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Therapy

Advances in Understanding Congestion
Congestion is a hallmark of heart failure (HF) syndrome, manifesting both 
as symptoms (shortness of breath) and signs (oedema). Congestion is 
caused by the core pathophysiological mechanisms of HF, namely cardiac 
and vascular alterations leading to both increased cardiac filling pressure 
and fluid/sodium retention induced mostly by reduction of perfusion. The 
recent division of congestion into two types, tissue and intravascular 
congestion, allows for a better understanding of therapeutic challenges.1,2 
Dynamics of congestion in acute HF (AHF) are complicated by the action 
of diuretics, which decrease plasma volume, shift fluid from venous 
reservoirs, translocate fluid from  tissues into circulation, disrupt the 
balance of hydrostatic and oncotic pressures in the interstitium and in the 
lymphatic flow.1 Tissue and intravascular congestion can be assessed 
using typical clinical signs, biomarkers and instrumental techniques.2,3

Patients with predominant tissue congestion are most difficult to treat in 
cases of acute, worsening and advanced HF. Different methods of 
decongestion affect distinct fluid compartments to various degrees. 
Importantly, although congestion has been shown in multiple studies to 
be associated with many adverse outcomes in HF and especially AHF, 

treatment of congestion by more intensive interventions (either a 
combination of diuretics or mechanical devices) was not shown to improve 
outcomes in either chronic or acute HF patients.1−6 This suggests that 
although congestion is a significant presentation of HF, it may play a 
lesser role as a driver of disease progression.

What Did We Learn from Clinical 
Studies Focused on Natriuretics?
Research efforts to enhance decongestion began about two decades ago 
with the large PROTECT and EVEREST studies investigating the drugs 
rolofylline and tolvaptan, respectively.7,8 Acute dyspnoea improved in both 
studies, though the effects were small and of doubtful clinical significance. 
Furthermore, the decongestive effects were accompanied by adverse 
hemodynamic, electrolyte and renal sequelae. The absence of 
improvement in all-cause mortality, cardiovascular mortality and HF 
hospitalisations was disappointing. Recently, two smaller studies were 
conducted in the AHF population, examining the addition of a second 
natriuretic agent to loop diuretics. The ADVOR study examined the 
administration of acetazolamide versus placebo in 519 patients with 
oedema and elevated natriuretic peptides.6 By day 4, decongestion, 
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defined as absence of oedema, pleural effusion and ascites, was more 
successful in the acetazolamide group; however, there was no difference 
in symptoms compared to the placebo. In the CLOROTIC study, 230 AHF 
patients on moderately high doses of furosemide at baseline were 
randomised to receive hydrochlorothiazide or placebo.9 In the intervention 
group, significantly higher weight reduction was achieved, but the effect 
on dyspnoea at 72 hours was only numerically greater. In both ADVOR and 
CLOROTIC studies, rates of renal impairment (defined by a rise in 
creatinine ≥0.3 mg/dl) and hypokalaemia were elevated in the active arms 
of the studies. Moreover, our meta-analysis of ADVOR and CLOROTIC data 
showed a worrying signal of increased mortality in AHF patients treated 
by additional natriuretics: estimated risk of 90-day mortality was found to 
be 16.6% in the intervention groups versus 13.3% in control groups.10

To date, there is no evidence that aquaretics or natriuretics can improve 
HF patient prognosis despite their key role in sodium and water excretion. 
In contrast to neurohormonal blockade, diuretics increase renin secretion, 
cause renin–angiotensin–aldosterone system (RAAS) activation and 
increase intraglomerular pressures by preventing tubuloglomerular 
feedback.11 Furthermore, natriuretics decrease plasma osmolality, which 
might interfere with fluid translocation from tissues to the intravascular 
compartment.1

IV diuretics should primarily be used when a patient has significant fluid 
overload, which is typically limited to a few days in uncomplicated cases. 
In non-responsive patients, a combination of loop diuretics with 
acetazolamide or thiazide may be more effective in short-term 
decongestion than loop diuretics alone. Once overt fluid overload is 
resolved, the patient should be transitioned from loop diuretics to oral 
diuretic therapy, followed by further optimisation of pharmacotherapy.

Responsiveness and Resistance to 
Diuretics: Two Clinical Scenarios
Recent studies on enhanced decongestion have enrolled patients without 
distinguishing between those with a normal response to conventional 
diuretic doses and those with diuretic resistance. Meanwhile, the majority 
of patients admitted with AHF are not receiving optimal guideline-directed 
medical therapy (GDMT), whether in terms of recommended drug classes 
or, more often, target doses.12–15 Moreover, when presenting with AHF, 
patients’ usual medication regimens are often interrupted. Most patients 
respond well to small or moderate doses of IV diuretics that can be 
converted back to oral loop diuretics within 24–48 hours. These patients 
are discharged relatively quickly with no or minimal signs of congestion.4,16 
Therefore, it seems rational to reserve enhanced decongestive strategies 
using additional natriuretic agents for the minority of patients with 
advanced stages of HF who demonstrate high adherence to GDMT and 
require diuretic doses at the upper end of the therapeutic doses.

Diuretic resistance can be defined as a failure to increase fluid and sodium 
output sufficiently to relieve generalised oedema, volume overload or 
congestion despite escalating diuretic doses.1 It is important to note that a 
universally accepted definition of diuretic resistance does not exist. 
Various authors have used slightly different definitions, making 
comparison challenging. The idea of compensatory post-diuretic sodium 
reabsorption in the distal tubule was extrapolated to AHF settings from 
healthy volunteers, and was considered a major contributor to diuretic 
resistance in HF.17 The mechanistic study revealed the opposite effect in 
hypervolemic AHF patients: increased loop diuretic-induced natriuresis 
was followed by greater spontaneous sodium excretion during the post-
diuretic period.18 Importantly, basal sodium avidity emerged as the primary 

determinant of both diuretic-induced and post-diuretic natriuresis in this 
population. Although this concept requires further confirmation and 
exploration, it offers critical insights into the relationship between baseline 
intrinsic sodium avidity and diuretic response, which may play a crucial 
role in a patient’s ability to decongest. Moreover, it suggests that 
interventions to decrease baseline sodium avidity could directly enhance 
spontaneous and post-diuretic natriuresis.

It is also important to acknowledge that chronic exposure to loop 
diuretics promotes histological, molecular and functional adaptations in 
the tubular part of the nephron, leading to significantly reduced diuretic 
responsiveness.19,20

High doses of loop diuretics were associated with significantly worse 
outcomes.21,22 However, based on available data, a direct causal link 
between diuretic dosage and patient outcome cannot be established. 
Patients with advanced disease may require higher diuretic doses, 
reflecting association with rather than causation of mortality. Currently, a 
basal and relatively fixed sodium-avid state (the kidney’s tendency to 
retain sodium) seems to be the main driver of diuretic response and a key 
determinant of decongestive capacity in AHF patients.23,24 Direct sodium 
removal therapy, which uses the peritoneal cavity to remove sodium via 
diffusion, may potentially serve as an alternative decongestion therapy.25 
Early identification of impaired diuretic response using urine sodium 
concentration 2 hours after loop diuretic administration may guide future 
trials targeting patients with high basal sodium avidity.24 Two recent large-
scale studies, PUSH-AHF and ENACT-HF, demonstrated clinical advantages 
of urine Na-driven decongestion protocols over standard care, including 
greater natriuresis and shorter hospital stays.26 The ongoing ESCALATE 
trial aims to determine whether urine chemistry decongestion algorithms 
outperform standard care in clinical settings.27

Rapid Up-Titration of Guideline-directed 
Medical Therapy for Effective Decongestion
The concept of neurohumoral, adrenergic and inflammatory activation as 
a key pathogenetic axis of HF was put forward more than two decades 
ago and has led to improved medical treatment.28–30 Distinguishing 
between chronic and acute HF enabled clinical trials to target these 
populations with different aims and interventions. The STRONG-HF study 
confirms the role of excessive activation of the RAAS and the sympathetic 
nervous system as the main mechanisms of AHF, which can be ameliorated 
by rapid and aggressive optimisation of neurohormonal blockade.31–33 
Several metrics of congestion, including a clinical congestion score, were 
significantly improved in the STRONG-HF study and led to smaller daily 
doses of loop diuretics at day 90 in the high-intensity care (HIC) group.34 
The benefits of the HIC strategy were apparent in all three components of 
the congestion score: effective decongestion in the HIC group at day 90 
was evidenced by increased weight loss and NT-proBNP change in the 
high-intensity arm; a significantly higher proportion of HIC patients with 
no signs of congestion prior to randomisation remained congestion-free 
at 90 days compared to the standard care group; and patients receiving 
a higher average percentage of target GDMT doses had improved 
congestion scores. Study data demonstrate that decongestion achieved 
through optimal GDMT is linked to better clinical outcomes: compared to 
unsuccessful decongestion, successful decongestion was associated 
with a lower risk of 180-day HF readmission or death, 180-day all-cause 
death and 180-day HF readmission. These data suggest that congestion 
may be an epiphenomenon of HF severity, likely driven by neurohormonal, 
sympathetic and  inflammatory activation, affecting both vascular and 
cardiac function and leading to kidney maladaptation as well as sodium 
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and fluid retention. Rapid initiation and up-titration of neurohumoral 
blockers to counteract the neurohormonal drive should result in prompt 
and sustained alleviation of congestion (Figure 1). Neurohumoral activation 
also leads to hypochloraemia associated with diuretic resistance, 
attenuation of the Gauer-Henry reflex leading to excess renal sympathetic 
activity despite elevated cardiac filling pressures and accumulation of 
osmotically active sodium in interstitial glycosaminoglycan buffers.35–37 All 
four pillars of current GDMT have been shown to reduce renal sodium 
avidity.38–40

Sodium-glucose Cotransporter 2 
Inhibitors in Heart Failure
The STRONG-HF trial was conducted before the introduction of sodium-
glucose cotransporter 2 inhibitors into clinical practice; due to the action 
point in the proximal renal tubule, it has been suggested that these agents 
can further amplify decongestion.41 As anticipated, improved decongestion 
was observed in the EMPAULSE study with the early addition of sodium 
glucose cotransporter 2 inhibitors during AHF admission.38

The STEP-HFpEF trial recently demonstrated multiple benefits of 
semaglutide in patients with obesity-related HF with preserved ejection 
fraction, including improved exercise capacity and quality of life.42,43 
Secondary analyses showed improvement in C-reactive protein and 
natriuretic peptide levels.44 From baseline to 52 weeks, loop diuretic 
requirements decreased in the semaglutide group yet increased in the 
placebo group (p<0.0001).45 These results suggest that in patients with 
obesity-related  HF with preserved ejection fraction, addressing key 
pathophysiological drivers of HF reduces the need for diuretic therapy. 
Similarly, in the  CORTAHF study, the use of steroids in AHF improved 
decongestion indices, highlighting the role of anti-inflammatory 
treatments in HF management.46

In summary, there are two common scenarios in AHF regarding 
decongestion therapy response. In the first and most frequent scenario, 
patients respond to standard diuretic doses and GDMT initiation or 
escalation. The second scenario is diuretic resistance, in which advanced 
decongestion strategies such as sequential nephron blockade, aquaretics 
or ultrafiltration may be helpful. Focusing exclusively on diuretics 
(combining drugs and adjusting doses based on natriuresis) effectively 
reduces weight, oedema and dyspnoea, but does not improve clinical 
outcomes. Therefore, the vast majority of admitted HF patients benefit 
from initiation and rapid optimisation of quadruple GDMT as the best 
strategy for sustained decongestion and improved clinical outcomes.47 

The most effective way to reduce congestion is to counteract its core 
pathophysiological mechanisms, such as RAAS activation, adrenergic 
activation and inflammation, including that induced by obesity. Once this 
has been achieved, congestion will be improved, and the need for diuretic 
therapy will diminish. GDMT should be viewed as an active decongestive 
treatment rather than a mere complement to diuretics in AHF. Since 
diuretics are not associated with improved outcomes and can cause 
significant side effects, focusing on core pathophysiological mechanisms 
of HF while reducing diuretic use represents a promising direction for 
modern HF therapy.4,48 

Figure 1: Ways of Decongestion by 
Neurohormonal Blockers and Natriuretics
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