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Abstract: AI-driven cyber threats are evolving faster than current defense mechanisms,
complicating forensic investigations. As attacks grow more sophisticated, forensic methods
struggle to analyze vast wearable device data, highlighting the need for an advanced frame-
work to improve threat detection and responses. This paper presents a generative artificial
intelligence (GenAI)-assisted framework that enhances cyberforensics and strengthens
strategic cyber resilience, particularly for chief information security officers (CISOs). It
addresses three key challenges: inefficient incident reconstruction, open-source intelligence
(OSINT) limitations, and real-time decision-making difficulties. The framework integrates
GenAI to automate routine tasks, the cross-layering of digital attributes from wearable
devices and open-source intelligence (OSINT) to provide a comprehensive understanding
of malicious incidents. By synthesizing digital attributes and applying the 5W approach,
the framework facilitates accurate incident reconstruction, enabling CISOs to respond
to threats with improved precision. The proposed framework is validated through ex-
perimental testing involving publicly available wearable device datasets (e.g., GPS data,
pairing and activity logs). The results show that GenAI enhances incident detection and
reconstruction, increasing the accuracy and speed of CISOs’ responses to threats. The ex-
perimental evaluation demonstrates that our framework improves cyberforensics efficiency
by streamlining the integration of digital attributes, reducing the incident reconstruction
time and enhancing decision-making precision. The framework enhances cybersecurity
resilience in critical infrastructures, although challenges remain regarding data privacy,
accuracy and scalability.

Keywords: GenAI; cyberforensics; CISO; OSINT; digital attributes; 5W

1. Introduction
The digitization of services, the adoption of new technologies and the inclusion of

members of society in the digital space are proceeding faster than the assessment of cyber
threats and the selection of appropriate mitigation tools and techniques. This gap facilitates
the exploitation of existing vulnerabilities for cybercrime, and the rapid evolution of
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technologies such as artificial intelligence (AI) or generative artificial intelligence (GenAI)
makes them powerful tools in the hands of malicious actors. According to the Lithuania
National Cyber Security Centre’s 2023 National Cyber Security Status Report [1], the
development of threats from local and global criminal structures, ranging from social
engineering to serious threats to both national security and information and communication
technology (ICT) infrastructures, is a major concern for the global security community due
to the potential use of AI technologies for cyberattacks. According to the ENISA Artificial
Intelligence and Cybersecurity Research study [2], malware is increasingly using AI to
enhance its effectiveness and efficiency by enhancing its ability to evade detection, adapt
to changing environments, target specific vulnerabilities and propagate and persist on
target systems. AI-driven malware leverages reinforcement learning to enhance attack
effectiveness and adaptability. These findings suggest that generative AI is actively involved
in cyberattacks, posing a significant security risk.

Within the realm of cyber security, the European Parliament adopted the European
AI strategy [3,4], stating that it is already filling—or assisting with—a number of roles
and processes. It is being used to analyze logs, predict threats, read source code, iden-
tify vulnerabilities and even create or exploit vulnerabilities, such as during penetration
testing. In this context, the chief information security officer (CISO) has a key role in the
implementation and success of the EU AI strategy in addressing AI-assisted challenges.
As cybercrime continues to evolve and take new forms, the CISO must be adequately
equipped to assess cyber threats, identify cybercrime and conduct effective investigations.
The evolving cyber landscape necessitates that CISOs rethink preparedness. Tasked with
remediating, mitigating or transferring the risks posed by complex threats, the CISO is at
the forefront of implementing critical security controls, organizing incident response strate-
gies and ensuring robust business continuity and disaster recovery capabilities. In addition,
the CISO is entrusted with the crucial task of anticipating future security challenges and
planning the organizational and technical measures to ensure cyber resilience accordingly.

Following the CISO Workforce and Headcount 2023 Report [5], CISOs are in high
demand as cybersecurity professionals, but there is a significant global shortage. Generative
AI supports CISOs in cybersecurity by automating routine tasks, improving threat detection
and providing advanced forensic tools. Research on generative AI-assisted CISO functions
is emerging and rapidly evolving [6,7]. It offers exciting opportunities for innovation and
significant advancements in cybersecurity practices. GenAI refers to a category of AI models
that generate new content or insights from various data sources, encompassing not only
large language models (LLMs) but also multimodal models that integrate text, images and
structured data processing. Generative AI uses neural networks trained on large datasets,
integrating cybersecurity data across silos. Although LLMs are primarily focused on natural
language understanding and generation, GenAI employs a wider range of AI-driven
methodologies for cyberforensics, including structured data synthesis and digital attribute
analysis. The use of GenAI rather than LLMs allows for more comprehensive incident
reconstruction, as it integrates diverse data types beyond text-based insights. This can
give CISOs a more natural method for identifying, synthesizing and summarizing insights
[8,9]. The novelty of this research area is underscored by the recent GenAI technological
advancements and the evolving threat landscape that necessitates advanced solutions [10].
As such, it is an area of high interest and potential within both the academic and professional
cybersecurity communities. By leveraging generative AI assistance in the routine tasks of
the CISO, organizations can improve threat detection and response, optimize resources,
ensure compliance, enhance training programs and make more informed strategic decisions
[11]. These benefits underscore the transformative potential of generative AI in the realm
of cybersecurity, opening a wide window for future research and development.
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On the other hand, the growth of wearable technology has increased the need
for specialized cyberforensics methods that can effectively identify and reconstruct cy-
bercrime involving such devices [12]. Given that wearable devices operate in diverse
environments—ranging from personal use in fitness and healthcare to enterprise and indus-
trial applications—the cybersecurity risks vary significantly depending on factors such as
data transmission methods, connectivity settings (e.g., Bluetooth, Wi-Fi, cellular networks),
and regulatory constraints. These environmental variables influence forensic investigations
by affecting data accessibility, storage conditions, and potential attack vectors, making it
imperative to develop adaptable and context-aware forensic methodologies.

Although AI is widely used in cybersecurity, many AI models function as opaque
systems, limiting transparency and interpretability [13]. This deficiency decreases the
confidence of human users in the models used for cyber defense, especially as cyberat-
tacks become increasingly diverse and complicated. While explainable AI (XAI) has been
increasingly explored in cybersecurity applications such as malware detection, intrusion
detection and network security, a significant gap remains in its application to cyberforensics.
Specifically, there is limited research on integrating XAI-driven methodologies into forensic
investigations involving wearable devices, where explainability is crucial for enhancing the
transparency of digital evidence analysis and supporting CISO decision-making processes.
Despite their potential, existing cyberforensics approaches lack a comprehensive generative
AI-driven methodology to integrate and enhance cyberforensics investigations across dif-
ferent layers of digital evidence. This gap is especially evident in wearable devices, where
data originates from both the application and the network layers, making it difficult to form
a complete picture of malicious events. The current separation between network forensics
and application forensics results in a fragmented understanding of malicious events.

Additionally, traditional methods lack AI-enhanced capabilities which could stream-
line the interpretation of evidence and assist CISOs in building a more cohesive narrative
of incidents [14]. Therefore, there is a crucial need for an integrated GenAI-assisted ap-
proach that can cross-layer digital evidence, providing a more effective solution for the
complex challenges in wearable device cyberforensics. Such a GenAI-assisted approach
also has the potential to incorporate open-source intelligence (OSINT) to identify mali-
cious activities and infer the behavior and personality of potential attackers by analyzing
attributes from wearable device owners. This capability provides deeper insights under
the Who-When-What-Why-Where (5W) umbrella, offering CISOs a holistic view of cyber
incidents by building more detailed behavioral profiles of potential attackers, drawing
connections between digital evidence from wearable devices and OSINT sources. This
integration of personality attributes and digital forensics allows for more targeted threat
mitigation strategies, strengthening the overall security posture.

This study addresses the following research questions:

• RQ1: How can a GenAI-assisted framework be developed to enhance the accuracy and
comprehensiveness of cyberforensics in wearable devices by effectively integrating
and cross-layering digital evidence between the network and application domains?

• RQ2: How can this framework, through the integration of OSINT, identify and recon-
struct a malicious incident while providing a holistic view of the incident under the
5W umbrella?

RQ1 is important due to the growing role of wearables in cyber incidents and the
limitations of traditional forensic methods in analyzing the data. Traditional techniques
treat the network and application layers separately, resulting in fragmented analyses.
A GenAI-powered framework bridges this gap by synthesizing digital evidence across
sources, improving forensic accuracy. This research strengthens cyber resilience by using
wearable data to detect cybercrime, insider threats and anomalies. As wearables are
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increasingly used in critical sectors such as healthcare, defense and finance, securing their
data is essential for robust forensic capabilities. RQ2 focuses on cyberforensic capabilities by
integrating OSINT for deeper contextual insights. OSINT enhances situational awareness
by correlating wearable data with public intelligence, enriching forensic investigations.
The 5W approach structures incident reconstruction, linking numerical evidence to real-
world events for better decision making. Systematic OSINT analysis provides actionable
intelligence, aiding CISOs in managing complex threats. Despite its advantages, the
framework still faces limitations in addressing key CISO challenges, such as incident
prioritization, compliance and resource constraints.

The aim of this research is to answer the above listed research questions by developing
a GenAI-assisted framework for cyberforensics that improves the detection of the associated
attributes and reconstruction of malicious events involving wearable devices. By cross-
layering attributes from both the network and application domains and combining them
with OSINT data, this framework seeks to comprehensively answer the 5W questions in
order to provide a holistic understanding of incidents. This research aims to enhance the
efficiency and accuracy of cyberforensics processes, enabling detailed reconstruction of
incidents through GenAI-assisted pattern recognition, particularly for incidents involving
wearable technologies. This aim will be achieved by focusing on the following:

• How to develop an GenAI-assisted methodology for cross-layered evidence synthesis
in cyberforensics;

• How to design an OSINT integration process for wearable device data analysis,
thus creating a more complete understanding of malicious incidents involving
wearable devices;

• How to validate the GenAI-assisted framework using real-world case studies or
datasets to demonstrate identification of malicious activities and the behavioral profil-
ing of potential attackers;

• How to address the current limitations in cyberforensics by bridging the gap between
different forensic layers and integrating AI-driven insights, ultimately supporting
CISOs in improving cyber resilience and preparedness.

The results of this work will support CISOs in managing security incidents more
effectively, ensuring robust preparedness and mitigating threats involving wearable
technologies as a part of a broader strategy for cyber resilience of critical infrastructure.
Additionally, by integrating the GenAI-assisted cyberforensics framework into security
operations centers (SOCs), organizations can enhance real-time threat detection, incident
response automation and forensic investigation efficiency, thereby strengthening cyber
resilience in critical infrastructure.

2. Related Research
This study is a part of the ongoing research in a research project titled “Research

on Cyber Resilience Through Application of Generative Artificial Intelligence in Chief
Information Security Officer Operations”. This project directly addresses the first objective
of the second goal of the Lithuanian Cybersecurity Strategy [15] (“to develop the state’s
capabilities and capacities to fight against criminal acts in cyberspace”) by creating an
adaptive security system based on the assistance of GenAI capabilities for understanding
and reacting to threats as a CISO’s proactive tool to fight against cybercrime.

Several innovative projects represent the current status of related research in the fields
of AI and cybersecurity within the EU. AI4CYBER [16] focuses on developing trustwor-
thy cybersecurity services using AI and big data technologies. KINAITICS [17] aims to
explore new attack opportunities offered by AI-based systems by developing tools and
methodologies combining behavioral monitoring with cybersecurity tools to protect against
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AI-driven cyber threats. ResilMesh [18] creates a cyber-situational awareness-based secu-
rity orchestration and analytics platform architecture (SOAPA) with the goal of improving
digital infrastructure resilience and assisting CSIRTs in building cyber resilience capacity.
SYNAPSE [19] focuses on developing an integrated cybersecurity risk and resilience man-
agement platform that encompasses incident response, AI-enhanced situational awareness,
preparedness and risk management. PHOENiX [20] develops a cyber resilience framework
with AI-assisted orchestration and automation for incident response and information ex-
change which is tailored to essential service operators and the national authorities from EU
member states.

However, there are no current scientific projects which directly address the aim of
this research. The existing research on explainable artificial intelligence (XAI) in cyber-
security highlights several advantages that are directly relevant to CISO functions. In a
comprehensive survey on XAI for cybersecurity, researchers emphasized the importance
of interpretable models in facilitating trust and transparency when deploying AI-driven
security solutions [21]. The work in [21] highlights how explainable models improve
decision-making processes by providing CISOs with insights into how AI systems classify
threats and generate alerts. Furthermore, it underscores the necessity of XAI for regulatory
compliance, as transparency in AI decision making aligns with global data protection laws
and cybersecurity governance frameworks. However, the survey also identified challenges,
such as the computational complexity of explainable models and the potential trade-off
between interpretability and model accuracy.

Another study [22] investigated the application of XAI in cybersecurity, focusing
on its role in identifying vulnerabilities and improving threat detection. The findings
suggest that while XAI improves the interpretability of AI-generated threat intelligence,
it also introduces potential security risks. Attackers can exploit explainability features to
reverse-engineer security mechanisms, creating adversarial threats that compromise AI-
driven cybersecurity defenses. For CISOs, this raises concerns about balancing the need for
transparency with the requirement to maintain robust and resilient security infrastructures.
The study under discussion also points out that current XAI frameworks lack standardized
methodologies for implementation, making it difficult for CISOs to adopt explainability
solutions seamlessly across various security tools and platforms.

A third body of research [23] explored the intersection of XAI and generative AI
(GenAI) in cybersecurity, examining how explainability techniques can enhance AI-driven
security automation. The study proposes that while GenAI improves the efficiency of
cybersecurity operations by automating threat detection, digital forensics and incident
response, its lack of interpretability remains a significant barrier to adoption in high-
stakes security environments. The research highlights that CISOs require explainable
GenAI models to justify security decisions, validate AI-generated insights and mitigate the
risks associated with AI bias and hallucinations. Despite its advantages, the above study
identified limitations such as the increased processing overhead required for explainability
and the challenges of integrating XAI into deep learning-based cybersecurity solutions.

The increasing prevalence of wearable devices in various sectors, particularly health-
care and personal fitness, necessitates a robust forensic strategy to address the unique
challenges posed by these technologies. Wearable devices, such as smartwatches and
fitness trackers, collect sensitive user data, which can be crucial in forensic investigations.
However, forensic examination of these devices is complicated by their architecture and
the nature of the data they store. The complexity of IoT malware and the limitations of
current forensic methodologies are highlighted in another work [24]. The authors identified
research gaps, including the need for comprehensive IoT-specific datasets, integration of in-
terdisciplinary methods and scalable real-time detection solutions. The review emphasizes
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the necessity for advanced countermeasures against anti-forensic techniques, indicating a
lack of integrated approaches in current methodologies.

Researchers [25] elaborated on the unique challenges in IoT forensics, noting that
current investigation techniques struggle with evidence collection and preprocessing due
to counter-analysis techniques and difficulties in gathering data from devices and the
cloud. Their work also points out procedural problems with preparedness, reporting and
presentation, suggesting a lack of holistic approaches in current forensic practices.

While not directly addressing GenAI’s role in forensics, another team of researchers
presented a promising direction for improving digital forensics analysis [26]. They proposed
a reproducible set-up for information extraction using NLP, which could potentially be
extended to incorporate GenAI capabilities. This approach aims to decrease the time
required for human supervision and review, addressing the current inability of tools to
synthesize data and produce multi-layered evidence efficiently.

Another team of authors [27] highlighted the challenges in the examination, acquisi-
tion, identification and analysis of data from smartwatches, emphasizing the need for a
methodology that ensures forensically sound data acquisition from these devices. Simi-
larly, others discussed the forensic artifacts stored by devices like the Fitbit Versa 2 and
the privacy concerns associated with the data collected, underscoring the importance of
understanding the storage mechanisms of wearable devices [28]. Moreover, the security of
wearable devices is paramount, given their role in transmitting sensitive health information.

Another researcher [29] discussed essential security parameters—confidentiality, in-
tegrity, authenticity and availability (CIAA)—which must be upheld to prevent breaches
that could compromise device security. This is echoed in another work [30] which com-
pared encryption algorithms suitable for wearable devices, highlighting the necessity of
implementing robust cryptographic protocols to secure data transmission. The integration
of advanced security measures, such as federated learning and blockchains, has been pro-
posed to enhance the security and privacy of wearable IoT devices in predictive healthcare,
as demonstrated in [31].

In terms of cyber resilience, organizations must adopt a proactive approach that
incorporates the unique characteristics of wearable devices into their cybersecurity strate-
gies. This includes developing lightweight authentication protocols tailored to resource-
constrained wearable devices, as suggested in [32], which addressed vulnerabilities such as
replay attacks and impersonation. Furthermore, the implementation of physical, unclon-
able functions for authentication, as proposed by the researchers in [33], offers a promising
avenue for enhancing security in wearable computing environments. The forensic land-
scape surrounding wearable devices is evolving, and it is crucial for chief information
security officers to stay informed about these developments. The need for a comprehensive
strategy that encompasses both forensic analysis and cybersecurity measures is essential
for ensuring the integrity and security of data collected by wearable devices. By integrating
GenAI into the cybersecurity functions of CISOs, new benchmarks in threat anticipation,
automated system responses and intelligent threat management will be set, paving the
way for resilient cyber ecosystems which adapt to new threats as they emerge. Given the
current technological advances in artificial intelligence and cyber security, the expected
results of integrating GenAI into CISOs’ operations are important for the development of
new information security standards and practices, which will have a significant impact on
future innovations in this field.

However, despite these advancements, the existing research does not sufficiently
explore the role of GenAI in extracting and analyzing digital evidence from wearable tech-
nologies. The current literature primarily focuses on traditional AI techniques for threat
detection and forensic investigations, often neglecting the potential of GenAI to automate
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and enhance the accuracy of cyberforensics. The ability to synthesize wearable device data
across different layers—such as network traffic, sensor logs, and user activity—combined
with GenAI-driven capabilities tailored to CISOs presents an opportunity to significantly
improve cyber resilience. This research aims to address these gaps by developing a frame-
work which integrates GenAI for automated forensic analysis of wearable devices while
ensuring that security leaders can make informed, data-driven decisions in response to
emerging cyber threats.

3. GenAI-Assisted Framework for Cyberforensics
3.1. Framework Architecture and Components

The concept of GenAI-assisted cyberforensics for data collected from wearable devices
leverages generative artificial intelligence to enhance the analysis and interpretation of data
from modern cyber environments (Figure 1).

Figure 1. Concept of GenAI-assisted cyberforensics for data collected from the wearable devices.

In this framework, GenAI plays a central role in processing data. GenAI is a subset of
deep learning, as it uses artificial neural networks and can process labeled and unlabeled
data using supervised, unsupervised and semi-supervised methods. Unlike traditional
LLMs, which focus primarily on natural language, the used GenAI model integrates struc-
tured forensic data processing, temporal sequence modeling and cross-modal embeddings
to align information from multiple sources, including wearable device logs and open source
intelligence (OSINT). Specifically, a multimodal transformer architecture was optimized
for forensic event reconstruction and anomaly detection. Said transformer architecture,
which is similar to vision-language transformers (ViLTs) and BERT-based models, enables
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the GenAI-assisted system to extract contextual relationships, model temporal dependen-
cies and improve incident reconstruction accuracy, ultimately enhancing cyberforensic
decision making. In this case, it allows assisting CISOs in detecting and responding to
cybersecurity incidents.

Wearable devices generate extensive biometric and sensor data, spanning both the
network and application domains. GenAI uses this multimodal data, extracts the digital
attributes and associates them with the corresponding source category: network traffic,
network pattern, system logs and events, access, user behavior or privilege escalation.
Following this process, the 5W questions are used for identification and listing of the
cross-related and cross-layered digital attributes (Figure 2).

Device info

Timestamp

Event ID

Location

Software 

version

User ID

GPS track

Device pairing

status

User badges

Network flows

Data transfer 

details

Network patterns

User behavior

Manufacturer

Privilege 

escalation

Access data

Privilege level

Access data

PostDbEntry

Exercise log

SleepLogEntry

Logs & Events

File creator

Distance 

traveled

User Behavior

User posts

Figure 2. Cross-layered attributes through the network and application domains.

The ability to synthesize these digital attributes with data from OSINT inputs allows
for comprehensive understanding of an incident. The interconnection between the compo-
nents in the GenAI-assisted framework is crucial for its effective operation. As illustrated
in Figure 2, the framework integrates data from various domains, creating a cohesive
analysis environment. The cross-layered attributes shown in the figure are not isolated
data points but form an interconnected network of evidence which GenAI processes simul-
taneously. The device information (such as the device info and software version) directly
influences how the user ID and access data are interpreted in the who component while
simultaneously affecting the reliability assessment of GPS tracks in the where component.
Similarly, timestamp data serve as a temporal anchor connecting the when component to
event sequences in the what component through exercise log and sleep log entry data. This
interconnectivity pertains to the correlation between privileged access events, network
flows and user behavior patterns. When GenAI identifies anomalies in network patterns, it
autonomously cross-references these with privileged access events to ascertain whether
suspicious escalations are transpiring. The framework’s efficacy is rooted in its capacity
to acknowledge that these ostensibly diverse data points—from network traffic to user
posts—constitute various aspects of the same security picture. The incorporation of OS-
INT further augments these relationships by supplying external context to internal data
patterns, allowing the framework to differentiate between typical behavioral fluctuations



Electronics 2025, 14, 1342 9 of 20

and a possibly harmful activity. This complete approach guarantees that no one attribute is
examined in isolation but rather as a part of an overarching security posture evaluation
grounded in the 5W methodology.

3.2. The 5W Approach for Attribute Analysis and Scoring

GenAI assigns an incident score to each detected incident based on analysis of the col-
lected data. The incident score S helps security leaders prioritize responses, as it evaluates
the severity and context of a cybersecurity event by combining the domain-based attributes
of five key components: when (a), where (b), what (c), why (d) and who (e)—as well as
data from OSINT. Each component is assigned a weight, and the score is adjusted based on
the dependencies between these 5W factors (Figure 3).

Event ID, c1

Exercise log, c2

GPS track, c3

What

Timestamp, a1

SleepLogEntry, 

a2

When

Device pairing 

status, d1

User badges, 

d2

Why

Location, b1

Device info, b2

GPS track, b3

Where

cb

ca

cc

cd

wa

wb

wc

wd

User ID, e1

Device info, e2

Software 

version, e3

Who

Figure 3. Dependencies of attributes between 5W factors.

Taking all components and dependencies into account, the formula can be expressed
as shown in Equation (1):

S =
f (w(a), w(b), w(c), w(d), w(e))

∑i ̸=x ci · wi + f (OSINT)
(1)

where f (w(a), w(b), w(c), w(d), w(e)) is the base function for the weighted factors of
when, where, what, why, and who, respectively, ci is the dependency coefficient be-
tween component x and component i, wi is the weight of component i, for which
i ∈ {When, Where, What, Why, Who} except x, and f (OSINT) adds additional weight
based on external intelligence, validating or modifying the incident score based on news,
social media or public records.

When w(a) depends on attributes a1 and a2 and its relationships with the other
components, as shown in Equation (2):

w(a) = f (a1, a2) + cb · w(b) + cc · w(c) + cd · w(d) (2)

Where w(b) depends on attributes b1, b2 and b3 and its relationships with the other
components, as shown in Equation (3):

w(b) = f (b1, b2, b3) + ca · w(a) + cc · w(c) + cd · w(d) (3)
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What w(c) depends on attributes c1, c2 and c3 and its relationships with the other
components, as shown in Equation (4):

w(c) = f (c1, c2, c3) + ca · w(a) + cb · w(b) + cd · w(d) (4)

Why w(d) depends on attributes d1 and d2 and its relationships with the other compo-
nents, as shown in Equation (5):

w(d) = f (d1, d2) + ca · w(a) + cb · w(b) + cc · w(c) (5)

Who w(e) depends on all of the previous components (when a, where b, what c and
why d) and subfactors e1, e2 and e3, as shown in Equation (6):

w(e) = f (e1, e2, e3)− b · log(xwho) + ca · w(a) + cb · w(b) + cc · w(c) + cd · w(d) (6)

where b is the scaling factor for the logarithmic decay based on the rank of who (xwho).
The mathematical formulations of the 5W framework are directly integrated into

the GenAI model’s training and inference processes. The weights (w(a), w(b), w(c), w(d)
and w(e)) and dependency coefficients (ca, cb, cc and cd) serve as parameterized inputs to
the model’s attention mechanisms, influencing how the transformer architecture allocates
importance across different attributes during analysis. During the training phase, these
parameters are optimized through a multi-component loss function L which combines cross-
entropy loss for classification tasks and the mean squared error for numerical predictions,
as shown in Equation (7):

L = α · LCE(5Wpred, 5Wactual) + β · LMSE(Spred, Sactual) + γ · Lreg (7)

where LCE represents the cross-entropy loss measuring the accuracy of attribute clas-
sification, LMSE evaluates the prediction accuracy of the incident scores and Lreg is a
regularization term preventing overfitting. The hyperparameters α, β and γ balance these
components based on their relative importance. The model’s weight optimization process
automatically adjusts the dependency coefficients between the 5W components based on
empirical evidence from training data, enabling the GenAI to learn the complex inter-
relationships between different digital attributes. This integration ensures that the 5W
formulations are not merely theoretical constructs but practical computational elements
that guide the GenAI’s learning process. As the model processes new incidents, these math-
ematically formulated relationships help prioritize attention to the most relevant attributes
in complex scenarios. When analyzing wearable device data with unusual timestamps
(the when component), the model automatically gives increased weight to corresponding
location attributes (the where component) based on the learned dependency coefficient ca.
This allows the GenAI to make contextually appropriate inferences even with incomplete
or noisy data, improving incident reconstruction accuracy. The final result after application
of the proposed GenAI-assisted framework reflects both the key details of the incident
and the broader context, helping investigators assess its potential impact. If a high-end
wearable device is located near a reported robbery at a specific time and there are news
articles that mention it, then the incident score will be higher. Conversely, if a basic feature
phone is located in a public park with no reported incidents, then the incident score will
be lower. Additionally, GenAI assists in reconstructing the sequence of events. By cross-
referencing the identified digital attributes, the generative AI provides a detailed timeline
of the incident, which aids forensic investigations and decision-making processes.
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4. Experimental Use Case
The GenAI-assisted framework was tested with a different wearable devices to ensure

its adaptability across different device ecosystems.
To effectively integrate GenAI into cyberforensics, it is essential to explicitly under-

stand the technical details and limitations involved. The transformer architecture employed
in this study includes GPT-based models, specifically GPT-4 and GPT-3.5, supplemented
by domain-specific fine-tuning to enhance accuracy and reduce model hallucinations.
The transformers employed are decoder-only models utilizing self-attention mechanisms
capable of efficiently processing multimodal and textual cybersecurity datasets. The GenAI-
assisted framework implementation leverages advanced transformer-based language mod-
els, specifically using the GPT-4 architecture with 175 billion parameters for optimal per-
formance in handling complex cyberforensic tasks. For cross-layered attribute analysis
and complex pattern recognition across disparate data sources, we fine-tuned the model
on specialized cybersecurity datasets. The hardware requirements for optimal operation
include high-performance computing capabilities, with our implementation utilizing an
Apple MacBook Pro with an M4 CPU and 48 GB of RAM for development and testing.
For enterprise-level deployment, we recommend dedicated GPU acceleration with at least
32 GB of VRAM to ensure real-time processing capability when handling large volumes of
wearable device data and OSINT information simultaneously. The transformer’s attention
mechanisms are particularly effective at identifying correlations between network behavior
patterns and application-level actions across devices, enabling deeper insights into potential
security incidents than traditional rule-based systems.

The experimental scenarios included (1) identification and integration of cross-layered
digital attributes (e.g., GPS data, pairing logs and activity logs) and (2) synthesis of OSINT
inputs with device-generated data to enhance incident reconstruction accuracy.

4.1. Extraction of Attributes from Wearable Devices and OSINT Data

Specific questions tailored to the 5W approach and aligned with NIST SP 800-86
[34] were designed in order to extract and analyze digital attributes while integrating
OSINT data. The questions addressed toward the GenAI model for the extraction of digital
attributes from wearable devices are presented in Table 1.

Using the provided prompts, various digital attributes were systematically extracted
from wearable devices to form a comprehensive cyberforensics analysis. The Who category
revealed critical identifiers such as user IDs, device owners and their associated information
(e.g., user ID, software version and privilege levels). Additionally, the logs captured data
on who interacted with the devices during the timeframe of interest and highlighted
unauthorized access attempts. The device pairing status was also scrutinized to determine
who authorized connections and whether unauthorized pairing attempts occurred.

In the What category, detailed device attributes such as GPS tracks, activity logs,
exercise logs and the device pairing status were analyzed, capturing specific events such
as privilege escalations or unauthorized device interactions. Logs, such as the sleep log
entry and exercise logs, provided key insights into user routines and any deviations from
the expected behavior. The identification of the “what” component involved a multi-step
analysis process. First, the GenAI model extracted the primary device attributes, such
as GPS tracks, activity logs and the pairing status, from the raw data streams. Then, it
performed pattern recognition to identify specific events (e.g., privilege escalations and
unauthorized access attempts) by correlating event IDs with temporal and spatial metadata.
This process was enhanced through the application of supervised learning techniques
trained on labeled cybersecurity incident datasets, enabling the framework to distinguish
between normal operational events and potentially malicious activities.
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Table 1. Questions for the extraction of digital attributes from wearable devices.

5W Category Questions for GenAI Model

Who • Who is the owner of the device, and what is their associated user ID?
• Who interacted with the device during the recorded timeframe, and

were there any unauthorized access attempts?
• Who authorizes device pairing, and how are unauthorized pairing

attempts detected?
• Who has access to the user ID and sensitive user records, and how

is access logged and monitored?

What • What device data were recorded (e.g., GPS tracks, activity logs and
pairing status)?

• What specific events were captured (e.g., pairing attempts and
privilege escalations)?

• What details about the device’s manufacturer and model are
recorded?

• What types of logs are maintained for device pairing and location
tracking, and how are they used to verify legitimate user activity
versus malicious behavior?

When • When were key activities recorded by the device (e.g., timestamp
of data transfers and disconnections)?

• When were software or firmware updates last applied to the device?
• When are user activity logs (e.g., sleep data, exercise logs and GPS

tracks) recorded?
• When are GPS tracking functions activated?

Where • Where was the device located based on GPS data during the
event timeframe?

• Where did the device establish connections, and were these loca-
tions consistent with legitimate activities?

• Where are the location data captured and stored?
• Where are user images and posts shared within applications?
• Where does the device pairing log indicate connections were estab-

lished, and are there signs of unauthorized devices being linked?

Why • Why does the recorded device behavior deviate from typical
usage patterns?

• Why were certain device activities flagged as anomalous
or suspicious?

• Why might attackers target user activity logs or posts, and what
value could these data provide to them?

• Why are there discrepancies in recorded location or distance data?

For example, when analyzing the experimental dataset, the system identified unusual
pairing attempts by detecting deviations in the device pairing status attribute combined
with anomalous timestamps which fell outside typical user behavior patterns. The “What”
attributes were then weighted according to their security significance using the mathemati-
cal formulations described in Equation (4), with higher weights assigned to critical security
events like privilege escalations compared with routine activities.

The When category provided a critical timeline for understanding incidents, supported
by timestamps associated with key activities such as data transfers, disconnections, GPS
activations and user actions. The sleep log entry and exercise logs further complemented
these timestamps by documenting user behavior during specific periods. The consistent
recording of these logs allowed the framework to identify anomalies in usage patterns or
detect activities occurring during unexpected hours, improving the timeline’s precision.
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For the Where category, the extracted GPS tracks and location data pinpointed the
exact positions of the device during the event timeframe. The location attribute and
device info from pairing logs were also crucial for identifying whether these locations were
consistent with legitimate activities or linked to unauthorized connections. Analysis of the
pairing logs provided further evidence of whether unauthorized devices were linked to
specific geographic areas or flagged for unusual activity, helping to establish context for
any deviations.

The Why category sought explanations for deviations in device behavior, including
discrepancies in the recorded location, distance or activity logs. For example, inconsistent
GPS tracks or timestamps, as well as event ID anomalies, highlighted potential manipula-
tion or malicious intent. The inclusion of user badges, exercise logs and sleep log entry data
provided insights into why attackers might target such data for profiling or exploitation.
By analyzing the purpose behind anomalous device activities and their potential value
to attackers, the framework offered deeper insights into the strategic importance of these
digital attributes in cyberforensics investigations.

The construction of questions for open source intelligence (OSINT) data aligns its
insights with the attributes extracted from wearable devices, enabling comprehensive
incident reconstruction and enhancing cybersecurity investigations (see Table 2). The
primary objective of these questions is to systematically address the 5W framework while
establishing clear correlations with the digital attributes from wearable devices such as
timestamps, GPS tracks, exercise logs, sleep log entries and user badges. This approach
ensures a holistic understanding of incidents by leveraging both wearable device data
and OSINT sources to provide actionable insights. For example, in the Who category,
the questions are designed to identify individuals, entities or groups mentioned in the
OSINT sources which could be linked to the incident or the recorded activity of the device.
These questions are correlated with the attributes of the wearable device, such as the user
ID, device info and device pairing status, to validate the legitimacy of interactions or
flag suspicious behavior. This alignment allows for the identification of potential threat
actors or unauthorized device interactions while evaluating their impact on the incident
under investigation.

In the What category, OSINT questions focus on identifying significant events, trends
or discussions related to the device’s location or recorded behavior. For example, if a
device’s GPS tracks indicate its presence in a specific area, then OSINT questions could
probe for reported incidents (e.g., thefts or protests) during the corresponding timeframe.
These findings are then correlated with wearable device attributes such as the event ID,
exercise logs and pairing status to assess whether the device’s activity aligns with or
deviates from legitimate behavior. By integrating data from OSINT and wearable devices,
the framework can reconstruct the sequence of events with greater accuracy, ensuring that
any malicious activity is flagged for further analysis.

The When category emphasizes temporal alignment between wearable device data
and OSINT findings. Questions in this category aim to identify the timeline of events re-
ported in OSINT sources and correlate them with timestamps, GPS activations and activity
logs from wearable devices. For example, if OSINT sources report a vandalism protest at
a specific time, then the framework compares this timestamp with the device’s recorded
activity to validate the device’s involvement or rule out any connection. Dependencies
between attributes in this category, such as timestamps, sleep log entries and their relation-
ships with where and what, provide a structured view of the temporal patterns and their
broader context.
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Table 2. Questions for the synthesis of OSINT data.

5W Category Questions for GenAI Model

Who • Who were the key individuals or entities mentioned in reports of
events (e.g., suspects and witnesses)?

• Who are the potential threat actors associated with incidents near
the device’s location?

What • What significant events were reported in the locations correspond-
ing to the device’s activity?

• What types of online discussions or social media trends align with
the recorded timestamps and locations?

When • When were the reported events documented in public sources, and
how do they correlate with the device’s data?

• When did related incidents occur in the broader geographic area?

Where • Where did the reported events take place, and how do they align
with the device’s GPS tracks?

• Where were potential threat actors or relevant individuals last seen,
based on OSINT sources?

Why • Why might the reported events be relevant to the device’s recorded
behavior or location?

• Why do OSINT data suggest links between recorded incidents and
broader malicious activities?

In the Where category, OSINT questions are designed to identify the locations of
reported incidents and compare them with the device’s GPS tracks, location data and
pairing logs. This spatial correlation ensures that any recorded activity from the wearable
device is evaluated against credible reports of incidents in the same geographic area. For
instance, if OSINT sources document a reported theft at a particular location, then the
framework uses the device’s location attributes to determine whether its presence aligns
with the event or raises suspicion. Dependencies between GPS tracks, location data and
the pairing status enhance the precision of spatial alignment, allowing for a nuanced
understanding of device behavior.

The Why category probes the motivations or potential implications behind observed
incidents or behaviors. OSINT questions in this category aim to uncover the context or
value of specific activities, such as why attackers might target particular user data or why
deviations in device behavior might suggest malicious intent. These findings are then
correlated with wearable device attributes such as the event ID, exercise logs, and user
badges to provide a comprehensive understanding of the incident’s context. Dependencies
in this category, such as those between the device pairing status, user badges and temporal
and spatial factors, help refine the understanding of intent and context.

By integrating these OSINT-driven questions with digital attributes from wearable
devices, the framework facilitates precise threat detection, robust incident analysis and
informed decision making. The structured evaluation of dependencies between wearable
device data and OSINT insights ensures that correlations are systematically examined,
providing CISOs with actionable insights and a comprehensive understanding of complex
incidents. This approach enhances the accuracy of incident reconstruction and supports the
development of targeted mitigation strategies to address emerging cybersecurity threats.
Through the integration of wearable device data and OSINT, the framework sets a new
standard for cyberforensics, enabling organizations to achieve greater resilience and pre-
paredness in the face of evolving threats.
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4.2. Experimental Validation with Public Datasets

To validate the proposed GenAI-assisted framework, we tested it using publicly avail-
able wearable device datasets [35]. The experimental scenario involved advertising, pairing
and data exchange (specifically heart rate information) between a Garmin Vivoactive 4
smartwatch and a Samsung Galaxy S20 FE smartphone, followed by disconnecting. The
digital attributes which were identified by GenAI were as follows.

Device Info:

• Wearable device: Garmin Vivoactive 4 (Bluetooth address: 14:13:0B:01:92);
• Master device: Samsung Galaxy S20 FE (Bluetooth address: 34:82:C5:37:DC:48).

Software/Hardware version:

• Recording device model: USRP X310 (software-defined radio); Daughterboard
CBX-120; UHD Version 4.1.0.5-3;

• Wearable device model: Garmin Vivoactive 4; Bluetooth version 5.0; Android app
Connect (version: 4.70);

• Master device model: Samsung Galaxy S20 FE; Bluetooth version 5.0.

Length:

• Recording duration: 16.986 s;
• Timeline description: enabling Bluetooth on smartphone = 1.307 s; disconnected

duration = 14.98 s.

Protocol:

• Bluetooth communication: Bluetooth version 5.0 was used between the smartwatch
and the smartphone.

Timestamp:

• Recording date: 21 November 2023;
• Recording location: EDI.

The initial 5W-driven report created by GenAI aimed to consolidate GPS data, times-
tamps and device information to assist in a cyberforensic investigation. The analysis
provided context for identifying user behavior patterns, validating legitimate activity and
recognizing anomalies which could indicate malicious actions:

• The Garmin Vivoactive 4 recorded the user’s location in Edinburgh, Scotland, specifi-
cally in the city center area, near Princes Street. Princes Street is a well-known street
in the city, often frequented by residents and tourists. (Remarks: This location infor-
mation may be useful for corroborating user activity within Edinburgh’s city center,
especially in identifying any deviations from typical routes or verifying known events
during the given timestamp).

• The Samsung Galaxy S20 FE, which serves as the master device, recorded GPS data
which placed the user in Edinburgh, Scotland, specifically near Queen Street. Queen
Street is within the central business district, which implies that the user was in a
commercial area. (Remarks: These GPS data are significant as they tie the user’s
presence to a location in the commercial hub, which could have implications for
activity verification, business interactions or identifying potential exposure to specific
threats).

• The GPS data from the Google Pixel Watch indicated the user’s presence near Holyrood
Park, located in Edinburgh, Scotland. The data points specifically pointed to the
Holyrood Road area, which is popular for outdoor activities and recreational use.
(Remarks: This information is crucial for verifying user fitness activities, analyzing
movement patterns and identifying any unusual activities that may not align with the
user’s regular behavior).
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After the correlation of the initial 5W-driven report with the input of OSINT sources,
the report and incident reconstruction were updated (Table 3).

Table 3. Event details summary.

5W Category Results for Wearable Device 1 Results for Wearable Device 2

Who (device) Garmin Vivoactive 4 Samsung Galaxy S20 FE

Where (location) Princes Street Gardens Princes Street Gardens

When (time) 19 January 2022 12 September 2024

What (event)
Man admits planting “bomb”; in
Edinburgh’s Princes Street Gar-
dens

Protest involving vandalism at
Barclays bank

Public source [36] [37]

5. Discussion and Limitations
The proposed GenAI-assisted framework offers significant potential in cyberforensics

and strategic cyber resilience, particularly in addressing the complexities of modern cy-
bersecurity challenges. By integrating generative AI into cyberforensics, the framework
enhances the ability to cross-layer evidence from both the network and the application
domains, enabling a comprehensive understanding of incidents. This includes leveraging
wearable device data and open source intelligence (OSINT) to form a detailed 5W (who,
what, when, where and why) analysis. This approach supports CISOs in identifying ma-
licious activities, building attacker profiles, and generating contextual insights for better
decision making. By automating the analysis of large datasets and providing dynamic inci-
dent scoring, GenAI can also optimize threat detection and incident response, improving
resource allocation and preparedness.

5.1. Infrastructure and Performance Limitations

To successfully integrate GenAI into cyberforensics, it is essential to clearly compre-
hend and confront its intrinsic limits. Generative AI models are significantly dependent
on processing power and computational resources, with their deployment potentially
hindered by issues such as network latency, processing delays and environmental com-
putational constraints. Latency in cloud-based GenAI models may hinder real-time issue
identification and response, adversely impacting the speed and efficacy of cybersecurity
operations. Furthermore, implementing GenAI locally or in edge contexts, like wearable
devices or edge servers, may result in computational limitations due to the restricted
processing power, memory and energy resources inherent in these settings. This requires
meticulous evaluation of the infrastructure utilized by GenAI—be it cloud, edge or hybrid—
to successfully balance performance and operational limitations. Future research should
concentrate on evaluating these constraints in particular contexts and investigating op-
timization strategies, such as streamlined AI models or effective inference approaches,
to alleviate these challenges and guarantee the dependable incorporation of GenAI into
cybersecurity frameworks.

5.2. Data Accuracy and Operational Concerns

Despite the possibilities, the proposed GenAI-assisted framework has limitations.
One of the main concerns is the dependency on accurate and vast datasets for GenAI
to perform effectively. If training data are incomplete or biased, then the system can
produce inaccurate or misleading results, particularly when reconstructing incidents from
partial data. In this case, CISOs must continuously supervise the obtained results and the
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reliability assessment of those results. Furthermore, the framework’s reliance on wearable
device data poses privacy risks, as collecting and analyzing such data could raise concerns
regarding personal data protection. Another challenge is that the integration of OSINT
introduces potential vulnerabilities if the sources are unreliable or manipulated, leading to
false intelligence, including GenAI hallucinations (such as fabricated or misleading results,
including references to nonexistent facts). Indeed, the phenomenon of hallucinations is the
most critical problem for GenAIs because it erodes the trust of end users, prevents adoption
in diverse fields, and raises safety and privacy concerns [38–40].

Furthermore, the integration of GenAI into SOCs presents operational challenges,
including model explainability, regulatory constraints and computational resource re-
quirements. While the framework enhances threat prioritization and forensic automation,
SOC analysts must validate GenAI-generated insights to mitigate risks associated with
false positives or generative AI hallucinations. Future research should explore optimizing
GenAI interpretability for security teams, ensuring compliance with industry standards
and improving adversarial resistance in AI-assisted forensic models.

Since some CISO investigations can lead to legal proceedings, inaccuracies in GenAI
outputs could undermine legal outcomes or infringe on human rights. The increasing use
of GenAI in legal proceedings, along with its potential hallucinations, has led to guidelines
for responsible implementation [41]. However, addressing and mitigating the inherent risk
of hallucination is an ongoing challenge in the development and deployment of GenAIs,
requiring not only ethical guidelines but careful monitoring and continuous refinement of
their algorithms, training data and prompts [42–44].

5.3. Practical Implementation

To implement the proposed GenAI-assisted cyberforensics framework within an
organization’s existing security infrastructure, organizations should first assess their current
security operations center (SOC) architecture and identify integration points with Security
Information and Event Management (SIEM), Security Orchestration, Automation and
Response (SOAR) and Threat Intelligence Platforms (TIPs). The framework should be
deployed in a cloud, on-premises or hybrid environment based on security and compliance
requirements. Organizations need to establish automated data ingestion pipelines to collect
and correlate logs from wearable devices, network traffic and OSINT sources, ensuring
real-time monitoring and cross-layer analysis. Security analysts should receive training
on interpreting GenAI-assisted forensic reports, incident scoring and behavioral anomaly
detection to enhance investigation efficiency. To address regulatory concerns, companies
must implement explainable AI (XAI) methods and ensure compliance with GDPR, NIST
and ISO 27001 standards [45] when handling personal and forensic data. Continuous model
fine-tuning and adversarial testing should be performed to adapt to evolving threats and
minimize AI biases or false positives. Finally, organizations should establish a feedback
loop between SOC analysts and the GenAI system, allowing iterative improvements and
increased trust in AI-driven security insights. By following these steps, organizations can
integrate the GenAI-assisted framework into their security operations, improving threat
detection, incident response automation and overall cyber resilience.

6. Conclusions and Future Work
The findings of this study offer a transformative approach to enhancing cyberforen-

sics and strategic cyber resilience. By integrating cross-layered digital attributes from
wearable devices and open source intelligence, it provides a more comprehensive analysis
of cyber incidents, enabling CISOs to detect, assess and respond to threats with greater
accuracy. By structuring incident analysis around the 5W approach, the GenAI-assisted
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framework enhances cybersecurity decision making through automated data synthesis and
incident scoring.

While the framework strengthens security practices and enhances resilience in critical
infrastructures, several challenges remain: (1) data privacy risks associated with analyzing
personal information from wearable devices, which may raise legal and ethical concerns,
(2) accuracy limitations due to GenAI hallucinations, potentially leading to misleading
forensic conclusions, and (3) scalability constraints, as large-scale deployments may require
optimized computing resources for real-time analysis.

For future work, efforts should focus on the integration of additional data sources,
such as social media analytics or blockchain-based authentication, to improve the reliability
of OSINT and provide a more holistic view of cyber incidents.
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