6).
Each image represents an annotated HCC tissue part of the Whole Slide Image
(WSI), where patches are color-coded according to their assigned cluster (cO—
c5). The black areas represent background or non-tissue regions. These maps
reveal distinct spatial patterns and heterogeneity within HCC tumors

Overall Survival

The analysis identified three variables with p<0.05: gm6 _c0 (HR 4.05, 95%
CIL: 1.40-11.75, p=0.010), gm9 c1 (HR 9.24, 95% CI: 1.23-69.63, p=0.031),
and km10_cl (HR 3.54, 95% CI: 1.10-11.44, p=0.034).

Subsequent multivariate Cox regression including these three variables
revealed that only gm9 cl remained statistically significant (HR 8.67, 95%
CI: 1.21-62.36, p=0.032). The overall multivariate model was significant (LR
p=0.014).

Table 4. Multivariate Cox regression for Overall Survival (OS), clustering
variables only
Variable HR HR 95% CI Wald p LRp
gmé_c0  2.7620 0.7304 10.4448 0.1344 0.0143
gm9 _cl 8.6747 1.2067 62.3581 0.0318 0.0143
km10_cl1 2.2841 0.5506 9.4751  0.2552 0.0143
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Recurrence-Free Survival

Univariate Cox regression for recurrence-free survival identified two
variables with p<0.05: km9 c1 (HR 4.07, 95% CI: 1.29-12.90, p=0.017) and
gm6_c0 (HR 3.32, 95% CI: 1.11-9.99, p=0.032).

In the multivariate Cox regression, both variables remained statistically
significant: km9 c1 (HR 3.81, 95% CI: 1.19-12.13, p=0.024) and gm6 c0
(HR 3.20, 95% CI: 1.03-9.97, p=0.045). The overall multivariate model was
significant (LR p=0.013).

Table 5. Multivariate Cox regression for Recurrence-Free Survival (RFS),
clustering variables only

Variable HR HR 95% CI Wald p LRp

km9 _cl 3.8069  1.1947 12.1310  0.0238  0.0134

gmé_c0 3.1985  1.0260 9.9715  0.0450  0.0134
Conclusion

In conclusion, the preliminary results reveal the potential of unsupervised
clustering approaches to identify prognostically relevant tissue
microenvironments in HCC. The findings suggest that the quantification of
the proportion of specific tissue types within tumors could provide valuable
information for patient stratification and personalized treatment strategies.
The emergence of new foundation models in computational pathology opens
up exciting opportunities for extending this work through transfer learning and
comparative analysis of different model architectures. A multi-resolution
approach, integrating both high (cytologic) and low (architecture)
magnification tissue features, could provide a more comprehensive
understanding of tumor heterogeneity and its prognostic implications.
Additionally, incorporating fingerprints of the residual liver parenchyma into
the analysis could offer valuable insights into the relationship between tumor
characteristics and the surrounding tissue environment, potentially revealing
new prognostic markers.

38



TASK 4: INTEGRATION OF MACHINE LEARNING
APPROACHES

We developed comprehensive prognostic models incorporating clinical
parameters, laboratory data, and computational tissue features derived from
both CDS8 lymphocyte spatial analysis and tissue fiber framework analytics.
These are unpublished calculations that are still subject to change, as we aim
to integrate the ‘fingerprints’ data when it is complete.

Methodology

Our modeling strategy employed a two-step approach. First, all variables were
evaluated by using univariate Cox proportional hazards regression, with those
achieving p<0.05 selected for further analysis. In the second phase, we
systematically generated all possible combinations containing up to 7
variables, adhering to the ‘rule of ten’ events per variable given our cohort
size. These combinations underwent LASSO-penalized multivariate Cox
regression with 5-fold cross-validation to minimize overfitting. The models
were ranked according to their performance on test splits using the
concordance index (C-index).

Results
Recurrence-Free Survival Models

The analysis of Recurrence-Free Survival (RFS) revealed several
complementary modeling approaches. In the complete cohort analysis, the
top-performing model achieved a test set C-index of 0.718 (AIC: 333.12) and
included three independent predictors: resection margin status (R1 vs. RO: HR
4.23, 95% CI: 2.29-7.81, p<0.0001), preoperative Milan criteria status (HR
0.56, 95% CI: 0.32-0.98, p=0.042), and mean lacunarity of Type I collagen at
the tumor edge (HR 0.20, 95% CI: 0.06-0.63, p=0.006).

Given the dominant impact of the resection margin status on recurrence,
we performed a subgroup analysis focusing only on patients with complete
(RO) resections. In this refined cohort, the optimal model (C-index: 0.706,
AIC: 231.97) identified just two independent predictors: CD8 density
variation at the tumor edge (HR 0.15, 95% CI: 0.03—0.61, p=0.008) and the
tumor multifocality (HR 2.45, 95% CI: 1.30-4.62, p=0.006). This suggests
that, in cases where complete surgical resection is achieved, immune response
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patterns and the tumor architectural features become more relevant for
predicting recurrence.

Table 6. Performance metrics of top three Recurrence-Free Survival (RFS)
models in full cohort

Model Components Test C-index  AIC

RO/R1 + 0.718 333.12
Fulfills Milan criteria prior to rection +
Type 1 collagen lacunarity at the tumor edge

RO/RI1 + 0.712 331.52
Fulfills Milan criteria prior to resection +

Type 1 collagen lacunarity at the tumor edge +

Variance (SD) of CD8 density at the tumor edge

RO/R1 + 0.702 336.62
Fulfills Milan criteria prior to resection +
CDS Factor 1* at the tumor edge

* As originally described by Rasmusson et al. [33], Factor 1 (from the factor analysis of CD8
variables) was characterized by strong positive loadings of the variables, which reflected the
level of CD8 + density within all interface zone aspects and was therefore interpreted as the
interface zone CD8 + density level factor, also referred to as the CD8 + density factor.

Overall Survival Models

The analysis of the Overall Survival (OS) revealed remarkable complexity in
prognostic modeling, with 132 different variable combinations achieving test
set C-indices above 0.70. This finding highlights the multifaceted nature of
HCC progression, where numerous factors contribute relatively equally to the
long-term outcomes. The optimal model achieved a test C-index of 0.782
(AIC: 299.90) by integrating clinical, laboratory, and computational tissue
parameters.

The identification of multiple high-performing models for OS prediction
suggests several important implications for HCC management. First, it
demonstrates that the disease course is influenced by a complex interplay of
factors, with no single dominant predictor. Second, it suggests that clinicians
may have the flexibility in choosing which parameters to monitor, as different
combinations of variables can provide similar prognostic accuracy. Third, it
reinforces the value of integrating computational tissue analysis with the
conventional clinical parameters, as all top-performing models included both
types of features.
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Table 7. Components of best-performing OS model

Variable HR 95% CI p-value
Age >55 years 2.96 1.19-7.39 0.020
Lymphovascular invasion 2.58 1.44-4.63 0.001
Preoperative AST level 1549  4.28-56.09 <0.0001
Preoperative GGT level 13.36  1.63-109.75 0.016
Variance (SD) of CDS density at  0.25 0.07-0.90 0.033
the tumor edge

Reticulin (green), mean 0.10 0.01-0.78 0.028

correlation at the tumor edge
Reticulin (green), CSD variation 3.38 1.09-10.50 0.035
at the tumor edge

Several limitations of our modeling approach should be noted. The relatively
small cohort size (N=106) limited the number of variables which could be
included in any single model. The retrospective nature of the study may
introduce selection bias. Additionally, external validation in independent
cohorts will be needed to confirm the generalizability of these models.

The findings from this integrated analysis demonstrate that a combination
of clinical parameters with computational tissue features can significantly
improve the prognostic accuracy in HCC. The identification of multiple viable
modeling approaches, particularly for OS prediction, reflects the complex
nature of HCC progression and suggests that personalized risk assessment
may benefit from considering multiple complementary sets of predictors.

Conclusion

Notably, both RFS and OS models incorporated computational markers
derived from tissue analysis alongside the established clinical parameters,
with CD8 lymphocyte distribution and fiber characteristics, both performing
as independent prognostic factors. Interestingly, some established
conventional prognostic factors, such as the tumor grade and size, did not
show a significant prognostic value in our cohort.
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DISCUSSION

The integration of artificial intelligence-based analyses of tumor
microenvironment, immune response, and tissue architecture has
demonstrated a significant potential for improving the prognostic accuracy in
Hepatocellular  Carcinoma (HCC). This study employed multiple
computational approaches to extract and analyze various features from
digitized histopathology slides, with the objective of providing novel insights
into HCC biology and patient outcomes.

CDS8 lymphocyte spatial distribution analysis

Our investigation into the spatial distribution of CD8 lymphocytes within the
HCC microenvironment revealed several important findings. In the resected
HCC cohort, a higher variance (standard deviation) of CD8 density at the
tumor edge emerged as an independent predictor of a longer overall survival
[27]. This observation suggests that irregular CDS cell infiltrates along the
tumor edge may represent localized, denser immune cell clusters, potentially
indicating a more effective anti-tumoral response. This finding aligns with
recent studies in other cancer types, such as breast cancer, where the spatial
heterogeneity of immune infiltrates has been associated with improved
outcomes [41].

In our analysis, we explored multiple Immunogradient parameters. Several
additional measures, specifically, the Center of Mass (CM) and Immunodrop
(ID) ratios which characterize changes in the CD8 density across the interface
zones, demonstrated significant correlations with the patient outcomes in
univariate analyses. However, these parameters did not retain independent
prognostic significance when evaluated alongside other clinical and
pathological variables in multivariate Cox regression models, as the most
robust prognostic information emerged from other metrics.

Interestingly, we observed contrasting prognostic implications for CDS8
infiltration in different tissue compartments. While a higher CD8 density
variance at the tumor edge was associated with better outcomes, a higher mean
CDS density in the epithelial aspect of the non-neoplastic liver parenchyma
was associated with the worse overall survival [27]. This dichotomy highlights
the complex role of CD8 T cells in HCC, where they may contribute to both
anti-tumoral immunity and liver damage in the context of chronic
inflammation. The negative prognostic impact of high CD8 density in non-
neoplastic liver tissue may reflect ongoing immune-mediated damage,
particularly in the context of viral hepatitis [42].
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The development of a comprehensive overall survival score combining the
CDS spatial distribution indicators with the conventional clinicopathological
parameters demonstrated the potential for improved risk stratification in HCC
patients [27]. This integrated approach, which achieved a clear separation of
patient groups with 5-year overall survival probabilities ranging from 76% to
8%, underscores the value of combining tissue-based computational
biomarkers with established clinical factors.

In the context of liver transplantation for HCC, our study identified two
independent predictors of the overall survival: preoperative platelet counts and
the mean CDS cell density at the epithelial edge of the non-neoplastic liver
parenchyma-stroma interface [43]. Notably, while previous research focused
primarily on the prognostic significance of tumor-infiltrating lymphocytes
within HCC, our findings highlight the importance of assessing the CD8 cell
distribution in the surrounding liver tissue as well. These results suggest that
the evaluation of the CD8 lymphocyte-mediated inflammatory response in the
non-neoplastic liver parenchyma may provide a better prognostic value than
the assessment of the anti-tumoral immune response within the HCC lesions,
particularly in the setting of liver transplantation where the malignant tissue is
completely removed. The validation of these results in preoperative liver
biopsy samples could offer a significant translational potential, enabling the
use of CD8 cell spatial distribution data to guide treatment decisions and
optimize the outcomes for HCC patients undergoing liver transplantation. For
example, patients with a more pronounced inflammatory response in the non-
neoplastic liver might benefit from a closer post-transplant monitoring.

Different predictors emerged from our analysis of a subgroup of resected
HCC patients meeting the Milan criteria preoperatively. In this subgroup of
early-stage HCC, low standard deviation of CD8 density along the tumor edge
and a positive (R1) resection margin were identified as independent predictors
of early post-resection recurrence [37]. It is a striking observation that the fact
that patients with both of these adverse factors exhibited a 100% risk of
relapse within 200 days has significant clinical implications. Validating the
findings in patient cohorts who underwent core biopsy could provide valuable
information about the distribution of CDS8 cells before surgery. This
preoperative data could help guide treatment decisions, particularly in
identifying patients at higher risk of incomplete tumor resection (R1). For
these high-risk patients, prioritizing liver transplantation over surgical
resection may significantly improve the overall treatment outcomes.
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Al-extracted tissue fiber framework morphometrics

Our analysis of the tissue fiber framework using Al-based morphometrics
revealed distinct prognostic roles for different types of fibers in HCC. The
study demonstrated that the reticulin structure at the tumor edge and collagen
characteristics at the epithelial edge of the peritumoral liver provided
independent prognostic information [32]. This finding underscores the
importance of analyzing both the tumor and its surrounding microenvironment
for comprehensive prognostic assessment.

The mean lacunarity of the reticulin framework at the tumor margin
emerged as a key prognostic feature derived from the HCC tissue, followed
closely by the variance (SD) of the reticulin lacunarity at the core of the tumor
[32]. Lacunarity, as a fractal parameter capturing both gaps and heterogeneity
in a pattern, likely reflects the disruption and distortion of the reticulin
framework associated with HCC progression. This aligns with the established
role of reticulin loss as a diagnostic hallmark of HCC [44]. The prognostic
significance of reticulin lacunarity extends beyond the simple quantification
of the reticulin content, suggesting that the spatial arrangement and
heterogeneity of the reticulin framework may provide more insight into the
tumor behavior than the overall reticulin density alone.

Our findings also highlight the independent prognostic significance of the

peritumoral liver parenchyma in HCC, particularly, the role of Type I collagen
in fibrous tissue accumulation during persistent liver damage. We identified
three collagen-derived features — a mean texture correlation, a high variance
of the fiber straightness, and a high variance in the fiber density — as significant
predictors of the overall survival, all measured at the interface between the
remaining functional hepatocytes and fibrous stroma. These features may
reflect the balance between the regions of dense, compact fibrosis and the
areas of relatively intact liver parenchyma, with high variability of collagen
deposition alongside the maintained overall tissue structure potentially
indicating an ongoing successful tissue repair and a sufficient residual liver
function, which is crucial for the patient survival.
The development of penalized Cox regression models incorporating the
patient age, tumor multifocality, and fiber-derived features achieved a good
discriminative ability for predicting the overall survival, outperforming
models based solely on the conventional clinicopathologic parameters [32].
This again highlights the potential of Al-extracted microarchitectural features
so that to enhance prognostic modeling in HCC.
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Deep learning-based tissue ‘fingerprint’ extraction

Our exploratory analysis using deep learning-based tissue ‘fingerprinting’
revealed promising results for identifying prognostically relevant tissue
microenvironments in HCC. The use of a pretrained transformer network
(CTransPath) for feature extraction, followed by unsupervised clustering,
allowed for the identification of distinct tissue patterns associated with the
patient outcomes.

The multivariate analysis identified specific cluster proportions (gm9 cl
for the overall survival; km9 c1 and gm6 c0 for the recurrence-free survival)
as independent predictors of the patient outcomes [unpublished data]. These
findings suggest that certain tissue microenvironments, identifiable through
deep learning approaches, may represent distinct tumor-stromal interactions
or epithelial-stromal transitions which influence the disease course. While the
biological interpretation of these clusters requires further investigation, the
ability to stratify patients based on these computational tissue ‘fingerprints’
demonstrates the potential of this approach for enhancing prognostic modeling
in HCC.

Integration of machine learning approaches

The integration of multiple machine learning approaches, incorporating
clinical, pathological, laboratory, and computational tissue analysis data,
resulted in predictive models for both the recurrence-free survival and the
overall survival in HCC patients. The recurrence-free survival model, which
included factors such as the resection margin status, the fulfillment of the
Milan criteria, the CDS8 density variance at the tumor edge, and the collagen
fiber lacunarity, achieved good predictive performance (c-index of 0.712)
[unpublished data]. This integrated approach demonstrates the potential for
combining the traditional clinical parameters with advanced computational
tissue analysis to improve risk stratification in HCC.

The development of multiple overall survival models with comparable
performance suggests that there may be several valid approaches to prognostic
modeling in HCC, potentially reflecting the complex and heterogeneous
nature of the disease. The consistent inclusion of computational markers
derived from tissue analysis alongside the established clinical parameters in
these models underscores the value of integrating Al-based tissue analysis into
prognostic assessment for HCC.

In conclusion, this comprehensive study demonstrates the potential of
integrating  artificial intelligence-based analyses of the tumor
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microenvironment, the immune response, and the tissue architecture to
enhance prognostic modeling in hepatocellular carcinoma. A combination of
CDS8 spatial distribution analysis, Al-extracted tissue fiber framework
morphometrics, and deep learning-based tissue ‘fingerprinting’ provides a
multifaceted approach to capturing the complex biology of HCC. While
further validation in larger, prospective cohorts and/or biopsy material is
needed, these findings lay the groundwork for the development of more
accurate and more personalized prognostic tools in HCC management.
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CONCLUSIONS

This doctoral thesis investigated the prognostic modeling of Hepatocellular
Carcinoma (HCC) through artificial intelligence-based tissue analysis,
studying a cohort of 134 patients who underwent surgical intervention (of
which, 106 liver resections and 28 liver transplantations) at Vilnius University
Hospital Santaros Clinics between 2007—2020. The study employed multiple
computational approaches to analyze digitized histopathology slides, while
focusing on three main analytical strategies.

CDS8 lymphocyte spatial distribution analysis

By using a hexagonal grid-based computational approach combined with
HALO® Al tissue segmentation, we analyzed the spatial distribution of CD8
lymphocytes at both tumor-stroma and liver-stroma interfaces. The key
findings of the present research include:

e Inresected HCC patients:

e A higher standard deviation of CD8 density at the tumor edge
independently predicted a longer overall survival (HR 0.39, 95% CI:
0.24-0.65, p=0.0002).

e A higher mean CDS density in the epithelial aspect of perineoplastic
liver predicted a worse survival likelihood (HR 3.65, 95% CI: 1.54—
8.67, p=0.0019).

e In transplanted HCC patients:

e A mean CDS8 density at the epithelial edge of the non-malignant
interface emerged as an independent predictor (HR 0.15, 95% CI:
0.03-0.82, p=0.01).

e Combined with the preoperative platelet count (HR 0.15, 95% CI:
0.03-0.81, p=0.01), these factors have been found to create a robust
prognostic model.

Al-extracted collagen framework analysis

By employing a modified U-Net convolutional neural network architecture,
we analyzed the architectural patterns of both reticulin (Type III collagen) and
Type I collagen fibers. Our notable findings include:
o In the HCC tissue:
e Mean lacunarity of reticulin at the tumor edge emerged as a key
predictor of shorter OS (HR 6.36, 95% CI: 1.69-23.87, p=0.006).
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e Correlation of Type I collagen in peritumoral liver showed a
protective OS effect (HR 0.21, 95% CI: 0.05-0.92, p=0.038).

o Two prognostic OS models achieved C-indices of >0.70, combining:

e Model A: Age >55 years (HR 4.05, 95% CI: 1.67-9.80, p=0.00194),
multiple tumors (HR 1.92, 95% CI: 1.11-3.31, p=0.01895), reticulin
lacunarity (HR 6.36, 95% CI: 1.69-23.87, p=0.00615), and collagen
correlation (HR 0.21, 95% CI: 0.05-0.92, p=0.03802).

e Model B: Similar variables, but replacing collagen correlation with
fiber straightness variance.

Deep learning-based tissue ‘fingerprint’ analysis

By using the CTransPath foundation model and unsupervised clustering
approaches, we have identified distinct tissue patterns associated with the
patient outcomes:
. For the Overall Survival (OS):
e Gaussian mixture model cluster gm9 cl showed an independent
prognostic value (HR: 8.67, 95% CI: 1.21-62.36, p=0.032).
. For the Recurrence-Free Survival (RFS):
e Two clusters emerged as significant predictors: km9 c1 (HR: 3.81,
p=0.024) and gm6_c0 (HR: 3.20, p=0.045).

Integration of machine learning approaches

Our integrated prognostic models combine clinical, laboratory, and
computational tissue features to enhance prediction accuracy for both the
Recurrence-Free Survival (RFS) and the Overall Survival (OS) in HCC. Our
key insights include:

e Recurrence-Free Survival (RFS):

e Full Cohort: The top RFS model, achieving a C-index of 0.718,
identified the resection margin status (RO vs R1), the Milan criteria
status, and collagen lacunarity at the tumor edge as independent
predictors (HR 4.23, p<0.0001 for the resection status; HR 0.56,
p=0.042 for fulfilling the Milan criteria prior to resection; HR 0.20,
p=0.006 for collagen).

e Subgroup Analysis (R0O-only): In patients with complete resections,
the immune cell spatial distribution and the tumor architectural
features were key, with CD8 density variation at the tumor edge (HR
0.15, p=0.008) and tumor multifocality (HR 2.45, p=0.006) driving
the predictive performance (C-index: 0.706).
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e Overall Survival (OS):

e The optimal OS model reached a C-index of 0.782 by integrating
seven variables: age >55 years, lymphovascular invasion, AST and
GGT levels, CD8 density standard deviation at the tumor edge,
reticulin correlation, and reticulin CSD variation. Notably, immune
(CD8 spatial variation, HR 0.25, p=0.033) and tissue features
(reticulin fiber correlation, HR 0.10, p=0.028) complemented the
clinical markers, underscoring their prognostic value.

This multimodal approach demonstrates that a combination of the clinical
data with tissue-specific computational features, especially CD8 lymphocyte
distribution and collagen/reticulin framework analytics, provides a significant
improvement in the prognostic accuracy, thus supporting more personalized
HCC management strategies.

Summary

These findings represent significant advances in computational pathology for
HCC prognostication. The study demonstrates that the integration of Al-based
tissue analysis with the conventional clinical parameters can provide a more
accurate risk stratification than the traditional methods alone. The developed
methods have potential clinical applications in the treatment planning,
particularly in decisions between liver resection and transplantation.

Future validation of these findings in larger, prospective cohorts and the
investigation of their applicability to preoperative biopsy specimens could
facilitate their translation into the clinical practice. This work lays the
foundation for more personalized approaches to HCC management,
potentially improving the patient outcomes through better-informed treatment
decisions.
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SANTRAUKA LIETUVIU KALBA
PREAMBULE

Si moksly daktaro disertacija pateikiama ginti kaip moksliniy straipsniy
rinkinys, kai kurios jos dalys cituojamos i§ anksc¢iau publikuoty straipsniy,
pateikiamy §io darbo pabaigoje.

Misy atliktas tyrimas nukreiptas j dirbtinio intelekto jrankiy panaudojimg
mikroskopiniy vaizdy analizei, siekiant prognozuoti hepatoceliuline
karcinoma (HCC) serganciy pacienty iSgyvenamg laikg iki ligos atkrycio
(RFS) ir bendrg iSgyvenamuma (OS). Tyrimo metu analizavome 134 HCC
pacienty, kuriems buvo atlikta kepeny rezekcija (106 pacientai) arba kepeny
transplantacija (28 pacientai) Vilniaus universiteto ligoninés Santaros
klinikose 2007—2020 metais, grupe.

Atliekant tyrima taikytos trys viena kitg papildancios analitinés strategijos:

1. CD8 limfocity infiltracijos analizeé. Jos metu pritaikytas SeSiakampiu
tinkleliu gristas skai¢iavimo ir vizualizavimo metodas citotoksiniy
limfocity erdviniam pasiskirstymui abipus epitelio ir stromos ribos
i8tirti.

2. Kolageno skaiduly analizé. Ja atlickant buvo tiriama tiek III tipo
(retikulino), tiek I tipo kolageno skaiduly mikroarchitektiira
panaudojant modifikuotg neuroninj tinkla.

3.  Giliu mokymusi paremta audiniy ,,pir§ty atspaudy“ analizé. Jos metu
taikytas nepriziirimo mokymosi metodas ir klasterizavimas
skirtingoms audiniy struktiiroms, susijusioms su ligos baigtimis,
nustatyti.

Masy tyrimas atskleidé¢, kad dirbtiniu intelektu pagristos audiniy analizés
reikSmingai pagerinti prognozavimo tiksluma. Pavyzdziui, nustatéme, kad
maza CD8 limfocity tankio variacija naviko kraste kartu su dideliu retikulino
struktiiry lak@inariSkumu (specifiniu tekstiiros parametru) perinavikiniame
audinyje leidzia prognozuoti trumpesnj iSgyvenamumg. Misy sukurti
kombinuoti prognostiniai modeliai, apimantys tiek klinikinius, tiek
skai¢iuojamuosius pozymius, pasieké geresnj prognozavimo tiksluma,
lyginant su tradiciniais metodais.

Sis darbas — tai dar vienas nedidelis Zingsnis link labiau individualizuoto
HCC gydymo. Tikimés, kad dirbtiniu intelektu grista audiniy analizé leis
patobulinti tradicinius prognozavimo metodus ir galiausiai pagerinti
priimamus terapinius sprendimus.
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Hepatoceliuliné karcinoma (HCC) uzima treéig vietg tarp visy piktybiniy
naviky sukelty mir¢iy pasaulyje, 1990-2019 metais net 70 % padidéjo
sergamumas Sia liga [1]. Pasaulinei sveikatos apsaugos sistemai HCC kelia
daug problemy, vien 2019 metais nuo Sios ligos miré 480 000 Zmoniy, o jos
gydyma apsunkina nesavalaiké diagnostika, kai liga nustatoma jau esant
vélyvoms stadijoms [2]. I§ jau atlikty tyrimy zinoma, kad ankstyvos HCC
atveju penkeriy mety bendras iSgyvenamumas virSija 70 %, taCiau esant
veélyvoms stadijoms $is skaicius krinta iki vos 18 % — tai aiskiai parodo, kaip
yra svarbu kuo anksCiau diagnozuoti ligg ir turéti metodus kuo tiksliau jg
prognozuoti [3]. Bent 80 % HCC atvejy §ia liga predisponuoja kepeny ciroze,
dazniausiai sukelta virusinio hepatito B ir C, alkoholio vartojimo, cheminiy
toksiny ar metaboliniy kepeny ligy [4]. Be to, pasaulyje nuolat augant Zzmoniy,
turin€iy antsvorj, skaiciui ir plintant 2 tipo diabetui vis dazniau susergama
nealkoholinémis riebalinémis kepeny ligomis (angl. non-alcoholic fatty liver
disease, NAFLD), kurios laikomos pagrindine HCC priezastimi netgi tuomet,
kai cirozés néra [5].

Dabar taikomi HCC eigos prognozavimo modeliai néra pakankamai
tiksliis. Skirtingai nuo daugelio kity vézio formy, HCC pacienty gydymo
rezultatai priklauso ne vien nuo paties naviko savybiy ir jo atsako j skirtg
gydyma [6]. Ne maziau svarbus veiksnys yra likusiy kepeny patologija bei
funkciniai pajégumai, tad siekiant tiksliau prognozuoti pacienty iseitis biitina
visapusiskai jvertinti tick naviko, tiek kepeny charakteristikas [ 7]. Pavyzdziui,
vienas placiausiai naudojamy modeliy yra Barselonos klinikiné kepeny vézio
(BCLC) stadijavimo sistema, ja taikant atsizvelgiama j kelis naviko i$plitimo,
kepeny funkcijos ir su véziu susijusiy simptomy parametrus [8]. Taciau netgi
taikant §ig sistemg ne visuomet galima pakankamai tiksliai prognozuoti
kepeny funkcijos praradimg sergantiesiems HCC [9].

Tiksliai prognozuoti HCC iSeitis sunku dél Sio naviko etiologijos,
architektiros, molekuliniy charakteristiky ir klinikiniy simptomy
heterogeniskumo [10]. Dinamiska ligos eiga, kuriai biuidingas greitas
progresavimas, varty venos invazija ar ekstrahepatinis plitimas, virsta tikru
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kuo labiau tobulinti ir individualizuoti HCC prognozavimo priemones.
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Trumpa dirbtinio intelekto ir masSininio mokymosi patologijoje
apzvalga

Siuo metu, kai pladiai integruojamas dirbtinis intelektas (DI) ir masininio
mokymosi (MM) technologijos, patologijos srityje vyksta didziulis
paradigmos  pokytis, atveriantis daugiau galimybiy diagnostikai,
prognozavimui ir individualizuotai medicinai [12]. ISvysCius viso
mikropreparato vaizdo (angl. whole slide imaging, WSI) skenavimo
galimybes sudaromos sglygos pazangiy skai¢iavimo metody taikymui
atliekant audiniy mikroarchitektiiros tyrimus [13].

Konvoliuciniai neuroniniai tinklai (angl. convolutional neural networks,
CNN), gilaus mokymosi algoritmy klasé, yra ypa¢ efektyviis atliekant tokias
uzduotis kaip automatinis audiniy segmentavimas, lasteliy aptikimas ir
histologiniy struktiry klasifikavimas [14]. Sios DI programos gali apdoroti
didZiulius vaizdiniy duomeny kiekius, identifikuodamos subtilius
struktiirinius poky¢ius ir ypatybes, kuriy netgi labai patyr¢ gydytojai patologai
gali nepastebéti [15]. HCC kontekste CNN yra sékmingai naudojami labai
jvairioms uzduotims — nuo automatizuoto naviky sri¢iy suradimo iki
diferenciacijos laipsnio ar intravaskulinés invazijos aptikimo [16].

Be jprasty klasifikavimo uzduociy, DI metodai naudojami ir kiekybiniams
pozymiams i$ histologiniy vaizdy iSgauti (t. y. apskai¢iuoti) [17]. Naudojantis
DI galima automatizuotai iSmatuoti sudétingas audiniy architektiiros savybes,
jvairiy tipy lgsteliy ar mikrostruktiry pasiskirstyma bei kitas morfologines
charakteristikas ir tokiu btidu iSgauti daugybe potencialiy biozymeny [18].
Pavyzdziui, DI grjsta navikg infiltruojanciy limfocity analizé sékmingai
taikoma prognozuojant jvairiy piktybiniy naviky tipy iSeitis [19].

Masininio mokymosi algoritmai, tokie kaip atraminiy vektoriy klasifikatoriai
(angl. support vector machine), atsitiktiniy medziy (angl. random forest) ir
palaipsnio stiprinimo (angl. gradient boost) metodikos, naudojami integruojant
Siuos 1§ vaizdy iSgautus pozymius kartu su geriau pazjstamais klinikiniais ir
molekuliniais parametrais, taip siekiama sukurti tikslesnius prognostinius
modelius [20]. Sie modeliai labiau individualizuotai stratifikuoja rizika, todél turi
potencialg pranokti tradicines stadijavimo sistemas [21].

Nors atliekama daugybé sékmingy eksperimenty, kuriy rezultatai nuolat
publikuojami, vis délto DI integracija | patologijos praktikg susiduria su
i8stkiais, tokiais kaip mokymams biitini dideli ir jvairiapusiai duomeny
rinkiniai, DI sprendimy interpretavimo, paaiSkinamumo, atkartojamumo ir
etiSkumo problemos, taip pat biitinas grieztas validavimas prie§ klinikinj
idiegimg [22]. Nepaisant to, nekyla abejoniy, kad DI jrankiy taikymas
patologijoje gali padidinti diagnostinj tikslumg, pagerinti prognozes ir
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galiausiai padéti pasirinkti individualizuotus gydymo sprendimus, kurie susij¢
su tokiomis ligomis kaip HCC [23].

Daugiamodalé audiniy analiz¢

Esant sudétingai HCC lasteliy, imuninés sistemos ir tarplgstelinio matrikso
saveikai biitinas kompleksinis poziiris j prognostiniy modeliy kirima. Siame
tyrime démesys sutelkiamas j tris pagrindinius naviko mikroaplinkos aspektus:
CDS citotoksinius T limfocitus, I bei III tipo kolageno skaiduly architektiirg ir
bendruosius vizualinius audiniy bruozus (angl. patterns). Kiekvienas Siy
komponenty suteikia unikaliy ir vienas kitg papildanc¢iy jZzvalgy apie naviko
biologija, aplinkinio kepeny audinio biikle ir galimas ligos baigtis.

CD8 limfocitai yra vienas svarbiausiy prie$navikinio imuninio atsako
elementy, todél nestebina, kad jie yra prognostiniu poziiiriu reikSmingi daugelyje
piktybiniy naviky tipy [24]. Kalbant konkreciai apie HCC, CDS lasteliy tankis ir
specifinis jy erdvinis pasiskirstymas yra susijgs su pacienty iSgyvenamumu,
taciau gaunami rezultatai yra Siek tiek nevienareikSmiai [25,26]. Pasitelke
pazangius erdvinés analizés metodus CDS limfocity infiltracijai i naviko ir kepeny
audinius charakterizuoti, siekéme patikslinti iki $iol publikuotus rezultatus ir
surinkti kuo detalesne¢ prognosting informacija [27].

Tarplastelinis matriksas, ypac I tipo kolageno ir III tipo kolageno (dar
vadinamo retikulinu) skaidulos, yra dar viena esminé naviko mikroaplinkos ir
aplinkinio kepeny audinio dalis. HCC atveju normalaus retikulino tinklo
poky¢iai yra svarbus diagnostinis pozymis, o I tipo (,,randinis*) kolagenas tiek
remodeliuojamas intra- / perinavikinéje aplinkoje, tiek parodo likutiniy
kepeny fibroze [28, 29]. Kiekybiné $iy skaiduly strukttiros analize, atliekama
naudojant DI pagrjstus metodus, leidzia uzfiksuoti subtilius architekttrinius
pokycius, galin€ius turéti prognosting reik§me [30].

Trecioji koncepcija misy tyrime yra audiniy ,,pirSty atspaudai®, iSgauti
naudojant giliojo mokymosi algoritmus. Siuo metodu siekiama nustatyti
specifines vizualines audiniy savybes (angl. patterns), kuriy nejmanoma
lengvai jvertinti pagal i§ anksto apsibréztus jy pozymius. Naudojant §] metoda
kity naviky prognostinése analizése jau gauta perspektyviy rezultaty [31].
Taikydami minétag metodika HCC siekéme identifikuoti naujas audiniy
savybes, kurios gali buti susijusios su ligos baigtimis.

Integruodami Siuos tris audiniy analizés komponentus — imuniniy Igsteliy
infiltracija, tarplastelinio matrikso architektiira ir bendrasias vizualines
audiniy savybes — siekéme sukurti visapusiskai patikima HCC prognostinj
modelj. Toks daugiamodalis rizikos vertinimas geriau atspindi sudétingg HCC
biologija, todé¢l yra potencialiai tikslesnis ir labiau personalizuotas [32].
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Tyrimo hipoteze

Dirbtiniu intelektu pagrjsta imuninio atsako, naviko mikroaplinkos ir audiniy
architektiros analizé turéty pagerinti hepatoceliulinés karcinomos

patologiniais parametrais.
Tyrimo tikslas

Sukurti  dirbtiniu intelektu  pagristus  hepatoceliulinés  karcinomos
prognostinius modelius, skirtus pacientams po chirurginio gydymo, j kuriuos
biity integruoti skaitmeninés patologijos duomenys apie imuninj atsaka,
naviko mikroaplinkg ir audiniy mikroarchitektiira.

Tyrimo uzdaviniai

1. Sukurti prognostinij modelj, pagrjsta CD8 limfocity erdviniu
pasiskirstymu navike ir aplinkinéje kepeny parenchimoje, taikant DI
audiniy klasifikavimo ir SeSiakampiy gardeliy segmentavimo metodikas.

2. Sukurti prognostinj modelj taikant DI pagrjstag kolageno skaiduly
morfometring analize¢ naviko mikroaplinkoje ir aplinkingje kepeny
parenchimoje.

3. Naudojant giliojo mokymosi neuroninius tinklus sukurti prognostinj
modelj, kuriuo biity nustatomos ir analizuojamos specifinés naviko
mikroarchitekttrinés ypatybés (,,pirSty atspaudus®).

4. Integruoti gautus duomenis j bendra modelj ir jvertinti jo efektyvuma
hepatoceliulinés karcinomos iSeitims prognozuoti.

TIRIAMOJI MEDZIAGA IR AUDINIU DAZYMO METODAI
Bioetikos leidimas ir finansavimo $altiniai

Vilniaus regioninis biomedicininiy tyrimy etikos komitetas (leidimas Nr.
2021/6-1354-843, i8duotas 2021 m. birzelio 29 d.) patvirtino atlikto tyrimo
protokola, kuriuo tyréjai buvo atleisti nuo pareigos gauti kiekvieno paciento
sutikimg. Tyrimas i§ dalies finansuotas Europos socialinis fondo pagal
Lietuvos mokslo tarybos projekta Nr. 09.3.3-ESFA-V-711-01-0001, kurio
tikslas — sustiprinti vie$ojo sektoriaus mokslininky kompetencijas vykdant
auksto lygio MTTP veiklas.
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Pacienty grupé¢ ir méginiy surinkimas

I tyrimg jtraukti 134 hepatoceliuline karcinoma (HCC) sergantys pacientai,
kuriems 2007-2020 m. Vilniaus universiteto ligoninés Santaros klinikose
buvo atlikta kepeny rezekcija arba kepeny transplantacija. Pagrindinés
pacienty charakteristikos pateiktos 8 lenteléje. Transplantuotyjy pacienty
(N=28) bendras iSgyvenamumas buvo statistiSkai reikSmingai (p=0,0011)
ilgesnis nei pacienty i§ rezekcijos grupés (N=106), todél Sios grupés toliau
analizuotos atskirai.

8 lentelé. Pagrindinés pacienty charakteristikos.

Charakteristika Reik§mé
Lytis Vyrai— 101 (75,4 %)
Moterys — 33 (24,6 %)
Amzius Vidurkis — 60,45 mety (spektras — 13-82)
Naviko diferenciacijos laipsnis  G1 — 13 (9,7 %)
(€)) G2 -101 (75,4 %)
G3 —-20 (14,9 %)
pT stadija T1-53 (39,6 %)

T2 - 73 (54,5 %)
T3 -7 (5.2 %)
T4 -1 (0,7 %)

Intravaskuliné invazija Yra—59 (44 %)
Néra—75 (56 %)
Cirozé Yra— 89 (66,4 %)
Néra — 45 (33,6 %)
Daugiau nei vienas naviko Taip — 37 (27,6 %)
zidinys Ne —97 (72,4 %)
Naviko dydis >2cm— 108 (80,6 %)

>5cm—30(22,4 %)
Nustatytas virusinis sukélégjas ~ HBV — 12 (9 %)
HCV — 74 (55,2%)
Atlikta kepeny transplantacija ~ Taip — 28 (20,9 %)
Ne — 106 (79,1 %)
Recidyvas po gydymo Taip — 57 (42,5 %)
Ne — 77 (57,5 %)
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Audiniy atranka ir dazymo technikos

Atliekant tyrimg panaudoti Valstybiniame patologijos centre archyvuoti
formalinu fiksuoti ir j parafing jlieti audiniy méginiai (FFPE). I$ kiekvienos
grupés atrinktas vienas reprezentatyviausias FFPE blokas, kuriame (jei tik
jmanoma) buvo ir naviko, ir aplinkinio kepeny audinio. Audiniai paruosti ir
dazyti Siomis technikomis:

e  Hematoksilino ir eozino (H & E) dazymas — naudotas bendrai audinio
morfologijai apzvelgti.

e  Gordon’o & Sweets’o sidabro impregnavimo ir pikro riigsties ir Sirijaus
raudonojo (GSPS) metodas — taikytas jungiamojo audinio architekttirai
jvertinti, iSrySkinant III tipo kolageno (retikulino) skaidulas juoda spalva,
o I tipo kolageno skaidulas — raudona spalva.

e (D8 imunohistochemija — taikyta -citotoksiniams T limfocitams
identifikuoti naviko ir aplinkiniuose kepeny audiniuose.

Visi dazyti méginiai buvo skaitmenizuoti 20x padidinant (0,5 um/pikseliui
raiSka), tam panaudotas ,,Leica Aperio AT2* skeneris. Skaitmenizuoti vaizdai
buvo perzitiréti pazymint dominancias naviko ir kepeny parenchimos sritis,
bet vengiant nekrozes ir artefakty zony.

1 UZDAVINYS. CD8 LIMFOCITU ERDVINIO PASISKIRSTYMO
ANALIZE

CDS8 limfocity erdvinis pasiskirstymas naviko mikroaplinkoje reprezentuoja
lokaly imuninj atsaka ir yra reik§mingas prognozuojant jvairius piktybiniy
naviky tipus.

Metodika

Rasmusson‘o ir kt. [33] sukurtas ,,Jmmunogradient* metodas automatizuoja
naviko ir stromos sgveikos zonos (angl. interface zone, 1Z) nustatyma bei CD8
limfocity (ar kity tiriamy lgsteliy) tankio profiliy generavimg. Atliekant tyrima
§is metodas buvo modifikuotas ir pritaikytas analizuoti dvi sgveikos zonas:
vienos zonos ribos buvo tarp naviko ir stromos, kitos — tarp kepeny
parenchimos (hepatocity) ir aplinkinio jungiamojo audinio. Komercine
HALO® Al sistema (/ndica Labs, Naujosios Meksikos valstija, JAV)
naudotasi tiek segmentuojant audinius, tiek identifikuojant CD8 lgsteles.
Analizé buvo tesiama taikant SeSiakampiy gardeliy tinklg, kuris padalija
klasifikuotas audiniy sritis ] SeSiakampius segmentus. Remiantis empiriniais
vertinimais ir ankstesne patirtimi, analizei pasirinkti 65 pum dydzio
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Sesiakampiai. Sesiakampiy gardeliy tinklas turi keleta privalumy, palyginti su
tradiciniu vaizdo suskaidymu ] staCiakampius, taip pat ir geresn¢ erdving
raiSkg [34]. Kiekviename SeSiakampiame segmente apskai¢iuojamas
kiekvienos audinio klasés plotas, ir sistema automatiskai aptinka naviko (ar
kitos klasés audinio) krastg laikydamasi aiskiy taisykliy, kuriose yra numatyti
staigiis naviko ir stromos ploty frakcijy poky¢iai. Si automatiné naviko krasto
identifikacija leidzia iSvengti daug laiko reikalaujanciy rankiniy anotacijy ir
uztikrina stabilius rezultatus tarp skirtingy méginiy ir tyrimy.

Kitame etape SeSiakampiai abiejose naviko kraSto (NK) pusese
reitinguojami pagal maziausig atstumga iki NK. Sesiakampiams, kuriuose yra
NK, skiriamas O rangas, SeSiakampiai naviko puséje (arba kepeny
parenchimoje, priklausomai nuo analizuojamos srities) gauna teigiamus
rangus (1, 2, 3 ir t. t.), o stromos puséje — neigiamus (-1, -2, -3 ir t. t.).
Galiausiai apibendrinami kiekvieno rango SeSiakampiuose esanciy CDS8
limfocity skaiciai ir sukuriami CDS tankio profiliai sgveikos zonoje.

Statistiné analizé

Statistiné analiz¢ atlikta siekiant identifikuoti sgsajas tarp CD8 tankio profiliy,
klinikiniy bei patologiniy kintamyjy ir pacienty isgyvenamumo (bendro — OS
ir berecidyvio — RFS). CD8 Igsteliy tankiai buvo logaritmuoti, o optimalios
tolydziy kintamuyjy ribinés vertés nustatytos naudojant ,,Cutoff Finder* vieSos
prieigos jrankj [35]. ISgyvenamumo skirtumams palyginti naudotos Kaplano
ir Meierio kreivés ir ,,Log-Rank® testas. Daugiaparametré Cox’o regresijos
analiz¢ taikyta siekiant nustatyti nepriklausoma prognosting rodikliy reikSme.
Analizé atlikta su SAS ir R programomis, o SeSiakampio tinklo apdorojimas
ir rodikliy skai¢iavimas — C++ kalba, naudojant ,,OpenCV* ir ,,Boost“
bibliotekas.

Rezultatai

Nustatyta, kad rezekuoty HCC pacienty grupéje didesné CD8 tankio variacija
(standartinis nuokrypis) naviko kraste buvo nepriklausomas ilgesnio bendrojo
iSgyvenamumo (OS) prognozés rodiklis. Didesnis uz vidutinj CD8 tankis
kepeny parenchimos kraste siejosi su trumpesniu OS, tikétina, tai Iémé
imuninés sistemos sukeltas létinis hepatocity pazeidimas (t. y. hepatitas).
Transplantuotyjy pacienty grupéje aukStesnis CDS8 tankis naviko kraste ir
didesnis trombocity kiekis kraujyje buvo nepriklausomi rodikliai, kurie siejosi
su ilgesniu OS. Be to, Milano transplantacijos kriterijus atitikusioje, taciau
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rezekuotoje HCC pacienty grupéje mazesné CDS tankio variacija ir teigiamas
rezekcijos krastas (R1) buvo veiksniai, sietini su ankstyva recidyvo rizika.
Tyrima riboja nedidelés imtys, retrospektyvinis analizés pobidis ir tai, kad
radiniai néra verifikuoti biopsinéje medziagoje. Nepaisant §iy trokumy
tyrimas patvirtina, kad CDS8 erdviniai rodikliai gali buti integruoti ir taikomi

modelius po chirurginio HCC gydymo.

2 UZDAVINYS. KOLAGENO SKAIDULU MORFOMETRIJA
PANAUDOJANT DIRBTIN] INTELEKTA

I tipo kolagenas ir III tipo kolagenas (dar vadinamas retikulinu), nors ir turi
struktirinio panaSumo, atlicka skirtingas funkcijas létinio hepatito ir
hepatoceliulinés karcinomos (HCC) evoliucijoje. I tipo kolageno kaupimasis
yra progresuojancios kepeny audinio fibrozés ir galiausiai cirozés pagrindas.
O I tipo kolageno (retikulino) normalaus sinusoidus isklojancio tinklo
pazeidimas yra vienas i§ HCC pozymiy. Zinodami $iy mikroarchitektiiriniy
poky¢iy prognostinj potencialg, Siame tyrimo etape sickéme kiekybiSkai
jvertinti abiejy kolageno tipy struktiirg tiek navike, tiek aplinkiniame kepeny
audinyje nagrinédami naujy pacienty, kuriems buvo atlickama kepeny
rezekcija dél HCC, prognostinius rodiklius.

Metodika

Antrame tyrimo etape tyréme kolageno skaiduly mikroarchitektira HCC
aplinkoje naudodamiesi konvoliuciniais neuroniniais tinklais (angl.
convolutional neural networks, CNN) ir remdamiesi Morkiino ir kt. aprasyta
metodika, originaliai pritaikyta kraties karcinomai tirti [38]. HCC atveju
mums buvo bitina atskirai jvertinti plonas juodas retikulino (III tipo
kolagenas) ir storesnes raudonai dazytas skaidulas (I tipo kolagenas).
Apmokéme modifikuotg ,,U-net* architekttiros tinklg atpazinti $iy dviejy tipy
skaidulas ir galiausiai sugeneruoti kolageno segmentacijos Zzemélapius (angl.
collagen segmentation masks, CSM), atitinkanCius originalaus skenuoto
vaizdo dydj. Mokymui panaudoti vaizdai buvo anotuoti rankiniu biidu ir
véliau papildyti vaizdus sukant, apverciant, iSblukinant ar kei¢iant mastelj.
Gauti segmentuoty kolageno skaiduly vaizdai toliau analizuoti pasitelkiant
pirmoje uzduotyje apraSyta SeSiakampés gardelés metoda, kuris automatiskai
aptinka naviko ribg ir jvertina rangais SeSiakampius pagal jy atstumg nuo
aptiktos ribos. Tai mums leido atlikti specifiniy vaizdo regiony (saveikos
zony) analiz¢ ir identifikuoti kolageno skaiduly pieSinio heterogeniskuma.
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Skirtingai nuo pirmos uzduoties, kai buvo tiriamas vienas parametras (CDS8
limfocity skaiCius SeSiakampyje), Siame etape, remdamiesi Morkiino ir kt.
tyrimo patirtimi, analizavome po 11 abiejy tipy kolageno skaiduly
mikroarchitektiros pozymiy kiekviename SeSiakampyje [38]. Duomeny
agregavimo metu apskaiciuotos vidutinés ir standartinio nuokrypio reik§més
kiekvienam SeSiakampiy rangui. Galutinj duomeny rinkinj sudaré 264
potenciallis prognostiniai rodikliai kiekvienam atvejui.

Statistiné analizé

Tirta 105 rezekuoty pacienty grupé (vienas atvejis i§ pradinés 106 pacienty
grupés buvo pasalintas dél nepakankamos audinio kokybés), i§ kurios 56
pacientai miré stebé&jimo laikotarpiu. 264 skaiduly morfometrija pagristi
pozymiai pirmiausia buvo normalizuoti j 0—1 intervalg. Vienparametré Cox’o
regresija su LASSO reguliarizacija buvo panaudota siekiant jvertinti
individualiy kintamyjy prognosting reikSm¢, o T2-T4 naviko stadija
(palyginti su T1) buvo identifikuota kaip ryskiausias reikSmingas individualus
blogesnio bendro i§gyvenamumo prediktorius (HR 4,81, 95% P12,40-9,64, p
<0,0001).

IS visy 36 charakteristiky, turin¢iy potencialig prognosting verte (p < 0,1
vienparametré¢je analizéje) bei klinikiniy ir patologiniy kintamyjy (amzius,
stadija, lytis, limfovaskuliné invazija ir naviko daugiazidini§kumas), buvo
sugeneruoti visi galimi iki 6 poZymiy turintys deriniai. I§ daugiau nei 2,8
milijony kandidaty atrinkti 139 modeliai (apie 0,005%), kuriuose visi
kintamieji buvo reikSmingi (p < 0,05). Du i§ juy pasieké konkordancijos
indeksa (C indeksg) vir§ 0,7, tai parodo geras diskriminacines modelio
savybes. Atlikta faktoriné analizé siekiant identifikuoti latentinius rysius ir
bendruosius biologinius procesus.

Rezultatai

Gauti du daugiaparametrés Cox’o regresijos modeliai HCC pacienty bendram
iSgyvenamumui prognozuoti po atliktos kepeny rezekcijos, j Siuos modelius
jtraukti paciento amzius, naviko daugiazidiniSkumas ir kolageno skaiduly
charakteristikos. Pirmajame modelyje (C indeksas — 0,7094) reik§mingais
prediktoriais buvo amzius — > 55 metai (HR 4,05, 95% PI 1,67-9,80, p =
0,00194), naviko daugiazidiniSkumas (HR 1,92, 95% PI 1,11-3,31, p =
0,01895), retikulino skaiduly vidutinis laktinariSkumas HCC sgveikos zonoje
(HR 6,36, 95% PI 1,69-23,87, p = 0.00615) ir vidutiné kolageno skaiduly
tekstiiros koreliacija kepeny sgveikos zonoje (HR 0,21, 95% PI 0,05-0,92, p
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= 0,03802). Antrasis modelis (C indeksas — 0,7061) turéjo panaSius
prediktorius, tik vietoj kolageno skaiduly tekstiiros koreliacijos j modelj
pateko kolageno skaiduly tiesumas kepeny saveikos zonoje. Sie modeliai
parametrais, pabrézdami potencialia DI i8skirty mikroarchitektiiriniy
kolageno pozymiy naudg prognozuojant HCC iseitis.

3 UZDAVINYS. GILIU MOKYMUSI PAGR]STA AUDINIU
,PIRSTU ANTSPAUDU*“ ANALIZE

Skyriuose, kuriuose aprasomi su 3 ir 4 uzdaviniais susij¢ darbai, pateikiami
tik preliminariis paskutiniy etapy rezultatai. Si tyrimo dalis dar néra baigta, o
duomenys néra oficialiai publikuoti. Pateikiama informacija siekiant
supazindinti su darby kryptimis ir galimais rezultatais. Biitina pazyméti, kad
Sie duomenys gali keistis tolesnés analizés ir recenzavimo proceso metu.

Metodika

MISL metodas

Pirminiame darbo etape iSbandéme démesiu valdoma dauginiy pavyzdziy
iSgyvenamumo mokymasi (angl. attention-guided multiple instance survival
learning), paremtg sékmingai Drachnerio ir kt. naudota metodika [39]. Taciau
taikant §j analizés bida nepavyko gauti tenkinanciy rezultaty, todél suktiréme
alternatyvy pozymiy iStraukimo (angl. feature extraction) ir klasterizavimo
modelj.

Duomeny paruosimas ir pozymiy istraukimas

Siame tyrimo etape buvo panaudoti 105 pacienty, kuriems atlikta HCC
rezekcija, hematoksilinu ir eozinu dazyti viso pjuvio vaizdai (WSI).
Pazymétos HCC sritys buvo suskirstytos j kvadrato formos 256 x 256 pikseliy
dydzio segmentus. Suboptimalios kokybés pavyzdziai paSalinti, o likusiy
vaizdy spalvy normalizavimas atliktas naudojant Vahadane’o algoritma. I§
viso sugeneruota 416 928 aukstos kokybés vaizdo segmenty. PoZymiams
iStraukti panaudotas atvirosios prieigos ,,CTransPath modelis, kuris
kiekvienam vaizdo segmentui sugeneravo po 768 pozymius.

Klasterizavimas

Pozymiy vektoriai buvo suskirstyti j klasterius pagal audiniy tipus taikant
Gauso misryjj modelj (angl. gaussian mixture model, GMM) ir , K-means*
algoritma skirtingiems klasteriy skai¢iams (k = 2-10). Kiekvieno paciento
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mikropreparatui buvo apskaiciuota audiniy sudétis procentais, atsizvelgiant |
aptiktus Kklasterius, tokiu btdu suformuotas unikalus vaizdo ,,pirSty
atspaudas®.

Statistiné analizé

Taikant daugiaparametr¢ Cox’o regresijos analiz¢ nustatyta klasteriy
proporcijy sasaja su iSgyvenamumu ir ligos atsinaujinimu. Statistiné
reik§mingumo riba — p < 0,05.

Rezultatai

Vizualizuoti klasteriai parodé specifinius audiniy pieSinius ir struktiiras.
Remdamiesi jais siekéme nustatyti, ar didesné tam tikro klasterio proporcija
audinyje yra susijusi su ilgesniu ar su trumpesniu bendru iSgyvenamumu (OS),
taip pat ir i§gyvenamumu be recidyvo (RFS).

Rezultatai parodé, kad yra trys reikSmingi kintamieji bendram
iSgyvenamumui: gm6 c0, gm9 cl ir km10 cl, i$ jy gm9 cl liko statistiskai
reikSmingas ir daugiaparametréje regresijoje (HR 8,67, p = 0,032).
ISgyvenamumui be recidyvo reikSmingi buvo du kintamieji: km9 cl ir
gm6 c0, kurie liko reikSmingi ir daugiaparametré¢je analizéje, su HR
reikSmémis 3,81 (p = 0,024) ir 3,20 (p = 0,045). Tiek OS, tick RFS modeliai
buvo statistiSkai reik§Smingi (LR p = 0,014 ir p = 0,013).

I§vada

IS preliminariy rezultaty matyti, kad audiniy klasterizacija gali padéti
identifikuoti prognostiniu pozitiriu reikSmingas audiniy klases (tipus).

4 UZDAVINYS. MASININIO MOKYMOSI METODU
INTEGRAVIMAS

Sis etapas skirtas sukurti kompleksinius prognostinius modelius, kurie
sujungty klinikinius parametrus, laboratorinius duomenis ir kompiuterinés
audiniy analizés rodiklius. Analizéje naudojome CDS8 limfocity erdvinj
i8sidéstyma ir audiniy skaiduly struktiiros charakteristikas.

Metodika

Taikéme dviejy etapy metoda. Per pirmajj etapg visi kintamieji buvo jvertinti
naudojant vienparametr¢ Cox’o regresijos analize. ReikSmingi kintamieji (p <
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0,05) buvo atrinkti tolesniam darbui. Per antrajj etapg atlikta daugiaparametré
Cox’o regresija su LASSO reguliarizacija ir 5 karty kryzmine validacija (angl.
cross validation). Modeliai buvo vertinami pagal konkordantiskumo indeksa
(C indeksa) ir Aikakés informacijos kriterijy (angl. Akaike information
criterion, AIC).

Rezultatai

Bendrojo isgyvenamumo modeliai

Atlikus bendrojo iSgyvenamumo analiz¢ gauti net 132 skirtingi kintamyjy

deriniai, kuriy C indeksas buvo daugiau nei 0,70. ] geriausiag modelj (C

indeksas — 0,782, AIC — 299,90) buvo integruoti klinikiniai, laboratoriniai ir

kompiuterinés audiniy analizés parametrai:

e Amzius > 55 mety (HR = 2,96, 95% PI: 1,19-7,39, p = 0,020);

e Intravaskuliné invazija (HR = 2,58, 95% PI: 1,44-4,63, p = 0,001);

e  PrieSoperaciné AST reiksmé (HR = 15,49, 95% PI: 4,28-56,09, p <
0,0001)

e  PrieSoperaciné GGT reikSmé (HR = 13,36, 95% PI: 1,63-109,75, p =
0,016);

e (DS tankio variacija (standartiné deviacija) naviko kraste (HR = 0,25,
95% PI: 0,07-0,90, p = 0,033);

e Retikulino skaiduly teksttros koreliacija naviko kraste (HR = 0,10, 95%
PI: 0,01-0,78, p = 0,028);

e Retikulino CSD variacija naviko kraste (HR = 3,38, 95% PI: 1,09-10,50,
p=0,035).

Isgyvenamumo be recidyvo modeliai

Rezekuoty pacienty grupéje geriausias RFS modelis buvo toks: C indeksas —

0,718 (AIC —333,12), o jo komponentai:

e  Rezekcijos radikalumas (R1 vs RO: HR = 4,23, 95% PI: 2,29-7.81, p <
0,0001);

e Ikioperacinis atitikimas Milano transplantacijos kriterijams (HR = 0,56,
95% PI: 0,32-0,98, p = 0,042);

e  Vidutinis kolageno skaiduly lakiinariSkumas naviko kraste (HR = 0,20,
95% PI: 0,06-0,63, p = 0,006).

Subgrupéje, kurioje buvo tik radikalios (R0O) rezekcijos pacientai, geriausias

modelis (C indeksas — 0,706, AIC — 231,97) sujungé du nepriklausomus

prognostinius veiksnius:
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e (DS tankio variacijg (standartiné deviacija) naviko kraste (HR = 0,15,
95% PI: 0,03-0,61, p = 0,008);
e  Naviko daugiazidiniSkuma (HR = 2,45, 95% PI: 1,30-4,62, p = 0,0006).

ISVADOS

Si disertacija skirta hepatoceliulinés karcinomos (HCC) prognostiniam
modeliavimui, kurio metu panaudojant dirbtinj intelektg atlickama audiniy
analiz¢, aprasyti. | tyrimg buvo jtraukti 134 pacientai, kurie nuo 2007 m. iki
2020 m. gydyti Vilniaus universiteto ligoninés Santaros klinikose (106 kepeny
rezekcijos ir 28 kepeny transplantacijos). Tyrime buvo taikomi trys
pagrindiniai analitiniai metodai:

CDS8 limfocity erdvinio pasiskirstymo analize

Naudojantis  SeSiakampiy gardeliy metodu ir HALO® Al audiniy
segmentavimu buvo analizuotas CDS8 limfocity erdvinis pasiskirstymas
naviko—stromos ir kepeny—stromos sgveikos zonose.
e  Rezekuoty HCC pacienty grupéje rezultatai buvo tokie:
e (D8 tankio standartinis nuokrypis naviko kraste reikSmingai
koreliavo su geresniu bendru iSgyvenamumu (HR — 0,39, p = 0,0002).
e Didelis vidutinis CD8 tankis kepeny parenchimoje siejosi su
blogesniu bendru i§gyvenamumu (HR — 3,65, p = 0,0019).
e Transplantuoty HCC pacienty grupéje rezultatai buvo tokie:
e (D8 tankis ties kepeny parenchimos ir stromos riba buvo
nepriklausomas prognostinis veiksnys (HR — 0,15, p =0,01).
e Kartu su prieSoperaciniu trombocity skai¢iumi (HR — 0,15, p = 0,01)
Sie rodikliai buvo jtraukiami ] statistiSkai reikSmingg prognostinj
modelj.

Kolageno skaiduly morfometrija panaudojant DI

Naudojantis ,,U-Net*“ konvoliuciniu neuroniniu tinklu analizuotos III tipo

(retikulino) ir I tipo kolageno skaidulos. Analizuota tik rezekuoty HCC

pacienty grupé.

e Retikulino laktinariSkumas naviko kraste buvo reikSmingas prognostinis
rodiklis (HR — 6,36, p = 0,000).

e [ tipo kolageno tekstiiros koreliacija ties kepeny parenchimos ir stromos
riba buvo antrasis reikSmingas prognostinis rodiklis (HR — 0,21, p =
0,038).
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e  Modeliai:

e Modelis A —amzius — > 55 metai (HR 4,05, p = 0,00194), naviko
daugiazidiniskumas (HR 1,92, p = 0,01895), retikulino skaiduly
vidutinis laktinariSkumas HCC sgveikos zonoje (HR 6,36, p =
0.00615) ir vidutiné kolageno skaiduly tekstiiros koreliacija kepeny
sgveikos zonoje (HR 0,21, p = 0,03802).

e Modelis B — analogiskas, tik kolageno tekstiros koreliacija
pakei¢iama j kolageno skaiduly tiesuma.

Giliu mokymusi pagrijsta audiniy ,,pirSty antspaudy‘ analizé

Naudojantis ,,CTransPath® modeliu ir nekontroliuojamais klasterizavimo
metodais nustatyti audiniy tipai, susij¢ su pacienty i§gyvenamumu:
e Bendram i§gyvenamumui (OS):
e Kilasteris gm9 cl buvo nepriklausomas prognostinis rodiklis (HR —
8,67, p=10,032).
e [Sgyvenamumui be recidyvo (RFS):
e Klasteriai km9 c1 (HR — 3,81, p =0,024) ir gm6_c0 (HR — 3,20, p =
0,045).

Masininio mokymosi metody integravimas

Sujungus klinikinius, laboratorinius ir kompiuterinés audiniy analizés

duomenis, sukurti prognostiniai modeliai abiem i§gyvenamumo rodikliams:

e RFS — geriausias modelis (C indeksas — 0,718) apémé rezekcijos
radikaluma (R1 vs R0), ikioperacinj atitikimg Milano transplantacijos
kriterijams ir vidutinj kolageno skaiduly laktinariSkuma naviko kraste;

e  OS—|geriausig modelj (C indeksas — 0,782) integruoti septyni veiksniai:
vyresnis amzius, intravaskuliné invazija, prieSoperacinés AST ir GGT
reikSmeés, CD8 tankio variacija naviko kraste, retikulino skaiduly
tekstliros koreliacija naviko kraSte ir retikulino CSD variacija naviko
kraste.

Apibendrinimas

Rezultatai, gauti naudojantis skaitmeniniy technologijy jrankiais, prisideda
prie patologijos tyrimy pazangos. Tyrimas jrodo, kad dirbtiniu intelektu
parametrais gali suteikti tikslesng rizikos stratifikacijg nei vien tik tradiciniy
modeliy naudojimas. Sukurti metodai turi potencialy klinikinj pritaikyma
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planuojant gydyma, ypac priimant sprendimus, kai reikia rinktis tarp kepeny
rezekcijos ir transplantacijos. Ateityje Siy iSvady validavimas didesnése,
prospektyvinése grupése ir jy pritaikomumo prieSoperaciniy biopsijy
meéginiams tyrimas galéty buti kitas Zingsnis siekiant jas jdiegti i kliniking
praktika. Sis darbas ple¢ia individualizuoto pozitrio j HCC kontrolg svarba,
kas potencialiai gerinty gydymo rezultatus pagrjstai atrenkant ir taikant
terapinius sprendimus.

65



10.

11.

12.

13.

REFERENCES

Toh MR, Wong EYT, Wong SH, Ng AWT, Loo LH, Chow PK, et al.
Global Epidemiology and Genetics of Hepatocellular Carcinoma.
Gastroenterology. 2023;164(5):766-82.

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A,
et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence
and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J
Clin. 2021;71(3):209-49.

Vogel A, Meyer T, Sapisochin G, Salem R, Saborowski A.
Hepatocellular carcinoma. Lancet. 2022;400(10360):1345-62.

Singh AK, Kumar R, Pandey AK. Hepatocellular Carcinoma: Causes,
Mechanism of Progression and Biomarkers. Curr Chem Genom Transl
Med. 2018;12:9-26.

Chrysavgis L, Giannakodimos I, Diamantopoulou P, Cholongitas E. Non-
alcoholic fatty liver disease and hepatocellular carcinoma: Clinical
challenges of an intriguing link. World J Gastroenterol. 2022;28(3):310-31.
Nault JC, Galle PR, Marquardt JU. The role of molecular enrichment on
future therapies in hepatocellular carcinoma. J Hepatol. 2018;69(1):237-47.
Eilard MS, Naredi P, Helmersson M, Hemmingsson O, Isaksson B,
Lindell G, et al. Survival and prognostic factors after transplantation,
resection and ablation in a national cohort of early hepatocellular
carcinoma. HPB (Oxford). 2021;23(3):394-403.

Reig M, Forner A, Rimola J, Ferrer-Fabrega J, Burrel M, Garcia-Criado
A, et al. BCLC strategy for prognosis prediction and treatment
recommendation: The 2022 update. J Hepatol. 2022;76(3):681-93.
Mauro E, Forner A. Barcelona Clinic Liver Cancer 2022 update: Linking
prognosis prediction and evidence-based treatment recommendation with
multidisciplinary clinical decision-making. Liver Int. 2022;42(3):488-91.
Chidambaranathan-Reghupaty S, Fisher PB, Sarkar D. Hepatocellular
carcinoma (HCC): Epidemiology, etiology and molecular classification.
Adv Cancer Res. 2021;149:1-61.

Yang JD, Hainaut P, Gores GJ, Amadou A, Plymoth A, Roberts LR. A
global view of hepatocellular carcinoma: trends, risk, prevention and
management. Nat Rev Gastroenterol Hepatol. 2019;16(10):589-604.
Niazi MKK, Parwani AV, Gurcan MN. Digital pathology and artificial
intelligence. Lancet Oncol. 2019;20(5):e253-e61.

Zarella MD, Bowman D, Aeffner F, Farahani N, Xthona A, Absar SF, et al.
A Practical Guide to Whole Slide Imaging: A White Paper From the Digital
Pathology Association. Arch Pathol Lab Med. 2019;143(2):222-34.

66



14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Campanella G, Hanna MG, Geneslaw L, Miraflor A, Werneck Krauss Silva
V, Busam KJ, et al. Clinical-grade computational pathology using weakly
supervised deep learning on whole slide images. Nat Med. 2019;25(8):1301-
9.

Bera K, Schalper KA, Rimm DL, Velcheti V, Madabhushi A. Artificial
intelligence in digital pathology - new tools for diagnosis and precision
oncology. Nat Rev Clin Oncol. 2019;16(11):703-15.

Cheng N, Ren Y, Zhou J, Zhang Y, Wang D, Zhang X, et al. Deep Learning-
Based Classification of Hepatocellular Nodular Lesions on Whole-Slide
Histopathologic Images. Gastroenterology. 2022;162(7):1948-61 €7.

Serag A, Ion-Margineanu A, Qureshi H, McMillan R, Saint Martin MJ,
Diamond J, et al. Translational Al and Deep Learning in Diagnostic
Pathology. Front Med (Lausanne). 2019;6:185.

Tabibu S, Vinod PK, Jawahar CV. Pan-Renal Cell Carcinoma classification
and survival prediction from histopathology images using deep learning. Sci
Rep. 2019;9(1):105009.

Saltz J, Gupta R, Hou L, Kurc T, Singh P, Nguyen V, et al. Spatial
Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes
Using Deep Learning on Pathology Images. Cell Rep. 2018;23(1):181-93
e7.

Mobadersany P, Yousefi S, Amgad M, Gutman DA, Barnholtz-Sloan JS,
Velazquez Vega JE, et al. Predicting cancer outcomes from histology and
genomics using convolutional networks. Proc Natl Acad Sci U S A.
2018;115(13):E2970-E9.

Liao H, Xiong T, Peng J, Xu L, Liao M, Zhang Z, et al. Classification and
Prognosis Prediction from Histopathological Images of Hepatocellular
Carcinoma by a Fully Automated Pipeline Based on Machine Learning. Ann
Surg Oncol. 2020;27(7):2359-69.

Abels E, Pantanowitz L, Aeffner F, Zarella MD, van der Laak J, Bui MM,
et al. Computational pathology definitions, best practices, and
recommendations for regulatory guidance: a white paper from the Digital
Pathology Association. J Pathol. 2019;249(3):286-94.

Nam D, Chapiro J, Paradis V, Seraphin TP, Kather JN. Artificial intelligence
in liver diseases: Improving diagnostics, prognostics and response
prediction. JHEP Rep. 2022;4(4):100443.

Fridman WH, Pages F, Sautes-Fridman C, Galon J. The immune contexture
in human tumours: impact on clinical outcome. Nat Rev Cancer.
2012;12(4):298-306.

Xu X, Tan Y, Qian Y, Xue W, Wang Y, Du J, et al. Clinicopathologic and
prognostic significance of tumor-infiltrating CD8 T cells in patients with

67



26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

hepatocellular carcinoma: A meta-analysis. Medicine (Baltimore).
2019;98(2):€13923.

Gabrielson A, Wu Y, Wang H, Jiang J, Kallakury B, Gatalica Z, et al.
Intratumoral CD3 and CD8 T-cell Densities Associated with Relapse-Free
Survival in HCC. Cancer Immunol Res. 2016;4(5):419-30.

Stulpinas R, Zilenaite-Petrulaitiene D, Rasmusson A, Gulla A, Grigonyte A,
Strupas K, et al. Prognostic Value of CD8Lymphocytes in Hepatocellular
Carcinoma and Perineoplastic Parenchyma Assessed by Interface Density
Profiles in Liver Resection Samples. Cancers. 2023;15(2).

Karsdal MA, Daniels SJ, Holm Nielsen S, Bager C, Rasmussen DGK,
Loomba R, et al. Collagen biology and non-invasive biomarkers of liver
fibrosis. Liver Int. 2020;40(4):736-50.

Renne SL, Sarcognato S, Sacchi D, Guido M, Roncalli M, Terracciano L, et
al. Hepatocellular carcinoma: a clinical and pathological overview.
Pathologica. 2021;113(3):203-17.

Taylor-Weiner A, Pokkalla H, Han L, Jia C, Huss R, Chung C, et al. A
Machine Learning Approach Enables Quantitative Measurement of Liver
Histology and Disease Monitoring in NASH. Hepatology. 2021;74(1):133-
47.

Kather JN, Heij LR, Grabsch HI, Loeffler C, Echle A, Muti HS, et al. Pan-
cancer image-based detection of clinically actionable genetic alterations. Nat
Cancer. 2020;1(8):789-99.

Stulpinas R, Morkunas M, Rasmusson A, Drachneris J, Augulis R, Gulla A,
et al. Improving HCC Prognostic Models after Liver Resection by Al-
Extracted Tissue Fiber Framework Analytics. Cancers (Basel). 2023;16(1).

Rasmusson A, Zilenaite D, Nestarenkaite A, Augulis R, Laurinaviciene A,
Ostapenko V, et al. Immunogradient Indicators for Antitumor Response
Assessment by Automated Tumor-Stroma Interface Zone Detection. Am J
Pathol. 2020;190(6):1309-22.

Birch CPD, Oom SP, Beecham JA. Rectangular and hexagonal grids used
for observation, experiment and simulation in ecology. Ecol Model.
2007;206(3-4):347-59.

Budczies J, Klauschen F, Sinn BV, Gyérfty B, Schmitt WD, Darb-Esfahani
S, et al. Cutoff Finder: A Comprehensive and Straightforward Web
Application Enabling Rapid Biomarker Cutoff Optimization. Plos One.
2012;7(12).

Stulpinas R, Zilenaite-Petrulaitiene D, Rasmusson A, Gulla A, Grigonyte A,
Strupas K, et al. Prognostic Value of CD8 Lymphocytes in Hepatocellular
Carcinoma and Perineoplastic Parenchyma Assessed by Interface Density
Profiles in Liver Resection Samples. Cancers (Basel). 2023;15(2).

68



37.

38.

39.

40.

41.

42.

43.

44,

Stulpinas R, Jakiunaite I, Sidabraite A, Rasmusson A, Zilenaite-Petrulaitiene
D, Strupas K, et al. Low CD8 Density Variation and R1 Surgical Margin as
Independent Predictors of Early Post-Resection Recurrence in HCC Patients
Meeting Milan Criteria. Curr Oncol. 2024;31(9):5344-53.

Morkunas M, Zilenaite D, Laurinaviciene A, Treigys P, Laurinavicius A.
Tumor collagen framework from bright-field histology images predicts
overall survival of breast carcinoma patients. Sci Rep-Uk. 2021;11(1).
Drachneris J, Morkunas M, Fabijonavicius M, Cekauskas A, Jankevicius F,
Laurinavicius A. Prediction of Non-Muscle Invasive Papillary Urothelial
Carcinoma Relapse from Hematoxylin-Eosin Images Using Deep Multiple
Instance Learning in Patients Treated with Bacille Calmette-Guerin
Immunotherapy. Biomedicines. 2024;12(2).

Wang X, Yang S, Zhang J, Wang M, Zhang J, Yang W, et al. Transformer-
based unsupervised contrastive learning for histopathological image
classification. Med Image Anal. 2022;81:102559.

Krijgsman D, van Leeuwen MB, van der Ven J, Almeida V, Vlutters R,
Halter D, et al. Quantitative Whole Slide Assessment of Tumor-Infiltrating
CD8-Positive Lymphocytes in ER-Positive Breast Cancer in Relation to
Clinical Outcome. Ieee J Biomed Health. 2021;25(2):381-92.

Khanam A, Chua JV, Kottilil S. Immunopathology of Chronic Hepatitis B
Infection: Role of Innate and Adaptive Immune Response in Disease
Progression. Int J Mol Sci. 2021;22(11).

Gulla A, Stulpinas R, Grigonyte A, Zilenaite-Petrulaitiene D, Rasmusson A,
Laurinavicius A, et al. Overall Survival Prediction by Tumor
Microenvironment Lymphocyte Distribution in Hepatocellular Carcinoma
After Liver Transplantation. J Surg Res. 2024;295:457-67.

Burt ADP, B. C.; Ferrell, L. D. MacSween’s Pathology of the Liver:
Churchill Livingstone; 2011.

69



CURRICULUM VITAE

Name and surname: Rokas Stulpinas

Place of birth: Vilnius, Lithuania

Education:

2020 — 2024: Doctorate studies, Vilnius University
HCC Prognostic Modeling Using Al-based Tissue Analysis

2020 —2021: Executive MBA thesis, ISM University of Management
and Economics

Factors Influencing Physicians’ Migration Intentions at the National
Center of Pathology

2011 —2015: Residency of Pathology, Vilnius University
Completed training in pathology

2008 —2010: Executive MBA studies, ISM University of Management
and Economics

Completed advanced management courses in Project Management,
Human Resource Management, Marketing Strategy and Management,
and Business Process Management

2000 — 2007: Master’s degree in medicine and primary residency (MD),
Vilnius University

Medical Education Encompassing Theoretical Coursework, Clinical
Rotations, and Research Activities

1988 — 2000: Secondary Education, Vilnius Antakalnio Secondary
School
Secondary education with honors

Professional Experience

2017 — currently: Pathologist, Gastrointestinal Pathology Supervisor at
the National Center of Pathology, Affiliate of Vilnius University
Hospital Santaros Klinikos

Providing diagnostic services with focus on gastrointestinal pathology
and participating in research and training activities

2015 — currently: Chief Pathologist at HILA Private Hospital, Vilnius,
Lithuania

70



Overseeing all pathology services and diagnostic operations while
implementing quality assurance protocols for accurate and timely
diagnosis

2015 — 1017: Pathologist at Vilnius City Clinical Hospital
Specialized in gastrointestinal, urological, and gynecological pathology
diagnostics while collaborating with multidisciplinary clinical teams

2011 —2015: Resident of pathology at National Center of Pathology,
Affiliate of Vilnius University Hospital Santaros Klinikos
Completed training in pathology while participating in research
projects and regular teaching conferences

2006 —2010: Assistant manager at Hematology, Oncology and
Transfusion Medicine Center, Vilnius University Hospital Santaros
Klinikos

Managed clinical trials from inception to publication, coordinating
data collection and analysis while preparing publications and
presentations

2002 — 2004: Project manager at Vaisty Zinios publishing house
Coordinated the development and publication of specialized medical
literature, ensuring high-quality content and timely delivery

Complete publication list

1.

Stulpinas R, Jakiunaite I, Sidabraite A, Rasmusson A, Zilenaite-
Petrulaitiene D, Strupas K, Laurinavicius A, Gulla A. Low CD8+
Density Variation and R1 Surgical Margin as Independent Predictors of
Early Post-Resection Recurrence in HCC Patients Meeting Milan
Criteria. Curr Oncol. 2024;31:5344-5353.
doi:10.3390/curroncol31090394

Luksta M, Bausys A, Gendvilaite N, Bickaite K, Rackauskas R,
Paskonis M, Luksaite-Lukste R, Ranceva A, Stulpinas R, Brasiuniene
B, et al. Pressurized Intraperitoneal Aerosol Chemotherapy (PIPAC) for
Gastric Cancer Peritoneal Metastases: Results from the Lithuanian
PIPAC Program. Cancers. 2024;16(17):2992.
doi:10.3390/cancers16172992

Stulpinas R, Morkunas M, Rasmusson A, Drachneris J, Augulis R,
Gulla A, Strupas K, Laurinavicius A. Improving HCC Prognostic

71



10.

Models after Liver Resection by Al-Extracted Tissue Fiber Framework
Analytics. Cancers. 2024;16(1):106. doi:10.3390/cancers16010106

Rackauskas R, Luksaite-Lukste R, Stulpinas R, Bausys A, Paskonis M,
Kvietkauskas M, Sokolovas V, Laurinavicius A, Strupas K. The Impact
of Chemotherapy and Transforming Growth Factor-p1 in Liver
Regeneration after Hepatectomy among Colorectal Cancer Patients. J
Pers Med. 2024;14(2):144. doi:10.3390/jpm14020144

Gulla A, Stulpinas R, Grigonyte A, Zilenaite-Petrulaitiene D,
Rasmusson A, Laurinavicius A, Strupas K. Overall Survival Prediction
by Tumor Microenvironment Lymphocyte Distribution in
Hepatocellular Carcinoma After Liver Transplantation. J Surg Res.
2024;295:457-467. doi:10.1016/j.jss.2023.10.011

Stulpinas R, Zilenaite-Petrulaitiene D, Rasmusson A, Gulla A,
Grigonyte A, Strupas K, Laurinavicius A. Prognostic Value of CD8+
Lymphocytes in Hepatocellular Carcinoma and Perineoplastic
Parenchyma Assessed by Interface Density Profiles in Liver Resection
Samples. Cancers. 2023;15(2):366. doi:10.3390/cancers15020366

Silinskaite U, Gaveliene E, Stulpinas R, Janavicius R, Poskus T. A
Novel Mutation of MSH2 Gene in a Patient with Lynch Syndrome
Presenting with Thirteen Metachronous Malignancies. J Clin Med.
2023;12(17):5502. doi:10.3390/jem12175502

Luksta M, Bausys A, Bickaite K, et al. Pressurized intraperitoneal
aerosol chemotherapy (PIPAC) with cisplatin and doxorubicin in
combination with FOLFOX chemotherapy as a first-line treatment for
gastric cancer patients with peritoneal metastases: single-arm phase 11
study. BMC Cancer. 2023;23:1032. doi:10.1186/s12885-023-11549-z

Marcinkeviciute K, Jurkeviciute D, Stulpinas R, Stratilatovas E,
Dulskas A. Pancreatic Mucinous Cystic Neoplasm with Associated
Invasive Carcinoma: A Case Report and Literature Review. Lietuvos
Chirurgija. 2023;22(2):99-105. doi:10.15388/LietChirur.2023.22.84

Stulpinas R, Zilenaite-Petrulaitiene D, Rasmusson A, Grigonyte A,
Kielaite-Gulla A, Strupas K, Laurinavicius A. Computational tissue
immune response indicators to predict overall survival in hepatocellular
carcinoma. Eur J Surg Oncol. 2023;49(2):e164.
doi:10.1016/j.ejs0.2022.11.454

72



11.

12.

13.

14.

15.

16.

17.

18.

Cibulskaite G, Stulpinas R, Poskus E, Tulyte S, Mickys U. Colorectal
Neoplasm with Predominant Neuroendocrine Immunophenotype:
Where does Adenocarcinoma End? Lietuvos Chirurgija. 2022;21(1):56-
4. doi:10.15388/lietuvos-chirurgija/article/27421

Ranceva A, Stulpinas R, Norvilas R, Mickys U. Hepatoid
adenocarcinoma of the stomach with PIK3Ca mutation during

pregnancy: A case report with molecular profile. Oxf Med Case
Reports. 2021;2021(9):0mab078. doi:10.1093/omcr/omab078

Dulskas A, Poskus T, Kildusiene I, Patasius A, Stulpinas R,
Laurinavicius A, et al. National Colorectal Cancer Screening Program

in Lithuania: Description of the 5-Year Performance on Population
Level. Cancers. 2021;13(5):1129. doi:10.3390/cancers13051129

Anglickis M, Platkevicius G, Stulpinas R, Mikliciute L, Anglickiene G,
Keina V, Starolis E, Gradauskas A. Giant prostatic hyperplasia and its
causes. Acta Med Litu. 2019;26(4):237-243.
doi:10.6001/actamedica.v26i4.4209

Anglickis M, Stulpinas R, Anglickiene G, Gabrilevicius J, Jaskevicius
A. Case Report of Misleading Features of a Rare Sertoli Cell Testicular
Tumor. Medicina (Kaunas). 2019;55(5):170.
doi:10.3390/medicina55050170

Jonaityte B, Kibarskyte R, Danila E, Miglinas M, Seinin D, Stulpinas R,
et al. Fatal pulmonary complication during induction therapy in a
patient with ANCA-associated vasculitis. Acta Med Litu.
2016;23(2):142-146. doi:10.6001/actamedica.v23i2.3331

Baltruskeviciene E, Mickys U, Zvirblis T, Stulpinas R, Pipiriene
Zelviene T, Aleknavicius E. Significance of KRAS, NRAS, BRAF and
PIK3CA mutations in metastatic colorectal cancer patients receiving
Bevacizumab: a single institution experience. Acta Med Litu.
2016;23(1):24-34. doi:10.6001/actamedica.v23i1.3267

Garnelyte A, Samalavicius NE, Stulpinas R, Baltruskeviciene E, Seinin
D, Mickys U. Gastric glomus tumor with prominent polytypic
plasmacytosis: case report and review of literature. Case Rep Clin
Pathol. 2014;1(2):84-89. doi:10.5430/crcp.vIn2p84

73



19.

20.

21.

Samalavicius NE, Stulpinas R, Gasilionis V, Baltruskeviciene E,
Aleknavicius E, Mickys U. Rhabdoid carcinoma of the rectum. Ann
Coloproctol. 2013;29(6):252-255. doi:10.3393/ac.2013.29.6.252

Griskevicius L, Stulpinas R, Vengalyte I, et al. Favorable outcome with
chemo-immunotherapy in Burkitt lymphoma and leukemia. Leuk Res.
2009;33(4):587-588. doi:10.1016/j.leukres.2008.07.024

Kviliute R, Paskevicius A, Gulbinovic J, Stulpinas R, Griskevicius L.
Nonfatal Trichoderma citrinoviride pneumonia in an acute myeloid
leukemia patient. Ann Hematol. 2008;87(6):501-502.
doi:10.1007/s00277-007-0427-y

74



LIST OF DOCTORAL PUBLICATIONS AND PRESENTATIONS

Publications

1.

Stulpinas R, Zilenaite-Petrulaitiene D, Rasmusson A, Gulla A,
Grigonyte A, Strupas K, Laurinavicius A. Prognostic Value of CDS§
Lymphocytes in Hepatocellular Carcinoma and Perineoplastic
Parenchyma Assessed by Interface Density Profiles in Liver Resection
Samples. Cancers (Basel). 2023 Jan 5;15(2):366.

doi: 10.3390/cancers15020366. PMID: 36672317, PMCID:
PMC985718]1.

https://pubmed.ncbi.nlm.nih.gov/36672317/

Stulpinas R, Morkunas M, Rasmusson A, Drachneris J, Augulis R,
Gulla A, Strupas K, Laurinavicius A. Improving HCC Prognostic
Models after Liver Resection by Al-Extracted Tissue Fiber Framework
Analytics. Cancers (Basel). 2023 Dec 24;16(1):106.

doi: 10.3390/cancers16010106. PMID: 38201532; PMCID:
PMC10778366.

https://pubmed.ncbi.nlm.nih.gov/38201532/

Gulla A, Stulpinas R, Grigonyte A, Zilenaite-Petrulaitiene D,
Rasmusson A, Laurinavicius A, Strupas K. Overall Survival Prediction
by Tumor Microenvironment Lymphocyte Distribution in
Hepatocellular Carcinoma After Liver Transplantation. J Surg Res.
2024 Mar;295:457-467.

doi: 10.1016/j.jss.2023.10.011. Epub 2023 Dec 8. PMID: 38070260.
https://pubmed.ncbi.nlm.nih.gov/38070260/

Stulpinas R, Jakiunaite I, Sidabraite A, Rasmusson A, Zilenaite-
Petrulaitiene D, Strupas K, Laurinavicius A, Gulla A. Low CD8
Density Variation and R1 Surgical Margin as Independent Predictors of
Early Post-Resection Recurrence in HCC Patients Meeting Milan
Criteria. Curr Oncol. 2024 Sep 10;31(9):5344-5353.

doi: 10.3390/curroncol31090394. PMID: 39330022; PMCID:
PMC11431076.

https://pubmed.ncbi.nlm.nih.gov/39330022/

75


https://pubmed.ncbi.nlm.nih.gov/36672317/
https://pubmed.ncbi.nlm.nih.gov/38201532/
https://pubmed.ncbi.nlm.nih.gov/38070260/
https://pubmed.ncbi.nlm.nih.gov/39330022/

Presentations

1.

EAA - ISGA - ICEM (2022.08.24-27 Vilnius, Lithuania). Oral
presentation “Automated Tumor-Host Interface Zone Detection and
Immune Response Assessment In HCC”, awarded “Best PhD student e-
poster presentation”.

ESSO41 (2022.10.19-21 Bordeaux, France). Poster presentation
,Computational Tissue Immune Response Indicators to Predict Overall
Survival in Hepatocellular Carcinoma“. Published in European journal
of surgical oncology: ESSO 41 Abstracts 2022. Oxford : Elsevier
Science Ltd. ISSN 0748-7983. 2023, vol. 49, iss. 2, p. e164. DOLI:
10.1016/j.€js0.2022.11.454.

18th Annual Academic Surgical Congress (2023.02.7-9 Houston, USA).
Oral presentation (co-author dr. Aisté Gulla) ,,The Value of CDS8 and
Feasibility of Liver Transplantation for Hepatocellular Carcinoma®.

New Technologies in Surgery | International Conference (2023.11.10
Vilnius, Lithuania). Oral presentation ,,Al-assisted microarchitecture
analysis in hepatocellular carcinoma and peritumoral liver®.

The Baltic Chapter-E-AHPBA/IHPBA Annual Meeting ,,Approaching
Cancer in Liver: from cell Biology to Personalized Treatment*
(2024.04.26-27). Oral presentation ,, Where biology meets Al in HCC*.

European Congress on Digital Pathology ECDP2024 (2024.06.5-8
Vilnius, Lithuania). Oral presentation ,,Predicting Survival of HCC
Patients after Liver Resection by Al-Driven Fiberomics and Hexagonal
Grid Analytics®.

Evolutionary Medicine: How evolutionary thinking can contribute to
the medical and health sciences (2024.06.18-21, Vilnius, Lithuania).
Oral presentation ,,Jmages To Insights: Al-Driven Prognostic Modeling
in HCC Using CD8 TILs and Fiber Morphometrics*.

76



1* publication / 1 publikacija

Rokas Stulpinas, Dovile Zilenaite-Petrulaitiene, Allan Rasmusson, Aiste
Gulla, Agne Grigonyte, Kestutis Strupas, Arvydas Laurinavicius

Prognostic Value of CD8 Lymphocytes in Hepatocellular Carcinoma and
Perineoplastic Parenchyma Assessed by
Interface Density Profiles in Liver Resection Samples

Cancers (Basel). 2023 Jan 5;15(2):366.
doi: 10.3390/cancers15020366. PMID: 36672317; PMCID: PMC9857181
https://pubmed.ncbi.nlm.nih.gov/36672317/

77



cancers

Article

Prognostic Value of CD8+ Lymphocytes in Hepatocellular
Carcinoma and Perineoplastic Parenchyma Assessed by
Interface Density Profiles in Liver Resection Samples

Rokas Stulpinas 2%, Dovile Zilenaite-Petrulaitiene 2, Allan Rasmusson 12, Aiste Gulla 34,
Agne Grigonyte 5, Kestutis Strupas 3 and Arvydas Laurinavicius 1?

Citation: Stulpinas, R.;
Zilenaite-Petrulaitiene, D.;
Rasmusson, A.; Gulla, A.; Grigonyte,
A.; Strupas, K.; Laurinavicius, A.
Prognostic Value of CD8+
Lymphocytes in Hepatocellular
Carcinoma and Perineoplastic
Parenchyma Assessed by Interface
Density Profiles in Liver Resection
Samples. Cancers 2023, 15, 366.
https://doi.org/10.3390/
cancers15020366

Academic Editors: Elisabetta Ferretti

and Marco Tafani

Received: 24 November 2022
Revised: 28 December 2022
Accepted: 4 January 2023
Published: 5 January 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC  BY) license
(https://creativecommons.org/license

s/by/4.0/).

1 Faculty of Medicine, Institute of Biomedical Sciences, Department of Pathology, Forensic Medicine and
Pharmacology, Vilnius University, 03101 Vilnius, Lithuania

2 National Center of Pathology, Affiliate of Vilnius University Hospital Santaros Clinics,

08406 Vilnius, Lithuania

Faculty of Medicine, Institute of Clinical Medicine, Vilnius University, 03101 Vilnius, Lithuania

Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA

Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania

Correspondence: rokas.stulpinas@vpc.lt

x o e

Simple Summary: In this study, we present the overall survival and recurrence-free survival
models based on CD8 profiles in hepatocellular carcinoma (HCC) and peritumoral liver tissue,
including other clinical and pathological variables. We extracted CD8 distribution profiles from the
digitized immunohistochemistry slides containing the HCC-stroma interface and the perineoplastic
liver parenchyma-stroma interface using the computational method of interface zone
immunogradient. The prognostic value of the CD8+ cell spatial distribution indicators from both
interfaces as well as clinical, laboratory, and pathology data was assessed. A three-tier prognostic
scoring system is proposed to predict overall survival in patients with HCC.

Abstract: Hepatocellular carcinoma (HCC) often emerges in the setting of long-standing
inflammatory liver disease. CD8 lymphocytes are involved in both the antitumoral response and
hepatocyte damage in the remaining parenchyma. We investigated the dual role of CD8
lymphocytes by assessing density profiles at the interfaces of both HCC and perineoplastic liver
parenchyma with surrounding stroma in whole-slide immunohistochemistry images of surgical
resection samples. We applied a hexagonal grid-based digital image analysis method to sample the
interface zones and compute the CD8 density profiles within them. The prognostic value of the
indicators was explored in the context of clinicopathological, peripheral blood testing, and surgery
data. Independent predictors of worse OS were a low standard deviation of CD8+ density along the
tumor edge, high mean CD8+ density within the epithelial aspect of the perineoplastic liver-stroma
interface, longer duration of surgery, a higher level of aspartate transaminase (AST), and a higher
basophil count in the peripheral blood. A combined score, derived from these five independent
predictors, enabled risk stratification of the patients into three prognostic categories with a 5-year
OS probability of 76%, 40%, and 8%. Independent predictors of longer RFS were stage pT1, shorter
duration of surgery, larger tumor size, wider tumor-free margin, and higher mean CD8+ density in
the epithelial aspect of the tumor-stroma interface. We conclude that (1) our computational models
reveal independent and opposite prognostic impacts of CD8+ cell densities at the interfaces of the
malignant and non-malignant epithelium interfaces with the surrounding stroma; and (2) together
with pathology, surgery, and laboratory data, comprehensive prognostic models can be constructed
to predict patient outcomes after liver resection due to HCC.

Cancers 2023, 15, 366. https://doi.org/10.3390/cancers15020366

www.mdpi.com/journal/cancers
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1. Introduction

Primary liver cancer is the third most common cause of cancer-related deaths in the
world, with hepatocellular carcinoma (HCC) comprising up to 85% of cases [1]. Although
general risk factors for HCC development are well known and surveillance guidelines
have been established, the diagnosis of an individual HCC patient is complicated by both
the asymptomatic nature of early-stage HCC [2] and the fact that 90% of HCC cases de-
velop in the background of cirrhosis caused by chronic inflammatory liver disease [3].
This persistent inflammatory environment is mostly due to viral infections (HBV or HCV),
autoimmune hepatitis, nonalcoholic fatty liver disease, excessive alcohol consumption, or
other toxins [3,4]. It has been suggested that a persistent and inefficient immune system
response is the cause of both inflammatory liver damage [5] and carcinogenesis [4,5]. In
practice, cirrhosis obscures the HCC to the point where therapeutic options become lim-
ited [6].

Poor overall survival (OS) and high recurrence rates for patients with HCC empha-
size the need for reliable prognostic models to avoid over- or undertreatment [7,8]. Fur-
thermore, the underlying irreversible damage to the liver parenchyma limits established
cancer-directed therapies and clinical trials because conventional chemo- and radiother-
apy modes are either contraindicated or ineffective in cirrhotic patients [6]. Consequently,
the standard potentially curative treatments for HCC are liver transplantation, surgical
resection, and local ablative therapy [9]. However, HCC reoccurs in more than 50% of
patients in 3 years [10] and in up to 70%, 5 years after surgical resection [11]. New treat-
ment opportunities such as immune checkpoint inhibitors, inhibitory cytokine blockade,
oncolytic viruses, adaptive cell therapies, and immunotherapeutic vaccines [12] have
emerged; however, the effect of HCC immunotherapy is rather patient-specific, further
raising the importance of robust biomarkers of HCC progression.

Assays to estimate the risk of developing and to predict the outcomes of HCC are
actively sought. Serum alpha-fetoprotein (AFP) has been used as a biomarker of HCC for
over half a century but remains controversial, as many experts consider it nonspecific [13].
Furthermore, most other biomarkers lack informative power if used individually as out-
come predictors. Stratification systems based on multiple features, such as the Okuda,
Barcelona Clinic Liver Cancer (BCLC), the Italian (CLIP), and French classifications, have
been in use for decades [14]. These scoring schemes consider both the tumor properties
and the remaining liver function indicators for a comprehensive assessment of liver dis-
ease. For example, the BALAD model measures bilirubin, albumin, two forms of alpha-
fetoprotein (AFP-L3 and total AFP), and des-y-carboxyprothrombin from a single blood
serum sample [15]. Albumin and bilirubin provide estimates of the remaining liver func-
tion, while the combination of other indicators represents the stage and progression of the
tumor. The combined results allowed the prediction of HCC patient survival with a haz-
ard ratio of 1.43 per increase of 1 BALAD score [16]. In 2014, a diagnostic iteration of the
latter model, named GALAD [13], replaced bilirubin and albumin with the patient’s age
and sex to predict the presence of HCC; the model score appears to be proportional to the
tumor cell mass and performs substantially better than any individual biomarker. Several
years later, Sposito et al. proposed a simple scoring scheme based on routine clinical data
for a robust stratification of patients with HCC eligible for resection; the model included
an end-stage liver disease (MELD) score, HCV infection, the number of tumor lesions,
their maximum size, and signs of portal invasion [10].
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A novel set of biomarkers for the prognosis of HCC is also gaining the spotlight in
the context of advances in immunotherapy. These indicators focus primarily on the dis-
tribution and populations of immune cells within the tumor microenvironment (TME)
and the non-tumor microenvironment (NTME) [7,17]. However, the assessment of the im-
mune response in liver tissue is complicated by a ‘dual’ pathology of HCC: a beneficial
antitumoral response is conveyed by cytotoxic CD8+ T cells [18], which may have an op-
posite detrimental effect on the remaining functional liver parenchyma. In particular, in
patients with HCC with known HBV or HCV infection, hepatocyte injury is caused by an
immune response (involving CD8+ lymphocytes) rather than direct viral damage [4]. One
can hypothesize that tumor-infiltrating lymphocytes (TILs) in HCC and non-tumor infil-
trating lymphocytes (NILs) in the surrounding liver parenchyma may have independent
effects on patient outcomes, hence the precise spatial distribution analysis of immune cells
is required.

The role of TILs/NILs in HCC has long been under investigation (mainly based on
immunohistochemistry studies); however, their significance in disease progression re-
mains controversial. In 2004, Ikeguchi et al. [19] reported a lower average density of man-
ually counted CD8+ cells in HCC tissue compared to surrounding non-cancerous hepatic
lobules. They detected neither a correlation between the individual sample densities of
TILs and NILs nor any prognostic significance of CD8+ cell densities. Ramzan et al.
demonstrated that high levels of TILs reflect inflammatory conditions and contribute to
tumorigenesis and the recurrence of HCC [20]. Abdou et al. found no effect of TILs on
patient survival or recurrence [21]. Other studies reported that high levels of TILs were
associated with better OS and disease-free survival (DFS) [8,22,23]. In 2013, An et al. [24]
published a study of CD4+ and CD8+ cell infiltrates in HCC and perineoplastic liver tissue
microarrays with the semiquantitative visual assessment of hotspots. They found an in-
creased number of CD8+ cells in smaller tumors (<5 cm) and, independently, in the peri-
tumoral liver parenchyma in cases with chronic hepatitis and cirrhosis; unfortunately, the
patient outcomes were not assessed in this study. In their meta-analysis, Xu et al. [22]
concluded that OS was significantly longer in cases with high CD8+ TIL densities at the
edge of the tumor, while patients with low TIL density had a more advanced TNM stage
and a larger tumor size; however, no significance of lymphocytes infiltrating peritumoral
tissues was established. It was noted that the vast majority of the reviewed studies were
conducted in Asia where HBYV is still the most prevalent etiological factor; therefore, more
evidence needs to be collected from non-Asian populations to assess the significance of
TILs in other HCC subgroups [22].

The well-established digital immunohistochemistry-based method Immunoscore as-
sessing the host anti-tumoral response quantifies two (CD3 and CD8) lymphocyte popu-
lations at both the invasive margin (IM) and at the core of the tumor (CT) [25,26]. The
method was originally proposed to predict a recurrence of stage II/IIl colon cancer and
was later applied to other types of solid cancer [27]. In particular, Gabrielson et al. [28]
demonstrated that patients with a high density of CD3+ and CD8+ cells in one or both
regions of interest (IM or CT) and their corresponding ‘immunoscores’ were associated
with a lower rate of HCC recurrence and longer relapse-free survival (RFS). Sun et al. [8]
argued that although Immunoscore was closely related to the outcome of patients with
HCC, it was not an optimal prognostic biomarker, since they observed that CD8+ density
in the center of the tumor has the highest prognostic impact for both DFS and OS by Cox
multivariate regression analysis. Liu et al. [29] recently reported a comprehensive HCC
immunohistochemical study of 14 immune cell subtypes in three representative images
captured in the tumor (T) and peritumoral (P) regions to quantify immune cell densities
using a computer-automated method. They developed and validated a nine-factor IHC
classifier (CD27t, CD571, CD57r, CD45RAr, CD45ROr, CD66br, CD68r, CXCR5p, and PD-
11) to predict recurrence in patients with early-stage HCC, but neither CD3 nor CDS8 en-
tered the final model. These findings on the significance of the spatial arrangement of
immune cells in HCC warrant the study exploring the CD8+ distribution across the tumor-
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stroma interface in both malignant and benign (peritumoral) regions of the resected liver
tissue.

Many studies have shown the potential of digital image analysis (DIA) and compu-
tational feature extraction tools from pathology images [30,31]. Automated, data-driven,
and operator-independent methods can extract subvisual features that represent tissue
properties and can be integrated into predictive models along with clinical and patholog-
ical parameters [32-35]. In liver pathology, DIA has also been proven to be a useful tool
in both neoplastic and non-neoplastic settings [36-38]. Liao et al. used an automated com-
putational deep learning model to extract prognostic characteristics from HCC and sur-
rounding normal tissue from publicly available hematoxylin-eosin (H&E) whole slide im-
ages (WSI) [39]. Although this provided quantitative pathology features that were used
to successfully diagnose HCC and predict the clinical outcomes of patients, the study was
limited by the lack of important clinical information and serum biomarkers in a large pro-
portion of the patients, and by a semiquantitative method of lymphocyte infiltration anal-
ysis. Similarly, most research is focused on applying convolutional neural networks
(CNNSs) to automatically extract features in H&E-stained liver tissue samples [40], while
efforts with regard to the IHC-based computational assessment of TILs and NILs are lack-
ing.

In this study, we present the OS and RFS models based on CD8 profiles in the tumor
and peritumoral liver tissue, including other variables. We extracted CD8 distribution
profiles from the HCC-stroma interface and from the perineoplastic liver parenchyma-
stroma interface using the computational method of interface zone immunogradient [41].
The prognostic value of the CD8+ cell spatial distribution indicators from both interfaces
as well as clinical, laboratory, and pathology data was assessed. A three-tier prognostic
scoring system is proposed to predict OS in patients with HCC.

2. Materials and Methods
2.1. Study Population

The retrospective cohort used in this study included 106 patients (24 females and 82
males) who underwent liver resection for HCC in Vilnius University Hospital Santaros
Clinics (Vilnius, Lithuania) from 2007 to 2020; the resection samples were analyzed at the
National Center of Pathology (Vilnius, Lithuania). Clinical, laboratory, and pathology
data were retrospectively collected according to the approval of the Vilnius Regional Bio-
medical Research Ethics Committee (permit number 2021/6-1354-843), which waived the
requirement of individual informed consent according to the International Ethical Guide-
lines for Health-related Research Involving Humans [42].

The median time of OS was 39 (range 1-152) months calculated from the date of the
first pathologically proven diagnosis of HCC, and for RFS it was 25 (range 1-174) months
to the date of the first documented statement of HCC relapse. A summary of patient and
tumor characteristics is presented in Table 1, and the results of preoperative blood tests
are listed in Table 2.

Table 1. Clinical, pathological, and follow-up characteristics of the patient cohort.

Characteristic Value
Patients 106 (100%)
Age, years
Mean (range) 65 (13-82)
Median 64
Gender
Male 82 (77.4%)
Female 24 (22.6%)

OS time, months
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Mean (range)
Median
Deceased
RFS time, months
Mean (range)
Median
Recurrences
HCC grade
G1
G2
G3
pT stage
T1
T2
T3
T4
Resection margin
RO
R1
Largest tumor dimension, mm
Mean (range)
Median
Surgical margin in RO resections, mm
Mean (range)
Median
History of viral infection
HBV
HCV
None or unknown
Hospitalization time, days
Mean (range)
Median
Duration of surgery, min
Mean (range)
Median

46 (1-152)

39

63 (59.4%)

41 (1-174)

25

56 (52.8%)

8 (7.5%)
79 (74.5%)
19 (18.0%)

38 (35.9%)
60 (56.6%)
7 (6.6%)
1(0.9%)

86 (81.1%)
20 (18.9%)

48 (8-190)

40

3.1 (0.1-25.0)

3.1

9 (8.5%)
53 (50.0%)
44 (41.5%)

16 (4-70)

13

170 (70-350)

160

Table 2. Summary of the results of the preoperative blood test.

Variable Mean Median  Min Max N No Data
LEU, x10°/L 6.00 5.65 1.99 1535 91 15
LYM, x10°/L 2.94 1.62 0.22 106.00 90 16
MON, x10°/L 0.56 0.50 0.12 138 90 16
EOS, x10°/L 0.17 0.10 0.00 147 90 16
BAS, x10°/L 0.03 0.02 0.00 020 90 16
RBC, x10'?/L 4.43 4.32 3.15 642 90 16
Albumin, g/L 40.25 40.30 2480 51.10 64 42
Creatinine, umol/L 74.05 71.00 42.00 144.00 82 24
Total bilirubin, umol/L 17.75 14.45 5.10 5280 82 24
Alanine transaminase (ALT), U/L 69.07 53.00 11.00 249.00 89 17
Aspartate transaminase (AST), U/L 69.35 56.00 19.00 209.00 86 20
Alkaline phosphatase (ALP), U/L 11729  100.00  34.00 690.00 75 31
Gamma-glutamyl transferase (GGT), U/L 135.40  80.00 16.00 817.00 80 26
Alpha-fetoprotein (AFP), kKU/L 669.54  10.65 0.50 30,000.00 94 12
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2.2. Immunohistochemistry

All available archived slides stained with hematoxylin and eosin were reviewed by
a pathologist (RS) to select the most informative formalin-fixed paraffin-embedded (FFPE)
block that contains both non-necrotic HCC tissue (N = 106) and the surrounding liver pa-
renchyma if present (N = 100, 94.3%) (Figure 1A). The samples were cut to a thickness of
3 um and mounted on positively charged slides and stained for CD8 antibody (Dako,
clone C8/144B, dilution 1:100, Denmark) on a Roche Ventana BenchMark ULTRA auto-
mated stainer (Ventana Medical Systems, Oro Valley, AZ, USA), using the ultraView Uni-
versal DAB Detection kit (Ventana Medical Systems, Oro Valley, AZ, USA).
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Figure 1. Study workflow (stroma interfaces with neoplastic (HCC) tissue and non-malignant liver
parenchyma sampled to assess CD8+ cell density profiles): (A) low magnification view of the whole
H&E stained tissue sample containing HCC nodules and the surrounding cirrhotic liver paren-
chyma; (B) a matching CD8 immunohistochemistry slide that was further used for analysis (see
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panel E and Supplementary Figure S1A and S1B for higher magnification); (C) a sample of manually
annotated HCC and non-neoplastic liver areas, avoiding ambiguous or artifact-containing zones;
(D) HALO®AI epithelium versus stroma segmentation: both malignant and non-malignant hepato-
cytes—red, stroma—green, debris and artifacts—blue, background —gray; (E) magnified detection
zone on a CD8 slide, positive cytotoxic T lymphocytes —brown cytoplasmic staining; (F) Multiplex
THC® nuclei segmentation masks, CD8 positive cells—red, CD8 negative cells—blue; (G) identifica-
tion of the epithelial edge (yellow hexagons, rank 0), epithelial aspect (red hexagons, ranks 1-2) and
stromal aspect (green hexagons, ranks —1 and -2) of the interface zone (ranks from -2 to 2) based on
a hexagonal grid; (H) the benign (liver) interface zone, epithelial aspect (i.e., liver parenchyma)—
purple, epithelial edge—yellow, stromal aspect—green; (I) an example boxplot showing a decrease
of average CD8+ cell density per rank towards the epithelial aspect of the benign interface zone; (J)
the malignant (HCC) interface zone, epithelial aspect (i.e., HCC)—red, epithelial edge—yellow,
stromal aspect—green; (K) an example boxplot showing the decrease of average CD8+ cell density
per rank towards the epithelial aspect of the malignant interface zone.

2.3. Digital Image Analysis and Indicator Extraction

All slides stained with H&E and CD8 were digitized (Figure 1A,B) at 20x magnifica-
tion (0.5 um per pixel) using an Aperio® AT2 DX scanner (Leica Aperio Technologies,
Vista, CA, USA). A pathologist (RS) then manually annotated the largest available contin-
uous malignant and non-malignant area on each slide while avoiding ambiguous or arti-
fact-containing zones (Figure 1C), as the HALO® AI (Indica Labs, Albuquerque, NM,
USA) classifier was not sufficient to fully discriminate between the well-differentiated
HCC and reactive or dysplastic epithelium in some of the hematoxylin counterstained
THC slides. Thus, the AI system was trained to segment the tissue into hepatocytes (both
malignant and non-malignant), stroma (fibrous tissue including the vasculature and bile
ducts), and background/debris classes (Figure 1D), with subsequent segmentation (Figure
1E,F) of CD8+ cells via HALO® Multiplex IHC algorithm (Indica Labs, USA).

We further processed the DIA outputs using a computational method based on hex-
agonal grid tiling as described by Rasmusson et al. [41] to extract CD8 spatial distribution
indicators for malignant (HCC-stroma) and non-malignant (liver parenchyma-stroma) in-
terfaces. In this study, we used a grid with hexagons that have a side length of 65 um
(Figure 1G) and aggregated the number of CD8+ cells and the area of tissue classes in each
hexagon. Based on the abrupt change in the proportion of tissue class area across the grid,
the hexagons that make up the edge between the stroma and the epithelium (which is
either composed of benign hepatocytes or neoplastic HCC cells, depending on the anno-
tation used) are identified (Figure 1G, yellow hexagons). The tiles are then ranked so that
the hexagons on the extracted edge have rank 0 (Figure 1G, rank 0), the epithelial hexa-
gons (HCC or liver) are assigned a positive rank equal to their distance from the nearest
edge (Figure 1G, ranks 1 and 2), while the hexagons on the stromal side are assigned a
negative rank equal to their distance from the edge (Figure 1G, ranks —1 and -2). Multiple
combinations of the width of the central edge (TE) and analysis depth (number of ranks
on both sides of TE) can be generated to provide different density characteristics. A five-
hexagon wide interface zone having a three-rank wide central edge (Figure 11,K) was used
for further calculations in this study.

Indicators were extracted from the interface zones of the non-neoplastic liver (Figure
1H) and HCC (Figure 1J) to reflect the density profiles of CD8+ cells in both tissue com-
partments: the mean density (m) and standard deviation (sd) of CD8+ cells were calcu-
lated for the epithelial (T), stroma (S) and edge (TE) compartments, and indicators (center
of mass (CM) and immunodrop (ID)) representing the whole IZ were also calculated. CM
can represent either an increase in CD8+ density (when calculated using means) toward
the epithelial aspect or a higher CD8+ variance (when using standard deviation) along the
1Z. The ID indicator is a ratio between the mean CD8+ density in ranks —1 (stromal aspect)
and 1 (epithelial aspect) and reflects an abrupt decrease in CD8 density across the TE,
hence the ‘Immuno drop’.
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2.4. Statistical Analysis and Modeling

Statistical analyses were performed using SAS software (version 9.4; SAS Institute
Inc., Cary, NC, USA). A two-sided Welch t-test was applied for homogeneity of variance
comparison. x2 and Fisher’s exact test was used to examine the significant associations
between categorical clinicopathological parameters. The nominal statistical significance
level was set at p < 0.05. Since immune cell density distributions revealed left asymmetry,
indicators were logarithm transformed for parametric statistics; however, for better read-
ability, the prefix ‘log’ is not used in the text.

Cutoff Finder [43] was used to obtain an optimal cutoff value for each continuous
indicator to test univariate OS predictions. The OS was estimated using the Kaplan—-Meier
method followed by log-rank testing to compare the statistical significance of the OS dis-
tributions. Multiple Cox regression was performed to further assess the independent
prognostic value of the statistically significant biomarkers identified in the univariate
analysis. Cox regression proportional hazards models were obtained using a stepwise
likelihood ratio (LR) test to establish the independent prognostic significance of immuno-
gradient indicators in the context of clinicopathological variables. Due to a limited cohort
size, overfitting was minimized by leave-one-out cross-validation [44], and the most fre-
quently selected variables were further tested in survival prediction models.

3. Results
3.1. Univariate Predictors of Overall Survival and Recurrence-Free Survival

Table 3 contains the statistically significant results of the univariate regression anal-
ysis with the hazard ratio (HR) and log-rank test of the impact of clinicopathological char-
acteristics and CD8+ cell spatial distribution indicators on OS and RFS. The OS and RFS
probability plots for variables that also provided an independent prognostic impact (see
Section 3.2) are presented in Figures 2 and 3, respectively. Variables can be broadly
grouped into three sets: conventional clinical and pathological parameters reported in
daily practice, laboratory data obtained from blood analysis, and computed immunogra-
dient indicators.

Table 3. Univariate predictors of overall survival and recurrence-free survival.

Variable HR 953)5(:1 p-Value HR 951;1;5(:1 p-Value
Conventional clinicopathological parameters
Stage pT1 0.42 0.24-0.73 0.0023 0.54 0.30-0.98 0.0425
Age 3.14 1.33-7.42 0.0061 2.09 0.95-3.02 0.0697
Intravascular invasion present 2.13 1.28-3.54 0.0034 1.40 0.82-2.37 0.2137
Max tumor size 1.54 0.88-2.70 0.1300 0.45 0.24-0.86 0.0124
Ishak’s HAI score > 5 2.88 1.11-7.45 0.0292 1.96 0.86—4.45 0.1085
R1 resection 1.18 0.63-2.22 0.6073 3.52 1.95-6.38  <0.0001
Tumor-free margin width 0.79 0.43-1.46 0.4500 0.28 0.16-0.50  <0.0001
Blood loss during surgery 2.02 1.20-3.43 0.0074 0.45 0.14-1.43 0.1627
Duration of surgery 2.03 1.16-3.54 0.0112 1.87 1.07-3.29 0.0276
Duration of hospital stay 5.08 2.50-10.30  <0.0001 1.66 0.96-2.84 0.0647
Blood laboratory data

Alanine transaminase (ALT) 4.29 1.33-7.74 <0.0001 2.92 1.05-8.10 0.0313
Aspartate transaminase (AST) 4.81 2.40-9.64 <0.0001 2.10 1.08-4.09 0.0263
Gamma-glutamyl transferase (GGT) 3.06 1.51-6.22 0.0012 1.69 0.79-3.62 0.1751
Alkaline phosphatase (ALP) 1.81 0.95-3.42 0.0660 3.69 1.14-11.94 0.0196
Total bilirubin 2.73 1.43-5.22 0.0015 1.65 0.93-2.91 0.0813
LEU count 2.50 1.11-5.63 0.0218 1.81 1.03-3.20 0.0376
NEU count 1.89 1.12-3.18 0.0145 2.27 1.29-4.01 0.0035
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BAS count 3.67 1.86-7.23 0.0001 2.02 1.10-3.72 0.0206
Interface zone immunogradient indicators
Malignant (HCC-stroma) interface *
HCC_CM_m 0.49 0.26-0.95 0.0307 0.42 0.19-0.94 0.0291
HCC_m_T 0.34 0.18-0.64 0.0005 0.40 0.22-0.73 0.0021
HCC_m_TE 0.53 0.29-0.98 0.0397 0.55 0.32-0.93 0.0230
HCC_sd_T 0.60 0.37-1.00 0.0464 0.56 0.32-0.96 0.0328
HCC_sd_TE 0.39 0.24-0.65 0.0002 0.51 0.30-0.87 0.0113
Benign (liver-stroma) interface *
Liver_CM_m 3.06 0.96-9.78 0.0475 1.73 0.62-4.78 0.2869
Liver_CM_sd 2.26 1.35-3.78 0.0016 0.38 0.12-1.21 0.0886
Liver_ID 0.57 0.34-0.96 0.0338 1.55 0.73-3.29 0.2486
Liver_m_T 3.65 1.54-8.67 0.0019 0.63 0.33-1.17 0.1374
Liver_sd_T 2.04 1.17-3.55 0.0104 0.71 0.42-1.22 0.2159

* Suffixes for immunogradient indicators (values are logarithm transformed for parametric statistics;
for better readability, the prefix ‘log’ is not used): CM_m—the center of mass calculated from the
mean CD8 density, CM_sd —center of mass calculated from the standard deviation of the CD8
density, m_T—mean CD8 density in the epithelial aspect of the interface zone, m_TE—mean CD8
density at the epithelial edge, sd_T—standard deviation of the CD8 density at the epithelial aspect
of the interface zone, sd_TE—standard deviation of the CD8 density at the epithelial edge, ID—
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Figure 2. Kaplan-Meier overall survival (OS) plots for independent prognostic indicators identified
by multiple Cox regression analysis: (A) patient age; (B) duration of surgery; (C) aspartate transam-
inase (AST); (D) peripheral blood basophil count; (E) standard deviation of CD8 density at the tumor
edge (HCC_sd_TE); (F) mean CD8+ density within the epithelial aspect of the perineoplastic liver-
stroma interface (Liver_m_T).
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Figure 3. Kaplan-Meier recurrence-free survival (RFS) plots for independent prognostic indicators
identified by multiple Cox regression analysis: (A) pT tumor stage; (B) duration of surgery; (C) tu-
mor size; (D) tumor-free resection margin width; (E) mean CD8+ density in the epithelial aspect of
tumor-stroma interface.

The statistically significant univariate predictors of worse OS were patient age >54.5
years, stage pT2-pT4 (as opposed to pT1), any type of intravascular invasion, Ishak (mod-
ified Knodell) hepatitis activity index score > 5, >450 mL blood loss during liver surgery,
longer (>137.5 min) duration of surgery, and longer (>30.5 days) hospital stay after sur-
gery. Markedly elevated liver enzymes (ALT and AST > 135 U/L, GGT > 55 U/L), total
bilirubin > 28.3 umol/L and higher values of blood count variables (LEU > 8.89, NEU >
3.28, BAS > 0.055 x 10/L) also had a negative impact on OS. Interface zone immunogradi-
ent indicators from both the malignant (HCC_CM_m, HCC_m_T, HCC_m_TE,
HCC_sd_T, HCC_sd_TE—see Table 3) and non-malignant (Liver_CM_m, Liver_CM_sd,
Liver_ID, Liver_m_T, Liver_sd_T —see Table 3) compartments demonstrated either a pos-
itive or negative effect on OS.

Statistically significant univariate predictors of shorter RFS were the advanced stage
(pT2—pT4), longer (>147.5 min) duration of surgery, either R1 resection or a tumor-free
margin < 0.25 mm, and, paradoxically, a smaller tumor size (<1.9 cm). Higher levels of
liver enzymes (ALT >22.5 U/L, AST >36.5 U/L, ALP > 69 U/L), blood count variables (LEU
>6.585, NEU > 3.595, BAS > 0.0365 x 10°/L) and immunogradient indicators of the malig-
nant compartment were also associated with a shorter RFS time in univariate analysis.
None of the immunogradient indicators from non-malignant liver parenchyma was sta-
tistically significant for RFS.

3.2. Independent Predictors of Overall Survival and Recurrence-Free Survival
Independent prognostic features were explored using Cox regression models for OS
and RFS using different sets of variables, starting from standard clinical and pathology

data, and then supplementing them with laboratory and interface zone CD8+ cell profile
data (Table 4).
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Table 4. Independent predictors of OS and RFS based on multivariate Cox regression.

Variable HR 95% CI p-Value x*
OS Model 1: demographic and pathology data.

LR: 22.30, p <0.0001, N = 106
Age >54.5 years 3.93 1.59-9.69 0.0030 8.8142
Stage pT1 (versus T2-T4) 0.35 0.20-0.64 0.0007 11.6134

OS Model 2: demographic, pathology, and surgery data.

LR: 29.60, p <0.0001, N =101
Age >54.5 years 4.46 1.76-11.33 0.0017 9.9012
Stage pT1 (versus T2-T4) 0.37 0.20-0.68 0.0013 10.2742
Blood loss during surgery > 450 mL 2.05 1.20-3.50 0.0090 6.8239

OS Model 3: demographic, pathology, surgery, and laboratory data.

LR: 46.18, p <0.0001, N =81
Age >54.5 years 4.20 1.52-11.57 0.0055 7.7057
Duration of surgery >137.5 min 2.61 1.42-4.81 0.0021 9.4252
Intravascular invasion present 3.10 1.71-5.61 0.0002 14.0066
Aspartate transaminase (AST) > 135 U/L 4.59 2.20-9.57 <0.0001 16.5728
Blood basophil (BAS) count > 0.055 x 10%/L 6.03 2.62-13.91 <0.0001 17.7860

OS Model 4: demographic, pathology, surgery, laboratory,
and HCC (malignant) interface zone data. LR: 61.47, p <0.0001, N = 81
Age >54.5 years 3.35 1.23-9.10 0.0177 5.6270
Duration of surgery > 137.5 min 2.07 1.09-3.92 0.0261 4.9488
Intravascular invasion present 3.00 1.65-5.43 0.0003 13.1234
Aspartate transaminase (AST) > 135 U/L 5.33 2.51-11.30 <0.0001 18.9716
Blood basophil (BAS) count > 0.055 x 10°/L 6.91 2.99-15.99 <0.0001 20.3752
HCC_sd_TE * > 5.744 0.41 0.23-0.73 0.0026 9.0769
OS Model 5: demographic, pathology, surgery, laboratory parameters,
and data from both interface zones. LR: 54.61, p < 0.0001, N =76
Duration of surgery >137.5 min 2.64 1.41-4.95 0.0023 9.2615
Aspartate transaminase (AST) > 135 U/L 4.50 2.01-10.11 0.0003 25.0296
Blood basophil (BAS) count > 0.055 x 10°/L. 8.67 3.72-20.21 <0.0001 13.2883
HCC_sd_TE *>5.744 0.33 0.18-0.59 0.0002 13.5590
Liver_m_T * >4.651 4.81 1.73-13.28 0.0024 9.1963
RFS Model 6: demographic, pathology, and surgery data

LR: 32.61, p <0.0001, N = 104
Stage pT1 (versus T2-T4) 0.40 0.20-0.82 0.0119 6.3248
Duration of surgery > 147.5 min 1.99 1.10-3.58 0.0224 5.2120
Max tumor size > 1.9 cm 0.20 0.09-0.44 <0.0001 15.6909
Tumor-free margin width > 0.25 mm 0.33 0.18-0.60 0.0003 12.8879

RFS Model 7: from demographic, pathology, surgery,
and HCC (malignant) interface zone. LR: 40.50, p < 0.0001, N = 104

Stage pT1 (versus T2-T4) 0.41 0.21-0.82 0.0108 6.4998
Duration of surgery > 147.5 min 2.07 1.13-3.80 0.0184 5.5614
Max tumor size > 1.9 cm 0.21 0.10-0.47 0.0001 14.7466
Tumor-free margin width > 0.25 mm 0.31 0.17-0.58 0.0002 13.5868
HCC_m_T *>3.703 0.38 0.20-0.71 0.0024 9.2482

* Suffixes for immunogradient indicators (values are logarithm transformed for parametric statis-
tics; for better readability, the prefix ‘log’ is not used): sd_TE —standard deviation of CD8 density

at the epithelial edge, m_T—mean CD8 density at the epithelial aspect of IZ.

Although Model 1 (LR: 22.3) revealed that older patients’ age and stage pT2-pT4
were the only independent predictors of worse OS, the addition of surgical data (Model
2) increased the prognostic power (LR: 29.6) by including the amount of blood lost during
surgery. The addition of laboratory data (Model 3) further improved the prognostic value
(LR: 46.18) taking into account the longer duration of surgery, intravascular invasion of
the tumor, aspartate transaminase (AST) level > 135 U/L, and blood BAS count > 0.055 x
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Survival probability

109/L. Model 4 (LR: 61.5) was achieved by adding CD8+ cell density profiles at the HCC
interface to model 3: a higher standard deviation of CD8+ density within the tumor edge
improved OS (HR: 0.41, p = 0.0026). Adding CD8+ cell profile indicators from the non-
malignant interface (Model 5, LR: 54.6) revealed mean CD8+ density in the epithelial as-
pect (i.e., remaining liver parenchyma) to be an independent predictor of worse survival.

Longer RFS could be predicted from a set of conventional independent features
(Model 6, LR: 32.6): stage pT1, shorter duration of surgery (<147.5 min), a larger tumor
size (>1.9 cm), wider resection margin around the tumor (>0.25 mm). Including CD8+ cell
profiles at the malignant interface (Model 7, LR: 40.5) revealed the higher mean CD8+
density in the epithelial aspect (HCC) as an independent predictor of longer RFS.

3.3. Combined OS Prognostic Score

Based on Model 5, a combined prognostic OS score was constructed by adding the
contributions to OS from each independent variable (duration of surgery, aspartate trans-
aminase (AST), blood basophil count (BAS), HCC_sd_TE, Liver_m_T): 1 for poor, 0 for
good prognosis. Patients were assigned a prognostic category according to the combined
score: scores 0—1 have low risk, score 2 has intermediate risk, and scores 3-5 make up the
high-risk group, with a corresponding 5-year OS probability of 76%, 40%, and 8% (Figure
4A), respectively. The differences in OS probability between the groups were statistically
significant: p < 0.0001 for low vs. high, p = 0.0045 for low vs. intermediate, and p < 0.0001
for intermediate vs. high risk. The prognostic power of the combined score is further il-
lustrated by the probability of OS 4 years after liver resection at 100%, 51%, and 12% in
the low, intermediate, and high-risk groups, respectively (Figure 4A). Of note, similar but
less informative risk stratification could be achieved by combining only the impact of TILs
and NILs (Figure 4B).
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Figure 4. OS risk stratification based on combined prognostic scores: (A) comprehensive HCC OS
score derived from five independent predictors from Model 5; (B) combined CD8 OS score derived
from two independent predictors (CD8 density profiles at malignant and non-malignant interfaces).

4. Discussion

Our study reveals that computational assessment of CD8+ cell density profiles at the
interfaces of malignant and non-malignant epithelium with the surrounding stroma pro-
vides independent prognostic information for HCC patients after surgical liver resection.
We also observed an independent impact of clinical (duration and/or blood loss during
surgery) and laboratory (blood AST, basophils) parameters on the OS of HCC patients,
which can further be combined into a comprehensive prognostic score. Meanwhile, only
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limited prognostic models could be obtained from conventional demographic (patient’s
age) and pathology data (pT stage).

We applied hexagonal grid-based spatial analyses to assess CD8+ density profiles
across automatically detected HCC-stroma and liver-stroma interfaces in surgical excision
liver samples. The method enables the sampling of the interface zone ranks from which
cell density-based indicators can be computed, including standard deviation (SD), as a
measure of spatial heterogeneity of the densities along the interface. We found that a
higher variance (SD) of mean CD8+ T lymphocyte density at the tumor edge of HCC is an
independent predictor of longer OS. Recently, Krijgsman et al. [45] similarly reported that
the high SD of the CD8+ T lymphocyte density distribution was the only DIA-derived
parameter that provided an independent prediction of longer OS in a cohort of 236 Dutch
patients with ER-positive breast cancer. The authors hypothesized that this phenomenon
could be due to the positive contribution of local high-density CD8 infiltrates. Similar
findings were recently published by Li et al. [46]: the presence of organized lymphoid
aggregates (named tertiary lymphoid structures, which could be interpreted as a manifes-
tation of local TIL density variance) in HCC was significantly associated with longer RFS,
yet no effect on OS was observed. It is worthy of note that the precise location of the ter-
tiary lymphoid structures in the tissue was not indicated in this study. Radziuviene et al.
[33] also reported that the variance in CD8 density along the tumor edge is an independent
predictor of OS in IHC HER2-borderline breast cancer without HER2 amplification; how-
ever, high CD8+ SD was associated with shorter OS in this patient cohort. The pathobio-
logical and prognostic significance of irregular CD8 cell infiltrates along the tumor edge
requires further elucidation; nevertheless, this adds to the accumulating evidence that in-
tratumoral heterogeneity of a feature expression may be more informative than a general
quantification of a feature per se [6,33,38,47,48].

On the other hand, we found that the high mean density of CD8+ cells in the epithelial
aspect of the interface zone of the non-neoplastic liver parenchyma was an independent
predictor of worse OS. The infiltration of cytotoxic CD8+ lymphocytes could reflect an
active inflammatory process in the remaining liver. It is possible that in chronic HBV in-
fection, virus-specific CD8+ cells acquire an exhaustive phenotype and produce fewer in-
flammatory cytokines [49], so a high CD8+ density may indicate ongoing liver damage
driven by the immune system. No sufficient data on the current state of viral hepatitis was
available in our cohort to test this hypothesis. In contrast, we demonstrate that higher
mean CD8 density in the HCC tumor edge, most likely representing the host’s anti-tu-
moral immune response, is an independent predictor of longer RFS. Of note, this indicator
was also significant for OS stratification in a univariate analysis (HCC_m_T with HR =
0.34, p = 0.0005), although it was not established as an independent predictor in multiple
regression models for OS. Importantly, our computational assessment of CD8+ cell den-
sity profiles within the interfaces of malignant and non-malignant liver parenchyma with
stroma revealed opposing prognostic effects of TILs and NILs, measurable in a surgical
resection sample. Although a direct comparison cannot be made, contrary to Sun et al.,
who observed CD8+ density > 97 cells/mm? in the center of the tumor to be an independent
predictor of longer DFS and OS [8], in our study CD8+ cell densities obtained by DIA
within the entire malignant, non-malignant, and stroma compartments did not reveal an
independent prognostic impact on OS or RES[REF].

Some features of the surgical procedure (duration and blood loss) revealed an inde-
pendent prognostic value in our dataset. A longer duration of surgery was associated with
worse OS (>137.5 min) and RFS (>147.5 min). An interpretation of this finding is not
straightforward. One could speculate that multiple characteristics such as tumor size,
multifocality, proximity to critical structures such as large intrahepatic vessels, etc. con-
verge into a complex surgical setting that reflects the severity of liver disease in general.
Lee et al. found that a longer duration (>210 min) of the liver resection procedure was
associated with a higher proportion of patients with relapsed (RFS) and deceased (OS)
HCC in 1-, 3- and 5-year periods [50]. Similarly, the duration of surgery was also found to
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be independently associated with an increased risk of severe complications after liver re-
section for colorectal cancer metastases [51]. However, in a recent study, He et al. [52]
found no significant effect of the duration of surgery on OS in patients with HCC.

A negative effect of intraoperative blood loss has previously been reported on both
RFS and OS in HCC patients [53,54]. Xiaocui Lv et al. [55] found that the extent of in-
traoperative blood loss during laparoscopic hepatectomy was directly associated with tu-
mor size, surgery time, and type. Furthermore, increased intraoperative blood loss during
the operation was found to be an independent predictor of HCC recurrence. Similarly, a
longer hospital stay, which could reflect postoperative complications, was an independ-
ent predictor of hepatic decompensation after liver resection [56].

In our study, laboratory blood test data before surgery also contributed to the prog-
nostic models. We found a negative impact of elevated alanine transaminase (ALT) and
aspartate transaminase (AST) on OS, as previously reported [57]. Higher white blood cell,
neutrophil, and basophil counts (Table 3) were associated with worse OS and RFS in our
univariate analyses; these associations are less established in previous studies, in particu-
lar regarding RFS. A basophil count above 0.055 x 10%/L served as an independent predic-
tor of worse OS in our cohort; Wu et al. [58] reported a similar finding in a subgroup of
gastric cancer patients. In Wu’s study, a basophil count above 0.020 x 10°/L was an inde-
pendent predictor of a lower overall response rate to anti-PD-1 immunotherapy plus
chemotherapy combination as well as worse progression-free survival and OS. More stud-
ies are needed to clarify the role of increased basophil counts in the context of persistent
viral infection and/or in tumor-host interaction [59].

Based on the independent prognostic features established in our study, we propose
a comprehensive scoring system to stratify patients into three risk groups after HCC re-
section. In this model, aspartate transaminase (AST) and mean CD8 cell density in the
epithelial aspect of the non-malignant interface zone reflect an active inflammatory pro-
cess in the remaining liver, while the duration of surgery and the variance (SD) of the
mean CD8+ T lymphocyte density at the tumor edge are tumor related. The peripheral
blood basophil count is potentially a feature of the patient’s immune contexture, which
could be affected by both antiviral and anti-tumoral responses. Similarly, the Barcelona
Clinic Liver Cancer System (BCLC), which is the most widely used and validated staging
system for HCC [60], incorporates the tumor parameters, residual liver function, and the
general condition of the patient. BCLC classifies the patients into five groups: 0 (very
early), A (early), B (intermediate), C (advanced), and D (terminal state).

The median OS time in the low (scores 0-1) risk group of our cohort was not reached,
while it was approximately 50 months in the intermediate (score 2) group, and approxi-
mately 19 months in the high (scores 3-5) risk group. In a study by Wu et al. [61], the
median survival time of the patients who underwent surgical resection in the BCLC 0-A
(corresponding to low-risk) group was 52 months, it was 45 months in the BCLC B (inter-
mediate risk) group, and it was 42 months in the BCLC C (high-risk) group, showing only
marginal stratification.

Two years after the surgery, the low (scores 0-1), intermediate (score 2), and high
(scores 3-5) risk groups of our cohort presented with OS rates of 100%, 91%, and 36%,
respectively. In a validation study by Chan et al. [62], the 2-year probability of survival
after curative treatment was 84% in BLCL group 0-A, 73% in BLCL group B, and 73% in
BLCL group C. Two other staging systems were validated, the Cancer of the Liver Italian
Program, CLIP (with a 2-year survival probability of 82% in the low-risk CLIP 0 group,
69% in intermediate-risk CLIP 1-3 group, and no patients in the high-risk CLIP 4-6 group)
and the Chinese University Prognostic Index, CUPI (78% in low risk, 62% in the interme-
diate, and 100% in the high-risk group). The authors concluded that the performance of
all three systems was suboptimal for the prediction of OS among patients who underwent
curative HCC treatment [62]. Results of our study could help identify suitable indicators
for a more precise prognostication system, although it is based on a retrospective single-
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center patient cohort of 106 patients and serves as a proof-of-concept that requires further
validation studies

Our study has some additional limitations. First, we did not have sufficient data in
our patient cohort to investigate prognostic models for disease specific survival, which
would be relevant to further discriminate the impact of both neoplastic and non-neo-
plastic components of the liver disease. Second, although most of our analysis steps are
automated, in some cases we could not achieve the satisfactory Al segmentation of malig-
nant and non-malignant hepatocytes. The well-differentiated HCC, reactive atypia and
dysplastic nodules were not properly distinguished in the WSI of IHC slides and, there-
fore, a pathologist manually annotated the neoplastic and nonneoplastic areas of interest
in all resection samples.

5. Conclusions

In conclusion, we present computational models to assess CD8 density profiles in the
interfaces of both malignant and non-malignant liver parenchyma with the surrounding
stroma. In conjunction with clinical, pathological, and laboratory data, they enable com-
prehensive prognostic stratification of OS and RFS in patients with HCC after liver resec-
tion.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/cancers15020366/s1, Figure S1. (A) CD8 Slide HIGH. (B)
CD8 Slide LOW.
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Simple Summary: Prognosis of patients after surgical resection for hepatocellular carcinoma (HCC)
is often obscured by the variable impact of the tumor and remaining liver properties. We applied
a convolutional neural network and hexagonal grid analytics to extract prognostic indicators from
collagen microarchitecture within the tumor and adjacent liver tissue. By associating the extracted
features from two distinct fiber types with clinical outcomes, we have developed two computational
models to predict the overall survival of the patients. We report the independent prognostic roles
for reticulin in HCC and fibrillary collagen in the peritumoral liver, highlighting the significance
of assessing region-specific and type-specific fiber features. Our study provides evidence that the
predictive power of prognostic models of HCC can be enhanced by artificial intelligence solutions
generating computational image-based biomarkers.

Abstract: Despite advances in diagnostic and treatment technologies, predicting outcomes of patients
with hepatocellular carcinoma (HCC) remains a challenge. Prognostic models are further obscured
by the variable impact of the tumor properties and the remaining liver parenchyma, often affected by
cirrhosis or non-alcoholic fatty liver disease that tend to precede HCC. This study investigated the
prognostic value of reticulin and collagen microarchitecture in liver resection samples. We analyzed
105 scanned tissue sections that were stained using a Gordon and Sweet’s silver impregnation
protocol combined with Picric Acid-Sirius Red. A convolutional neural network was utilized to
segment the red-staining collagen and black linear reticulin strands, generating a detailed map of the
fiber structure within the HCC and adjacent liver tissue. Subsequent hexagonal grid subsampling
coupled with automated epithelial edge detection and computational fiber morphometry provided
the foundation for region-specific tissue analysis. Two penalized Cox regression models using LASSO
achieved a concordance index (C-index) greater than 0.7. These models incorporated variables such as
patient age, tumor multifocality, and fiber-derived features from the epithelial edge in both the tumor
and liver compartments. The prognostic value at the tumor edge was derived from the reticulin
structure, while collagen characteristics were significant at the epithelial edge of peritumoral liver.
The prognostic performance of these models was superior to models solely reliant on conventional
clinicopathologic parameters, highlighting the utility of Al-extracted microarchitectural features for
the management of HCC.

Keywords: hepatocellular carcinoma; liver; hexagonal grid; artificial intelligence; CNN; prognostic
modelling; digital pathology; overall survival
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1. Introduction

Hepatocellular carcinomas (HCC) constitute up to 80% of all primary liver cancers [1].
Liver cirrhosis—often induced by viral hepatitis B and C, alcohol consumption, chemical
toxins, or metabolic liver diseases—precedes HCC in at least 80% of cases [2]. Furthermore,
the global rise of obesity and type 2 diabetes leads to the increased incidence of non-
alcoholic fatty liver disease (NAFLD), a primary cause of HCC in the absence of cirrhosis [3].
In recent decades, the impact of HCC has grown significantly, now ranking as the third
leading cause of cancer-related mortality worldwide [4]. From 1990 to 2019, there was
a staggering 70% increase in HCC incidence, resulting in 480,000 attributable deaths,
exacerbated by late diagnoses and advanced disease stages [1,5]. While early detection
leads to a five-year survival rate of over 70%, the rate plummets to a mere 18% in later
stages [4,0]. These trends highlight the necessity for research into surgical techniques,
pharmaceutical options, and prognostic factors to meet the challenge posed by HCC.

Unlike many other cancers, post-resection clinical outcomes of HCC patients do not
rely solely on tumor properties and success of its therapy. An important additional deter-
minant is the pathology and functional capacity of the residual liver tissue, underscoring
the need for comprehensive assessment of both tumor and non-tumor components [7].
This aspect was taken into account by the Barcelona Clinic Liver Cancer (BCLC) staging
and treatment strategy. BLCL points to the limitations of scoring systems for liver failure,
like the Child—Pugh system and the model for end-stage liver disease (MELD), which
fail to accurately predict the loss of liver function specifically in the context of HCC [8].
To address this, BCLC staging incorporates multiple parameters of tumor burden, liver
function, and cancer-related symptoms, as well as alpha-fetoprotein (AFP) levels and the
albumin-bilirubin score for liver function assessment [9].

Surgical liver resection provides samples containing HCC and liver parenchyma, as
well as their interface. This opens multiple opportunities of tissue pathology methods to
assess cellular, molecular, and architectural properties of the disease in the spatial context
of the tissue microenvironment. A particular aspect that unifies both tumor and non-tumor
tissues is represented by properties of the extracellular matrix (ECM), which has been
shown to provide rich and quantifiable data of clinical significance. Tumor associated
collagen signatures (TACS) have been conceptualized as computational biomarkers to
reflect changes in the organization, alignment, and composition of fibers in the stroma that
surround and interact with cancer cells [10]. Originally proposed and demonstrated to have
prognostic significance in breast cancer tissue by Keely et al., collagen-derived features
were subsequently refined and described in oral, gastric, salivary gland, skin neoplasms
and benign fibrous lesions [11-14]. On the other hand, microarchitectural transformations
of liver tissue represent progression of chronic liver disease.

At the molecular level, the ECM is represented by co-polymers comprising various
types of collagen, non-collagenous glycoproteins, proteoglycans, and other molecules.
These composite biological materials have distinct characteristics, and thus bear similarities
with metal alloys, as noted by Bruckner [15]. Arranged into fibrillary structures of the
interstitial matrix and the basement membrane—the main components of the ECM—they
provide a structural foundation for the liver parenchyma [10]. The molecular complexity
of ECM became evident in the 1970s with the discovery that normal liver tissue primarily
contains three types of collagen: Type I, Type III, and basement membrane collagens.
Type III collagen is the main constituent of reticulin fibers [16]. However, persistent liver
injury leads to significant alterations of the composition, orientation, and quantity of
all collagen types [17]. As fibrosis progresses, Type I collagen accumulates, eventually
becoming predominant in the cirrhotic liver [18]. Despite well-established association
between cirrhosis and hepatocarcinogenesis, the exact role of Type I collagen remains
unclear: some studies associate it with HCC progression [19], whereas others propose
that Type I collagen accumulation may have a beneficial effect by mechanically restraining
tumor spread [20]. Conversely, the role of Type III collagen is more established, given that
the progressive distortion and dissolution of reticulin framework are histopathological

98



Cancers 2024, 16, 106

30f18

hallmarks of HCC [21]. Therefore, a comprehensive analysis of Type I and Type III (reticulin)
collagen properties could provide insights for clinical assessment of patients with HCC.

Currently, histochemical or immunohistochemical methods are used to highlight the
different types of collagen [22]. Assessment of the fiber microarchitecture can be performed
by visual inspection of the patterns; however, rapid development of computational methods
in digital pathology brings novel opportunities for high-capacity quantification of the
structural patterns [23]. It has been shown that Al solutions are capable of extracting
subvisual features with prognostic relevance from liver tissue [24]. Recently, Patil et al.
developed a deep learning model for quantifying reticulin (represented by black, silver-
impregnated fibers) in HCC tissue after liver resection [25]. They found that a decreased
reticulin proportionate area (RPA) was an independent predictor of metastasis, shorter
disease-free survival, and worse overall survival in this study. Similarly, Taylor-Weiner et al.
demonstrated the utility of a convolutional neural network (CNN) for Ishak and NASH
Clinical Research Network fibrosis scoring in trichrome-stained slides [26]. A recent study
suggests that liver pathologists are eager for further development of digital pathology and
Al integration [27].

Morkunas et al. proposed a more detailed method for extracting collagen-derived
prognostic features; they used a CNN to segment collagen from images of tissue microar-
rays (TMA) containing Picrosirius Red stained samples of ductal breast carcinoma [28].
From 37 features of fiber morphometry, density, orientation, texture, and fractal characteris-
tics, they found an independent prognostic value of observed heterogeneity of distances
between collagen fibers, fiber straightness, and variance of fiber orientation angles to pre-
dict patient survival, even though their method was limited to samples of small amount
of tumor tissue (TMA cores). On the other hand, full-face surgical resection samples con-
tain large amount of data that are also affected by intratissue heterogeneity, including the
malignant and non-malignant components and their interfaces. Therefore, it is essential to
properly assess the spatial aspects of pathology features extracted. To tackle this complexity,
Plancoulaine et al. proposed a hexagonal tiling approach that allowed quantification of in-
tratumoral heterogeneity of biomarker expression in breast cancer [29]. Building upon this
method, a tool for automatic detection of the tumor-stroma interface was further developed
by Rasmusson et al. [30].

In this study, we explored the predictive value of linear reticulin and thick septal
collagen fibers in both HCC and adjacent liver. Utilizing Al for fiber segmentation and
tissue classification, followed by hexagonal grid subsampling of the data, we extracted
fiber-specific features in the spatial context of the tissue components and their interfaces.
Our findings indicate the potential utility of these features to predict overall survival of
patients undergoing liver resection for HCC.

2. Materials and Methods
2.1. Study Design

An overview of the study design is presented in Figure 1. Archived formalin-fixed
paraffin-embedded (FFPE) samples from 105 patients were used in this retrospective study.
Patients met the following inclusion criteria: (1) they underwent surgical liver resection
due to HCC at the Vilnius University hospital Santaros Clinics (Vilnius, Lithuania) with the
specimens tested at the National Center of Pathology, an affiliate of the Vilnius University
Hospital Santaros Clinics (Vilnius, Lithuania) between 2007 and 2020; and (2) they had at
least one archived FFPE block containing both non-necrotic HCC and peritumoral liver
tissues. Overall survival (OS) data were obtained with a median OS duration of 938 days
and 60% of the individuals deceased as of 2022. The study was approved by the Vilnius
Regional Biomedical Research Ethics Committee (permit number 2021/6-1354-843), who
waived the requirement of individual informed consent.
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Figure 1. Study design: (A) surgical liver resection due to HCC at the Vilnius University hospital
Santaros Klinikos (Vilnius, Lithuania); (B) specimens tested at the National Center of Pathology
(Vilnius, Lithuania); (C) samples stained using a modified Gordon and Sweet’s silver impregnation
protocol, combined with Picric Acid-Sirius Red; (D) slides scanned at 20 x magnification (0.5 um per
pixel) using an Aperio® AT2 DX scanner; (E) tissue segmentation using HALO® Al on the manual
annotations; (F) epithelial edge detection and ranking of the hexagonal grid tiles according to tissue
class proportions; (G) segmentation of reticulin and collagen fibers using a pretrained convolutional
neural network, producing an image of red and green fibers against the black background for
viewing and analysis; (H) calculating pixel-level, fiber-level, and image-level features describing the
microarchitecture of the fibers within each hexagon; (I) data from individual hexagons are aggregated
across predetermined tissue regions to provide case-level features for prognostic modeling.

Clinicopathologic parameters were retrospectively collected from the medical records
and are presented in Table 1. Briefly, in this cohort of 105 individuals with a median age of
65 years, there is a predominance of male patients (77.1%) and grade 2 HCC (74.3%), while
the extent of the primary tumor is mostly pT2 (56.2%) and pT1 (36.2%).

Table 1. Patient and tumor characteristics of the study cohort.

Characteristic Value (Range or Percent)
Patients 105 (100%)
Age, years

Mean (range) 63.7 (13-82)

Median 65

>55 years 88 (83.8)
Gender

Male 81 (77.1%)

Female 24 (22.9%)
Metavir fibrosis stage

FO (no fibrosis) 12 (11.4%)

F1 (portal fibrosis without septa) 5 (4.8%)

F2 (portal fibrosis with rare septa) 11 (10.4%)

F3 (numerous septa without cirrhosis) 16 (15.3%)

F4 (cirrhosis) 61 (58.1%)
Largest tumor dimension, cm

Mean (range) 4.76 (0.8-19.0)

Median 40
Tumor multinodularity

Single HCC nodule 74 (70.5%)

Multiple HCC nodules 31 (29.5%)
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Table 1. Cont.

Characteristic Value (Range or Percent)
HCC grade

Gl 8 (7.6%)

G2 78 (74.3%)

G3 19 (18.1%)
pT stage

T1 38 (36.2%)

T2 59 (56.2%)

T3 7 (6.7%)

T4 1(0.9%)
Intravascular invasion

Present 52 (49.5%)

Absent 53 (50.5%)
Lymph nodes present

Yes 19 (18.1%)

No 86 (81.9%)

Lymph nodes per patient if present, mean 27

- 7(2)
(median)

Metastatic spread confirmed 1/19 (5.3%)
Resection margin

RO 85 (80.9%)

R1 20 (19.1%)
History of viral infection

HBV 9 (8.6%)

HCV 52 (49.5%)

None or unknown 44 (41.9%)
Other treatment prior to current resection

Yes 13 (12.4%)

No 92 (87.6%)
HCC recurrence after resection

Yes 56 (53.3%)

No 49 (46.7%)
OS time, days

Mean (range) 1108.7 (20-3160)

Median 938

2.2. Sample Preparation and Segmentation

A pathologist (RS) reviewed all archived slides to identify the most representative
formalin-fixed paraffin-embedded (FFPE) block. The selected block includes non-necrotic
HCC tissue, and, whenever possible (in 103 samples, accounting for 98.1% of the cases), the
surrounding peritumoral liver parenchyma. The 3 um sections were stained using a modi-
fied Gordon and Sweet’s silver impregnation protocol combined with Picric Acid-Sirius
Red, referred to as GSPS (see Figure 2E-H, supplementary Table S1). This method is stan-
dard for liver and bone marrow samples at the National Center of Pathology. Throughout
this paper, we define the red-staining fibers in the thick fibrous septae as ‘collagen’, and the
delicate black linear strands mostly located in the epithelial areas as ‘reticulin’.

All slides were subsequently digitized at 20 x magnification (0.5 pm per pixel) using an
Aperio® AT2 DX scanner (Leica Aperio Technologies, Vista, CA, USA). A pathologist (RS)
reviewed the images to mark the malignant (HCC) and non-malignant (peritumoral liver)
areas on each slide by placing manual annotations (see Figure 3A,D). A HALO® AI (Indica
Labs, Albuquerque, NM, USA) classifier was used to categorize the tissue into hepatocytes
(indiscriminately malignant and non-malignant), stroma, and background classes.
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Figure 2. Staining and segmentation: (A-D) hematoxylin—eosin (H&E) staining is inferior to GSPS in
the frame of this study due to its limited capacity to highlight the fibrous structures, such as the tumor
capsule and septation of cirrhotic liver parenchyma; (E-H) a modified Gordon and Sweet’s silver
impregnation protocol combined with Picric Acid-Sirius Red (GSPS). The nodularity of the cirrhotic
liver and the encapsulation of the tumor are highlighted by red-stained bands of collagen (F); note the
regular black linear reticulin network of the liver (G) in contrast to the loss of reticulin in HCC (H);
(I-L) the CNN-generated pixel-precise mask of red (collagen) and green (reticulin) fibers set against a
contrasting black background, optimized for viewing and morphometric feature extraction.

2.3. CNN-Based Fiber Framework Extraction

We used a modified version of a U-Net model architecture proposed by Morkunas et al.
in 2021 [28] to analyze the images of GSPS-stained samples. The model was designed to
produce three output channels, representing collagen (red), reticulin (green), and an empty
channel (black). This produces an RGB image, which is easy to view and analyze (see
Figure 21-L).

To produce the ground truth for model training, we selected 85 large (2048 x 2048 pixel-
sized) regions of interest (ROIs) in 31 whole slide images (WSIs). We manually annotated
fibrous structures of both collagen and reticulin in all ROIs by freeform annotation to
produce RGB annotation masks of the fibers. Each region of interest (ROI) and its cor-
responding mask was then partitioned into 256 x 256-pixel image patches to match the
model’s input size, resulting in a total of 5440 patches (N = 85 x (2048/256)?). To increase
the training set, we augmented the dataset with 90° rotations, vertical and horizontal
flips, blurring, zooming, and annotation erosion or dilation. Examples of annotated image
patches are shown in Supplementary Figure S1. The final augmented dataset contained
54,400 image patches. The dataset was randomly divided into an 80% training subset and a
20% validation subset for model training.

102



Cancers 2024, 16, 106

70f18

Hepatocellular carcinoma c

‘ HCC core (>2)
Tumor — stroma
interface zone (-1,0,1)

Peritumoral liver F

‘ Liver core (>2)
O Hepatocytes — stroma

Peritumoral
stroma (<(-2))

interface zone (-1,0,1)

‘ Liver stroma (<(-2))

Figure 3. Hexagonal tiling, ranking, and zones of interest: (A) HALO® Al (Indica Labs, Albuquerque,
NM, USA) classifier result on the manually placed HCC annotation; (B) ranking of the hexagonal
tiles according to their shortest distance from the tumor edge (rank 0 hexagon); (C) regions of interest
within the HCC annotation; (D) classifier result for the manually annotated non-malignant liver
parenchyma; (E) ranking of the hexagons on the sides of non-malignant epithelial edge; (F) regions of
interest within the peritumoral liver annotation.

During inference, the target WSI is divided into overlapping patches of size
256 x 256 pixels, with a step-size of 128 pixels in both vertical and horizontal directions on
the image plane. Pixels in both red and green layers of the predicted fiber mask undergo
separate thresholding processes. A pixel in the predicted collagen mask is assigned a
value of 1.0 if the probability of collagen detection in that pixel exceeds 0.5; otherwise, it is
assigned a value of 0.0. No rules were implemented to prevent a single target pixel from
being attributed to more than one output layer. This lack of constraint allows for model
uncertainty, manifesting as yellow pixels in the predicted RGB images where red and green
fibers overlap, despite the absence of overlapping red and green fiber annotations in the
ground truth.

The model was trained with adaptive moment estimation optimizer (using default
parameters provided in the original method [31]) minimizing the binary cross-entropy loss
function. We trained the model on single patch batches. Model weights were saved after
each improvement in validation loss. The training phase was terminated after validation
loss did not improve for 20 consecutive epochs. We used a suite of software tools including
h5py (2013, Collete A., Boulder, CO, USA), numpy (version 1.20.0), and tensorflow with
tensorboard (version 2.7.0).

2.4. Hexagonal Grid Tiling

Grid subsampling was utilized to sample the whole slide images (WSI) into hexagonal
tiles (in this study having a long diagonal of 780 pixels) and rank them according to the
distance to the automatically detected edge between the epithelium and stroma tissue
classes, as described previously [30], see Figure 3. The tiling offers a number of advantages
over processing the entire slide at once, with two of them being crucial. First, tiles allow
a localized analysis of the tumor features, thus helping us identify the gradual changes
and heterogeneity within different regions of the tissue, which might be overlooked in a
whole-image analysis. Secondly, the spatially ranked tiles enable the extraction of specific
regions of interest within the tumor, thereby providing more targeted insights. Briefly,
during the ranking step, the hexagons at the stroma—epithelium (either benign hepatocytes
or neoplastic HCC cells) boundary are identified and assigned a rank 0. Subsequently, the

103



Cancers 2024, 16, 106

80f18

epithelial-side hexagons are attributed a positive rank, and stromal hexagons a negative
rank, according to their shortest distance from the edge (rank 0 hexagon).

2.5. Calculation of Fiber Texture Descriptors

Morkunas et al. [28] originally proposed a set of 37 pixel-level, fiber-level, and image-
level features to describe the CNN-derived fibrous matrix of breast cancer tissue. Drawing
on past experience, we have reduced the number of features by removing the ones that were
previously found to be the most correlated, dependent upon tissue placement on the glass
slide, or difficult to interpret. In this study, for each tissue type marked by a pathologist,
we calculated 11 features (see Table 2) including fiber orientation, morphometrics, fractal
characteristics, and Haralick’s texture descriptors. Since these features are calculated
per channel, separate descriptor sets were obtained for the green (reticulin) and the red
(collagen) fibers, and the final number of calculated tissue characteristics is 22. Features
were extracted for each hexagon, thus enabling analysis of fiber features according to
hexagonal rank.

Table 2. List of features used to characterize the fibrous matrix, calculated twice per each hexagon:
for the green (reticulin or Type 3 collagen) and the red (Type 1 collagen) fibers separately.

Feature Description
Orientation:
Circular standard deviation (CSD) Dispersion of circular angles of the individual fibers
Magnitude, mean (mMag) Average strength or intensity of vectors (e.g., gradients) in the fiber mask
Morphometry:
Fiber length, mean (mFL) Average Euclidean distance between the endpoints of each skeletonized fiber
Fiber path, mean (mFP) Average pixel length of a line dividing a fiber into two equal parts along its longer axis
Fiber straightness, mean (mFS) A ratio of fiber length over fiber path
Density:
Fiber density (FD) Number of pixels in the mask
Endpoints (nENDP) Number of fiber endpoints in the hexagon mask
Texture (Haralick’s):

Homogeneity (hom)

Entropy (ent)
Correlation (cor)
Fractal:

Lacunarity (lac)

The closeness of the distribution of elements in the gray-level co-occurrence matrix to
the matrix diagonal
Amount of information or randomness in the texture
Linear dependency of gray levels on those of neighboring pixels

A measure of both gaps and heterogeneity: the variation in space around objects in the
image and their irregular distribution

2.6. Statistical Analysis

The main goal of this study was to determine the impact of reticulin and collagen

patterns in the tumor microenvironment on overall survival. Both the HCC and the peritu-
moral liver areas (as determined by a pathologist’s annotation), were further subdivided
into three regions of interest each (see Figure 3): the three hexagon-wide “interface zone’
(IZ3), consisting of ranks [—1, 0, 1]; the epithelial ‘core’, incorporating ranks [>2]; and the
‘stroma’, with the remaining ranks [<(—2)]. For survival analysis, the data from individual
hexagons across each of the six regions had to be aggregated on a per-case basis. During
this aggregation, the mean and standard deviation of every feature measurement (across
all hexagons, in each region of interest) are calculated for every case. The compiled case-
level dataset contains 264 potential fiber-derived predictors, representing 2 annotations
x 3 regions per annotation X 2 summary metrics (mean and standard deviation) x 2 types
of fibers (green and red) x 11 fiber features. Twelve clinicopathological variables such as
patient age, gender, tumor grade, size, stage, intravascular invasion, etc. were added to
the set.

The data were analyzed using SAS software (version 9.4; SAS Institute Inc., Cary, NC,
USA) and Python libraries (Pandas version 1.3.4, Scikit-learn version 1.0.2 and Lifelines
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version 0.27.0). Descriptive statistics were computed to summarize the main features of the
data, with means, medians and ranges reported for continuous variables, and frequencies
and percentages for categorical variables. Min—max scaling (or min-max normalization)
was used to transform the metrics of the features to be on a similar scale in a fixed range
between 0 and 1. Univariate Cox regression analysis with LASSO (least absolute shrinkage
and selection operator) regularization was used to assess the performance of individual
variables. Features with a p < 0.1 were used to construct the survival prediction models
that underwent further evaluation using multivariate LASSO Cox analysis. After running
LASSO Cox regression, only the models where all variables had p < 0.05 were retained.
The C-index on the five-fold cross-validation test set was used to measure performance
and rank the models accordingly. The individual features included in these models were
ranked based on the frequency of their combined occurrence across all the models. Given
the extensive list of significant predictors, we used the factor analysis as an additional step
to identify underlying relationships among the variables, aiding interpretation.

3. Results
3.1. Descriptive Statistics

A total of 162,435 hexagonal tiles comprised the complete hexagon-level dataset. The
range of measurements of reticulin and collagen fiber features in the individual hexagons
prior to min-max scaling is presented in Table 3.

Table 3. Range of the reticulin (green, prefix ‘g ") and collagen (red, prefix ‘r_’) fiber features as
measured per individual hexagonal tiles prior to scaling.

Feature Min Max Mean Median
_CSD 0.327599 1.551254 0.874630 0.872546
_mMag 2.731371 25,599.785804 7410.622809 6869.993232

g_mFL 0.000000 1059.079906 61.729315 52.348669
_mFP 2.500000 1246.933333 90.089874 78.200000
_mFS 0.000000 0.956133 0.497333 0.507360

g_FD 1.000000 151,375.000000 34,755.695386 30,771.000000

g_nENDP 0.000000 1394.000000 322.604360 312.000000
_hom 0.947687 0.999997 0.984834 0.985913
_ent 0.000068 1.092885 0.380083 0.378187

g_cor —0.000008 0.944431 0.843028 0.851353

g_lac 0.000000 1.206979 0.589991 0.579632

r_CSD 0.282147 1.583950 0.842409 0.824565

r_mMag 2.630596 34,292.920449 6742.703072 3761.257993

r_mFL 0.000000 28,507.246022 132.393359 51.126263

r_mFP 2.500000 14,861.500000 133.552675 72.366667

r_mFS 0.000000 3.478550 0.470136 0.482461

r_FD 1.000000 386,398.000000 45,713.265522 19,491.000000

r_nENDP 0.000000 2221.000000 360.981139 206.000000

r_hom 0.929537 0.999998 0.986157 0.992241

r_ent 0.000044 1.315616 0.380543 0.259431

r_cor —0.000008 0.988216 0.839329 0.858877

r_lac 0.000000 1.295812 0.594719 0.602250

3.2. Univariate Predictors of Overall Survival

After scaling to standardize feature metrics, the impact of individual variables on
the overall survival (OS) was evaluated using univariate Cox regression with LASSO
regularization. Fifteen variables were determined to be statistically significant univariate
predictors of OS. Higher stage (pT2-4, p = 0.0026), older patient age at the time of diagnosis
(>55 years, p = 0.0074), and the presence of intravascular invasion (p = 0.0089) were the
strongest predictors of shorter OS in this cohort. Twelve fiber-derived features, all derived
from the HCC “interface zone’ or ‘core’ regions, had p < 0.05, while showing either a positive
or negative effect on OS. For a more inclusive approach, allowing for a comprehensive
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assessment in the subsequent multivariate Cox regression analysis, 36 features with p < 0.1
were selected for further modelling (see Table 4). The expanded list included multiple
tumor nodules in the resected liver, alongside the addition of fiber-derived features from
the peritumoral stroma, and the non-neoplastic liver parenchyma.

Table 4. Univariate predictors of overall survival ranked by the p-value (Cox regression with
LASSO regularization).

Feature p-Value Hazard Ratio (HR)
Stage pT2-4 0.0026 2.3719
Age > 55 years 0.0074 3.1990
Intravascular invasion 0.0089 1.9564
g_mn_mFL_HCC_IZ3 0.0095 0.0897
g_mn_mFP_HCC_IZ3 0.0095 0.1078
g_mn_cor_HCC_IZ3 0.0199 0.1114
g_sd_mFL_HCC_IZ3 0.0285 0.2203
g_mn_ent HCC_IZ3 0.0294 0.2987
g_mn_FD_HCC_IZ3 0.0340 0.3049
g_mn_lac_HCC_IZ3 0.0343 4.1651
g_mn_mMag_HCC_IZ3 0.0356 0.3049
g_mn_hom_HCC_IZ3 0.0361 3.2656
g_mn_cor_HCC_CORE 0.0394 0.1385
g_sd_mFP_HCC_IZ3 0.0397 0.2500
g_mn_cor_HCC_STROMA 0.0482 0.1466
g_mn_mFS_HCC_IZ3 0.0514 0.1900
r_sd_mFS_LVR_1Z3 0.0532 0.0417
g_mn_nENDP_HCC_IZ3 0.0553 0.3200
g_mn_ent HCC_CORE 0.0589 0.3644
g_sd_FD_HCC_STROMA 0.0595 0.3406
g_mn_mFP_HCC_STROMA 0.0702 0.1600
Multiple tumors 0.0717 1.6175
g_sd_mFS_HCC_STROMA 0.0733 2.6564
r_sd_FD_LVR_1Z3 0.0745 0.2762
g_mn_mFL_HCC_STROMA 0.0784 0.1616
r_mn_cor_LVR_IZ3 0.0858 0.2579
g_mn_FD_HCC_CORE 0.0865 0.3792
g_sd_mFS_HCC_IZ3 0.0902 3.0509
r_mn_mFS_HCC_IZ3 0.0935 4.2304
g_sd_ent HCC_STROMA 0.0941 0.3704
g_sd_mMag_HCC_STROMA 0.0954 0.3911
g_sd_hom_HCC_STROMA 0.0963 0.3912
g_mn_hom_HCC_CORE 0.0986 2.5157
g_mn_mMag_HCC_CORE 0.0988 0.3972
g_mn_ent HCC_STROMA 0.0995 0.2707
g_sd_lac_HCC_CORE 0.0995 3.1310

3.3. Multivariate Analysis

In adherence with the ‘rule of ten’ guideline, which suggests at least 10 events per vari-
able in constructing a regression model, and given the presence of 56 events in our dataset,
we systematically generated and listed all the possible regression models (N = 2,835,199)
containing 1, 2, 3, 4, 5 or 6 components from the previously defined set of features. After ap-
plying LASSO Cox regression, only those models (N = 139) in which all variables exhibited
a p-value of less than 0.05 were retained (the complete list is presented in the Supplementary
Table S2). The concordance index (C-index) on a five-fold cross-validation test set was
chosen as the metric of performance, and the models were ranked accordingly. A C-index
above 0.7 indicates good discriminative ability, and two similar models in our study have
shown values above this threshold (see Table 5). Both models include a demographic vari-
able (patient age), a pathological parameter (HCC multifocality), a reticulin-derived feature
at the tumor edge, and the collagen-derived feature at the epithelial edge of peritumoral
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liver. The Kaplan-Meier OS plots (the cutoff values for groups here are the median values)
for the individual components of these two models are presented in Figure 4.

Table 5. Cox regression models with a C-index above 0.7.

Features HR 95% CI p-Value
Model A, test set C-index 0.7094, AIC 359.3840
Age > 55 years 4.05 1.67-9.80 0.00194
Multiple_tumors 1.92 1.11-3.31 0.01895
g_mn_lac_HCC_IZ3 6.36 1.69-23.87 0.00615
r_mn_cor_LVR_IZ3 0.21 0.05-0.92 0.03802
Model B, test set C-index 0.7061, AIC 359.2425
Age > 55 years 4.33 1.73-10.81 0.0017
Multiple_tumors 2.24 1.30-3.83 0.0035
g_mn_lac_HCC_IZ3 5.58 1.48-21.06 0.0113
r_sd_mFS_LVR 173 0.02 0.00-0.84 0.0396

The models in which every component had a p-value less than 0.05, were further
analyzed by counting the number of times each variable appeared. Of the 139 models
considered, all were composed of just 30 unique components in different combinations. The
variables (features) were ranked based on the number of occurrences, and are presented in
Table 6.

Table 6. List of the variables comprising statistically significant (p < 0.05) OS models ranked by the
number of occurrences in the models.

Feature Number of Occurrences
Age_55plus 57
r_mn_cor_LVR_IZ3 39
r_sd_mFS_LVR 173 28
LVI 27
r_sd_FD_LVR_IZ3 23
Multiple_tumors 23
g_mn_lac_HCC_IZ3 16
g_sd_lac. HCC_CORE 13
pT2-3 12
g_mn_cor_HCC_IZ3 11
g_mn_mMag_HCC_IZ3 10
g_mn_hom_HCC_IZ3 10
g_mn_ent_ HCC_IZ3 8

g_mn_FD_HCC_IZ3
g_mn_cor_HCC_STROMA
g_mn_mFL_HCC_IZ3
g_mn_ent HCC_CORE
g_mn_mFP_HCC_IZ3
g_mn_hom_HCC_CORE
g_mn_mMag_HCC_CORE
g_mn_nENDP_HCC_IZ3
g_sd_mFS_HCC_STROMA
g_sd_mFL_HCC_IZ3
g_mn_mFS_HCC_IZ3
g_mn_FD_HCC_CORE
r_mn_mFS_HCC_IZ3
g_mn_cor_HCC_CORE
g_sd_mFP_HCC_IZ3
g_sd_mMag_HCC_STROMA
g_sd_hom_HCC_STROMA
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Figure 4. (A-F) Kaplan-Meier overall survival plots and the cutoff values for the components of
models with good discriminative ability (C-index > 0.7); the best univariate predictor is also added.

3.4. Factor Analysis

We have further applied a factor analysis to investigate the underlying relationships
of the fiber-derived features (N = 26) after removing the conventional clinicopathologic
variables from the list of significant predictors. Six factors explaining 85.12% of the variance
in the data were kept, using an eigenvalue of 1 as the criterion. Orthogonal varimax rotation
was used to maximize the variance of the loadings within factors (the results are presented
in Figure 5).
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Feature Factorl Factor2 Factor3 Factord Factor5 Factor6
g_mn_nENDP_HCC_IZ3 010036  -0.05121  0.16403  -0.00628  0.06156
g_mn_mMag_HCC_iZ3 020883  -0.04795  0.14834 010887  0.0344
g_mn_ent_HCC_IZ3 022806  -0.02563  0.15822 011101  0.07623
g_mn_FD_HCC_IZ3 027999  -0.00784 01591 007985  0.09032
g_mn_mMag_HCC_CORE 023747 00052 020692 000278  0.03374
g_mn_FD_HCC_CORE 029006 003427 021055 -0.02641  0.06987
g_mn_ent_HCC_CORE 025703 001367 020808 001141  0.06455
g_mn_mFP_HCC_IZ3 066879  0.65105 @ 004369  0.13945  0.15138  0.18189
g_mn_mFL_HCC_IZ3 065465  0.66181  0.06318 014 012075  0.19207
g_sd_mFL_HCC_Iz3 0.48998 007264  0.11847  -0.00616  0.1104
g_sd_mFP_HCC_Iz3 0.48386 005612  0.11783 001193  0.08454
g_sd_mMag_HCC_STROMA 048089  0.1491 0.073 001272 0.02513
g_sd_hom_HCC_STROMA 048035  0.14801  0.07334 001008  0.02487
g_mn_cor_HCC_CORE 028905 036481 014022 00537  0.09471  0.32009
g mn_mFs_HCC_Iz3 020433 005334 010008  0.00595 |JOISS/06H 0.1307
g_mn_cor_HCC_IZ3 012828 025347 022098 003485  0.1635 | JOB/0850
r_sd_mFS_LVR_IZ3 -0.0139 000568 024617 -0.04347  0.03284  0.04839
r_mn_cor_LVR_IZ3 -0.02628  0.03934 002386  0.09006  0.13865
r_sd_FD_LVR_IZ3 -0.07918  0.0805 009005 002329  0.05877
g_mn_cor_HCC_STROMA -0.08075  0.05255 008409 002572 00195  0.14305
g_sd_mFS_HCC_STROMA -0.085 005502 -0.00142 -0.13163  -0.08492  0.06053
r_mn_mFS_HCC_IZ3 040508 -0.03649  0.06498  -0.01958  0.02606  -0.03992
g_sd_lac_HCC_CORE 054988  -0.09544  0.05536  -0.08286  -0.0678  -0.11139
g_mn_lac_HCC_IZ3 -0.24683 005698  -0.15718 -031933  0.1236
g_mn_hom_HCC_CORE -0.23658  -0.00485 -0.20711 -0.00141  -0.03397
g_mn_hom_HCC_Iz3 -020717 004841  -0.14824 -0.10603  -0.03462

Figure 5. The heatmap of factor loadings (sorted by the loadings in Factor 1). Positive loadings in
dark green boxes, negative loadings in red. Color intensity indicates magnitude, with dark green for
high positive loadings and light green for low positive loadings.

Factor 1 explains 53.73% of data variance and is characterized by the irregularity of
reticulin fibers within the tumor—stroma interface and, to the lesser extent, the tumor core.
Factor 1 has high loadings for variables like density, entropy, magnitude, and the number
of endpoints of the reticulin fibers. Conversely, it displays negative loadings for parameters
such as lacunarity and homogeneity. Factor 2 covers 11.08% of variance and highlights
the heterogeneity of the reticulin fiber measurements, also within the same tumor-stroma
interface. It is primarily influenced by variables corresponding to reticulin fiber length
and fiber path, with emphasis on both mean values and standard deviations (SD) at the
tumor edge. Factor 3 (6.56% of variance) captures the irregularity of the collagen network
within the peritumoral liver-stroma interface, representing fibrosis around the functioning
hepatocytes. It is mostly associated with the standard deviation of red pixel density per
hexagon, and mean texture correlation of the collagen fibers.

Each of the other three factors covers less than 5% of the data variance. Factor 4
represents the heterogeneity of reticulin fibers in the peritumoral stroma, particularly in
the standard deviation of homogeneity and magnitude. The pronounced straightness of
reticulin fibers in the tumor—stroma interface forms the most of Factor 5. Lastly, Factor 6
emphasizes the correlation of reticulin fibers in all of the HCC tissue, represented by both
the tumor-stroma interface, and the tumor core.
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The first five factors exhibited cutoff values that divided the cohort into groups with
statistically significant differences in overall survival duration, as indicated by a p-value of
less than 0.05 in univariate analysis. However, after applying the LASSO Cox regression,
none of these factors were found to be significant in the models, and therefore, they did not
outperform the individual features.

4. Discussion

This study demonstrates the prognostic value of convolutional neural network-based
mapping of reticulin and collagen fiber architecture in the HCC microenvironment. The
integration of computational features describing the reticulin and collagen texture with the
clinical parameters resulted in two multivariate overall survival models with a test cohort
C-index > 0.7 after penalized LASSO Cox regression. Both models reveal the independent
prognostic impact of patient age, tumor multifocality and fiber-derived features at the
interfaces of HCC and the remaining functional hepatocytes with the surrounding stroma.
Also, the reticulin structure provided the prognostic value at the tumor edge, while at the
border of liver parenchyma, the collagen structure was relevant. Meanwhile, none of the
models consisting of conventional clinicopathologic metrics only were able to surpass the
0.7 C-index threshold.

We have discovered that among the HCC-derived features in our cohort, the mean
lacunarity of the reticulin framework at the tumor margin was the best-performing metric.
Following closely, as indicated by its recurrent appearances in the models (Table 6), is the
variance (SD) of the reticulin lacunarity at the core of the tumor. This observation aligns
with the established significance of reticulin which is a key element in the structure of a
normal liver, providing the framework of its lobular architecture. The alteration, disruption
or dissipation of reticulin fibers is a well-documented diagnostic sign of HCC, first reported
nearly 50 years ago [32]. Lacunarity is a fractal parameter that captures both gaps (Lat.
lacuna) and heterogeneity in a pattern. In the context of our study, higher lacunarity would
suggest the reduction and distortion of the reticulin framework, possibly indicating a
more aggressive tumor phenotype. The high variance of lacunarity at the central part
of the tumor—the core—might suggest the existence of areas with different degrees of
aggressiveness. This insight finds parallels with a recent study by Patil A. et al., which
confirmed a reduction in the Al-identified reticulin proportionate area (RPA) in HCC as a
strong predictor of adverse patient outcomes [25]. However, our work revealed a potential
superiority of spatial variations in the reticulin framework, as captured by lacunarity. The
underperformance of the mean fiber density (FD, derived from the number of pixels in
the mask and comparable to RPA) in our study, in contrast to lacunarity, suggests that the
spatial heterogeneity in reticulin arrangement may provide more insight than merely the
proportion of reticulin in the HCC tissue.

In cancer diagnostics, the non-neoplastic component of the tissue often receives some-
what lesser attention. However, our findings also underscore the independent prognostic
significance of the peritumoral liver parenchyma. The extent of fibrosis, a well-documented
predictor of chronic liver disease outcomes, can be assessed using a variety of invasive or
non-invasive methods [33,34]. We have demonstrated that collagen in the peritumoral liver
serves as a significant source of prognostic information, in contrast to the role of reticulin
in HCC, as previously discussed. This aligns with the known role of Type I collagen as
the primary component of fibrous tissue that accumulates during persistent liver damage.
In our study, two features associated with peritumoral liver collagen were included in
the most predictive models of overall survival (Table 5): the mean texture correlation of
collagen fibers, and the high variance of collagen fiber straightness. Additionally, the
high variance in fiber density emerged as the third collagen-derived feature, listed among
the ten most recurrent components in the prognostic models (Table 6). Importantly, all
these indicators were measured at the interface between remaining functional hepatocytes
and the fibrous tissue (hexagon ranks —1, 0, 1). The standard deviation of individual
measurements serves as an indicator of variability or heterogeneity between hexagons.
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In this case, it can highlight regions of dense, compact fibrosis in contrast to areas of the
liver that remain somewhat intact, characterized by sparsely deposited and less organized
collagen fibers. On the other hand, a more consistent overall tissue structure (reflected
by the high mean correlation), might indicate a less advanced liver disease with higher
residual functional capacity. Combined, the high variability of collagen deposition in the
individual hexagons and the maintenance of general parenchymal integrity might indicate
the presence of ongoing successful tissue repair. As sufficient residual liver function is
crucial for the survival of patients [35], its assessment alongside tumor parameters on the
same tissue slide offers a streamlined and practical approach in HCC resection samples.

A factor analysis was used to investigate the inherent relations between the 26 fiber-
derived features that, when combined in certain ways (see Supplementary Table S2),
showed statistically significant predictive power (p < 0.05) in regression models. Six factors
were identified, capturing the majority of the information in the original data. The heatmap
in Figure 5 highlights the strong negative association between the mean reticulin lacunarity
at the tumor edge (g_mn_lac_HCC_IZ3) and the dominant Factor 1, positioning it as a key
determinant. Notably, this variable also exhibits the most negative loadings for both Fac-
tor 2 and Factor 5, and ranks second to last in terms of negative loadings for Factor 4. These
consistent negative loadings across four of the six factors suggest that g_mn_lac_ HCC_IZ3
captures multidimensional information about the reticulin framework at the tumor edge,
making it the most prominent HCC-derived feature. Furthermore, the predominant fea-
tures defining peritumoral liver-derived Factor 3 reflect the consistency in collagen fiber
orientation (r_mn_cor_LVR_IZ3), variability in density (r_sd_FD_LVR_IZ3), and variability
in fiber straightness (r_sd_mFS_LVR_IZ3). Consequently, the pairing of a tumor-based
g_mn_lac_HCC_IZ3 indicator with either r_mn_cor_LVR_IZ3 or r_sd_mFS_LVR_IZ3, both
liver-based features, collectively covers Factors 1-5, which represent 81.04% of the variance.
This unique combination demonstrates remarkable performance in Cox regression models
and outperforms the factor values, emphasizing the synergistic role of tumor and liver
characteristics in HCC prognostication.

Our study contains some limitations. The lack of complete data on HBV and HCV
infections restricts a thorough examination of their potential impact on the overall survival
in our HCC patients. Secondly, the lack of the information on the cause of death limits our
options for predicting disease-specific survival, which would be relevant for our focus on
impact of malignant and non-malignant components. Thirdly, the cohort of 105 patients is
rather limited and serves as a proof-of-concept study. Validation studies on independent
cohorts would be needed to assess generalizability of our findings.

5. Conclusions

We have focused on using a convolutional neural network to segment the two types
of fibers from the histopathology images containing HCC and the adjacent liver tissue,
which were then used to calculate the predictive biomarkers of overall survival. These
biomarkers are based on the structure of reticulin and collagen fibers both in the tumor
microenvironment and the adjacent residual non-neoplastic liver tissue. We underscore
the critical importance of precise tissue zoning due to the concentration of prognostic
information at the edges of both benign and malignant epithelial tissue. The dual-type
fiber extraction method allowed us to confirm the central role of reticulin in HCC, while
collagen emerged as a more predictive component in the peritumoral liver. Moreover, our
findings show that fiber-derived features provide independent prognostic value, augment-
ing conventional clinicopathologic parameters such as patient age, tumor multifocality,
intravascular invasion, and pT stage.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cancers16010106/s1, Table S1: GSPS staining protocol; Table S2:
Models (N = 139) in which all variables exhibited a p-value of less than 0.05; Figure S1: Applied
augmentations: rotation, flipping, blurring, zooming, and different amounts of annotation erosion
and dilation applied to one image patch.
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Introduction: Our previous research demonstrated that CD8+ cell density profiling using a
hexagonal grid-based digital image analysis method provides predictors of patient out-
comes after liver resection due to hepatocellular carcinoma (HCC). Continuing our study,
we have further investigated the applicability of the methodology to patients receiving a
liver transplant for HCC.

Methods: The retrospective study enrolled patients with HCC who underwent liver trans-
plantation (LT) at the Vilnius University Hospital Santaros Clinics between 2007 and 2020.
We determined the density profiles of CD8+ lymphocytes at the interface between HCC
and stroma and the interface between the perineoplastic liver parenchyma and stroma.
Both digital image analysis and the hexagonal grid-based immunogradient method were
applied to CD8+ immunohistochemistry images. Survival statistics based on clinicopath-
ological, peripheral blood analysis, and surgical data determined the prognostic value of
these indicators.

Results: Univariate clinicopathological predictors of worse OS after LT included: patient’s
age at the time of the transplantation, a higher number of HCC nodules, lower platelet
count, longer activated thromboplastin time, lower serum albumin, higher serum total
bilirubin, and lower serum creatinine levels. The two independent predictors of overall
survival were mean CD8+ cell density at the epithelial edge of the explanted liver
parenchyma-stroma interface and peripheral blood platelet count.
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Conclusions: Our model discloses that preoperative peripheral blood platelet count and
mean CD8+ cell density at the epithelial edge of nonmalignant interface in the explanted
liver parenchyma are independent predictors of OS for HCC after LT.

© 2023 Elsevier Inc. All rights reserved.

Introduction

Hepatocellular carcinoma (HCC) accounts for ~75% of all liver
cancers and is the fourth leading cause of cancer mortality
worldwide."? Despite scientific progress in the field of HCC,
the prognosis of HCC patients remains poor and cancer-
related mortality continues to increase in many countries.>*
In most cases, risk factors for HCC are liver cirrhosis, viral
hepatitis B and C, nonalcoholic fatty liver disease, diabetes,
and alcohol consumption.? Partial liver resection or liver
transplantation (LT) continue to be the main options of cura-
tive therapy for early-stage HCC. Both surgical options may
result in similar survival rates; however, HCC recurrence rates
are significantly different. According to the literature, the 5-y
survival rate after partial liver resection for HCC is 50%-68%,
unfortunately, the 5-y recurrence rate is around 50%-70%.” A
4- to 5-y survival rate varies from 75% to 61%, and a recurrence
rate of 17% for patients who meet the Milan criteria for LT.”
While model for end-stage liver disease (MELD) score is
used, preoperative laboratory data could predict posttreat-
ment survival and influence the surgical decision of patients
who undergo liver resection or transplantation for early HCC.
Detailed preoperative evaluation of the liver function and use
of the Child-Pugh scoring system could influence treatment
decisions, as reduced liver function (Child-Pugh 6 and >7, al-
bumin <36 g/L) could be associated with a decreased risk in
the transplantation group, but increased risk in resected pa-
tients.® The improved outcomes among resected patients are
plausible due to advances in the surgical field, perioperative
management, and the development of multimodal treatment
strategies. Salehi et al. reported that HCC differentiation and
liver fibrosis could synergistically determine the efficacy of
liver resection versus transplantation.” According to the au-
thors, while transplantation confers survival benefits for well
and moderately differentiated tumors, resection is equivalent
to transplantation in patients with poorly differentiated HCC,
and low liver fibrosis.® Pathological analysis of the tumor of-
fers insights into the microenvironment of the cancer-host
interaction and its impact on the prognosis of HCC patients.

While tumor immune microenvironment in HCC includes
cancer cells, subsets of innate and adaptive immune cells,
stromal, endothelial cells, and the extracellular matrix and is
a crucial factor in the cancerogenesis of HCC,” digital pathol-
ogy is gaining momentum, image analysis and artificial in-
telligence systems are constantly proven to be useful in both
inflammatory and neoplastic liver diseases, yet their every-
day clinical utility remains very limited."®

Host immune cells, such as tumor-infiltrating lymphocytes
(TILs), play a pivotal role in the antitumoral response. TILs are
a group of lymphocytes located around tumor cells and
constitute a prognostic factor in HCC. A retrospective study by
Min Du et al. concluded that patients having a high number of
infiltrating lymphocytes tend to have a lower recurrence rate

and fewer microvascular invasion."’ The most common sub-
sets of TILs are CD3+, CD4+, CD8+, and FoxP3+ T lympho-
cytes. Specifically, CD8+ lymphocytes belong to cytotoxic T
cells, which are responsible for the elimination of target cells
and work as key effectors of antitumor immunity.*

A meta-analysis analyzing the prognostic value of TILs in
HCC concluded that patients with high levels of CD8+ TILs
had longer overall survival (OS) and recurrence-free survival,
compared to patients with lower levels of TILs.'? Furthermore,
precise spatial mapping of CD8+ lymphocyte infiltration in
the tissue is crucial, as patients with high density of CD8+
cells in the center of HCC or at the margin of the tumor may
have a better 0S.”> We have recently published results of a
study investigating the prognostic role of CD8+ lymphocytes
after liver resection due to HCC.' A hexagonal grid-based
digital image analysis method'® was used to determine the
CD8+ lymphocytes density profiles in whole-slide immuno-
histochemistry images. CD8+ lymphocytes were indepen-
dently analyzed in two areas of the same tissue section. One
area included HCC with the surrounding fibrovascular stroma,
with CD8+ lymphocytes representing the anti-tumoral
response that is beneficial to the host. The second area con-
tained the peritumoral liver parenchyma, with CD8+ cyto-
toxic cells representing an opposite detrimental effect on the
remaining functional liver parenchyma. The results showed
that five independent factors, including standard deviation of
CD8+ density along the tumor edge, mean CD8+ density in the
perineoplastic liver, duration of surgery, aspartate trans-
aminase levels and preoperative blood basophil count, can be
combined to predict patient outcomes after liver resection.
Furthermore, a comprehensive OS score combining the five
independent predictors provided statistically significant
prognostic stratification: patients with scores 0-1 had a low
risk (5-y OS 76%), score 2 had an intermediate risk (5-y OS
40%), and scores 3-5 had a high risk (5-y OS 8%).

In this study we have explored the applicability of CD8+
lymphocyte density profiling using a hexagonal grid-based
method in HCC and surrounding liver parenchyma regions
in a new cohort of patients who underwent LT. The generated
CD8+ distribution indicators were tested using the OS anal-
ysis along the conventional clinical variables. Cause-of-death
analysis and results of previously published prognostic OS
score is also provided.

Materials and Methods
Study population

Approval from the Vilnius Regional Bioethics Committee
(Permit #2021/6-1354-843, issued June 29, 2021) defined the
study timeframe between 2007 and 2020, and waived the
requirement of individual informed consent according to the
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International Ethical Guidelines for Health-related Research
Involving Humans.'® During this period, a total of 28 patients
received a liver transplant for HCC at the Vilnius University
Hospital Santaros Clinics and had archived tissue stored at the
National Center of Pathology (Vilnius, Lithuania). Clinical,
pathological, and laboratory data were retrospectively
collected.

The gender ratio of the transplanted cohort was close to 2:1
with male predominance (19 men and nine women). All pa-
tients were caucasians with the median age of 54 y (range 18-
64). The median follow-up time after transplantation was
61 mo (range 0-175). During the follow-up period, seven
transplanted patients have died, five patients <30 d, and two
>30 d after transplantation. Most of the explanted livers had 1
HCC nodule (n = 19, 68%). All patients met the Milan criteria
for transplantation.'” The majority of patients had a history of
viral hepatitis C (n = 21, 75%). A single case of HCC recurrence
after LT with disease free-survival of 340 d was recorded. In
most cases, the HCC was grade G2 (n = 22, 79%) and more than
half of the patients had stage T1 cancer (n = 15, 54%). Tumor
size varied from 0.9 to 4.2 cm, and the median tumor size was
2.6 cm. The median duration of LT was 453 min (range 315-
720 min) and median blood loss during the operation was
1750 mL (range 100-9000 mL). The median hospitalization time
was 23 d (range 2-169 d). A summary of patient and tumor
characteristics is presented in Table 1.

Preoperative blood tests were performed before the trans-
plantation. Summary of preoperative laboratory findings are
listed in Table 2.

Study workflow

Following the workflow of previous study on the resected HCC
patients’ a pathologist (R.S.) reviewed all available archived
hematoxylin and eosin slides to select an formalin-fixed
paraffin-embedded block including both HCC tissue and liver
parenchyma. 3 um samples were cut, mounted on positively
charged slides and stained for CD8 (Dako, C8/144B, 1:100)
using Ventana BenchMark ULTRA and ultraView Universal
DAB Detection kit (Ventana Medical Systems, USA). The pre-
pared immunohistochemical (IHC) slides were digitized at 20
(0.5 nm/pixel) using a ScanScope XT scanner (Leica Aperio
Technologies, USA). We have used the same HALO artificial
intelligence (Indica Labs, USA) digital image analysis system
that was previously trained to segment the tissue into hepa-
tocytes, fibrovascular stroma, glass, and debris classes (Fig. 1E
and F). CD8 positive lymphocytes (cells with brown cyto-
plasmic staining on IHC) were identified using the Multiplex
IHC algorithm (Indica Labs, USA) (Fig. 1H).

A pathologist placed manual annotations marking two
areas of interest on each of the slides: one area included viable
cancer tissue with its capsule, the second included nonneo-
plastic peritumoral liver parenchyma (Fig. 1D). Tissue with
staining or coagulation artifacts, poor visual quality, or
ambiguous atypia were excluded. These two areas were
further analyzed separately using digital microscopy image
analytics based on hexagonal grid tiling as described by Ras-
musson et al."® Briefly, a hexagonal grid is overlayed on the
immunohistochemistry image with a tissue classifier map
generated in a previous step. The composition of each

Table 1 — Demographics, clinicopathological, and follow-
up characteristics of the patients who underwent LT for

HCC at the Vilnius University Hospital Santaros Clinics
between 2007 and 2020.

Characteristic Value
Patients 28 (100%)
Age, years
Mean (range) 52.5 (18-64)
Median 54
Gender
Male 19 (68%)
Female 9 (32%)
Race
White 28 (100%)
Black 0 (0%)
Asian 0 (0%)
Latin 0 (0%)
Other 0 (0%)

Follow up time, months

Median (range) 61 (0-175)

Deceased 7 (25%)
Posttransplant recurrence and RFS time, days

Recurrences 1(3.6%)

Time 340

Milan criteria for transplantation
Within 28 (100%)
Exceeded

Tumor nodules

1 19 (67.9%)

2 6 (21.4%)

3 3(10.7%)
HCC grade

Gl 5

G2 22

G3 1
pT stage

T1 15 (53.6%)

T2 13 (46.4%)

T3 0

T4 0
Largest tumor dimension, mm

Mean (range) 25 (9-42)

Median 26
History of viral infection

HBV 3 (10.7%)

HCV 21 (75%)

None or unknown 4 (14.3%)
Hospitalization time, days

Mean (range) 34 (2-169)

Median 23

Duration of surgery, min
Mean (range) 469 (315-720)

(continued)
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Table 1 — (continued)

Characteristic Value
Median 453

Blood loss during surgery, mL n=26"
Mean (range) 2497 (100-9000)
Median 1750

RFS = relapse-free survival; HCC = hepatocellular carcinoma; pT =
pathological T stage; HBV = hepatitis B virus; HCV = hepatitis C
virus.

"The exact amount of lost blood was not reported in one of the
cases (stating “a lot”), in the second case the amount was reported
to be “1.5 mL”, what probably is a mistake. These cases are
excluded.

hexagon having a 65 pm side length is assessed by measuring
the proportion of every tissue class in the covered area. The
boundary of interest, which is this study is named epithelial
edge (TE) since it exists between the hepatocytes (both benign
and malignant) and fibrous tissue (stoma) is then detected
based upon the abrupt changes in fractions of the two tissue
classes. Hexagons on the TE, (as named in the original paper
by Rasmusson et al.'®) are given a rank of 0 (zero) and the
hexagons on both sides of TE are assigned either positive (if
overlaying hepatocytes) or negative (if overlaying stroma)
number with its value being the shortest distance to the
nearest rank 0 hexagon (Fig. 1I). As each hexagon has a known
number of positive CD8+ lymphocytes within its limits
(identified using a Multiplex IHC algorithm), multiple in-
dicators can be calculated (Fig. 1K) to reflect the spatial

distribution of immune cells in relation to the edge of the
tumor or liver parenchyma (Fig. 1J). Width of the interface
zone (IZ), being the number of hexagons between the largest
positive and negative rank used for analysis, was chosen to be
five and include hexagons with ranks -2, —1, 0, 1, and 2.

Indicators, statistical analysis and modeling

Indicators reflecting the spatial CD8+ cell distribution were
independently calculated for the HCC (IZ between tumor and
stroma) and peritumoral liver (IZ between nonneoplastic he-
patocytes and the fibrous tissue in the remaining paren-
chyma) compartments to reflect the two separate processes
driven by CD8+ lymphocytes as discussed previously.'* The
mean density and standard deviation of CD8+ cells are
calculated for the epithelial (i.e., either benign or malignant,
depending on the annotation used, positive ranks 1-2), stroma
(negative ranks —2, —1) and TE (rank 0) aspects of the IZ.
Combined indicators—center of mass (CM, briefly CD8+ cell
density differences on either side of rank 0) and immunodrop
(ID, a measure of abrupt change in CD8+ density between rank
1 and —1) — representing the whole 1Z are also computed as
described by Rasmusson et al.™®

As expected from previous studies'*'>'® the density dis-
tributions of CD8+ lymphocytes showed a left asymmetry, so
values were logarithm-transformed for further analysis using
parametric statistics. A freely available application “Cutoff
Finder” was used to dichotomize the continuous indicators
with respect to survival outcome.” Kaplan—Meier method
followed by log-rank testing was used to compare the

Table 2 — Summary of preoperative blood test of the patients who underwent LT for HCC at the Vilnius University Hospital

Santaros Clinics between 2007 and 2020.

Variable Mean Median Min Max N
LEU, x 10°/L 5.87 5.05 1.78 15.39 28
LYM, x 10%/L 1.47 1.38 0.28 2.88 28
Mon, x 10%/L 0.71 0.61 0.14 1.67 28
EOS, x 10%/L 0.35 0.16 0.00 4.90 28
BAS, x 10%/L 0.07 0.03 0.00 0.80 28
NEU, x 10%/L 4.49 2.94 1.10 30.60 28
RBC, x 10"%/L 3.84 3.85 1.56 5.28 28
Hemoglobin g/L 125.62 129.00 56.00 168.00 28
Hematocrit % 0.37 0.36 0.20 0.50 28
Albumin, g/L 30.16 28.50 15.70 48.50 28
Creatinine, pmol/1 69.54 63.00 46.00 129.00 28
INR 1.56 1.45 1.00 3.15 28
CRP, mg/l 8.11 8.00 0.90 30.60 28
Total bilirubin, pmol/l 57.19 37.30 6.20 269.90 28
Alanine transaminase (ALT), U/l 80.54 51.00 15.00 432.00 28
Aspartate transaminase (AST), U/l 98.64 84.00 22.00 286.00 28
Alkaline phosphatase (ALP), U/l 163.32 157.50 85.00 346.00 28
Gamma-glutamyl transferase (GGT), U/l 76.96 73.00 19.00 264.00 28
Alpha fetoprotein (AFP), kU/1 52.92 7.38 2.23 474.00 28

LEU = leukocytes; LYM = lymphocytes; MON = monocytes; EOS = eosinophils; BAS = basophils; NEU = neutrophils; RBC = red blood cell; INR =

international normalised ratio; CRP = C-reactive protein.
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Fig. 1 — Study workflow: (A) explanted liver is sent for pathological examination (image: Freepik.com), (B) hematoxylin-
eosin (H&E) and immunohistochemical CD8 slides were used for the study, (C) the slides were scanned using a Leica Aperio
ScanScope XT (image: PRNewsfoto/Leica Biosystems), (D) hepatocellular carcinoma (HCC) and adjacent liver parenchyma
areas marked by a pathologist on a digitized CD8 slide, (E-F) HALO AI (Indica Labs, USA) automated tissue segmentation,
red—epithelium, green—stroma, (G) magnified area of the CD8 immunohistochemistry slide, (H) result of Multiplex IHC
(Indica Labs, USA) nuclear segmentation algorithm, red—CD8+ positive cells, (I) overlayed hexagonal grid and ranks, (J) the
two interface zones detected based on the selection depicted in Panel D, blue—liver parenchyma, red—HCC, (K) sample CD8+
lymphocyte distribution density charts hexagonal grid and ranks, (J) the two interface zones, blue—liver parenchyma,
red—HCG, (K) sample CD8+ distribution density charts across the ranks of the two interface zones.
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differences between OS distributions. Cox regression propor-
tional hazards models were utilized to evaluate the indepen-
dent prognostic significance of immunogradient indicators in
relation to clinicopathological variables. Statistical analyses
were performed using SAS software (SAS Institute Inc, Cary,
North Carolina, USA).

Results

Comparison of OS between the surgical liver resection
versus LT for HCC cohorts

The survival data of the previously studied group of HCC pa-
tients after liver resection were compared to the new trans-
plant cohort (Fig. 2). The long-term survival probability was
significantly higher in the transplant branch (P < 0.01), facili-
tating further detailed analysis of survival determining factors
for this cohort.

Univariate predictors of OS

From the characteristics of the patients, only age was found to
be a statistically significant univariate predictor: younger age
(<51.5 y) negatively associates with OS after transplantation
(hazard ratio [HR] 0.18, 95% CI 0.03-0.91, P = 0.02). The 3 HCC
nodules compared to 1-2 HCC nodules revealed by magnetic
resonance imaging and computed tomography scans had a
negative association with survival (HR 7.29, 95% CI 1.21-43.85,
P = 0.03). Hospitalization time or the duration of trans-
plantation procedure did not associate with OS. After testing
the findings of the complete preoperative blood test, only the
platelet count >70.8 x 10%/L showed a statistically significant
positive association with OS (HR 0.15, 95% CI 0.03-0.81,
P = 0.01). The preoperative coagulation panel revealed that

activated partial thromboplastin time <40.1s (HR > 100, 95% CI
0-inf, P = 0.01) positively influences OS. Analysis of preoper-
ative laboratory findings revealed that albumin >32.8 g/L
(HR < 0.01, 95% CI 0-inf, P = 0.04), total bilirubin <45 pmol/L
(HR 5, 95% CI 0.97-25.90, P = 0.03), and creatinine >63 umol/L
(HR 0.13, 95% CI 0.02-1.12, P = 0.02) had a statistically signifi-
cance on OS. The indicators of lower CD8+ lymphocyte den-
sity in the nonmalignant areas: both the low global CD8
density across the entire epithelial or stromal aspects of the
explanted liver parenchyma and the low mean CDS8+
lymphocyte density indicators in the automatically extracted
1Z were associated with a shorter OS time in univariate anal-
ysis. Table 3 contains the statistically significant results of the
univariate OS analysis with the HR and log-rank test. Figure 3
shows the Kaplan—Meier survival probability plots for
variables.

Independent predictors of OS

The statistically significant univariate predictors OS were
further assessed through Cox multivariate regression anal-
ysis. The results indicated that two factors were indepen-
dently predictive of OS: the mean density of CD8+ at the TE of
the nonmalignant IZ (HR 0.0291, P = 0.03) and the preoperative
platelet count (HR 0.0291, P = 0.03). The model demonstrated
strong statistical significance, with a likelihood ratio of 11.32
and a P value of <0.01.

Prognostic scoring

In the previous study of patients with HCC after liver resec-
tion, a combined risk score was developed.'* According to this
system, 2 (7%) patients in the transplanted cohort would be
classified as having a low risk, eleven (39%) as having inter-
mediate risk, and fifteen (54%) would fall into the high-risk

All HCC patients (liver resection versus transplantation)
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Fig. 2 — Kaplan-Meyer chart for overall survival of hepatocellular carcinoma (HCC) patients treated at the Vilnius University
Hospital Santaros Clinics between 2007 and 2020: LTs (red curve) versus liver resections (blue curve).
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ble 3 — Statistically significant univariate predictors of overall survival of the patients who underwent LT for HCC at the

Vilnius University Hospital Santaros Clinics between 2007 and 20

Variable Cutoff HR 95% CI P-value

Age, years 51.5 0.18 0.03-0.91 0.02

Number of HCC nodules 3 (vs 1-2) 7.29 1.21-43.85 0.03

Activated partial thromboplastin time, s 40.1 >100 0- 0.01

Serum albumin, g/l 32.8 <0.01 0- 0.04

Creatinine, pmol/1 63 0.13 0.02-1.12 0.02

Total bilirubin, pmol/l 45 5.00 0.97-25.90 0.03

Platelet count, x 10%/L 70.8 0.15 0.03-0.81 0.01

Global CD8 density in the epithelial aspect of the nonmalignant 112.3278 0.13 0.01-1.08 0.03
liver parenchyma, cells/mm?

Global CD8 density in the stromal aspect of the nonmalignant 630.4228 0.16 0.02-1.29 0.05
liver parenchyma, cells/mm2

Mean CD8 density in the epithelial aspect of the nonmalignant 4.712474 0.13 0.01-1.08 0.03
1Z, log-transformed

Mean CD8 density at the epithelial edge (TE) of the 5.803012 0.15 0.03-0.82 0.01
nonmalignant 1Z, log-transformed

Standard deviation of the mean CD8 density at the epithelial 5.842227 0.15 0.03-0.82 0.01

edge of the nonmalignant IZ, log-transformed

HCC = hepatocellular carcinoma; IZ = interface zone.

category. No deaths were recorded in the low-risk group, five
patients died in the intermediate-risk, and two in the high-
risk group, yet if early (<30 d after transplantation) deaths
are excluded, both intermediate and high-risk groups contain
a single terminal event each. Combining patients into a low-
risk group with 100% 5-y OS, and an intermediate-high-risk
group with 77% 5-y OS provided a wider OS curve separa-
tion, yet the result is not statistically significant, as the num-
ber of patients is very low (see Fig. 4).

Cause-of-death analysis

Seven patients (25%) have died during the study period.
Characteristics and causes of death are presented in Table 4.
We divided deceased patients into two groups according to
the MELD score (MELD < 20 and > 20) (Table 5). In our cohort,

A Mean CD8+ density (at the epithelial edge of non-malignant interface zone, log)
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only one patient had HCC recurrence with 340 d of recurrence-
free survival, which fits the time described in the literature.
However, this patient died 6 mo after the diagnosis of recur-
rence. The patient was listed for LT 1 y after the diagnosis of
hepatitis C viral liver cirrhosis. The patient was on a waiting
list for 176 d, during this period since HCC was diagnosed. At
the time of transplantation, the patient still met the Milan
criteria. One year after LT, multifocal HCC recurred in the liver
and radiofrequency ablation was performed. Despite treat-
ment, a few months later, multifocal lung metastasis was
found. GEMOX chemotherapy was initiated, but a few months
later the patient died. From a pathological explanted liver
report, it is known that this patient had pathologically
confirmed macrovascular invasion and a preoperative tumor
size of 4.9 cm. The patient also had a preoperative AFP on the
higher side: 181.00 kU/I (cohort range 2.11-474.00 kU/], median

B Preoperative platelet count

| + Censored
e e ity =001

|
e e +
>708x10°91

Survival Probability
°
&

0.0 Patients at risk
<708x10%1 (10 6 6 4 3 2 1 1 1 1 1 1 1 0

>708x10%n |18 17 16 15 ta 12 0 7 5 5 4 2 2 1 1 0

o 1 2 3 4 5 6 7 8 9 10 1M 12 13 14 15
0S (years)

Fig. 3 — Kaplan—Meier overall survival (OS) plots of hepatocellular carcinoma (HGC) patients who underwent LT at the
Vilnius University Hospital Santaros Clinics between 2007 and 2020: (A) mean CD8+ density at the epithelial edge of non-
malignant interface zone, log-transformed, (B) preoperative peripheral blood platelet count.
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Fig. 4 — Kaplan—Meier overall survival (OS) plots of hepatocellular carcinoma (HCC) patients who underwent LT at the
Vilnius University Hospital Santaros Clinics between 2007 and 2020: (A) classified according to the previously developed
risk scoring system for HCC patients who underwent liver resections. (B) combining high and intermediate risk groups into

a single category.

7.38). From the CD8 + immune response point of view, the
patient did not have a single unique value in any of the CD8+
immunogradient indicators (both in the tumor or in the liver).

Discussion

Liver transplantation provides excellent long-term outcomes
for certain patients with HCC, pushing to not simply rely on
tumor size and number.”® Although centers use strict selec-
tion criteria, there is a risk of recurrence, reaching up to 20%
which is mostly observed within 2 y following procedure,
bringing the survival between 7 and 16 mo.”* While tumor
recurrences are encountered in patients who underwent
either liver resection or transplantation, the correct selection
of candidates for the chosen treatment is essential to decrease
tumor recurrence while maximizing posttransplantation
survival rates.’” Compared to LT, liver resection for localized
HCC is associated with higher rates of recurrence and disease-
related mortality.”> Furthermore, postoperative morbidity is
higher after liver resection than after LT for HCC under Milan
criteria for cirrhotic patients.” Despite the limitations
mentioned above, LT is considered the best treatment option
for HCC in the cirrhotic liver as it cures both the underlying
liver disease and the tumor.?* Despite restrictive criteria for

LT, HCC recurrence affects around 6%-20% of patients after
transplantation.””® Recurrence of HCC is a significant pre-
dictor of survival after LT. Several risk factors before and after
transplantation influence the frequency of HCC recurrence.
Risk factors include Milan criteria restrictions (number and
size of nodules and vascular invasion), hepatitis B virus or
hepatitis C virus viral infection, bridging therapy response,
time to transplantation, the alpha-fetoprotein level, histo-
pathological examination, immunosuppression, adjuvant,
etc.”” The majority of HCC recurs within 2 y after LT with a
median of 17.8 mo time to recurrence and overall median
survival being 124 mo after recurrence.”’ Primarily, the
extrahepatic sites of recurrence are lungs and bones, while
only one-third of recurrences are seen in the liver.**’ Since
there are no established guidelines for the management of
HCC recurrence post-LT, it is considered to be individualized.
Potentially the most effective radical treatment for HCC
recurrence after LT is surgical resection and repeated LT is not
recommended. Other treatment options include ablation,
palliative options such as intra-arterial therapies (chemo- or
radioembolization), and systemic chemotherapy.”*®

The prognostic value of TILs for survival in patients with
HCC is still contradictory. Separate subsets of TILs have a
different effect on the progression of HCC, contributing to a
different prognosis. CD8+ is a surface antigen of cytotoxic T

Table 4 — Deceased patients who underwent LT for HCC at the Vilnius University Hospital Santaros Clinics between 2007

and 2020.

ID Age Gender LVI Recurrence Survival Reported cause of death
HCC-012 50 Female No No 1d K75 other inflammatory liver diseases
HCC-114 46 Male No No 2d K72.1 Chronic hepatic failure
HCC-096 57 Male No No 8d B18.2 Chronic viral hepatitis C
HCC-051 43 Female No No 9d K74.6 other and unspecified cirrhosis
HCC-113 48 Male Yes No 27d B18.1 Chronic viral hepatitis B
HCC-131 56 Female Yes 340 d 883d C22. 0 liver cell carcinoma
HCC-110 50 Male No No 2559 d Y83.0 late transplant complications
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lymphocytes that play a key role in the antitumor immune
response.”® A meta-analysis suggests that CD8+ lymphocytes
could not only be a promising prognostic factor for OS but also
low levels of CD8+ can predict a larger tumor size and a later
TNM stage. Moreover, patients with higher infiltration of
CD8+ cells tend to have better OS in the groups with Asian
patients and better disease-free survival in all subgroups,
including ethnicity.”® HCC patients with a high number of
CD8+ tumor infiltrating lymphocytes are prone to have a
lower recurrence rate and less microvascular invasion.'’
CD8+ lymphocyte infiltration can be assessed by immuno-
histochemistry from a preoperative liver biopsy, in order to
identify patients at high risk of recurrence who could be
considered for LT rather than liver resection.”

In our study the prognostic value of CD8+ lymphocyte
infiltration for the OS of patients after LT due to HCC was
explored separately in tumor and peritumoral liver paren-
chyma along the conventional clinicopathological parame-
ters. We have observed that none of the tumor parameters
independently influenced the OS of the patients after LT. The
two independent predictors of a longer OS are the higher
mean CD8+ density at the TE of the automatically detected
nonmalignant IZ, and a higher preoperative platelet count.

Data on patients after liver resection show that high
CD8+ lymphocyte density in the center of the tumor and at
the tumor margin had better OS, a lower rate of recurrence
and a prolonged relapse-free survival.">*° Another study
shows that a high density of CD8+ cells in the invasive front
and peritumor tissue tends to have more prolonged
progression-free survival."’ These studies suggested reas-
sessing the value of CD8+ lymphocytes in transplanted pa-
tients. Our previous study of the prognostic value of CD8+
lymphocyte distributions in resected liver samples found
that the higher mean density of CD8+ lymphocytes within
the epithelial aspect of the perineoplastic liver-stroma
interface was an independent predictor of worse 0S.'* The
higher number of CD8+ cells in the peritumor tissue in the
resected or explanted liver samples may indicate an active
inflammatory process and liver damage. This leads us to
consider that a reduced liver function (Child-Pugh 6 and >7,
albumin <36 g/L) could be associated with a decreased risk
transplantation, but
resection.®

According to our findings, another independent predictor
of longer OS is a higher preoperative platelet count. A review
article investigating the relationship between platelet count
and liver regeneration after liver surgery claims that throm-
bocytopenia before liver resection could serve as a risk factor
for hospital mortality, postoperative morbidity, and HCC
recurrence. The same article notes that patients with a pre-
operative platelet count <150 x 10%L (especially <100 x 10°%/L),
had a higher incidence of posthepatectomy liver failure and
mortality.”" On the other hand, a high pretransplant platelet
count could cause a hypercoagulable state, increasing
thromboembolic events after LT.*! Pretransplant platelet
count >49.5 x 10%L could be an adverse prognostic predictor
of posttransplant portal vein complication and early allograft
dysfunction.’” Interestingly, a high preoperative platelet
count value could serve as a protective factor against liver
damage and HCC recurrence and at the same time act as a pro

after increased risk after liver

Table 5 — Characteristics of deceased patients who
underwent LT for HCC at the Vilnius University Hospital

Santaros Clinics between 2007 and 2020 according to

MELD score.

Characteristic MELD <20 MELD >20
Patients 5 (100%) 2 (100%)
Age, years

Mean (range) 50.4 (43-57) 49 (48-50)

Median 50 49
Gender

Male 3 (60%) 1 (50%)

Female 2 (40%) 1 (50%)
Follow-up time, days

Median (range) 15 (2-2525) 14 (2-26)

Deceased <30 d after Tx 3 (60%) 2 (100%)

Deceased >30 d after Tx 2 (40%) 0
Post Tx HCC recurrence

and RFS time, days

Recurrences 1 (%) 0

Time 340
HCC grade

Gl 3 (60%) 0

G2 2 (40%) 2 (100%)

G3 0 0
pT stage

T1 4 (80%) 0

T2 1 (20%) 2 (100%)

T3 0 0

T4 0 0
Milan criteria for Tx

Within 5 (100%) 2 (100%)
History of viral infection

HBV 0 1 (50%)

HCV 5 (100%) 0

None 0 1 (50%)
Time between liver

disease diagnosis and

HCC diagnosis, years

Mean (range) 5.8 (0-12) 11.5 (6-17)

Median 7 11.5
Time between HCC

diagnosis and

enrollment in the Tx

list, months

Mean (range) 30 (0-60) 0.8 (0-3)

Median 30 0

Time on the Tx list, days
Mean (range)
Median

118.8 (2-204) 300.5 (236-365)
163 0
Duration of surgery, min
Mean (range)
Median

515 (345-720)
420

467.5 (465-470)
467.5

Blood loss during surgery,
mL

(continued)
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Table 5 — (continued)

Characteristic MELD <20 MELD >20

Mean (range) 4180 (1100-9000) 2600 (1200-4000)
Median 4500 2600

MELD = model for end-stage liver disease; RFS = relapse-free sur-
vival; HCC = hepatocellular carcinoma; Tx = transplantation; pT =
pathological T stage.

coagulator. In our study, a higher pretransplant platelet count
served as an indicator of longer OS. This leads to a further
discussion of preoperative platelet count importance since it
could serve differently between patients who underwent liver
resection or transplantation. The study has several limita-
tions: a) small sample size and b) preoperative tumor or
nontumor liver biopsies were not included for analysis.

Conclusions

We conclude that preoperative platelet count and mean CD8+
cell density at the TE of nonmalignant interface in the
explanted liver parenchyma could serve as independent pre-
dictors for OS after LT. More studies are needed to validate the
findings.

Study Type

Retrospective analysis.
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Abstract: Our study included 41 patients fulfilling the Milan criteria preoperatively and aimed
to identify individuals at high risk of post-resection HCC relapse, which occurred in 18 out of
41 patients (43.9%), retrospectively. We analyzed whole slide images of CD8 immunohistochemistry
with automated segmentation of tissue classes and detection of CD8+ lymphocytes. The image
analysis outputs were subsampled using a hexagonal grid-based method to assess spatial distribution
of CD8+ lymphocytes with regards to the epithelial edges. The CD8+ lymphocyte density indicators,
along with clinical, radiological, post-surgical and pathological variables, were tested to predict
HCC relapse. Low standard deviation of CD8+ density along the tumor edge and R1 resection
emerged as independent predictors of shorter recurrence-free survival (RFS). In particular, patients
presenting with both adverse predictors exhibited 100% risk of relapse within 200 days. Our results
highlight the potential utility of integrating CD8+ density variability and surgical margin to identify
a high relapse-risk group among Milan criteria-fulfilling HCC patients. Validation in cohorts with
core biopsy could provide CD8+ distribution data preoperatively and guide preoperative decisions,
potentially prioritizing liver transplantation for patients at risk of incomplete resection (R1) and
thereby improving overall treatment outcomes significantly.

Keywords: CD8; digital pathology; hepatocellular carcinoma (HCC); tumor-infiltrating lymphocytes;
Milan criteria; liver transplantation

1. Introduction

Liver cancer is one of the five most lethal malignancies and ranks sixth in global
morbidity rates [1,2]. The most common type of liver cancer is hepatocellular carcinoma
(HCC), comprising over 90% of cases, with only 10-15% of patients achieving a five-year
survival rate worldwide [3]. The incidence of HCC increases annually; furthermore, relapse
occurs in 30-50% of patients during the first two years after resection [1,4]. Known risk
factors for early relapse include male gender, large tumor size, tumor multifocality, high
serum alpha-fetoprotein level and many others [4,5].

The complex tumor microenvironment plays a critical role in the progression and
metastasis of HCC [6]. The host immune response, particularly involving CD8+ lympho-
cytes or cytotoxic T cells, can significantly influence tumor recurrence and patient survival
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outcomes in HCC [7,8]. Higher densities of CD8+ cells often indicate a robust anti-tumoral
immune response that can suppress tumor growth and prevent recurrence. While some
earlier studies found no prognostic value in CD8+ cell densities [9], others suggested that
high tumor infiltrating lymphocyte (TIL) levels could contribute to HCC development and
relapse [10]. However, more recent evidence indicates a positive association between high
TIL densities and improved outcomes [8,11]. Emerging research not only examines the
average density of tumor-infiltrating lymphocytes but also the spatial heterogeneity of
their infiltration. For example, the study by Li et al. determined that both intratumoral
and peritumoral lymphoid clusters (tertiary lymphoid structures (TLS)) play crucial roles
in HCC, with high peritumoral TLS density correlating with increased immune cell in-
filtration and a better patient prognosis [12]. Understanding and measuring the precise
spatial distribution of tumor-infiltrating lymphocytes is essential for advancing treatment
strategies and improving outcomes for HCC patients.

Currently, liver transplantation (LT) is regarded as the first-line treatment option
for patients with HCC who meet the Milan criteria [13]. Liver transplantation, when
performed as an initial treatment, has the potential to simultaneously remove both the
tumor and the underlying disease, typically cirrhosis, thereby offering superior long-term
outcomes compared to liver resection (LR). This advantage is demonstrated by a 5-year
disease-free survival (DFS) rate of up to 96.8% for LT, compared to 64.3% for LR, and a
nearly 50% reduction in mortality rate, although some of the numbers do seem overly
optimistic and could be biased [14,15]. Even though the risk of HCC recurrence after LR is
threefold that of LT, a shortage of cadaveric organs limits the selection of this therapeutic
modality [15]. Salvage liver transplantation (SLT) serves as a crucial alternative curative
approach, demonstrating comparable DFS rates between primary liver transplantation
(PLT) and SLT-LR groups [16].

Since the introduction of the Milan criteria in 1996 (a single tumor with a diameter
<5 cm; or no more than three tumors, each <3 c¢m in size; and no vascular invasion; and no
extrahepatic involvement) into clinical use, survival rates after LT for HCC have improved
significantly [17]. Despite the strict adherence to these criteria, tumor recurrence occurs in
up to 20% of HCC patients who have undergone LT, with 75% of the recurrences emerging
during the first 2 years after the LT [18,19]. Stratifying individuals who meet the Milan
criteria into distinct risk categories may aid the decision-making process for LT as the next
line of therapeutic intervention.

This study aims to improve the prediction of post-resection HCC recurrence in pa-
tients meeting the Milan criteria preoperatively using paraffin-embedded tissue, CD8
immunohistochemistry, Al tissue segmentation and hexagonal grid subsampling-based
image analytics. If further validated on biopsy material, our findings suggest that inte-
grating CD8+ T cell density variability into preoperative predictive models could aid in
decision-making, particularly in considering liver transplantation for patients at risk of
incomplete (R1) resection.

2. Materials and Methods
2.1. Study Population

The cohort for this retrospective study comprised consecutive patients, totaling 41 in-
dividuals, who underwent liver resection for HCC between 2007-2020 at Vilnius University
Hospital Santaros Clinics (Vilnius, Lithuania) and, at the time of surgery, fulfilled the Milan
criteria for liver transplantation preoperatively. The resected tissue was processed, ana-
lyzed and archived in the National Center of Pathology (Vilnius, Lithuania). The study was
approved by the Vilnius Regional Biomedical Research Ethics Committee (permit number
2021/6-1354-843).

2.2. Immunohistochemistry

A pathologist (RS) reviewed the archived slides stained with hematoxylin and eosin
to identify the optimal formalin-fixed paraffin-embedded (FFPE) tissue block. The selected
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samples, cut to 3 um in thickness, were mounted on positively charged slides and immuno-
histochemically stained for CD8 using Dako’s C8/144B antibody (dilution 1:100, Dako,
Glostrup, Denmark). Staining was performed on a Roche Ventana BenchMark ULTRA au-
tomated stainer with the ultraView Universal DAB Detection kit (Ventana Medical Systems,
Oro Valley, AZ, USA).

2.3. Digital Image Analysis and Indicator Extraction

The detailed process workflow is explained in our previously published paper [20].
Briefly, slides were digitized at 20 x magnification (0.5 pm per pixel) using an Aperio® AT2
DX scanner (Leica Aperio Technologies, Vista, CA, USA). A pathologist (RS) marked the
tumor and residual liver parenchyma areas by placing annotations. The HALO®AI (Indica
Labs, Albuquerque, NM, USA) system was subsequently trained to segment tissue into
epithelial /hepatocytes, stroma and background/debris classes, with CD8+ cell segmen-
tation performed using the HALO® Multiplex IHC algorithm. We further processed the
HALO®ALI outputs by using a hexagonal grid tiling method (having a side length of 65 pm
in this study) as described by Rasmusson et al. [21].

The number of CD8+ cells and the area of tissue classes in each hexagon were ag-
gregated for the malignant (HCC) and non-malignant (residual liver parenchyma) parts
of the slide. Based on the abrupt change in tissue class proportions across the grid, we
identified hexagons on the extracted epithelial edge and assigned them a rank of 0. The
remaining epithelial hexagons (representing HCC or liver depending on the area analyzed)
are assigned positive ranks, whereas hexagons on the stromal side received negative ranks
corresponding to their distance from the nearest edge. Immune response indicators were ex-
tracted from five hexagon-wide interface zones (ranks —2, —1, 0, 1, 2) of the non-neoplastic
liver and HCC to reflect CD8+ cell density profiles in both tissue compartments, including
mean density, standard deviation (SD), the center of mass and immunodrop ratio (the ratio
of CD8+ cell quantities at ranks —1 and 1, indicating abrupt change in cell density at the
tumor edge) (see Figure 1).

Pre-analytical step

HCC patients Surgery during Liver Samples Scanned slides
fulfilling the 2007-2020 resection at analyzed at annotated by a
Milan criteria period www.santa.lt www.vpc.lt pathologist

Digital image analysis

Tissue segmentation into the Cell segmentation and Hexagonal grid subsampling, epithelial
epithelial and stromal classes D8+ lymphocyte detection edge detection and ranking

Statistical analysis

o B = a o— =, 1

Aggregation: Interface zone Patient level CD8+ Statistics with Analysis of Relapse risk
CD8+ per width selection, indicators and prognostic independent score to prioritize

hexagon ranks (~2) to 2 clinical data modelling predictors liver transplant

Icons made by Freepik from www.flaticon.com

Figure 1. Study workflow. Pre-analytical step: HCC patients meeting the Milan criteria underwent
liver resection between 2007-2020. Samples were analyzed and scanned slides were annotated by a
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pathologist. Digital image analysis: tissue samples were segmented into epithelial and stromal
classes, and CD8+ lymphocytes were detected using HALO®AI (Indica Labs, USA). Hexagonal grid
subsampling was applied for epithelial edge detection. Statistical analysis: aggregated CD8+ data
per hexagon were combined with clinical data for prognostic modeling. Independent predictors were
analyzed, and a relapse risk score was developed to prioritize liver transplant candidates.

2.4. Statistical Analysis and Modeling

To meet the assumptions of normality and homoscedasticity, the initial aggregated
data underwent a logarithmic transformation of the CD8+ density values. For improved
readability, the ‘log’ prefix is omitted in the subsequent text. Significance levels were set
at p < 0.05. Univariate Cox regression was used to evaluate the prognostic significance of
conventional clinicopathologic predictors, which were represented by either continuous
or categorical variables. Then, a multivariate Cox regression with stepwise likelihood
ratio (LR) testing was performed to assess the independent prognostic value of the CD8+
lymphocyte distribution indicators, represented as continuous variables, in the context
of the statistically significant conventional predictors identified in the univariate analysis.
An integrated Recurrence Risk Score was derived by summing the negative impacts of
the independent predictors of recurrence-free survival (RES). RFS was estimated using the
Kaplan-Meier method, followed by log-rank testing to compare the statistical significance
of the RFS distributions. SAS (version 9.4; SAS Institute Inc., Cary, NC, USA) and R version
4.3.2 (R Foundation for Statistical Computing, Vienna, Austria), along with the survminer
and ggplot2 packages, were employed for data analysis in this study.

3. Results
3.1. Summary of Patient Cohort Characteristics

Patient gender, age, tumor grade, pT stage, intravascular invasion (as reported in the
pathology report), resection margin, number of tumors, largest tumor size, the presence of
cirrhosis, duration of surgery, hospitalization time and the date of HCC recurrence were
collected from hospital records and are presented in Table 1.

Table 1. Patient demographics and clinical characteristics.

Characteristic Value (%)
Patients 41 (100%)
Age, years:

Mean (SD) 64.4 (9.16)
Median (IQR) 66 (12)
Age distribution

<50 years 1(2.4%)
50-59 years 10 (24.4%)
60-69 years 18 (43.9%)
70-79 years 11 (26.8%)
>80 years 1(2.4%)
Gender

Males 28 (68.3%)
Females 13 (31.7%)
Tumor grade

Gl 4(9.8%)
G2 29 (70.7%)
G3 8 (19.5%)
pT stage:

pT1 27 (65.9%)
pT2 14 (34.1%)
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Table 1. Cont.

Characteristic Value (%)
Intravascular invasion

LVI present 12 (29.3%)
LVI absent 29 (70.7%)
Resection margin

RO 33 (80.5%)
R1 8 (19.5%)
Number of tumors

One tumor 32 (78.0%)
Two tumors 7 (17.1%)
Three tumors 2 (4.9%)
Tumor size in the pathology report, mm

Mean (SD) 28 (11)
Median (IQR) 25 (20)
Recurrences

HCC recurrence 18 (43.9%)
No recurrence 23 (56.1%)
RFS time, days

Mean (SD) 904.4 (702.9)
Median (IQR) 749 (933)

3.2. Predictors of Recurrence-Free Survival

The resulting Cox proportional hazard model of the Milan criteria-fulfilling patient
cohort consisted of two independent predictors of a shorter RFS after HCC resection (see
Table 2). One predictor was a histologic feature of immune response, specifically a low
SD of CD8+ density along the tumor edge (HR = 0.246 (95% CI 0.078-0.779), p = 0.0171,
see Figure S1 “Representative images demonstrating CD8+ cell density variation at the
tumor edge”), the second—a conventional parameter, the R1 resection as defined in the
final pathology report (HR = 7.162 (95% CI 2.213-23.185), p = 0.0010). None of the other
patient or tumor characteristics had a statistically significant impact on RFS.

Table 2. Independent predictors of recurrence-free survival (RFS) in Milan criteria-fulfilling patients
based on multivariate Cox regression modelling.

Indicator DF Parameter  Standard Chi- Value Hazard  95% Hazard Ratio
Estimates Error Square P Ratio Confidence Limits

R1 resection 1 1.96882 0.59935 10.7909 0.0010 7.162 2213 23185

SD of CD8 at tumor edge 1 —1.40113 0.58769 5.6842 0.0171 0.246 0.078 0.779

Likelihood Ratio Test: Chi-square 17.7246, p = 0.0001.

Panel (a) of Figure 2 displays the survival probabilities over time for patients catego-
rized by their resection status: R0 (complete resection) and R1 (incomplete resection). The
p-value for the comparison between RO and R1 groups is very low (p < 0.0001), indicating
that patients with complete resection (R0) have a longer RFS compared to those with in-
complete resection (R1). Panel (b) of Figure 2 illustrates the RFS probabilities for patients
based on the SD of CD8 density at the tumor edge, with groups divided into low (<5.8) = 1
and high (>5.8) = 0. The p-value for this comparison is 0.0066, indicating a statistically
significant difference between the two groups and implying that a low SD of CD8+ density
along the tumor edge has a negative impact on RFS.
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Figure 2. The R1 resection (a) and low standard deviation of CD8+ density along the tumor edge (b)
as univariate predictors for shorter RFS.

3.3. Recurrence Risk Score

Based on the findings, a combined prognostic Relapse Score was constructed by
summing up the contributions from both independent variables and assigning a value
of 1 for a poor and 0 for a good prognosis. Since there are two independent predictors
with either a 0 or 1 value, the possible score for each patientis 0 (0 + 0), 1 (1 + 0O or 0 +
1) or 2 (1 + 1). The Kaplan—-Meier survival curves for these groups with significant RFS
differences are shown in Figure 3. The chart suggests that individuals who exhibit both
adverse predictors experience a 100% relapse risk within a relatively short timeframe—less

than 200 days.
Recurrence Risk Score: ~+ Risk score 0 ~+ Risk Score 1-2 : Recurrence Risk Score: ~+ Risk score 0-1 ~~ Risk Score 2
procoos p<00001
S Timin
Namberat sk Namberat sk
g
H
T ns T s
(a) (b)

Figure 3. HCC Recurrence Risk Score: (a) 0 vs. 1-2 (p = 0.00026) and (b) 0-1 vs. 2 (p < 0.0001).

4. Discussion

Our study explored the link between the spatial distribution of CD8+ cytotoxic T cells,
the established clinicopathologic adverse factors and the risk of recurrence following liver
resection for HCC. The finding that a higher variance (SD) of CD8+ T lymphocyte density
at the tumor edge is associated with longer RFS in HCC patients is intriguing. While
generally denser and more uniform infiltration of CD8+ T cells is linked to better cancer
patient outcomes [22-24], our data suggest a more nuanced relationship. Some studies
in other cancers have shown similar trends: for example, Krijgsman et al. (also utilizing
a deep learning tissue classifier combined with immunohistochemistry) discovered that
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breast cancer patients with high variation (SD) of CD8+ cell density had longer overall
survival (OS) [25]. A potential explanation is that the high SD of CD8+ lymphocyte
density mathematically reflects the presence of localized, denser immune cell clusters.
These clusters, in some cases, might represent the well-established tertiary lymphoid
structures (TLS) known to be favorable prognostic markers in HCC [16,26-28]. Uniformly
distributed CD8+ lymphocytes at the tumor edge could on the other hand be exhausted T
cells that lack the ability to effectively induce an anti-tumoral response [29]. Furthermore,
chronic HBV and HCV infection that often precede HCC can lead to the production of
immunosuppressive cytokines within the liver microenvironment, which impairs the
function of T cells, further contributing to exhaustion [30-32]. To validate this hypothesis,
future studies could analyze the expression of immune checkpoint molecules on these
CD8+ T cells.

Liver transplantation is the preferred treatment for selected HCC patients, offering
markedly improved outcomes in 5-year OS and RFS rates (64.83% and of 70.20%, respec-
tively), compared to liver resection (OS: 50.83%; RFS: 34.46%) [33]. Meanwhile, as patients
remain on the waiting list for a donor, interim management strategies such as liver resection,
ablation and transarterial interventions are employed to control disease progression [34].
Liver resection is considered a curative procedure for individuals diagnosed with HCC,
though it is associated with significant recurrence rates, with 60% of cases relapsing within
three years. Moreover, resection yields tissue essential for the pathological evaluation of
key independent predictors of HCC recurrence and post-transplantation survival, namely
the presence of satellite nodules, the degree of tumor differentiation and microvascular
invasion [35]. Although the ideal margin width remains a topic of debate, surgical resection
for HCC is generally not advised for patients whose tumors cannot be completely removed
with negative (R0) margins [35].

The identification of a positive margin (R1) as a significant independent predictor of
a shorter RFS is consistent with the established knowledge that incomplete removal of
neoplastic tissue increases the likelihood of recurrence. In our cohort, when a safe surgical
margin was unattainable based on intraoperative findings, surgical resection was carried
out, ensuring the complete macroscopic removal of the tumor. The overall recurrence
rate was observed to be 43.9%, with relapses occurring significantly more frequently in
the R1 group (87.5%) compared to the RO group (33.3%), p = 0.0133. Numerous studies
have evaluated the influence of surgical margins on the outcomes of HCC following liver
resection [36-38]. Although these studies vary in nature, they consistently report that the
width of the resection margin does not impact postoperative recurrence rates following
hepatectomy for HCC. Poon et al. concluded that a positive margin correlates with an
increased risk of postoperative recurrence and is frequently associated with underlying
venous invasion or the presence of microsatellites [39].

The Recurrence Risk Score, combining CD8+ density variability (represented by the
standard deviation) at the tumor edge and resection margin status, offers a potential tool
to identify patients at high risk of early relapse. In addition, although formally eligible
for transplantation, patients over 70 years of age demonstrate poorer post-transplantation
outcomes than younger cohorts, warranting cautious consideration of liver transplantation
in this age group [40]. Liver transplantation should always be considered for eligible
patients; however, investigating the factors influencing CD8+ cell distribution and their
utility as prognostic biomarkers for recurrence and long-term survival is crucial prior to
relying on them for treatment decisions.

Limitations

This study is subject to several limitations that should be acknowledged. First, the
sample size of 41 patients, particularly within certain subgroups (n = 4), is relatively small,
which may limit the generalizability of our findings. Additionally, the still somewhat
heterogeneous nature of the study cohort could introduce variability that impacts the ro-
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bustness of the results. These factors necessitate caution when interpreting the data. Future
validating studies with larger cohorts and/or biopsy core tissues are highly encouraged.

5. Conclusions

In conclusion, our study contributes to the understanding of the immune response’s
role in predicting HCC recurrence following liver resection. By integrating CD8+ spatial
distribution indicators with resection margin status, we present a potentially novel method-
ology for identifying high-risk HCC patients who meet the Milan criteria preoperatively.
Subsequent validation in cohorts using core biopsy material could provide preoperative
CD8+ distribution data, thereby guiding preoperative decisions and potentially prioritiz-
ing liver transplantation for patients at risk of incomplete resection (R1). This approach
could significantly improve overall treatment outcomes. Although significant trends were
observed, further research with larger and more diverse cohorts is necessary.
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