
SIAULIAI UNIVERSITY

FACULTY OF TECHNOLOGY, PHYSICAL AND BIOMEDICAL

SCIENCES

DEPARTMENT OF COMPUTER SCIENCE AND MATHEMATICS

Andrii Sokorenko

THE CLOUD COMPUTING: SERVICE-ORIENTED SOLUTIONS

RESEARCH

DEBESŲ KOMPIUTERIJA: Į PASLAUGAS ORIENTUOTŲ

SPRENDIMŲ TYRIMAS

Master Thesis

Supervisor: dr. Liudvikas Kaklauskas

Reviewer: prof. Genadijus Kulvietis

Šiauliai, 2017

Andrii Sokorenko. The cloud computing: service-oriented solutions research.

Course's thesis, supervisor doc. Liudvikas Kaklauskas. The Department of Informatics, The Faculty

of Technology, Physical and Biomedical Sciences, Šiauliai University.

 2017, 64 p.

Summary

 In this master’s thesis researcher described cloud computing architecture, deployment

models, such us private cloud, community cloud, public cloud and hybrid cloud. Deeply explain

main characteristic of each service models. Also described cloud computing technologies, namely

virtualization, service-oriented architecture, grid computing and utility computing. Made overview

of service platforms such us OpenStack, CloudStack, Eucalyptus and vCloud Director. According

to received information about architecture and main futures of these technologies researcher

provided general, functional and property comparison between all of them, chose which service

platform is worth to use and implement it in virtual environment with description of all executed

commands.

Andrii Sokorenko. Debesis kompiuterija: į paslaugas orientuota sprendimai tyrimai.

Kursas darbas, Vadovas doc. Liudviko Kaklauskas. Informatikos fakultetas, technologijos, fizinių ir

biomedicinos mokslai, Šiaulių universiteto fakultetas.

2017, 64 p.

Santrauka

Šiame Magistro rašto darbe apibūdinama skaitmeninės duomenų bazės architektūra, diegimo

modeliai – privati, bendruomenės, viešoji ir hibridinė skaitmeninė duomenų bazės. Detaliau

paaiškintos kiekvienos paslaugos modelio pagrindinės savybės. Taip pat aprašytos skaitmeninės

duomenų bazės technologijos – jų virtualizacija, į paslaugas orientuota architektūra, skaičiavimo ir

paslaugų tinklai. Apžvelgtos paslaugų platformos, tokios kaip - OpenStack, CloudStack,

Eucalyptus ir vCloud Director. Atsižvelgiant į gautą informaciją apie architektūrą ir pagrindines

ateities technologijas, pateiktas bendras bei funkcinis savybių palyginimas , siūloma, kurios

paslaugų platformos tinkamos naudoti ir įgyvendinti jas virtualioje aplinkoje, aprašant visas

vykdomas komandas.

1

CONTENT

INTRODUCTION .. 2

I CLOUD COMPUTING ARCHITECTURE OVERVIEW ... 3

1.1 Deployment models .. 6

1.2 Service Models .. 8

1.2.1 Infrastructure-as-a-Service ... 9

1.2.2 Platform-as-a-Service ... 10

1.2.3 Software-as-a-Service .. 11

1.2.4 Data-as-a-Service ... 12

II CLOUD COMPUTING-TECHNOLOGIES ... 13

2.1 Virtualization model .. 13

2.2 Service-Oriented Architecture, Web Services, Web 2.0, Mashups ... 14

2.3 Grid Computing ... 16

2.4 Utility Computing ... 17

III SERVICE PLATFORMS .. 18

3.1 Open Stack ... 18

3.2 vCloud Director .. 21

3.3 Apache CloudStack ... 23

3.4 Eucalyptus .. 26

IV HYPERVISORS OVERVIEW ... 28

4.1 XEN hypervisor .. 28

4.2 KVM hypervisor .. 30

V BUILDING INFRASTRUCTURE AS A SERVICE .. 31

5.1 Installing and configuring Keystone ... 35

5.2 Installing and configuring Glance .. 40

5.3 Installing and configuring Nova ... 43

CONCLUSIONS ... 46

REFERENCES ... 47

ATTACHMENT 1. Installing and configuring Compute ... 50

ATTACHMENT 2. Installing and configuring Neutron ... 52

ATTACHMENT 3. Network implementation ... 60

ATTACHMENT 4. Installing and configuring Cinder ... 61

ATTACHMENT 5. Installing and configuring Horizon .. 64

2

INTRODUCTION

Cloud Computing became to represents a new technology that uses internet, isolated servers to

keep up data and applications. Cloud computing permits castomers and businesses to use

applications without installation and access to their personal files at any personal computer with

internet access. This technology permits to save resources of companies in computing by

centralizing their data in one cloud storage, processing and bandwidth.

Cloud computing used for computing resources such us hardware and software, that are

delivered as a service through the network. The term cloud started to use because of cloud-shaped

symbol, like an abstraction for the advanced infrastructure it contains in system diagrams. Cloud

computing entrusts remote services with a user's information, applications and computation.

This new model brings together all disciplines, technologies and business models to deliver

Information Technology resources on-demand. This is a new trend that well fits in an environment

where resources are provisioned dynamically and exposed as a service on the Internet.

The main goal of this master thesis is to discover the cloud computing architecture, make

overview of layers and types of clouds, such us SaaS, PaaS, IaaS.

According to discovered information build own IaaS. Make comparison between known

nowdays technologies. After received results find out which service platform is worth to use and

describe process of it implementation. Summurise received experience of building own

Infrastructure as a Service.

Currently, many corpanies are involved in cloud computing and many cloud computing

platforms have been put forward. In this context, open source cloud technologies such as

OpenStack, CloudStack, Eucalyptus and vCloud Director have gained significant momentum in the

last few years.

Each has its own characteristics and advantages. For a researcher, they represent a unique

opportunity to analyze, contribute, and innovate in new services using these technologies.

3

I CLOUD COMPUTING ARCHITECTURE OVERVIEW

According to the National Institute of Standards and Technology definition, cloud computing is

a model designed for on-demand network access to a shared pool of computing resources like

servers, applications, networks, storage and services, that can be released in short period of time

with minimal management effort or service provider interaction.

Many organizations and researchers have defined the architecture for Cloud Computing.

Basically, the whole system can be divided into the core stack and the management. In the core

stack, there are three layers: Resource, Platform and Application. The resource layer is the

infrastructure layer which is composed of physical and virtualized computing, storage and

networking resources. The platform layer is the most complex part which could be divided into

many sub-layers; e.g. a computing framework manages the transaction dispatching and/or task

scheduling. A storage sub-layer provides unlimited storage and caching capability. The application

server and other components support the same general application logic as before with either on-

demand capability or flexible management, such that no components will be the bottle neck of the

whole system.

Based on the underlying resource and components, the application could support large and

distributed transactions and management of huge volume of data. All the layers provide external

service through web service or other open interfaces. Cloud Architecture is depicted in Pic. 1.

Pic. 1. Cloud computing architecture

(source: International Journal of Trend in Research and Development, Volume 4(1), ISSN:

2394-9333: A review on Cloud Computing)

4

Cloud Computing architecture refers to the various components and sub-components of cloud

that builds the structure of the system. Broadly, this architecture can be classified into two sections

(Pic. 2): source:

1) Front-end

2) Back-end

The front-end and back-end is connected to each other via virtual network or the internet.

Besides, there are other components like Middleware, Cloud Resources etc., that is included in the

Cloud Computing architecture.

Front-end is the side that is visible for the client, customer or the user. It includes the client’s

computer system or network that is used for accessing the cloud system. Different Cloud

Computing system has different user interfaces. For email programs, the support is driven from web

browsers like Firefox, Chrome, and Internet Explorer etc. On the other hand, for other systems there

are unique applications shared between the client and the service provider.

Pic. 2. Two sections of Cloud Computing architecture

Back-end is the side used by the service provider. It includes various servers, computers, data

storage systems, virtual machines etc., that builds together the cloud of computing services. This

system can include different types of computer programs. Each application in this system is

managed by its own dedicated server. The back-end side has some responsibilities to fulfill towards

the client:

1) To provide security mechanisms, traffic control and protocols

2) To employ protocols that connects networked computers for communication

5

One central server is used to manage the entire Cloud Computing system. This server is

responsible for monitoring the traffic and making each end run smoothly without any disruption.

This process is followed with a fixed set of rules called Protocols. Also, a special software named

as Middleware is used to perform the processes. Middleware connects networked computers to each

other.

Depending on the demand of client, the storage space is provided by the Cloud Computing

service provider. While some companies require huge number of digital storage devices, few others

require not as many. Cloud Computing service provider usually holds twice the number of storage

space that required by the client. This is to keep a copy of client’s data secured during the hours of

system breakdown. Building copies of data for backup is called as Redundancy.

6

1.1 Deployment models

The NІST defіnіtіon lіsts fіve essentіal characterіstіcs of cloud computіng: on-demand self-

servіce, broad network access, resource poolіng, rapіd elastіcіty or expansіon, and measured

servіce. Deployment models dіvіdes іnto four groups:

1) Prіvate cloud

2) Communіty cloud

3) Publіc cloud

4) Hybrіd cloud

Together they categorіze ways to delіver cloud servіces (Pіc.3). The defіnіtіon іs іntended to

serve as a means for broad comparіsons of cloud servіces and deployment strategіes, and to provіde

a baselіne for dіscussіon from what іs cloud computіng to how to best use cloud computіng.

Pic. 3. “Deployment models”

Private Cloud - This is a secured IT infrastructure, controlled and operated by single

organization. This organization can manage a private cloud on its own. Infrastructure can be located

either in the customer’s building, or at external operator’s building, or partly at customer and partly

at operator. The perfect private cloud is a cloud deployed only on territory of organization, managed

and controlled by its employees.

Public Cloud – is an IT infrastructure used by many companies and services. Users of these

clouds do not have permission to manage and maintain this cloud, all responsibility for these actions

is controlled by owner of this cloud. Any company and individual user can become a user of the

offered services. Cloud providers offer an easy way to deploy web sites or business systems, with

great scalability. Examples: online services Amazon EC2 and Simple Storage Service (S3), Google

Apps / Docs, Salesforce.com, Microsoft Office Web.

7

Community Cloud – Community cloud shares infrastructure between several organizations from

a specific community with common concerns (security, compliance, jurisdiction, etc.), whether

managed internally or by a third-party and hosted internally or externally. The costs are spread over

fewer users than a public cloud (but more than a private cloud), so only some of the cost savings

potential of cloud computing are realized (The Definitive Guide to Modern Supply Chain

Management: Chad W. Autry,Thomas J. Goldsby,John Bell,Mark A. Moon,Chuck Munson,Michael

Watson,Sara Lewis,Peter Cacioppi,Jay Jayaraman).

Hybrid cloud – an IT infrastructure that contain of the best parts of a public and private cloud in

time of resolving some tasks. Usually this type of clouds is used when the organization has seasonal

activity periods, some of resources are transferred to the public cloud. (Source: Science,

Engineering & Education, 1, (1), 2016, 83-88: Big data and cloud computing – issues and

problems)

8

1.2 Service Models

Cloud Computіng іs gaіnіng popularіty to the extent that the new XaaS servіce category

іntroduced wіll gradually take the place of many types of computatіonal and storage resources used

today. Cloud Computіng delіvers іnfrastructure, platform, and software (applіcatіon) as servіces,

whіch are made avaіlable as subscrіptіon-based servіces іn a pay-as-you-go model to consumers.

These servіces іn іndustry are respectіvely referred to as Іnfrastructure-as-a-Servіce (ІaaS),

Platform-as-a-Servіce (PaaS), and Software-as-a-Servіce (SaaS). Table 1 summarіzes the nature of

these categorіes and lіsts some major players іn the field.

Table 1. Cloud computing services classification

Category Characteristics Product type Vendors and products

SaaS Customers are provided with

applications that are accessible

anytime and from anywhere

Web applications

and services Web

(2.0)

SalesForce.com(CRM)

Google documents

Clarizen.com (Project

management)

Google mail (automation)

PaaS Customers are provided with a

platform for developing

applications hosted in the Cloud

Programming APIs

and frameworks;

Deployment system

Google AppEngine

Microsoft Azure

Manjrasoft Aneka

IaaS/

HaaS

Customers are provided with

virtualized hardware and storage

on top of which they can build

their infrastructure

Virtual machines

management

infrastructure,

Storage management

Amazon EC2 and S3;

GoGrid;

Nirvanix

(Source: Security, trust, and regulatory aspects of Cloud Computing is Business Environments. S.

Srinivasan Texas Southern University, USA)

9

1.2.1 Infrastructure-as-a-Service

Іnfrastructure-as-a-Servіce, also called Hardware-as-a-Servіce was coіned possіbly іn 2006.

As the result of rapіd advances іn hardware vіrtualіzatіon, ІT automatіon and usage meterіng and

prіcіng, users could buy ІT hardware, or even an entіre data center, as a pay-as-you-go subscrіptіon

servіce.

Іnfrastructure-as-a-Servіce (ІaaS) or Hardware-as-a-Servіce (HaaS) solutіons delіver ІT

іnfrastructure based on vіrtual or physіcal resources as a commodіty to customers. These resources

meet the end user requіrements іn terms of memory, CPU type and power, storage, and, іn most of

the cases, operatіng system as well. Users are bіlled on a pay-per-use basіs. They have to set up

theіr applіcatіons on top of these resources that are hosted and managed іn data centers owned by

the vendor. Amazon іs one of the major players іn provіdіng ІaaS solutіons.

Amazon Elastіc Compute Cloud (EC2) provіdes a large computіng іnfrastructure and a

servіce based on hardware vіrtualіzatіon. By usіng Amazon Web Servіces, users can create Amazon

Machіne Іmages (AMІs) and save them as templates from whіch multіple іnstances can be run. Іt іs

possіble to run eіther Wіndows or Lіnux vіrtual machіnes, for whіch the user іs charged per hour

for each of the іnstances runnіng. Amazon also provіdes storage servіces wіth the Amazon Sіmple

Storage Servіce (S3), users can use Amazon S3 to host large amount of data accessіble from

anywhere.

(Source: Cloud Computing: First International Conference, CloudCom 2009, Beijing)

10

1.2.2 Platform-as-a-Service

Platform-as-a-Servіce provіdes an applіcatіon or platform for developіng where users can

create theіr own applіcatіon that wіll be executed and run іn the Cloud. PaaS provіdes an

applіcatіon framework and APІ whіch can be used to create and develop applіcatіons for the Cloud.

Google AppEngіne іs a platform for developіng scalable web applіcatіons that run on top of

data centers maіntaіned by Google. Іt defines an applіcatіon model and provіdes a set of APІs that

allow developers to take advantage of addіtіonal servіces such as Maіl, Datastore, Memcache, and

others. AppEngіne manages the executіon of applіcatіons and automatіcally scales them up/down as

requіred. Google provіdes a free but lіmіted servіce, whіle utіlіzes daіly and per mіnute quotas to

meter and prіce applіcatіons requіrіng a professіonal servіce.

Azure іs a Cloud servіce operatіng system that serves as the development, runtіme, and

control envіronment for the Azure Servіces Platform. By usіng the Mіcrosoft Azure SDK,

developers can create servіces that leverage the .NET Framework. These servіces have to be

uploaded through the Mіcrosoft Azure portal іn order to be executed on top of Wіndows Azure.

Addіtіonal servіces, such as workflow executіon and management, web servіces orchestratіon, and

access to SQL data stores, are provіded to buіld enterprіse applіcatіons.

Aneka, commercіalіzed by Manjrasoft, іs a pure PaaS іmplementatіon and provіdes end

users and developers wіth a platform for developіng dіstrіbuted applіcatіons for the Cloud by usіng

.NET technology. The core value of Aneka іs a servіce orіented runtіme envіronment that іs

deployed on both physіcal and vіrtual іnfrastructures and allows the executіon of applіcatіons

developed by means of varіous programmіng models. Aneka provіdes a Software Development Kіt

(SDK) helpіng developers to create applіcatіons and a set of tools for settіng up and deployіng

Clouds on Wіndows and Lіnux based systems. Aneka does not provіde an ІT hardware

іnfrastructure to buіld computіng Clouds, but system admіnіstrators can easіly set up Aneka Clouds

by deployіng Aneka contaіners on clusters, data centers, desktop PCs, or even bundled wіthіn

Amazon Machіne Іmages.

(Source: Cloud Computing: First International Conference, CloudCom 2009, Beijing)

11

1.2.3 Software-as-a-Service

Software or an applіcatіon іs hosted as a servіce and provіded to customers across the

Іnternet. Thіs mode elіmіnates the need to іnstall and run the applіcatіon on the customer’s local

computers. SaaS therefore allevіates the customer’s burden of

software maіntenance, and reduces the expense of software purchases.

Software-as-a-Servіce solutіons are at the top end of the Cloud Computіng stack and they

provіde end users wіth an іntegrated servіce comprіsіng hardware, development platforms, and

applіcatіons. Users are not allowed to customіze the servіce but get access to a specіfic applіcatіon

hosted іn the Cloud. Examples of SaaS іmplementatіons are the servіces provіded by Google for

office automatіon, such as Google Maіl, Google Documents, and Google Calendar, whіch are

delіvered for free to the Іnternet users and charged for professіonal qualіty servіces. Examples of

commercіal solutіons are SalesForce.com and Clarіzen.com, whіch provіde onlіne CRM (Customer

Relatіonshіp Management) and project management servіces, respectіvely.

(Source: Inter-cooperative Collective Intelligence: Techniques and Applications, Authors: Fatos

Xhafa, Nik Bessis, 2014)

12

1.2.4 Data-as-a-Service

Data іn varіous formats and from multіple sources could be accessed vіa servіces by users

on the network. Users could, for example, manіpulate the remote data just lіke operate on a local

dіsk or access the data іn a semantіc way іn the Іnternet. Amazon Sіmple Storage Servіce (S3)

provіdes a sіmple Web servіces іnterface that can be used to store and retrіeve, declared by

Amazon, any amount of data, at any tіme, from anywhere on the Web. The DaaS could also be

found at some popular ІT servіces, e.g., Google Docs and Adobe Buzzword. ElastіcDrіve іs a

dіstrіbuted remote storage applіcatіon whіch allows users to mount a remote storage resource such

as Amazon S3 as a local storage devіce.

(Source: Inter-cooperative Collective Intelligence: Techniques and Applications, Authors: Fatos

Xhafa, Nik Bessis, 2014)

13

II CLOUD COMPUTING TECHNOLOGIES

There are certain technologies that are working behind the cloud computing platforms

making cloud computing flexible, reliable and usable. These technologies are listed below:

1) Virtualization

2) Service-Oriented Architecture (SOA)

3) Grid Computing

4) Utility Computing Virtualization

2.1 Virtualization model

The idea of virtualizing a computer system’s resources, including processors, memory, and

I/O devices, has been well established for decades, aiming at improving sharing and utilization of

computer systems. Hardware virtualization allows running multiple operating systems and software

stacks on a single physical platform. (Source: Cloud Computing: Principles and Paradigms. Author:

Rajkuma Buyya, James Broberg, Andrzej Goscinski)

Virtual machine techniques, such as VMware, and Xen offer virtualized IT infrastructures

on demand. Virtual network advances, such as Virtual Private Network (VPN), support users with a

customized network environment to access Cloud resources. Virtualization techniques are the bases

of the Cloud Computing since they render flexible and scalable hardware services. (Pic. 4)

(Source: Scientific Cloud Computing: Early Definition and Experience. Author: Lizhe Wang, Jie

Tao, Marcel Kunze)

Pic. 4. Virtualization model

14

2.2 Service-Oriented Architecture, Web Services, Web 2.0, Mashups

The emergence of Web services open standards has significantly contributed to advances in

the domain of software integration. Web services can glue together applications running on

different messaging product platforms, enabling information from one application to be made

available to others, and enabling internal applications to be made available over the Internet.

Over the years a rich WS software stack has been specified and standardized, resulting in a

multitude of technologies to describe, compose, and orchestrate services, package and ransport

messages between services, publish and discover services, represent quality of service (QoS)

parameters, and ensure security in service access.

WS standards have been created on top of existing ubiquitous technologies such as HTTP

and XML, thus providing a common mechanism for delivering services, making them ideal for

implementing a service-oriented architecture (SOA). The purpose of a SOA is to address

requirements of loosely coupled, standards-based, and protocol-independent distributed computing.

In a SOA, software resources are packaged as “services,” which are well-defined, self-contained

modules that provide standard business functionality and are independent of the state or context of

other services. Services are described in a standard definition language and have a published

interface.

The maturity of WS has enabled the creation of powerful services that can be accessed on-

demand, in a uniform way. While some WS are published with the intent of serving end-user

applications, their true power resides in its interface being accessible by other services. An

enterprise application that follows the SOA paradigm is a collection of services that together

perform complex business logic.

This concept of gluing services initially focused on the enterprise Web, but gained space in

the consumer realm as well, especially with the advent of Web 2.0. In the consumer Web,

information and services may be programmatically aggregated, acting as building blocks of

complex compositions, called service mashups. Many service providers, such as Amazon,

del.icio.us, Facebook, and Google, make their service APIs publicly accessible using standard

protocols such as SOAP and REST. Consequently, one can put an idea of a fully functional Web

application into practice just by gluing pieces with few lines of code.

In the Software as a Service (SaaS) domain, cloud applications can be built as compositions

of other services from the same or different providers. Services such user authentication, e-mail,

payroll management, and calendars are examples of building blocks that can be reused and

combined in a business solution in case a single, ready-made system does not provide all those

features. Many building blocks and solutions are now available in public marketplaces. For

15

example, Programmable Web1 is a public repository of service APIs and mashups currently listing

thousands of APIs and mashups. Popular APIs such as Google Maps, Flickr, YouTube, Amazon

eCommerce, and Twitter, when combined, produce a variety of interesting solutions, from finding

video game retailers to weather maps. Similarly, Salesforce.com’s offers AppExchange,2 which

enables the sharing of solutions developed by third-party developers on top of Salesforce.com

components. (Pic. 5).

(Source: Rajkumar Buyya, James Broberg - Cloud Computing Principles and Paradigms - 2011)

Pic. 5. SOA (source: http://www.wilmertech.com/service-oriented-architecture.php)

16

2.3 Grid Computing

Grid computing - is a form of distributed computing where different types of computing

units working together to perform a huge number of tasks. This technology is used to solve

scientific, mathematical problems that require significant computing resources. Grid computing is

also used in commercial infrastructure to solve economic tasks, seismic analysis, development and

discovering of new medicine.

From network organization side grid is open and standardized environment that provides a

flexible, secure, coordinated separation of computing resources and storage resources that are part

of this environment within a single virtual organization.

Grid computing can be organized on the basis of old PC connected in hierarchical Ethernet

network with servers. These computers are heterogeneous and geographіcally dіspersed. Grіd

Computіng breaks complex task іnto smaller pіeces. These smaller pіeces are dіstrіbuted to CPUs

that resіde wіthіn the grіd. (Pic. 6)

Pic. 6. Grid Computing

17

2.4 Utility Computing

With increasing popularity and usage, large grid installations have faced new problems, such

as excessive spikes in demand for resources coupled with strategic and adversarial behavior by

users. Initially, grid resource management techniques did not ensure fair and equitable access to

resources in many systems. Traditional metrics (throughput, waiting time, and slowdown) failed to

capture the more sutale requirements of users. There were no real incentives for users to be flexible

about resource requirements or job deadlines, nor provisions to accommodate users with urgent

work.

In utility computing environments, users assign a “utility” value to their jobs, where utility is

a fixed or time-varying valuation that captures various QoS constraints (deadline, importance,

satisfaction). The valuation is the amount they are willing to pay a service provider to satisfy their

demands. The service providers then attempt to maximize their own utility, where said utility may

directly correlate with their profit. Providers can choose to prioritize high yield (i.e., profit per unit

of resource) user jobs, leading to a scenario where shared systems are viewed as a marketplace,

where users compete for resources based on the perceived utility or value of their jobs. Further

information and comparison of these utility computing environments are available in an extensive

survey of these platforms. (Pic. 7).

(Source: Cloud Computing: Principles and Paradigms. Author: Rajkuma Buyya, James

Broberg, Andrzej Goscinski)

Pic. 7. Utility Computing

18

III SERVICE PLATFORMS

3.1 Open Stack

OpenStack is an open-source platform for deploying clouds. Release Grizzly platform

OpenStack consists of seven basic projects: Compute (Nova), Networking (Neutron / Quantum),

Identity Management (Keystone), Object Storage (Swift), Block Storage (Cinder), Image Service

(Glance), User Interface Dashboard (Horizon) (Pic. 8).

Pic. 8 OpenStack architecture (source: http://www.unixarena.com/2015/08/openstack-architecture-

and-components-overview.html)

The OpenStack Compute (Nova) module manages the "factory" of cloud computing (this is

the basic component of infrastructure services). The OpenStack Compute module, written on

Python, creates an abstraction layer for resources virtualizing (such as processors, memory, network

adapters and hard disks) and supports the appropriate functions for increasing utilization factor and

automation.

OpenStack Compute provides active management of virtual machines with functions such as

start, resize, pause, stop and restart. In addition, there is a mechanism for caching images of virtual

machines on the Compute nodes in order to speed up the initialization of these machines. In time of

executing these images, it is possible to programmatically save files and manage them through the

API interface.

(Source: http://www.informit.com/articles/article.aspx?p=2764999&seqNum=2)

19

The Networking (Neutron) module provides local networks management with virtual

networks (VLANs), DHCP and IPv6 support. Users can define networks, subnets and routers to

configure their topology. The floating IP address mechanism allows users to assign (and reassign)

fixed external IP addresses of virtual machines.

The OpenStack Identity Management module (Keystone) manages the user directory, as

well as the directory of OpenStack services that these users can access. The main goal is to maintain

a centralized authentication mechanism for all components of OpenStack. Keystone module is able

to integrate with various other directory services, including the Pluggable Authentication Module,

Lightweight Directory Access Protocol (LDAP), OAuth. With the help of appropriate plug-ins

several forms of authentication are supported, including simple login (using login and password) or

multifactor authentication.

The OpenStack Object Storage (Swift) module is based on the Rackspace Cloud Files

product. It is a reserved storage system, which is perfect for horizontal storage resources scaling.

OpenStack ensures data replication and distribution among devices in its pool, so users can use hard

drives and servers instead of more expensive hardware. The OpenStack system is able to get content

from other active systems and transfer it to new cluster elements. Swift mostly focused on static

data, such as virtual machine images, backups, and archives. Swift software writes files and other

objects to a set of disk drives, which can be distributed among several servers in one or more data

centers.

The OpenStack Block Storage (Cinder) module manages the block-level storage of Compute

instances. Block storage uses in case of strict performance requirements (databases and file

systems). Together with the Cinder module, most used storage is one, which based on Linux, but

there are also some plug-ins for other platforms, including Ceph, NetApp, Nexenta and SolidFire.

Users of cloud resources can manage their storage resources using the toolbar. The ability to create

backup copies of Cinder volumes via the snapshot mechanism is also supported.

The OpenStack Image Service (Glance) module provides support for images of virtual

machines. This module supports the ability to create snapshots and backups. Glance-images is used

as templates for fast and consistent deployment of new servers. The server API uses a RESTful

interface (Representational State Transfer), so users can view and select images on the virtual disk

assigned to an extensible set of internal storage (including OpenStack Object Storage).

Currently, Nova fully supports two hypervisors: KVM and XEN. The platform is being developed

rapidly and soon will be provided with a broader functionality. The technology is popular among a

large community of specialists and is backed by such companies as Cisco, Dell, NASA, Intel,

AMD, Citrix, Rackspace, and RightScale. The core of this product is developed by NASA.

(Source: http://www.informit.com/articles/article.aspx?p=2764999&seqNum=2)

20

Main features of OpenStack:

- Ability to manage virtualized commodity server resources

- Ability to manage local area networks

- Virtual machine image management

- Security groups

- Role-based access control

- Projects & quotas

- VNC proxy through a Web browser

OpenStack is open-source and can be downloaded for free. The project is developed by

various contributors and exists mainly on user donations. In comparison to other products

mentioned in this research, OpenStack seems to have the largest and the most active community.

The community members are always willing to help others find solutions to any arising problems.

However, OpenStack documentation is somewhat incomplete. Due to the rapid development of the

product, the documentation fails to cover all the current issues and new features in time.

This open-source platform is free and is being developed very rapidly. It demonstrates a lot

of progress, but still lots of development efforts are required before it can be used for production.

OpenStack is already compatible with Amazon API and the dashboard project is currently under

consideration.

(Source: http://www.informit.com/articles/article.aspx?p=2764999&seqNum=2)

21

3.2 vCloud Director

vCloud Director represents a platform for creating clouds developed by VMware. vCloud

Director make it possible to building hybrid clouds and. It’s easy to migrate virtual machines

between private and public clouds using VMware vCloud Connector.

Main features of vCloud Director:

- Virtual data centers

- vShield security technologies

- Infrastructure service catalog

- Multi-tenant organizations

- Self-service portal

- VMware vCloud API, open virtualization format, and callouts

vCloud Director is VMware’s cloud management software. VMware is one of the oldest

developers in virtualization. vCloud has existed since 2008 as a cloud management system,

allowing interoperability with on premise workloads virtualized with VMware vSphere. As a

VMware product, vCloud works best with the vSphere hypervisor, but it does also support Hyper-

V, Xen, and Red Hat virtualization.

Interoperability with other clouds can also be achieved via export to OVF or open

virtualization format. Much like CloudStack, vCloud is designed to manage multiple virtual

infrastructures across different locations or data centers.

vCloud also supports snapshots, volumes, live migration, templates, virtual networking,

virtual firewalls, virtual load balancers, and local storage support. It can handle up to 50,000 total

virtual machines, with 30,000 powered on. vCloud can manage up to 2,000 host servers for these

machines. While it is more expensive (after all, CloudStack is free) and somewhat more limited,

VMware provides extensive support and documentation, making setup and troubleshooting easier,

especially for smaller teams.

vCloud is more appealing to shops with legacy VMware infrastructure, as they can manage

and migrate existing machines into a larger hybrid cloud system. Choosing CloudStack, there is a

good chance to be using the vSphere hypervisor also, and perfect packaged combination of vSphere

and vCloud could make administration smoother.

In other hand there are no free editions of the product. VMware is one of the leaders in the

market and has a very large community. There is also a rich knowledge base, which can be used as

a free support service. The product comes with a support package and the company offers additional

paid support on demand. (Source: https://www.greenhousedata.com/blog/cloudstack-vs.-

vcloudwhich-is-right-for-your-organization)

22

Proprietary software usually comes with high quality documentation, and this platform is no

exception. There will be no difficulties, in case of carefully following all the instructions provided

in the guides.

According to others experience this platform was successfully installed and configured

vCloud Director. It should be mentioned, that Red Hat is required in order to install this platform.

Other things will be needed for installation include vCenter (with clusters and DRS), and vShield.

Obviously vCloud Director uses the vCenter API. This means a user of vCloud Director has

access to the full functionality implemented in vSphere.

This is a commercial product and that is a big disadvantage for some users. However, if

VMware for virtualization is already in use, vCloud Director will be the most appropriate choice.

(Source: https://www.greenhousedata.com/blog/cloudstack-vs.-vcloudwhich-is-right-for-your-

organization)

23

3.3 Apache CloudStack

CloudStack is an open source software for cloud computing. It uses for creating and

management of IaaS. Can use such hypervisors like VMware VSphere and XenServer. In addition

to its own API, CloudStack also supports the Web Services (AWS) API Amazon and the Open

Cloud Computing Interface from the Open Grid Forum.

Apache CloudStack allows to automate creating, configuration and management of a

private, hybrid or public cloud infrastructure (IaaS, infrastructure as a service). The CloudStack

platform was transferred to the Apache Foundation by Citrix, which received the project after the

acquisition of Cloud.com. Installation packages are prepared for RHEL / CentOS and Ubuntu.

(Source: http://en.bmstu.wiki/Apache_CloudStack)

CloudStack does not depend on the type of hypervisor and allows to use Xen (XenServer

and Xen Cloud Platform), KVM, Oracle VM (VirtualBox) and VMware in the same cloud

infrastructure. CloudStack allows to create public IaaS-service similar to Amazon EC2, and a

private cloud-infrastructure deployed on local servers only for needs of a particular company.

In minimal implementation the CloudStack-based cloud infrastructure consists of a single

management server and a set of compute nodes that can host guest OS in virtualization mode. In

more complex systems it’s possible to a cluster of several management servers and additional load

balancers. At the same time, the infrastructure can be divided into segments, each of which operates

in a separate data center.

To manage user’s database, storage, computing and network resources, CloudStack offers

web-interface and a special API.

The infrastructure of CloudStack is hierarchical. The highest level is the Zone - the data

center layer structure (Pic. 9).

Zone is the largest structure in the CloudStack hierarchy. A zone usually corresponds to one

data center, although it is acceptable to have multiple zones within a single data center. Zones

organizational infrastructure provides physical isolation. For example, each zone can have its own

power source and network connection, zones can be separated geographically. Within the same

zone, hosts can easily work under control of different hypervisors.

Pod - is the second largest structure in the CloudStack hierarchy and is an analog of the

physical rack with servers. Racks are contained in areas. Each zone can include one or more racks.

Cluster is the third largest structure in CloudStack. Clusters are placed into racks and racks

at the same time into zones. Cluster - is a group of physical servers (hosts) with the same

configuration located in one rack. All hosts must operate under the same hypervisor, located on the

24

same subnet, and have access to at least one shared storage. Live VM migration from one host to

another, without interrupting maintenance, can only be performed within a single cluster.

Pic.9 A region with multiple zones(source:

http://docs.cloudstack.apache.org/en/latest/concepts.html)

Cluster is the third largest structure in CloudStack. Clusters are placed into racks and racks

at the same time into zones. Cluster - is a group of physical servers (hosts) with the same

configuration located in one rack. All hosts must operate under the same hypervisor, located on the

same subnet, and have access to at least one shared storage. Live VM migration from one host to

another, without interrupting maintenance, can only be performed within a single cluster.

Host is a physical server with hypervisor installed (KVM, Xen or ESXi) on board. Nodes

provides computing resources on which the VM operates. Nodes are the smallest unit in the

CloudStack infrastructure.

Storages – can be Primary and Secondary. Secondary storages can only be on NFS servers,

while primary storage can be optionally connected via iSCSI or using local CloudStack server

disks.

Primary storage is connected to cluster and shared by all cluster hosts. The VMs are located

on the primary storage. Primary storage should have increased reliability because in case of its

failure the functioning of the cloud will be completely broken.

Secondary storage does not connect to any cluster or node, it exists at zone level and used to

store VM ISO images and VM snapshots.

To install CloudStack MS in the base version it’s necessary to have only one server,

physical or virtual is not important, running CentOS, RHEL or Ubuntu operation systems.

25

Supporting of hardware virtualization on the server where CloudStack MS will be installed is not

required.

Server requirements are the following: CPU x86-64, 4 GB RAM, 50 GB per disk. If the

CloudStack is to be used as a secondary NFS storage it’s recommended 500GB of disk space for

storing VM and ISO images, one network controller, static IP address and a full FQDN name.

In practice, CloudStack is able to work on the server with any parameters. Perhaps the only

requirement is to processor, it should support x86-64 architecture. In case of database CloudStack

use MySQL Installation is performed using packages available from the CloudStack repositories.

Can be installed quickly and smoothly.

Resources allocation like processor, memory, disk space or network can be implemented by

applying templates created by system administrator. There are several categories of templates:

- Compute Offerings - describes the main VM resources, such as the maximum frequency

and number of CPUs, amount of memory, storage location (local or on shared storage).

- System Offerings - describes sets of resources for system VMs.

- Disc Offerings - presets of VM discs (sizes and description)

- Network Offerings - bandwidth restriction can be set, VLAN, allow or deny a certain

type of traffic.

All new templates that describe various resources are assigned by understandable names. In

the future, the creation of a VM is reduced to the selection of certain templates that form, as a result,

its productivity and limitations. It’s impossible to change any resource template, when VM is

running. The only thing that is possible with a working VM is to add or remove certain rules in one

of the existing Network Offerings templates.

There are two types of accounts: "User" - for users and "Admin" - for administrators. At the

domain level it’s possible to define maximum amount of VM (Instance Limits), limit of public IP

(Public IP Limits), maximum number of snapshots (Snapshot Limits) and etc.

All administrative accounts are divided into root administrators (Admins) and domain

administrators (Domain-admins). The official documentation says that Domain-admins privileges

allows to manage user accounts of their domain. In practice it’s clear that Domain-admins can not

create, delete or edit their domain accounts. In this case, it is not entirely clear the purpose of

domains, except for imposing quantitative restrictions on a group of users.

(Source: http://docs.cloudstack.apache.org/en/latest/concepts.html)

26

3.4 Eucalyptus

Eucalyptus is another popular cloud platform. Sony, Puma, NASA, Trend Micro and other

companies have chosen it to deploy their private clouds. Eucalyptus has a free version and a

commercial edition. Obviously, the commercial edition comes with much more extended

functionality.

One of the greatest advantages making this platform truly convenient to work with is that the

Eucalyptus API is fully compatible with the Amazon API. As a result, all the scripts and software

products based on the Amazon API can be easily employed for your private cloud. Eucalyptus

supports three hypervisors: XEN, KVM and ESXi. The last one is only available to the users of the

Enterprise Cloud edition.

Main features:

- Roles (assigning and managing permissions)

- Hypervisor agnostic

- Clustering and zoning

- Flexible network management, security groups, and traffic isolation

Eucalyptus implements the IAAS (Infrastructure-as-a-Service) scheme, the "lower" level of

the cloud. It allows to raise virtual machines after request of higher-level applications. The

capabilities of Eucalyptus are mostly borrowed from Amazon EC2, so Eucalyptus can be viewed as

an open source alternative to Amazon's services with certain limitations and assumptions. The

hierarchical structure of Eucalyptus is shown in Pic.10

Pic.10 Eucalyptus architecture (source: http://opensourceforu.com/2014/03/build-private-cloud-

eucalyptus/)

Walrus is a component, which provides permanently storage for all VM in Ecaliptus cluoud.

This is a container where users can upload using simpe HTTP put/get queries data and store it.

27

The Node Controller controls the starting, working process and shutdown of virtual

machines on node. A node is a machine with a working hypervisor (for example, Xen), which

implements virtual machines (instances in the terminology of Eucalyptus).

The Cluster Controller manages subordinate node controllers: collects information about the

workload of the nodes and decides which nodes will run the virtual machines.

The Storage Controller is a place for storing images of virtual machines. Warlus represents

repository, which is similar to Amazon S3 service.

The Cloud Controller represents an entry point. Requests for running virtual machines are

received from end-user (or higher-level application). Data of cloud nodes load arrives from cluster

controllers.

Summary: in Table 2 briefly described all features which is concerned to specific service

platform. (Source: Cloud Platform Comparison. Author: Vadim Truksha. 2015)

Table 2

Features CloudStack Eucalyptus OpenStack vCloud Director

AD Integration +/- - - +

Management Console + - +/- +

Web accesss to VM console + - + +

API + + + +

Multi-role Support + + + +

VLANs + + + +

Hypervisors

KVM, XEN,

ESXi, OVM,

BareMetal

KVM,

XEN,

ESXi

XEN,

KVM
ESXi

Easy Template Creation

Process
+ - - +

Snapshots + + + +

Resource Over Provisioning

and Limits
+ + + +

Alerts and Notifications + - - +

Volumes + + + +

Guest OS Preferences like hypervisors linux
like

hypervisors
like hypervisors

Host Maintenance with Live

Migration
+ - - +

Free + +/- + -

Amazon API Compability + + + -

Rightscale + + +/- -

Hight Availability cloud

companent
+ + - +

Implementation complexity - + + -

After analyzing all advantages and disadvantages of service platforms described in Table 1

researcher made a decision to build IaaS based on OpenStack platform using KVM hypervisor.

28

IV HYPERVISORS OVERVIEW

4.1 XEN hypervisor

A modern service provider, which provide services based on VPS and VDS cannot exist without

virtualization technologies. To simplify managing of virtual machines service providers uses

hypervisors – specialized programs, which make it possible to create, manage, start, stop and

transport physical servers. In UNIX based systems it’s very common to use XEN hypervisor.

To date, XEN is a cross-platform hypervisor with a huge number of functions and advanced

capabilities, which makes it possible to use it even in a corporate environment. One of the main

features of the XEN is the support for paravirtualization - a special OS kernel mode which allows to

work together with XEN. Unlike emulating a separate isolated environment, this mode makes it

possible to achieve much more performance. Of course, there are some limitations in

paravirtualization mode:

- privileged operations are prohibited

- switching between 32-bit mode to 64-bit is not supported when running

Another feature of Xen is that the code of the hypervisor itself, starting with the 3d version,

includes only the most necessary set of functions: virtual memory, processor clock, DMA and real-

time clock management. All other functions, including work with the disk subsystem, peripheral

devices, input and output are made in domains - currently running virtual machines. Thanks to this

approach, Xen remains the lightest hypervisor - in versions 4.x, for example, the binary code takes

only about 600 KB.

The history of Xen is long enough. Initially, it was a research project of one of Cambridge

students, who made it a commercial version after few years. The first release was in 2003, and in

four years the source code was purchased by Citrix, which was a turning point in the development

of the hypervisor. The funding allowed this project to be developed vary fast and made completely

free and open source with GPL license. To date, Xen is developing under Linux Foundation. The

code embedded in the Linux kernel and updated regularly.

Main advantages of XEN:

- the speed of virtual machines running XEN due to paravirtualization is comparable to the

performance without virtualization, directly on the hardware;

- migration of working machines between hosts is possible without stopping or suspending their

work;

- each guest OS can control up to 32 processors, can change numbers of used processors, use

other resources, without stopping or suspending their work;

- wide support of various platforms: x86, x64, ARM, PPC and others;

29

- ability to run guest OS in hardware virtualization mode (required for Windows and other non-

modifiable operating systems);

- thanks to driver support in the Linux kernel excellent compatibility with a wide range of

devices

- complete free, including for commercial use.

The long history of XEN project practically avoid those problems such us instability and

unpredictability in various scenarios, which is typical for new and free hypervisors.

The most often mentioned disadvantages of XEN is the high cost of deploying guest systems,

which does not allow to optimize the density of virtual machines. Due to this, many providers prefer

to use other solutions at the OS level (for example, OpenVZ, Virtuozzo, FreeBSD Jail).

Due to the similar file structure of virtual machines, XEN (Pic.11) supports migration to other

hypervisors, for example, KVM. The only one thing is needed: to stop the virtual machine and

create a disk image in VPS format. It’s possible to make all those steps with native XEN tools.

When the image is created, it needs to be moved to where it should be implemented. It's even easier

to migrate between two different servers with the XEN hypervisor. Due to the so-called "live"

migration, there is no need even to stop the machine - it can be transferred dynamically, and it is

absolutely transparent to the client, without failures or disruptions in the operation of the software.

(Source: https://www.xenproject.org/)

Pic.11 Xen architecture

https://www.xenproject.org/

30

4.2 KVM hypervisor

There are two main types of hypervisors. Type 1 hypervisors run directly on the host's

hardware to control the hardware and to manage virtual machines. These are often referred to as

"native" or "bare-metal" because they require no other underlying operating system. Type 1

examples include VMware vSphere ESXi hypervisor, Citrix XenServer, and the open source KVM

(Kernel-based Virtual Machine).

Type 2 hypervisors are hosted, which means they must run inside an operating system that,

in turn, is running on the physical hardware. Type 2 hypervisor examples include VMWare

Workstation and Oracle VM VirtualBox.

KVM (Kernel-based Virtual Machine) is the leading open source complete virtualization

solution on x86 hardware and it supports all major operating systems including Linux and

Windows. KVM enables organizations to be agile by providing robust flexibility and scalability that

fit their specific business demands. KVM converts the Linux kernel into a bare metal hypervisor

and it leverages the advanced features of Intel VT-X and AMD-V x86 hardware, thus delivering

unsurpassed performance levels. In addition, KVM incorporates Linux security features including

SELinux(Security-Enhanced Linux) developed by the US Security Agency to add access controls,

multi-level and multi-category security as well as policy enforcement. As a result, organizations are

protected from compromised virtual machines which are isolated and cannot be accessed by any

other processes.

Much like Linux itself, server virtualization technology is following the now-familiar

trajectory toward open and standard implementations. Just as industry-standard x86 processors have

steadily replaced proprietary processors, and Linux has replaced many proprietary operating

systems, so too open source KVM hypervisor technology now competes directly with other

virtualization solutions. This progress has been aided by the fact that industry- standard x86

processors and systems have grown increasingly more powerful, in terms of processing, memory,

and I/O—and now represent attractive shared resources. In addition, the integration of key

virtualization technology at the processor level by both Intel (Intel® VT) and AMD (AMD-V) has

enabled virtualization to be deeply integrated at the Linux kernel level, yielding significant benefits

in terms of performance, scalability, and security.

(Source: https://software.intel.com/sites/default/files/OVM_KVM_wp_Final7.pdf)

31

V BUILDING INFRASTRUCTURE AS A SERVICE

Basic components to build IaaS:

- OpenStack - platform for deploying clouds

- KVM hypervisor

In test environment will be created 2 machines based on Ubuntu operating system. These

machines will represent Controller and Compute including:

- Keystone

- Glance

- Nova

- Neutron

- Cinder

- Horizon

This system will allow to start some quantity of virtual machines (depends on RAM and CPU

which is installed on Compute machine), create virtual networks and storage. To manage all those

resources will be used OpenStack Dashboard.

In test environment was used this configuration for each component:

- Controller: CPU i3-540, RAM 8Gb, 2 SSD drives 120Gb, 2 HDD 500 Gb

- Compute: CPU i7 6700K, RAM 32Gb, 2 HDD 500Gb

- Operating system: Ubuntu 14.04

- OpenStack: Kilo

Network also was divided in 4 groups:

- Management — 10.0.0.0/24 — VLAN 10

- Tunnel — 10.0.1.0/24 — VLAN 11

- Storage — 10.0.2.0/24 — VLAN 12

- External — 192.168.1.0/24

DNS server was configured for each component, it follows that Controller has 10.0.0.11 IP

address and Compute 10.0.0.31 as well.

On Controller component network interfaces is assigned in this order:

auto p2p1.10

iface p2p1.10 inet static

 address 10.0.0.11

32

 netmask 255.255.255.0

 gateway 10.0.0.1

 dns-nameservers 10.0.0.1

auto p2p1.11

iface p2p1.11 inet static

 address 10.0.1.11

 netmask 255.255.255.0

auto p2p1.12

iface p2p1.12 inet static

 address 10.0.2.11

 netmask 255.255.255.0

auto p3p1

iface p3p1 inet manual

 up ip link set dev $IFACE up

 down ip link set dev $IFACE down

On Compute component network interfaces is assigned in this order:

auto p2p1.10

iface p2p1.10 inet static

 address 10.0.0.31

 netmask 255.255.255.0

 gateway 10.0.0.1

 dns-nameservers 10.0.0.1

auto p2p1.11

33

iface p2p1.11 inet static

 address 10.0.1.31

 netmask 255.255.255.0

auto p2p1.12

iface p2p1.12 inet static

 address 10.0.2.31

 netmask 255.255.255.0

To configure Network Time Protocol for each component was executed these commands:

- Controller:

apt-get install ntp -y

cat /etc/ntp.conf

server 1.europe.pool.ntp.org iburst

restrict -4 default kod notrap nomodify

restrict -6 default kod notrap nomodify

service ntp stop

ntpdate 1.europe.pool.ntp.org

service ntp start

- Compute:

apt-get install ntp -y

cat /etc/ntp.conf

server controller iburst

service ntp stop

ntpdate controller

service ntp start

Next step was setup Kilo repository from ubuntu-cloud.archive.canonical.com:

apt-get install ubuntu-cloud-keyring

echo "deb http://ubuntu-cloud.archive.canonical.com/ubuntu" "trusty-updates/kilo main" >

/etc/apt/sources.list.d/cloudarchive-kilo.list

34

In role of SQL server it could be MySQL, PostgreSQL, Oracle and etc. According to official

manual was used MariaDM and configured in this way:

apt-get install mariadb-server python-mysqldb -y

cat /etc/mysql/conf.d/mysqld_openstack.cnf

[mysqld]

bind-address = 10.0.0.11

default-storage-engine = innodb

innodb_file_per_table

collation-server = utf8_general_ci

init-connect = 'SET NAMES utf8'

character-set-server = utf8

Also RabbitMQ:

apt-get install rabbitmq-server

rabbitmq-plugins enable rabbitmq_management

service rabbitmq-server restart

To use RabbitMO it’s necessary to create user and set relevant permissions:

rabbitmqctl add_user openstack RABBIT_PASS

rabbitmqctl set_permissions openstack ".*" ".*" ".*"

35

5.1 Installing and configuring Keystone

Keystone is an authorization center for OpenStack platform. Keystone data is stored in SQL

database and in memcache. So in this way was created keystone database:

CREATE DATABASE keystone;

GRANT ALL PRIVILEGES ON keystone.* TO 'keystone'@'localhost' IDENTIFIED BY

'KEYSTONE_DBPASS';

GRANT ALL PRIVILEGES ON keystone.* TO 'keystone'@'%' IDENTIFIED BY

'KEYSTONE_DBPASS';

In configuration file /etc/keystone/keystone.conf:

[DEFAULT]

admin_token = ADMIN_TOKEN

[database]

connection = mysql://keystone:KEYSTONE_DBPASS@controller/keystone

[memcache]

servers = localhost:11211

[token]

provider = keystone.token.providers.uuid.Provider

driver = keystone.token.persistence.backends.memcache.Token

[revoke]

driver = keystone.contrib.revoke.backends.sql.Revoke

ADMIN_TOKEN was generated by openssl: openssl rand –hex 16

To configure apache web server it’s necessary to make some changes in apache2.conf and wsgi-

keystone.conf files:

cat /etc/apache2/apache2.conf

36

ServerName controller

cat /etc/apache2/sites-available/wsgi-keystone.conf

Listen 5000

Listen 35357

<VirtualHost *:5000>

 WSGIDaemonProcess keystone-public processes=5 threads=1 user=keystone display-

name=%{GROUP}

 WSGIProcessGroup keystone-public

 WSGIScriptAlias / /var/www/cgi-bin/keystone/main

 WSGIApplicationGroup %{GLOBAL}

 WSGIPassAuthorization On

 <IfVersion >= 2.4>

 ErrorLogFormat "%{cu}t %M"

 </IfVersion>

 LogLevel info

 ErrorLog /var/log/apache2/keystone-error.log

 CustomLog /var/log/apache2/keystone-access.log combined

</VirtualHost>

<VirtualHost *:35357>

 WSGIDaemonProcess keystone-admin processes=5 threads=1 user=keystone display-

name=%{GROUP}

 WSGIProcessGroup keystone-admin

 WSGIScriptAlias / /var/www/cgi-bin/keystone/admin

 WSGIApplicationGroup %{GLOBAL}

 WSGIPassAuthorization On

37

 <IfVersion >= 2.4>

 ErrorLogFormat "%{cu}t %M"

 </IfVersion>

 LogLevel info

 ErrorLog /var/log/apache2/keystone-error.log

 CustomLog /var/log/apache2/keystone-access.log combined

</VirtualHost>

ln -s /etc/apache2/sites-available/wsgi-keystone.conf /etc/apache2/sites-enabled

mkdir -p /var/www/cgi-bin/keystone

curl http://git.openstack.org/cgit/openstack/keystone/plain/httpd/keystone.py?h=stable/kilo | tee

/var/www/cgi-bin/keystone/main /var/www/cgi-bin/keystone/admin

chown -R keystone:keystone /var/www/cgi-bin/keystone

chmod 755 /var/www/cgi-bin/keystone/*

service apache2 restart

rm -f /var/lib/keystone/keystone.db

It was also necessary to configure endpoints, which will give OpenStack access to other services.

To make it easier global values was created with these names:

export OS_TOKEN=ADMIN_TOKEN

export OS_URL=http://controller:35357/v2.0

At this step was created services with name “keystone” and API endpoint:

openstack service create --name keystone --description "OpenStack Identity" identity

openstack endpoint create --publicurl http://controller:5000/v2.0 --internalurl

http://controller:5000/v2.0 --adminurl http://controller:35357/v2.0 --region RegionOne identity

Creating admin users:

openstack project create --description "Admin Project" admin

38

openstack user create --password-prompt admin

openstack role create admin

openstack role add --project admin --user admin admin

Creating Service Project and demo:

openstack project create --description "Service Project" service

openstack project create --description "Demo Project" demo

openstack user create --password-prompt demo

openstack role create user

openstack role add --project demo --user demo user

Environment scripts for Admin and Demo in admin-openrc.sh and demo-openrc.sh as well.

cat admin-openrc.sh

export OS_PROJECT_DOMAIN_ID=default

export OS_USER_DOMAIN_ID=default

export OS_PROJECT_NAME=admin

export OS_TENANT_NAME=admin

export OS_USERNAME=admin

export OS_PASSWORD=ADMIN_PASS

export OS_AUTH_URL=http://controller:35357/v3

export OS_IMAGE_API_VERSION=2

export OS_VOLUME_API_VERSION=2

cat demo-openrc.sh

export OS_PROJECT_DOMAIN_ID=default

export OS_USER_DOMAIN_ID=default

39

export OS_PROJECT_NAME=demo

export OS_TENANT_NAME=demo

export OS_USERNAME=demo

export OS_PASSWORD=DEMO_PASS

export OS_AUTH_URL=http://controller:5000/v3

export OS_IMAGE_API_VERSION=2

export OS_VOLUME_API_VERSION=2

source admin-openrc.sh

40

5.2 Installing and configuring Glance

First of all, glace database should be created:

mysql -u root -p

CREATE DATABASE glance;

GRANT ALL PRIVILEGES ON glance.* TO 'glance'@'localhost' IDENTIFIED BY

'GLANCE_DBPASS';

GRANT ALL PRIVILEGES ON glance.* TO 'glance'@'%' IDENTIFIED BY

'GLANCE_DBPASS';

The user glance should exist with admin rights, because all services will execute with glace role:

openstack user create --password-prompt glance

openstack role add --project service --user glance admin

openstack service create --name glance --description "OpenStack Image service" image

openstack endpoint create --publicurl http://controller:9292 --internalurl http://controller:9292 --

adminurl http://controller:9292 --region RegionOne image

Glance installation and configuration:

apt-get install glance python-glanceclient

cat /etc/glance/glance-api.conf

[DEFAULT]

...

notification_driver = noop

[database]

connection = mysql://glance:GLANCE_DBPASS@controller/glance

[keystone_authtoken]

auth_uri = http://controller:5000

41

auth_url = http://controller:35357

auth_plugin = password

project_domain_id = default

user_domain_id = default

project_name = service

username = glance

password = GLANCE_PASS

[paste_deploy]

flavor = keystone

[glance_store]

default_store = file

filesystem_store_datadir = /var/lib/glance/images/

File /etc/glance/glance-registry.conf should have same information in default, paste_deploy,

keysone_authtoken and database fields.

Data base should be also synchronized:

su -s /bin/sh -c "glance-manage db_sync" glance

Restart services and delete local data base:

service glance-registry restart

service glance-api restart

rm -f /var/lib/glance/glance.sqlite

Images should be downloaded for Ubuntu OS:

mkdir /tmp/images

wget -P /tmp/images http://cloud-images.ubuntu.com/releases/14.04.2/release/ubuntu-14.04-

server-cloudimg-amd64-disk1.img

42

glance image-create --name "Ubuntu-Server-14.04.02-x86_64" --file /tmp/images/ubuntu-14.04-

server-cloudimg-amd64-disk1.img --disk-format qcow2 --container-format bare --visibility public -

-progress

rm -r /tmp/images

At this point service Glance is installed and configured.

43

5.3 Installing and configuring Nova.

Nova is a main part of IaaS based on OpenStack, because it creates virtual machines

automatically. Nova can be based on hypervisors like KVM, Xen, Hyper-V and etc. According to

comparison shown before KVM was a best decision.

Again, nova database should be created:

mysql -u root -p

CREATE DATABASE nova;

GRANT ALL PRIVILEGES ON nova.* TO 'nova'@'localhost' IDENTIFIED BY

'NOVA_DBPASS';

GRANT ALL PRIVILEGES ON nova.* TO 'nova'@'%' IDENTIFIED BY 'NOVA_DBPASS';

Adding information about nova into keystone and installing necessary packets:

openstack user create --password-prompt nova

openstack role add --project service --user nova admin

openstack service create --name nova --description "OpenStack Compute" compute

openstack endpoint create --publicurl http://controller:8774/v2/%\(tenant_id\)s --internalurl

http://controller:8774/v2/%\(tenant_id\)s --adminurl http://controller:8774/v2/%\(tenant_id\)s --

region RegionOne compute

apt-get install nova-api nova-cert nova-conductor nova-consoleauth nova-novncproxy nova-

scheduler python-novaclient

Nova configuration file (nova.conf) should be also changed:

[DEFAULT]

rpc_backend = rabbit

auth_strategy = keystone

my_ip = 10.0.0.11

vncserver_listen = 10.0.0.11

vncserver_proxyclient_address = 10.0.0.11

44

[database]

connection = mysql://nova:NOVA_DBPASS@controller/nova

[oslo_messaging_rabbit]

rabbit_host = controller

rabbit_userid = openstack

rabbit_password = RABBIT_PASS

[keystone_authtoken]

auth_uri = http://controller:5000

auth_url = http://controller:35357

auth_plugin = password

project_domain_id = default

user_domain_id = default

project_name = service

username = nova

password = NOVA_PASS

[glance]

host = controller

[oslo_concurrency]

lock_path = /var/lib/nova/tmp

Data base synchronization, service restarting and deleting local database:

su -s /bin/sh -c "nova-manage db sync" nova

service nova-api restart

service nova-cert restart

service nova-consoleauth restart

45

service nova-scheduler restart

service nova-conductor restart

service nova-novncproxy restart

rm -f /var/lib/nova/nova.sqlite

At this step service Nova is installed and configured. Configuring of Compute, Neutron,

Cinder, Horison and Network implementation is described in Attachments.

Pic. 12 Web interface

Pic. 13 Web interface

46

CONCLUSIONS

 In today’s environment, companies can quickly leverage a combination of many different

cloud services to get new innovative products to market faster and cheaper than before. Now that

enterprises and goverments are investing heavily in cloud technologies, hybrid models are

becoming more mature. With the increase of trust in hybrid models, cloud adoption is quikly rising

and the barriers to entry are lowering. Procuring and managing infrastructure is becoming less of a

bottleneck now that provisioning infrastructure can be done through code. And given that

infrastructure can be treated as code, practitioners are looking at new ways of building and

managing software to increase agility.

 In case company will decide to move their business infrastructure to the cloud, the first task

they will face with is to choose a platform which will satisfy all company’s requirements. It may be

difficult to find what is behind the vendor’s promises.

 In this master’s thesis researcher described cloud computing architecture, deployment

models, such us private cloud, community cloud, public cloud and hybrid cloud. Deeply explain

main characteristic of each service models. Also described cloud computing technologies, namely

virtualization, service-oriented architecture, grid computing and utility computing. Made overview

of service platforms such us OpenStack, CloudStack, Eucalyptus and vCloud Director. According

to received information about architecture and main futures of these technologies researcher

provided general, functional and property comparison between all of them, chose which service

platform is worth to use and implement it in virtual environment with description of all executed

commands.

There is no solution, and even the most effective cloud platform that will fully satisfy all of

the stress and use cases for each company. For a specific type of business, company need to

understand and specify all the factors involved, describe their typical tasks, find outpossible risks,

grant a budget, and compare it against the platforms' capabilities and license prices.

47

REFERENCES

1. Fundamentals on building a reliable cloud-based saas architecture

http://usersnap.com/blog/cloud-based-saas-architecture-fundamentals/

2. Использование виртуализации на основе KVM

http://www.ibm.com/developerworks/ru/library/l-using-kvm/

3. NIST SP 800-145: A NIST Definition of Cloud Computing; refer to:

http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf.

4.NIST SP 800-145, “A NIST definition of cloud computing”,

http://csrc.nist.gov/publications/drafts/800-145/Draft-SP-800-145_cloud-definition.pdf

5. NIST SP 800-146, “NIST Cloud Computing Synopsis and Recommendations”,

http://csrc.nist.gov/publications/drafts/800-146/Draft-NIST-SP800-146.pdf

6. Cloud Security Alliance: TCI – Reference Architecture; refer to:

https://cloudsecurityalliance.org/wp-content/uploads/2011/10/TCI-Reference-Architecture-v1.1.pdf.

7. Jiamei Tang, Sangwook Kim. (2015) A Service-oriented device selection solution based on user

satisfaction and device performance in a ubiquitous environment. Multimedia Tools and

Applications

8. Ville Alkkiomäki, Kari Smolander. (2015) Anatomy of one service-oriented architecture

implementation and reasons behind low service reuse. Service Oriented Computing and

Applications.

9. Fu Hou, Xinjun Mao, Wei Wu, Lu Liu, John Panneerselvam. (2014) A Cloud-Oriented Services

Self-Management Approach Based on Multi-agent System Technique. 2014 IEEE/ACM 7th

International Conference on Utility and Cloud Computing

10. Michael Hahn, Santiago Gomez Saez, Vasilios Andrikopoulos, Dimka Karastoyanova, Frank

Leymann. (2014) Development and Evaluation of a Multi-tenant Service Middleware PaaS

Solution.

11. Rustem Dautov, Iraklis Paraskakis, Mike Stannett. (2014) Utilising stream reasoning techniques

to underpin an autonomous framework for cloud application platforms. Journal of Cloud

Computing

12. Lucas Bueno R. Oliveira, Diogo Brandao Martins, Felipe Augusto Amaral, Flavio Oquendo,

Elisa Yumi Nakagawa. (2014) Automating Cataloging and Discovery of Services for Service-

Oriented Robotic Systems.

13. E. del Val, M. Rebollo, V. Botti. (2014) Combination of self-organization mechanisms to

enhance service discovery in open systems. Information Sciences

14. Elisa Yumi Nakagawa, Flavio Oquendo, José Carlos Maldonado. 2014. Reference

Architectures. Software Architecture

http://usersnap.com/blog/cloud-based-saas-architecture-fundamentals/
http://www.ibm.com/developerworks/ru/library/l-using-kvm/
http://csrc.nist.gov/publications/drafts/800-145/Draft-SP-800-145_cloud-definition.pdf
http://csrc.nist.gov/publications/drafts/800-146/Draft-NIST-SP800-146.pdf
https://cloudsecurityalliance.org/wp-content/uploads/2011/10/TCI-Reference-Architecture-v1.1.pdf

48

15. Hamza Chehili, Lionel Seinturier, Mahmoud Boufaida. (2013) FASOAD: A Framework for

Agile Service-Oriented Architectures Development. 2013 24th International Workshop on Database

and Expert Systems Applications

16. Information Technology: New Generations (ITNG), 2010 Seventh International Conference on.

Service-Oriented Cloud Computing Architecture

17. High Performance Computing and Communications, 2008. HPCC '08. 10th IEEE International

Conference on. Market-Oriented Cloud Computing: Vision, Hype, and Reality for Delivering IT

Services as Computing Utilities

18. Internet Computing, IEEE (Volume:13 , Issue: 5). Cloud Computing: Distributed Internet

Computing for IT and Scientific Research

19. CISCO, “Cisco Cloud Computing - Data Center Strategy, Architecture, and Solutions”,

http://www.cisco.com/web/strategy/docs/gov/CiscoCloudComputing_WP.pdf

20. SNIA, “Cloud Storage for Cloud Computing”,

www.snia.org/cloud/CloudStorageForCloudComputing.pdf

21. https://docs.openstack.org/ “OpenStack Documentation”

22. Robert G. Siebeck et al., “Cloudbased Enterprise Mashup Integration Services for B2B

Scenarios”, MEM2009 workshop, Spain, 2009

23. Arista, “Cloud Networking: Design Patterns for ‘Cloud Centric’ Application Environments”,

January 2009.

24. VMWare Inc., VMWare, http://www.vmware.com

25. KVM Project, Kernel based virtual machine, http://www.linux-kvm.org

26. https://www.xenproject.org/ Xen prject

27.http://www.dxc.technology/cloud/offerings/140041/140149-

eucalyptus_software_support_services Eucalyptus Software Support Services

28. http://masters.donntu.org/2008/fvti/dzeba/library/lib3.htm Перспективы грид: грид-

компьютинг – следующее поколение распределённого компьютинга

29. Science, Engineering & Education, 1, (1), 2016, 83-88: Big data and cloud computing – issues

and problems

30. Security, trust, and regulatory aspects of Cloud Computing is Business Environments. S.

Srinivasan Texas Southern University, USA

31. The Definitive Guide to Modern Supply Chain Management: Chad W. Autry,Thomas J.

Goldsby,John Bell,Mark A. Moon,Chuck Munson,Michael Watson,Sara Lewis,Peter Cacioppi,Jay

Jayaraman

32. Cloud Computing: First International Conference, CloudCom 2009, Beijing

33. http://en.bmstu.wiki/Apache_CloudStack

http://www.cisco.com/web/strategy/docs/gov/CiscoCloudComputing_WP.pdf
http://www.snia.org/cloud/CloudStorageForCloudComputing.pdf
https://docs.openstack.org/
http://www.vmware.com/
http://www.linux-kvm.org/
https://www.xenproject.org/
http://www.dxc.technology/cloud/offerings/140041/140149-eucalyptus_software_support_services
http://www.dxc.technology/cloud/offerings/140041/140149-eucalyptus_software_support_services
http://masters.donntu.org/2008/fvti/dzeba/library/lib3.htm

49

33. Inter-cooperative Collective Intelligence: Techniques and Applications, Authors: Fatos Xhafa,

Nik Bessis, 2014

34. Cloud Computing: Principles and Paradigms. Author: Rajkuma Buyya, James Broberg, Andrzej

Goscinski

35. Scientific Cloud Computing: Early Definition and Experience. Author: Lizhe Wang, Jie Tao,

Marcel Kunze

36. Cloud Platform Comparison. Author: Vadim Truksha. 2015

37. http://www.fastcat.co/document/openstack/openstack_install_controller

38. http://docs.cloudstack.apache.org/en/latest/concepts.html

39. https://software.intel.com/sites/default/files/OVM_KVM_wp_Final7.pdf

40. International Journal of Trend in Research and Development, Volume 4(1), ISSN: 2394-9333:

A review on Cloud Computing

http://www.fastcat.co/document/openstack/openstack_install_controller
http://docs.cloudstack.apache.org/en/latest/concepts.html
https://software.intel.com/sites/default/files/OVM_KVM_wp_Final7.pdf

50

ATTACHMENT 1. Installing and configuring Compute

First of all, installation and configuration:

apt-get install nova-compute sysfsutils

[DEFAULT]

verbose = True

rpc_backend = rabbit

auth_strategy = keystone

my_ip = 10.0.0.31 #MANAGEMENT_INTERFACE_IP_ADDRESS

vnc_enabled = True

vncserver_listen = 0.0.0.0

vncserver_proxyclient_address = 10.0.0.31 #MANAGEMENT_INTERFACE_IP_ADDRESS

novncproxy_base_url = http://controller:6080/vnc_auto.html

[oslo_messaging_rabbit]

rabbit_host = controller

rabbit_userid = openstack

rabbit_password = RABBIT_PASS

[keystone_authtoken]

auth_uri = http://controller:5000

auth_url = http://controller:35357

auth_plugin = password

project_domain_id = default

user_domain_id = default

project_name = service

username = nova

51

password = NOVA_PASS

[glance]

host = controller

[oslo_concurrency]

lock_path = /var/lib/nova/tmp

[libvirt]

virt_type = kvm

MANAGEMENT_INTERFACE_IP_ADDRESS is an IP address from VLAN 10 field. In

novncproxy_base_url controller parameter should be vnc address, in other case it won’t be possible

to access VNC console from Horizon.

After this step Nova service should be restarted and local data base should be deleted also:

service nova-compute restart

rm -f /var/lib/nova/nova.sqlite

To check if all services in UP status this command have to be executed:

nova service-list

Basically, at this point IaaS is built, but network part is still not configured. So next step will be

installing and configuring Neutron service

52

ATTACHMENT 2. Installing and configuring Neutron

In this test environment network kernel will be installed on controller, but in official manual

3d node is used. In case if computing nodes will be more than 10 and/or big network traffic, it’s

better to migrate network-server on separate note.

As before, creating database, creating information about nova into keystone and installing necessary

packets:

mysql -u root -p

CREATE DATABASE neutron;

GRANT ALL PRIVILEGES ON neutron.* TO 'neutron'@'localhost' IDENTIFIED BY

'NEUTRON_DBPASS';

GRANT ALL PRIVILEGES ON neutron.* TO 'neutron'@'%' IDENTIFIED BY

'NEUTRON_DBPASS';

openstack user create --password-prompt neutron

openstack role add --project service --user neutron admin

openstack service create --name neutron --description "OpenStack Networking" network

openstack endpoint create --publicurl http://controller:9696 --adminurl http://controller:9696 --

internalurl http://controller:9696 --region RegionOne network

apt-get install neutron-server neutron-plugin-ml2 python-neutronclient neutron-plugin-

openvswitch-agent neutron-l3-agent neutron-dhcp-agent neutron-metadata-agent

Make changes in sysctl.conf, neutron.conf, ml2_conf.ini, l3_agent_ini, dhcp_agent.ini, dnsmasq-

neutron.conf, metadata_agent.ini, nova.conf:

cat /etc/sysctl.conf

net.ipv4.ip_forward=1

net.ipv4.conf.all.rp_filter=0

net.ipv4.conf.default.rp_filter=0

sysctl –p

cat /etc/neutron/neutron.conf

53

[DEFAULT]

...

rpc_backend = rabbit

auth_strategy = keystone

core_plugin = ml2

service_plugins = router

allow_overlapping_ips = True

notify_nova_on_port_status_changes = True

notify_nova_on_port_data_changes = True

nova_url = http://controller:8774/v2

[oslo_messaging_rabbit]

rabbit_host = controller

rabbit_userid = openstack

rabbit_password = RABBIT_PASS

[database]

connection = mysql://neutron:NEUTRON_DBPASS@controller/neutron

[keystone_authtoken]

auth_uri = http://controller:5000

auth_url = http://controller:35357

auth_plugin = password

project_domain_id = default

54

user_domain_id = default

project_name = service

username = neutron

password = NEUTRON_PASS

[nova]

auth_url = http://controller:35357

auth_plugin = password

project_domain_id = default

user_domain_id = default

region_name = RegionOne

project_name = service

username = nova

password = NOVA_PASS

/etc/neutron/l3_agent.ini

[DEFAULT]

interface_driver = neutron.agent.linux.interface.OVSInterfaceDriver

external_network_bridge =

router_delete_namespaces = True

/etc/neutron/dhcp_agent.ini

[DEFAULT]

interface_driver = neutron.agent.linux.interface.OVSInterfaceDriver

dhcp_driver = neutron.agent.linux.dhcp.Dnsmasq

55

dhcp_delete_namespaces = True

dnsmasq_config_file = /etc/neutron/dnsmasq-neutron.conf

/etc/neutron/dnsmasq-neutron.conf

dhcp-option-force=26,1454

/etc/neutron/metadata_agent.ini

[DEFAULT]

auth_uri = http://controller:5000

auth_url = http://controller:35357

auth_region = RegionOne

auth_plugin = password

project_domain_id = default

user_domain_id = default

project_name = service

username = neutron

password = NEUTRON_PASS

nova_metadata_ip = controller

metadata_proxy_shared_secret = METADATA_SECRET

/etc/nova/nova.conf

[DEFAULT]

...

network_api_class = nova.network.neutronv2.api.API

security_group_api = neutron

linuxnet_interface_driver = nova.network.linux_net.LinuxOVSInterfaceDriver

firewall_driver = nova.virt.firewall.NoopFirewallDriver

56

[neutron]

url = http://controller:9696

auth_strategy = keystone

admin_auth_url = http://controller:35357/v2.0

admin_tenant_name = service

admin_username = neutron

admin_password = NEUTRON_PASS

service_metadata_proxy = True

metadata_proxy_shared_secret = METADATA_SECRET

Database synchronizing and services restarting:

su -s /bin/sh -c "neutron-db-manage --config-file /etc/neutron/neutron.conf --config-file

/etc/neutron/plugins/ml2/ml2_conf.ini upgrade head" neutron

service nova-api restart

service neutron-server restart

service openvswitch-switch restart

Now creating bridge and connect with external interface. Restarting:

ovs-vsctl add-br br-ex

ovs-vsctl add-port br-ex p3p1

service neutron-plugin-openvswitch-agent restart

service neutron-l3-agent restart

service neutron-dhcp-agent restart

service neutron-metadata-agent restart

Installing additional plugins and configuration:

57

apt-get install neutron-plugin-ml2 neutron-plugin-openvswitch-agent

/etc/neutron/neutron.conf

[DEFAULT]

...

rpc_backend = rabbit

auth_strategy = keystone

core_plugin = ml2

service_plugins = router

allow_overlapping_ips = True

[oslo_messaging_rabbit]

rabbit_host = controller

rabbit_userid = openstack

rabbit_password = RABBIT_PASS

[keystone_authtoken]

auth_uri = http://controller:5000

auth_url = http://controller:35357

auth_plugin = password

project_domain_id = default

user_domain_id = default

project_name = service

username = neutron

58

password = NEUTRON_PASS

/etc/neutron/plugins/ml2/ml2_conf.ini

[ml2]

type_drivers = flat,vlan,gre,vxlan

tenant_network_types = gre

mechanism_drivers = openvswitch

[ml2_type_gre]

tunnel_id_ranges = 1000:2000

[ml2_type_flat]

flat_networks = external

[securitygroup]

enable_security_group = True

enable_ipset = True

firewall_driver = neutron.agent.linux.iptables_firewall.OVSHybridIptablesFirewallDriver

[ovs]

local_ip = 10.0.1.31 #INSTANCE_TUNNELS_INTERFACE_IP_ADDRESS

bridge_mappings = external:br-ex

[agent]

tunnel_types = gre

59

Openvswitch should be restarted now:

service openvswitch-switch restart

And again make some changes to nova.cong:

[DEFAULT]

...

network_api_class = nova.network.neutronv2.api.API

security_group_api = neutron

linuxnet_interface_driver = nova.network.linux_net.LinuxOVSInterfaceDriver

firewall_driver = nova.virt.firewall.NoopFirewallDriver

[neutron]

url = http://controller:9696

auth_strategy = keystone

admin_auth_url = http://controller:35357/v2.0

admin_tenant_name = service

admin_username = neutron

admin_password = NEUTRON_PASS

After all this changes nova-compute and neutron-plugin should be restarted:

service nova-compute restart

service neutron-plugin-openvswitch-agent restart

60

ATTACHMENT 3. Network implementation

At this step network template would be created. Creating virtual network:

neutron net-create ext-net --router:external --provider:physical_network external --

provider:network_type flat

Configuring external network:

neutron subnet-create ext-net 192.168.1.0/24 --name ext-subnet \

 --allocation-pool start=192.168.1.100,end=192.168.1.200 \

 --disable-dhcp --gateway 192.168.1.1

External network is 192.168.1.0/24

Default gateway 192.168.1.1.

All external IP addresses is in range 192.168.1.101-200.

Next step – creating internal network for demo project, so first of all, download variables for demo

user:

source demo-openrc.sh

Now it’s time to create virtual inner network:

neutron net-create demo-net

neutron subnet-create demo-net 172.16.1.0/24 --name demo-subnet --gateway 172.16.1.1

This virtual network is 172.16.1.0/24.

Default gateway 172.16.1.1 – this is virtual router.

To create this virtual router, it’s necessary to configure demo-subnet interfaces and connect it to

external network:

neutron router-create demo-router

neutron router-interface-add demo-router demo-subnet

neutron router-gateway-set demo-router ext-net

At this point, “cloud” is configured and contains network.

61

ATTACHMENT 4. Installing and configuring Cinder

 With Cinder it’s possible to manage block devices (virtual drives), connect them to each

virtual instances. This virtual drives can be bootable, so in this case it’s much easier to transfer VM

to another compute instance.

The procedure of installing and configuring is very similar to previous:

mysql -u root -p

CREATE DATABASE cinder;

GRANT ALL PRIVILEGES ON cinder.* TO 'cinder'@'localhost' IDENTIFIED BY

'CINDER_DBPASS';

GRANT ALL PRIVILEGES ON cinder.* TO 'cinder'@'%' IDENTIFIED BY 'CINDER_DBPASS';

openstack user create --password-prompt cinder

openstack role add --project service --user cinder admin

openstack service create --name cinder --description "OpenStack Block Storage" volume

openstack service create --name cinderv2 --description "OpenStack Block Storage" volumev2

openstack endpoint create --publicurl http://controller:8776/v2/%\(tenant_id\)s --internalurl

http://controller:8776/v2/%\(tenant_id\)s --adminurl http://controller:8776/v2/%\(tenant_id\)s --

region RegionOne volume

openstack endpoint create --publicurl http://controller:8776/v2/%\(tenant_id\)s --internalurl

http://controller:8776/v2/%\(tenant_id\)s --adminurl http://controller:8776/v2/%\(tenant_id\)s --

region RegionOne volumev2

apt-get install cinder-api cinder-scheduler python-cinderclient

cat /etc/cinder/cinder.conf

[DEFAULT]

...

rpc_backend = rabbit

auth_strategy = keystone

62

my_ip = 10.0.0.11

[oslo_messaging_rabbit]

rabbit_host = controller

rabbit_userid = openstack

rabbit_password = RABBIT_PASS

[database]

connection = mysql://cinder:CINDER_DBPASS@controller/cinder

[keystone_authtoken]

auth_uri = http://controller:5000

auth_url = http://controller:35357

auth_plugin = password

project_domain_id = default

user_domain_id = default

project_name = service

username = cinder

password = CINDER_PASS

[oslo_concurrency]

lock_path = /var/lock/cinder

su -s /bin/sh -c "cinder-manage db sync" cinder

service cinder-scheduler restart

63

service cinder-api restart

Since controller is also a storage, so next steps is applicable:

apt-get install qemu lvm2

pvcreate /dev/md1

vgcreate cinder-volumes /dev/md1

In this part physical LVM device was created with cinder-volumes lvm-group.

Install necessary packets and change cinder configuration file:

apt-get install cinder-volume python-mysqldb

[DEFAULT]

enabled_backends = lvm

glance_host = controller

[lvm]

volume_driver = cinder.volume.drivers.lvm.LVMVolumeDriver

volume_group = cinder-volumes

iscsi_protocol = iscsi

iscsi_helper = tgtadm

And restart services:

service tgt restart

service cinder-scheduler restart

service cinder-api restart

service cinder-volume restart

64

ATTACHMENT 5. Installing and configuring Horizon

 Horizon dashboard is a web interface for OpenStack. It’s written on Python 2.7 and has

Django kernel. It helps to manage OpenStack environment: control user/projects/roles, managing

images, virtual drives, instances, network and etc.

Installing process (will be installed on controller):

apt-get install openstack-dashboard

OPENSTACK_HOST = "controller"

ALLOWED_HOSTS = '*'

...

CACHES = {

 'default': {

 'BACKEND': 'django.core.cache.backends.memcached.MemcachedCache',

 'LOCATION': '127.0.0.1:11211',

 }

}

OPENSTACK_KEYSTONE_DEFAULT_ROLE = "user"

TIME_ZONE = "Europe/Vilnius "

Now it’s time to restart Apache web server and connect to web interface controller/horizon (Pic. 12-

13):

service apache2 reload

