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Abstract. Aggregates are systems of automata containing continuous and discrete components. Aggregate
systems are good for specification and simulation of reactive systems including communication protocols, also as for
some kind of hybrid systems. The aggregate model is a good basis for designing tools for specification, simulation,
verification, testing, etc. The tools may use specification languages of different sorts: procedural, logical or object-
oriented, but for definition of semantics for any of them we need the formally defined aggregate model. We present
here a formal definition of aggregates based on the notion of trace. The earlier definitions were sufficiently strict for
design of simulation tools, but were not detailed enough for other purposes, particularly, for verification. The
presented aggregate model is also slightly more general and flexible than the one used before.

1. Introduction

The name of aggregates comes from piece—linear
aggregates (PLA) — the model of automata proposed
by Buslenko [1] for simulation of complex systems.
Later, Pranevicius [2, 3] developed a method for formal
description of PLA based on the notion of controlling
sequences which are very like to time—sequences
defined below. In H.Pranevicius’ doctoral thesis [4] has
been shown how PLA with semantics of controlling
sequences can be used for formal specification,
validation and simulation of complex systems. The
proposed mathematical model lies in base of several
implemented simulation systems [5, 6, 7, 8] running on
machines of various platforms. The model permits not
only simulation but also correctness analysis on base of
the same formal specification. Combination of these
tasks is very important for design of real-time systems.
An application of the aggregate model for formal
specification and simulation of computer network
protocols was proposed in [10]. For this task, the
language Estelle/Ag [8] (close to ISO standard Estelle)
was created using PLA model. The main difference
between the two languages is that the basic structural
unit of Estelle — module — in Estelle/Ag is defined as
a piece-linear aggregate. The possibility to use the
same aggregate specification for both the validation of
general protocol properties and the simulation is
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presented in [11]. The method for invariant-based
correctness analysis of aggregate specifications is
proposed in [12]. System PRANAS (PRotocol
ANAlysis System) [13] was developed for protocol
validation and simulation using formal description of
protocols by aggregates. The aggregate approach was
successfully approved by specification and simulation
of adaptive commutation protocols [14], event—driven
and interval-marker protocols for local networks [15,
16], and other reactive systems.

The method of controlling sequences [2, 3] defines,
in fact, operational semantics for the PLA model. This
semantics defines how to interpret (or “animate™)
specifications given in form of aggregates, and is
sufficient for simulation and testing tasks. Some
correctness analysis using reachability graph of states is
also possible, but only in the case of finite number of
states. The operational semantics is appropriate for
verification tasks, like proving service ensurance in
protocols.

In verification, at least two specifications are given
and it is required to prove existence of some definite
relation between them, e.g., “implements”, *

>

provides”,
“satisfies”. More specifically, in the case of aggregate
specifications, the relations should be established
between behaviour of aggregates. The notion of trace
formalizes the behaviour notion. The formalization is
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presented here as a necessary step toward verification
of aggregate specifications.

The aggregate model is compatible with the model
of timed input/output automata [23, 24], but the
comparative analysis will be given elsewhere.

Section 2 describes internal structure of aggregates
and explains behaviour of aggregates informally. Traces
are introduced in Section 3 using modified notion of
the time—axis.

2. Structure of aggregates

One can think about aggregates as about active devices
which wait particular evenis and react to them by
generating other events. The reactions may be delayed
in time. Each aggregate has changeable siate which is
divided into a finite number of components. Active part
of an aggregate consists of a finite number of agents
each reacting to one particular sorf of events. Agents
change state components when corresponding events
occur. Each aggregate G is fully defined by three sets:
S(G) of possible states, I(G) of initial states, and A(G)
of agents defining behaviour of G. We are going to
describe the structure of all these elements in this
section. Section 2.1 presents state structure and
introduce our understanding of events. Agents and
transitions are considered in Section 2.2.

2.1. State components

The most convenient way to describe state is to name
uniquely each state component and think about these
names as about variables accepting values from definite
sets, called range sets.

Definition 2.1. Let V(G) be a set of variables denoting

state components of an aggregate G, R(x) be a set of
possible values of a component x e V(G), then the set of

states of G, denoted S(G), consists of all functions

S V(G)A»D, with D= Y R(v) such that
vel(G)

s(v) eR(v) for each veV(G).
Part of states of G are called initial, their set is
denoted I(G).

Discrete and continuous components

One division of state components into types occurs
already at the most general level of aggregate
consideration: they are divided into discrefe and
continuous. This division characterizes aggregates as
hybrid systems [21, 22] and reflects the essential
difference of the component behaviour: discrete
components have changes just in discrete time
moments, while continuous ones change their values
continuously all time except discrete time moments. In
the aggregate model we consider, every continuous
component z ranges over the set of reals R, and just one
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type of continuous change is possible — the one
described by the equation
dz/dt=-1, (1

which is valid all time but discrete time moments, 7 is a
variable for time. Hence, continuous state components
decrease all time except some discrete moments. One
may think about such component as about timers,
because their zero values are considered as internal
events of the aggregate. Negative values of a
continuous component may mean that the timer is off,
but this is not the only interpretation of the negative
part of scale. Thanks to the constant speed continuous
components in the negative part are like inverse clocks.

Discrete components are constants almost all time,
the equation corresponding to (1) is

dz/dt = 0. )

As follows from these equations, aggregates are a
particular case of linear hybrid automata [20].

The range sets of discrete state components may be
defined as (and, in fact always are) definite data types,
including queues, stacks, arrays, etc. For verification
task, in particular, it is necessary to have data types
defined axiomatically, i.e., abstract data types are
needed. For simulation or testing, implemented
concrete data types are used. It is natural to include into
a specification language some sublanguage for
specification of (abstract) data types. In this paper,
details of types of discrete components also as of their
abstraction level are not essential,

Events

We consider events as properties of states, and there are
a few reasons to do so:

e occurrence of an event in time looks like a change
of an component—the event may occur in a time

moment £, but not at any moment before or after ¢;

often events, like arrivals of messages in protocols,
have the associated message structure which should
be described, and this may be done in the same way
as data types for discrete state components are
defined;

in hybrid systems, events often means satisfiability
of particular conditions on values of components;

it is convenient to describe interaction of aggregates
using shared components, and so on.

Definition 2.2. Events are states satisfying a particular
property.

In the aggregate model, a state with zero value of a
continuous component z is an internal event of the
aggregate. The condition describing the corresponding
property is obvious: z=0. The name internal means that
these events happen inside of the aggregate.

For discrete components, there is a big freedom to
set conditions describing events. However, in the




present paper we consider just one sort of events related
with discrete components called shared.

Shared components

Aggregates are interactive devices by their nature and
their behaviour depends on behaviour an environment,
say, other aggregates. Interaction between aggregates
occurs through shared state components called in short
channels. This means that state of an aggregate may be
changed by a connected aggregate (or the environment)
through change of channel values.

We consider just one type of interaction which is
like a discrete message passing. Each channel shared
by an aggregate (G may be an /mput or an output
channel for G, in M{((5) the corresponding two subsets
are denoted /n(G) and Oui(() respectively. We allow

In(G)l Ouf(G)#@, this lets a composition of

aggregates to be an aggregate again. We assume that
range sets of channels include one special emptiness
value denoted &, and

each channel may be an output channel for at most
one aggregate.

For an output channel £ for G, the condition /=
describes an event which is external to G since it
(usually) occurs outside of G. We pose the following
restrictions on use of channels:
for an input channel k& € n(G)\ Out(G), G can not
change value of & in any way — just watch it (and
react, if necessary);
for an output channel o, G is responsible to keep
o= all time except discrete time moments.

As follows, all events, internal and external, occur
just in discrete time moments, hence the reaction to
them must be instantaneous. This allows very high
level of synchronization (if it is necessary) between
aggregates. The aggregates can delay their external
reaction to events by putting the information about
them into some kind of stores, like queues, stacks, etc.,
and by using timers to calculate time of the postponed
reactions.

2.2. Agents and transitions

Agents of an aggregate C relate events and discrete
transitions called sieps. Any step of the aggregate must
be result of an action of some of its agents. Agents are
activated (we say enabled) by occurrences of events.
Each agent 4 reacts to one particular event related to
one particular component (variable), i.e., to ¢=0 for
some continuous component ¢ or to k=& for some
input channel k. There may be (and often is convenient
to have) a few agents reacting to the same events.

In general, steps from a former state to a new one
performed by agents are nondeterministic, i.e., new
values of state components need not be uniquely
determined by the former  values. Such
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nondeterministic steps correspond to binary relations
defined in the set S(() of possible states of G, therefore
we define agents as binary relations on states. Steps of
the aggregate are results of simultaneous actions of all
enabled agents.

Definition 2.3. Let S be a set of states, then an agent 4
over 8 relation AcSxS, the sel

En(,fl) = {S: 3s' S (S,S’) EA} consists of states where

is a and
A is enabled.
The set En(4) contains all states to which 4 reacts.
By our assumption, En(4)= {S.' s(z) = 0}, if 4 reacts to
internal events described by the condition z=0, or
En(,fl) = {v s(k) # Qﬁ},

if 4 reacts to external events related to a channel k. Of
courge, there is an easy way to generalize aggregates by
releasing these assumptions,

Actions of agents
Several agents, say 4,,K ,4,, of G may be enabled at

the same state 5. Then all possible steps of G from this
state are described by intersection of all agents

B=Y 4,.

i=1
There is possible that s ¢ Fn(B), then agents block
each other and a deadlock occurs. We would like to
exclude from consideration aggregates allowing
deadlocks. Let note, that deadlock resolution is the true
place, where techniques from constraint programming
may be applied, say, methods of hierarchical
constraints.

In each state, say s, of an aggregate (7, there is
defined a set of agents
A(G,s) = {A: AeAG)rs EEH(A)}
(which may be empty) that are enabled in s. Let
Tran(G,s)= 1 4 3)

Aed(G.s) ’

denote the most general transition allowable by all

agents from A(G, s), and E(G)= Y Fn(4) denote
A ed(G)

the set of all events of G. If Tran(G, s) is enabled in s,

ie, §€ En(Tran(G, v)) then the aggregate (G changes
the state s to s' where <s, s’> (S T'mn(G, .s). If

Trcm(G, .5') is not enabled in s, then no a step is
performed by agents of GG

Remark. As follows from the definition (3) of Tran(G,
s), the aggregate G perform steps only to states on
which “agree” all enabled agents. This is conjunctive
treatment of agents. The alternative could be
disjunctive treatment defined with “Y? instead ‘I * in
(3). We prefer the conjunctive treatment because of
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possibility to specify changes of distinct state
components by distinct agents and to be unconcerned
about the whole state in each agent, compare, for
example, [19]. It is closer to programming practice to
describe change of the whole state by combined action
of all agents (like operators of a programming

language). [

3. Traces of aggregates

Each aggregate starts at some initial state, all further
continnous transitions are fully determined by
equations (1)—(2), while discrete transitions are
determined by agents of the aggregate, though the
environment of the aggregate also can act to state
through shared components (channels) as was
described above.

It is natural to describe changes (of state)
depending on time by functions defined on the set of
time moments (the time—axis), let call them fraces. In
spite of all good work of traces in description of
continuous transitions, their use in case of discrete
transitions (steps) is problematic. The problem arises
because of the assumption about timeless of steps (see
[17] for more deep topological consideration). Any step
is a pair of states, and we would like to have two time
moments /; #{, when these states are accessed, but a

time interval between #; and ¢, should be of zero length
because of timeless. In the classical model of time —
the set of real numbers R —, ‘tl — t‘2| =0 means

ty =15, ie., such time moments cannot be distinct.
That means that the topology of the real line (based on
the metrics function |x— y|) is not well-suited for

description of discrete changes under assumption about
their timeless. We need another model of time.

The problem with the real line R as a time model
is that there is not enough points in it. It should be
possible to have a few points with “the same time” for
specification of systems that may consequently visit a
few different states “without time passing”. One
possible way out is to use line of nonstandard real
numbers as in the nonstandard analysis [18], where
discrete changes could take infinitely small time
amounts. We propose another way and introduce a
slightly modified (comparing with R) time model.

What we loose with introduction of the new time
model is the uniqueness of the time axis. This
(uncountable) multiplicity of them, called broken time—
lines, is a price for the assumption about timeless of
discrete transitions.

3.1. Broken time lines

Let N denote the set of natural numbers, /, be the set of
natural numbers that are less or equal to n, and V., be
N.
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Definition 3.1 For any k eNY{co}

sequence a nondecreasing sequence

call a time—

B

'r:(z'i:iENk/\'r,- eRA Ty :0>

and denote dom(t) = Ny. The sequence = is finite if
keN, and infinite otherwise; the infinite sequence T is
Zeno if lim,_,_, 7; <, and non—Zeno otherwise.

A time—sequence T consists of time moments when
steps (discrete transitions) start plus the moment T,

added as the launch time. Closed intervals [r,-, rm]

between adjacent elements of the sequence are called
phases. Length of a phase may be zero, then it does not
contain internal points and is called frivial. From the
time—sequence T we obtain a phase—sequence

p(7)= <qa,-(f): i eNk>,

where N, =dom(t) and

[715]

The phase—sequence (7) is finite if T is finite, but then
the last phase of () is infinite. The real half-line R"
is covered by all phases of ¢(t) only if T is non-Zeno.
In the case of Zeno time-sequence, time “collapses™ at
some point because of infinite number of steps occurred
infinitely often (the situation known as Zeno's
paradox). The phase—sequence obtained from a Zeno
time—sequence is also called Zeno.

TisTigl

if i<k,
()=

Tig 00) otherwise.

Definition 3.2. A broken time-line is disjoint union of
all phases from some non—Zeno phase—sequence.

We call broken time-lines simply time-lines,
because the half-line of reals R* is isomorphic to a
broken time-line obtained from the phase—sequence

([0-)) -

Pairwise representation of time—lines

Let T be a time-sequence, ¢(t) be a phase sequence
obtained from t, then the broken time-line

T= + g,

iedom(r)

)

where + denotes disjoint union, which may be
presented by the following set of pairs:

{(x,i): x e(aj(r)}, &)

Each element fet except T, appears in T at least twice
— in(t, i) and in (r,i+ 1) — since it is end of two
adjacent phases from ¢(t). These two copies of ¢ form
pair of time-moments necessary for description of a
step. Any particular / may be repeated in T many times,
so there may be many successive steps in “the same
time moment”.

Distance measure (metrics) in time-lines are
introduced by the equation




()= {yom) = |x = ¥,
50, 1([ Ay = {t,i+ 1)‘ =0, as it is expected. The temporal
order in time-lines is the lexicographical order of pairs:
(x,n)<{y.m)=x<yv(x=yAn<m).

For representation free definition (i.e., without
explicit presentation of time—points as pairs as in (5) of
time-lines, the distance measure and the temporal
order should be given for each of them. This
information is necessary and sufficient for discovery of
structure of phase-sequences which is used here to
define time-lines. Therefore, for a time-line 7 given,
when we write that a phase p is from 7, that means that
p is from the phase-sequence which is in 1-1
correspondence with 7. The time—sequence T from (4)
is also uniquely defined by 7' its elements (exceptr,)
are called break—points of T, since they are right—hand
end-points of phases from 7. The initial point of any
time—line is denoted 0. In the form pairs, 0:<0,0>.

The time—point following a break—point ¢ in 7' is called
nex! to { and denoted (. If, in the pairwise
representation (5), ¢ = (x, n), then ¢’ = (x,n+ I>_ The

function _’ is partial because is defined only on

(countably many of) break—points of 7"

Operations and relation between time-lines

Time-lines may be modified and compared, we present
operations that we need. Let T denote the set of all
time-lines and 7' T. Any non—break point ¢ € 7' can
be made a break—point by splitting the phase [a, b]e T
which contains ¢ into two phases [a, ¢] and [c, d]. We

call this modification breaking of time-lines. We write
T<T, for any line T that can be obtained from 7" by
breaking. The relation ‘<’ is a partial order in the set T
and defines a lattice in it. The bottom element of this
lattice is (isomorphic to) the line R" without breaks.
The meet and join operations in this lattice we denote ~
and v respectively.

Traces

We would like to consider only continuous fraces. We
do not go into topological considerations, but interested
reader should note that continuity requires to have a
topology defined on the sets of arguments and values.
For continuous components the value set is R with the
usual topology. For the rest of components we assume
that the corresponding value sets possess the discrefe
fopology. The topology of time—lines is a mixture of the
topology of R and of some discrete topology. We give
the following definition which does not require deep
knowledge of topology:

Definition 3.3._ Let T be a time—line and D be a set with

a topology. 4 frace is a function 8.7 — D such that,
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Jor any phase p T, the restriction w =6 Fp of Glop

called also phase of 0 is a continuous function.
We denote 6(p) = {6?(1‘): te p} the set of all values

appeared during the phase p. The definition allows any
changes of a trace &: T — D in break—points of 7, they
are discrete and called sfeps. The step in a break—point
I is stutfering (in the same way as in [19]) if
O(t)=6(t"). It can be deleted by joining ¢ and

because continuity of the trace will be preserved. We
call traces equivalent, if they can be made equal (as
functions) by deletion or introduction of stuttering
steps. Introduction of stuttering steps into the trace ¢
means breaking of the time—line 7.

We can compare different traces, if they are
synchronized, i.e., defined on the same time—line. This
synchronization is not a problem, time—lines 7, and 7,
from any two traces a: I; — D and f: T, — D always
may be combined into 7'=1T7, v 7, , and traces o and [3
may be easily transformed into synchronized traces
o T'=-D and f:7T—>D, respectively, by
introduction of necessary stuttering steps. We suppose,
that this kind of synchronizing transformation is always
performed when it is necessary, and do not introduce
any (boring) notation describing it.  The
synchronization of time—lines also occurs when two (or
more) systems are combined into one, and their local
states are united into one global state.

State traces

Let ¥ be a finite set of variables denoting state
components. By definition 2.1 state is a function
51V — D, then state trace is a trace 0. T — (V — D)

with states as values. There is the well-known 1-1
correspondence between functions from sets like

T—(V— D) and T x V — D: for each time—point 7,
the value of ¢(f) is a state from ¥ — D, for each
component v eV, §(t)(v) is a value of v in moment f;

we obviously can present the same information with
two—argument function from 7 xV — D or, after
change of arguments, from ¥ x 7 — D. The last set is
in the mentioned 1-1 correspondence with
V — (T — D), which elements map each state compo-

nent to a trace describing behaviour of this component.
This short passage between different presentations of
state traces reflects the obvious observation that any
trace of a system consisting of components is a
collection of synchronized traces of components. We
use this fact when we want to hide or abstract from
some of state components. For Uc V', let 0| U denote

the state trace where only components from U are
taken, so, (6 U): T — (U~ D).
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3.3. Aggregate traces

Aggregate traces are just special case of state traces. In
any phase, every discrete state component of an
aggregate (G is a constant according to (2), while every
continuous component is uniformly decreasing function
according to (1). Equations (1), (2) do not define
changes of components in break—points, this is done by
agents or by the environment of the aggregate.

For an input channel £ for G, any moment of a
change of value of £ from & to any value = & is called
a predpoint (of the external event t = (J). Changes of
state (i.e., some of input channels from /»#(G)) in
predpoints are the only changes of the aggregate G not
described by agents of G.

Definition 3.4. For an aggregate G given, a stafe trace
0. T — S(G) is a trace of G, if

e 0(0)<I(G);
e if B(t') EE(G') Jor teT, then t is a break point in T;

e in any nontrivial phase from T, all components
behave according equations (1) and (2);
e for any break—point teT, which is not a predpoin,

(6’(!),6‘(!’)) eTran(G, 0(!)), or 0(t)=0(t").

As follows from this definition, a change of a channel
value means at least two consecutive break points, the
first one is when a a channels becomes =, the

second is when it is made = &,

4. Resume

A formal definition of piece—liniar aggregates based on
the notion trace is presented. The earlier definitions of
aggregates were sufficiently strict for design of
simulation models, but were not detailed enough for
other purposes, particularly, for verification.
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