VILNIUS UNIVERSITY
KAUNAS FACULTY

INSTITUTE OF SOCIAL SCIENCES AND APPLIED INFORMATICS

Study Programme Information Systems and Cybersecurity
State code 6121BX003

DZMITRY PAPKOU

BACHELOR’S THESIS

“EVENT GOOSE”: EVENT ORGANISATION AND REGISTRATION
PLATFORM

Kaunas, 2025

VILNIUS UNIVERSITY
KAUNAS FACULTY

INSTITUTE OF SOCIAL SCIENCES AND APPLIED INFORMATICS

DZMITRY PAPKOU

BACHELOR’S THESIS

“EVENT GOOSE”: EVENT ORGANISATION AND REGISTRATION
PLATFORM

Allowed to defend Bachelor student

(signature)

Scientific advisor

(signature)

(scientific degree of the advisor, scientific
pedagogical name, name and surname)

Thesis submitted on

Registration No:

Kaunas, 2025

CONTENTS

LIST OF FIGURES.ottt ettt sttt et e e st e e e sn e e e saaa e e snb e e e teeeanneeanneeeas 5
LIST OF TABLES .. oottt e e st e e st e e e s abe e e s st e e e aeeeasneeaneeeas 5
LIST OF ABBREVIATIONS ...ttt bbbttt 7
SUMM AR RY ettt et e e et e e et et a e e e Rt e e e h b e e e are e e ar e e anr e e arraearreeanes 8
SANTRAUK A ettt e e sttt e et et e aa b e e e s ate e e aeeeaateeeaseeeaseeeanseeeanseeeanseeeanes 9
INTRODUCGTION ...ttt bbb bbbt bbbt b bttt b b et b s 10
L AN ALY SIS et a e e e e rreeanreeanes 12
1.1. Overview of event planning industry challengescccoooviiiiiiiineniere e, 12
1.2. Selection of criteria for COMPAIISONeiiiieieieie sttt 13
1.3. Evaluation criteria and best practices of event planning industryc.ccocvveviiiininnenn, 14
1.4, Gaps in XISTING SOIULIONSoviiiiiitiiiriee et 15
1.5, ConcClUuSION 0N @NAIYSIS......ccuiiieiieie et nre e 15
2. TECHNICAL TASK ..ottt bbbt bbbt et 17
3. PROJECT DESIGN ...ttt e et e e naae e e sne e e s na e e annaeeanneeannneeas 19
3.1. General characteristics of the researched problem area............ccccevveveiieiicie s, 19
3.2. Information management policy of “Event GOOSE™ccocvevuiriiiiiiiiiie e 19
3.3, Information FIOW @nalYSISc.ooiiiiiiie e 20
3.4, Information FIOW @NalYSIScc.oiiiiiieie e 21
3.5. Selection and description of computerized taskscccereriririeniieiee e, 23
3.6. Description of computerization t00IS...........cccocviiiiiiiie i 24
3.7, BUSINESS MOUEH ... ettt bt e e 25
3.8. Hierarchy of computerized fUNCLIONccoiiiiiieecc e 25
3.9. Computerized system data FIOWc..coveiiiiiiiiic e 27
3.10. Conceptual 0DJECt MOMELcoiiiiieiee e 28
3.11. System states, processes, and functioning scenario description...........cccoceevevereneneeieenen, 29
3.12. A formal description Of CalCUIALIONSccoiiiiiiiiiie e, 30
3.13. Comparison of similar SOftware PACKAGESccccurrieriireriiiriseseee e, 32
3.14. General guidelines for systems’ users and adminiStratorsc.cceevieerieiinieenieneseennes 33
3.15. Conclusion 0N ProjECt AESIONc.ueciiiiiiieiie sttt ee e ee e 35
4. INFORMATION SYSTEM PROJECT IMPLEMENTATION ..ottt 36
4.1. Description of the classification and coding SYSIEM ..o, 36
4.2, System arChiteCtUIe AESIONvvevieiie et e b e e b e nee e 36
4.3. Frontend architeCture deSIONcvve e et 38
4.4, Backend arChiteCtUure GeSIGNccuiiieeiii ittt e e e eenne e 40
4.5, Input data SPECITICALION.viiii et e re e 43

4.6. Output data SPECITICALIONceeiieieiiee et reesreebeeneenres 43

A DT - o T o € =T o! PSSRSO 46
4.8. Information processing, search, and retrieVal.............cccovviieiieie i s 55
4.9. System testing and results eValUatioNcccoooiiiiiiiie e 56
4.10. Conclusion on information SYStemM PrOJECT.........cccvueriveieiiieiiere e 57
CONGCLUSIONS ...ttt ettt et b et e e R e e s e e se et e besaesbesbeeseaseereeneeneeneas 58
RECOMMENTALIONS ...ttt e bbb bbb e e b e et e e e 59
REFERENGCES ..ottt ettt ettt s ettt b et e e st et e e e e ebe st et ane s 60

LIST OF FIGURES

Figure 1: Data Flow Diagram for “Event Goose™ information flow.............ccccooveviviii i, 20
Figure 2: Use Case Diagram for “Event GO0Se” SYSIEIMcccoiiiriiiiinisieieieseese e 22
Figure 3: Entity-Relationship Diagram for “Event Goose” database schemac...ccccvevvecieennenn, 23
Figure 4: Hierarchy of Computerized FUNCtIONS Diagram..........cccocvivieiiereiiieieese e 26
Figure 5: System SequenCe DIAGIAMccuiiuiiiiiiiiiiiiieeeee ettt bbb 28
Figure 6: SyStem State DIagIaM......cc.eiueieeiieie ettt sbe e be e sreeteeneesreenee e 30
Figure 7: AWS System AFCIITECIUIE...........ciiiie ettt nne e 37
Figure 8: GItLab CI/CD PIPEIINE ...cveiieiiecit ettt ettt neenne e 38
Figure 9: Frontend Package StrUCTUIEoviiiiiii e 39
Figure 10: Backend Package STIUCTUIEccueveiiriiiiiiieieie ettt 41
Figure 11: Nginx and Docker Configuration for Backend..............ccccocevveiiiiiiiicie e, 42
LIST OF TABLES
Table 1: Comparative Analysis of Events Management Platformscccccovvvviiieiennninciennn 32
TADIE 2: USEIS. ittt bbbt b e bt bbbt Rt bt n et bbbt re e ne s 46
TADIE 32 GIOUP ..t b bbbttt e b bbbt 47
TADIE 42 USEE GIOUP ...ttt bbb bbbt et bbbttt 47
TADIE 5. EVENT ..ttt bbbt r ettt bbb s 47
Table 6: EVENT LOCALIONc..oviiiiiiieieeiieiieie ettt ettt sttt eer e s e nes 48
Table 7: Event LOCAtioN MaPPING........coveiiiiieieeeiie it esieseesteeste e sreesae e e steete s e e staesnesnsesreeaesneesres 49
Table 8: EVENT CAIBOOIY ...ttt bbbttt b e bbbttt 49
Table 9: Event Categories LINKo 49
LI Lo L O YT o I Vo TSP PRUTOPORRSON 50
Table 11: EVENE TAQGS LINK ..ottt be e s be e sne e aeenaeennenre s 50
Table 12: EVENE INVITALION........coiiiiiiie ittt ste e e neesreeeeeneesneeaeeneenreas 50
Table 13: NOUTICALIONcueieieiieece ettt e te e e e esreenteeneesseeaeeneenrees 51
Table 14: REQISITALIONccuviiiiiiit ettt b et e et e e e b e e s ba e et e e sseeebeesreeabeeaneens 51
TaADIE 15: PAYMENT.....ociiiiicce et e e b et e et e e st e e be e et e e e rreabe e nrae e beeanre s 52
Table 16: SUDSCIIPTION ...t bbbttt bbbt 52
Table 17: SUDSCIIPTION GIOUPoiviiiiiiiiiieieieite sttt bbbttt bbbt 53
Table 18: Predefined Registration FIeld...........c.oooviiiiiiii i 53
Table 19: Event Registration FIEIA............cooviiiiiiie i 53
Table 20: Registration FIield ValUEc.coeiiiiiiiiee e 54

Table 21: Users Preference

Table 22: Users Interaction

Table 23: Event Image

API
AWS
Cl/ICD
CORS
CSS
DevOps
DNS
DOM
DTO
EC2
ERC

S3

SES
UML
uulID
VPC

VS Code

LIST OF ABBREVIATIONS

Application Programming Interface
Amazon Web Services

Continuous Integration and Continuous Delivery
Cross-Origin Resource Sharing
Cascading Style Sheets
Development and Operations
Domain Name System

Document Object Model

Data Transfer Object

Elastic Compute Cloud

Elastic Container Registry

Foreign Key

Gigabytes

General Data Protection Regulation
Hypertext Transfer Protocol Secure
Unique Identifier

Information System

JavaScript Object Notation

Java Persistence API

Network Address Translation

Not Only SQL (Structured Query Language)
Primary Key

Random Access Memory

Simple Storage Service

Simple Email Service

Unified Modeling Language
Universally Unique ldentifier
Virtual Private Cloud

Visual Studio Code

PAPKOU, Dzmitry. (2025) “Event Goose”: Event Organization and Registration Platform.
Bachelor’s Thesis. Kaunas: Vilnius University Kaunas Faculty. 61 pages

SUMMARY

The document presents “Event Goose” an event organization and registration platform
designed to simplify event management for individuals and organizations. The thesis identifies
challenges in the event planning industry, such as insufficient personalization, fragmented services,
and data security concerns. “Event Goose” as a concept of a new event planning platform, offers an
integrated solution for event discovery, creation, promotion, registration, and payment processing, all
under a single-page application. The aim of the thesis is to design a scalable, secure, and engaging
event management platform, meeting the latest standards of usability and data security. The objectives
include conducting market analysis, designing a web interface, integrating core functionalities,
ensuring GDPR compliance, and evaluating the system via manual testing and smoke testing. The
methodology employs Agile principles and DevOps practices, utilizing tools like AWS for hosting,
PostgreSQL for data storage, and Java with Spring Framework for backend development. The
frontend is developed using React and TypeScript for dynamic user interactions. Key results include
the architectural design of the system, a robust database schema, and an implemented prototype
capable of processing event registration and management. Conclusions underline the platform's
potential to enhance user engagement, ensure data protection, and integrate diverse event planning
functionalities into a single service.

Keywords: Event management, event planning, scalability, GDPR compliance,

personalization, Agile, DevOps, freemium business model, AWS, PostgreSQL.

PAPKOQOU, Dzmitry. (2025) ,,Event Goose” — renginiy planavimo ir registracijos platforma.
Bakalauro baigiamasis darbas. Kaunas: Vilnius universitetas, Kauno fakultetas 61 psl.

SANTRAUKA

Baigiamajame darbe apraSoma ,,Event Goose” — renginiy organizavimo ir registracijos
platforma, skirta supaprastinti renginiy valdyma individualiems vartotojams ir organizacijoms.
Baigiamajame darbe identifikuojami renginiy planavimo industrijos i$siikiai, tokie kaip nepakankama
personalizacija, nesuderintos paslaugos ir duomeny saugumo problemos. ,,Event Goose”, kaip naujos
renginiy planavimo platformos koncepcija, siiilo integruota sprendima renginiy paieskai, kiirimui,
reklamai, registracijai ir mokéjimy apdorojimui, visa tai pateikiant vieno puslapio programoje.
Baigiamojo darbo tikslas — sukurti lanksé¢ia, kintama, saugig ir jtraukiancig renginiy valdymo
platforma, atitinkancig naujausius naudojimo ir duomeny apsaugos standartus. Uzdaviniai apima
rinkos analizés atlikima, internetinés sgsajos kiirima, pagrindiniy funkcijy integravima, BDAR
laikymosi uztikrinimg bei sistemos vertinimg atliekant rankinj ir pradinj testavimg. Baigiamajame
darbe taikomi Agile principai ir DevOps praktikos, naudojant tokius jrankius (angl. backend)
karimui. ISoriné sistema (angl. frontend) sukurta naudojant dinamiskoms vartotojo sasajoms skirtas
priemones React ir TypeScript. Pagrindiniai rezultatai apima sistemos architektiirinj dizaing, patikimag
duomeny bazés schema ir sukurtg prototipa, galintj apdoroti renginiy registracijg ir valdyma. ISvados
pabréZia platformos potencialg didinti vartotojy jsitraukima, uztikrinti duomeny apsauga ir integruoti
Ivairias renginiy planavimo funkcijas i vieng paslauga.

RaktazodZziai: renginiy valdymas, renginiy planavimas, lankstumas, kintamumas, BDAR,

personalizacija, Agile, DevOps, freemium verslo modelis, AWS, PostgreSQL.

INTRODUCTION

The event’s industry has undergone not a small amount of hardship in recent years. Especially
during the Covid-19 pandemic arisen in 2019 when most countries of the world-imposed restrictions
on gatherings and social events for their own citizens and tourists. Since then, many businesses and
organizations related to tourism and events have been forced to close due to the lack of a long-term
cash cushion and unclear prospects for their existence.

However, nowadays, the situation is normalized and more and more people after a long break
seek to spend their leisure time away from home, trying to get as many positive impressions as
possible from reconnect and engage in events that could provide meaningful experiences.
Nevertheless, many individuals and organizations face difficulties in finding and organizing events
that are both accessible and impactful, which usually lead to missing opportunities and diminished
enthusiasm for planning process.

This paperwork presents “Event Goose” an event management system designed to serve as
web platform to create, find, and participate in events, by simplifying the entire event lifecycle, from
organization to registration, providing users with the tools they need to bring their ideas to life and
connect with others who are interested in such activities.

Main problem: Individuals and organizations often face the complicated task of harmonizing
their desires with number of available offers at the market, which after all leads to an overwhelming
and often unsatisfactory planning process.

Proposed solution: “Event Goose” is a system for solving these problems, offering all
possible solutions for a future creating, managing, and discovering events and integrating various
elements of events planning into a single platform.

Aim: To design and develop a complex and intuitive event planning and registration system.
To achieve specified aim of the thesis, the following objectives must be met:

1. Conduct analysis of the market to define existing event planning and registration solutions;

2. Create a system that integrates planning options such as event search, creation, promotion,
and participant registrations;

3. Implement a web interface that will simplify the planning process and enhances user
interactions with the system components;

4. Develop an automated pipeline with cloud services integration to validate the system’s
readiness for production deployment;

5. Implement payment system integration to support payment transactions for users and
businesses.

10

Research methods: The main research methodology will be market analysis by comparing
similar solutions to assess the prospects of the system being developed and to identify features that
are not available in the current market solutions.

Methods of designing the information system: For design of the system used methods
focused on the Agile methodology and principles of DevOps. The system architecture is presented
by UML to visually represent use cases and both functional and non-functional requirements to the
system. Tools such as VS Code utilize for coding, while Postman and Firefox Developer Tools are
used for testing during development, and the GitLab used as the version control system.

Difficulties and limitations of the thesis: The main challenges faced are short time limits for
system developing and testing, and limitations of the available third-party APIs integrations for not
production launched application.

Justification of logical structure of the thesis: The logical structure of this paperwork is
designed to follow a logical structure described in the methodological requirements for the final thesis
from conceptualization to implementation.

The most significant literary sources used: Various literary sources were used in the paper,
including information from the Internet, books and scientific articles. The thesis is written using the
methodological requirements provided by the university [26].

Data on the implementation of the developed system: At the time of writing the final part
of the paperwork, the implementation of the system has not been done fully, most focus was applied
to the backend of the system as the most important part of the project. The system project was
deployed and accessible in the AWS Cloud under “https://www.traveldrago.com” domain name.

The structure and the scope of the thesis: The first part of the thesis is divided into 6 main
chapters: Introduction, Analysis, Technical Task, Project Design, Information System Project
Implementation, and Conclusions. The document itself consists of 59 pages (excluding the list of

references and annexes), 11 diagrams and 23 table.

11

1. ANALYSIS

The purpose of this section is to analyse the current event management information system
solutions market and based on the analysis of such well-known organizations in that business area as
“Eventbrite”, “Meetup” and “Ticketmaster” for organizing and managing events. By assessing these
platforms this study will identify market needs, select unique features of each analysed system that
may be useful in developing a new information solution, and more important to evaluate the
feasibility of a new information system. The analysis will also consider both the limitations of existing
solutions and best practices that will be used to identify the unique value that in the development of

“Event Goose” can provide.

1.1. Overview of event planning industry challenges

First, let’s look at event planning industry as a whole and at variety of challenges it is faces
that affect both the organizers who create events and the participants who seek for experiences.
Therefore, to understand the event planning industry better, it is essential to consider the range of
challenges impacting both organizers and participants seeking for unforgettable experiences.

Thus, maintaining high levels of engagement is essential for event organizers who want to
create meaningful experiences and foster a sense of community among attendees. However,
participants often lose interest due to difficulties in discovering relevant events or a lack of
interactivity within platforms. Studies show that engagement and personalization are top priorities
for event organizers, with nearly 65% indicating that creating immersive experiences is essential to
retaining attendee interest. [8]

Personalized recommendations are another pressing need, as today’s users expect suggestions
that reflect their unique interests. Despite this, many platforms have a lack in utilization of advanced
algorithms and data analytics to provide customized experiences effectively, but nearly 72% of users
of such systems prefer platforms that recommend events based on past preferences and interactions,
indicating high demand for enhanced personalization in event discovery and engagement. [8]

The lack of integrated functionality - such as combined ticketing, registration, and promotion
- further complicates the user experience. As a result, organizers rely on multiple systems, leading to
inefficiencies and a fragmented user experience. According to industry data, over 70% of event
professionals view streamlined integration of digital tools as crucial for improving operational
efficiency and attendee satisfaction. [8]

Scalability is also crucial as events grow more complex. Platforms must be able to handle

increased traffic, especially during peak registration periods. Limited scalability can lead to system

12

downtime, slow response times, and potential loss of attendees, particularly for large-scale events. In
2023, the global events industry was valued at $1,135.4 billion according to [7], with projections for
continued growth, highlighting the need for platforms that can handle high traffic without
compromising

Finally, with the increasing volume of sensitive user data collected, platforms must prioritize
data protection to maintain user trust and comply with regulations like GDPR [25], as data security
breaches can significantly damage platform reputation and user confidence but what more important
owners can face a lawsuit from regulations of countries over the world what can bring like financial
and reputation damage. According to research [9], over 60% of attendees consider data security a
primary concern when registering for events online, making security measures a one of the critical
factors for success of organization operation on event planning market.

These challenge both event organizers and participants. For organizers, limited integration
and scalability issues increase operational costs and complexity, while the lack of robust engagement
and personalization features limits user retention and satisfaction. For participants, frustrations with
event discovery, limited interactivity, and data security concerns create barriers to a seamless and
enjoyable experience. From the other side regarding recent market research indicates a strong demand
for improvement in these areas. For instance, the events industry is expected to continue its rapid
growth, driven by digital innovation and heightened user expectations. Projections [7] suggest that
by 2032, the global market could reach nearly $2.1 trillion, underscoring the need for platforms that

deliver integrated, engaging, and secure experiences for users.

1.2. Selection of criteria for comparison

As mentioned earlier, a meaningful comparison of event planning platforms requires specific
criteria. For this analysis, with a focus on three main factors: popularity, range of features, and user
base based on Eventbrite article [11] and basic knowledge and logic. These criteria were chosen due
to their relevance in evaluating platform strengths and weaknesses. Popularity provides insights into
market acceptance and reliability. The range of features highlights a platform’s versatility,
encompassing tools like attendee tracking, payment processing, and event website creation. The user
base reflects suitability for different event types, demonstrating flexibility in diverse user’s needs.
This way selected criteria will allow us to see most of the advantages and disadvantages during the
comparison among established market leaders, but let’s first of all looks at each of them individually.

“Eventbrite” is a popular platform designed to simplify event creation and management across
a broad range of event types. Its main features include comprehensive tools for creating events,
integrated ticketing options, and advanced search and discovery functionalities, which help users find

13

events aligned with their interests. “Eventbrite’s” business model is centred around ticket fees, which
allows organizers to access its features without an upfront cost, making it appealing to both
individuals and businesses. [11], [12]

“Meetup” primarily serves community-focused events and organizers seeking to foster social
connections around shared interests. This platform’s core features focus on creating groups, managing
RSVPs, and promoting social gatherings, emphasizing ease for casual, community-driven events.
Unlike platforms focused on large-scale events, “Meetup” uses a freemium model, allowing free use
with an option to subscribe for additional features, making it accessible to hobbyists, social clubs,
and local groups. [13]

“Ticketmaster” is a highly recognized platform primarily serving large-scale, ticketed events,
including concerts, sports games, and theatre performances. Its key features include robust ticketing
capabilities, reliable handling of high-traffic volumes, and integration with event discovery channels,
making it a go-to solution for organizers of large events. The business model is based on ticket fees,
which aligns with the needs of major event organizers looking for a stable, high-capacity platform.
[14]

1.3. Evaluation criteria and best practices of event planning industry

The analysis of competitor platforms reveals several best practices that are essential for
success in the event planning industry. These practices, which include organized design of web
interface, community engagement features, integration with third-party tools, and robust data
security, represent core standards that event platforms must meet to remain competitive.

Also, based on the analysis well-designed, intuitive interface is vital for engaging users based
on one of the lead platforms articles [11], as ease of navigation significantly enhances the user
experience. Leading event platforms emphasize simplicity, which allows users to easily discover,
plan, and manage events without unnecessary complications.

Community engagement also plays a crucial role in maintaining user retention. Platforms that
foster a sense of community by enabling users to form groups based on shared interests encourage
long-term engagement and create a more socially dynamic environment.

Integration with third-party services, such as payment systems, social media platforms, and
analytics tools, is essential for enhancing platform functionality and versatility [9]. This capability
allows event organizers to manage payments, promote events, and monitor engagement seamlessly.

Data security and privacy are critical components in establishing user trust, especially in light

of increasing privacy concerns. Platforms that prioritize strong data protection practices, such as

14

GDPR compliance, data encryption, and secure authentication methods, set a high standard for

reliability and trustworthiness in the industry. [25]

1.4. Gaps in existing solutions

However, analysing existing platforms also reveals several problems that prevent them from
fully satisfying user needs. [11], [12], [13], [14]

Firstly, many platforms do not have advanced recommendation algorithms [17], providing
only basic search functions. This limitation reduces the level of personalization making it difficult for
users to find activities that match their interests. In addition, platform specialization limits flexibility.
For example, “Meetup” is primarily focused on community meetings while “Ticketmaster” is focused
on large events and ticket sales. This narrow specialization limits the capabilities of companies and
organizers who need a universal platform to support events of different types and sizes.

Another challenge is mobile usability, as some platforms offer users mobile apps with limited
functionality and performance issues during use, leading to serious problems compared to the web
version. But it is worth noting that not all the analysed apps are well optimized for web as well, and
by not being better optimized, provide an inconsistent user experience, which can lead to the loss of
potential customers.

Next problem is a limited customization available to business clients what as a result can
hinder brand engagement, as most platforms lack the tools needed to tailor event pages or access
detailed analytics on attendee behaviour, which as mentioned is not a good thing especially for the
customers who a care about advertisement possibilities. [8]

Scalability also poses a challenge. While platforms like “Ticketmaster” are built for high-
traffic events, others struggle to handle large, as even during the analyses was discovered constantly
freezing and lagging of “Eventbrite”, “Meetup”. As events grow, these scalability limitations can lead
to slowdowns and diminished user experience, what will affect the business not from the good side.
From this we can draw a small conclusion that for many users attending events from mobile devices,
seamless user interfaces, and scalability and optimization of the system are a must for a well build

event planning and management application. [7]

1.5. Conclusion on analysis

Based on the analysis of existing platforms, there are clear opportunities to develop a
competitive, user centred event management platform by addressing identified gaps and integrating

industry best practices.

15

The primary market challenges - maintaining user engagement, delivering personalized
experiences, integrating multiple functionalities, ensuring scalability, and meeting strict data security
standards- reveal specific areas for improvement. A successful platform should include advanced
personalization through recommendation algorithms to better match users’ interests, enhancing
engagement and retention. Additionally, integrating core functions like ticketing, registration, and
promotions into a seamless interface could streamline event management for organizers and
participants alike.

Furthermore, optimizing mobile usability and scalability is crucial. This includes addressing
performance issues that occur in current platforms under high traffic, especially in case of peak usage
times. Customization and data analytics for business clients represent another essential feature,
allowing companies to brand their event pages and gain insights into attendee behaviour, thus
enhancing promotional capabilities and user satisfaction. Given the rising emphasis on data
protection, robust security features are critical to build user trust and comply with regulations like
GDPR. [25]

Thus, it can be concluded that this analysis set a foundation for creating a valuable event
management solution that not only meets industry demands but set foundation for developing a
platform prototype that integrates these insights, aiming to provide a scalable, adaptable, and user-

oriented solution.

16

2. TECHNICAL TASK

APPROVED

Supervisor: Assoc.Prof.Dr.Ilona Veitaité

Bachelor student: Dzmitry Papkou

Date:__2024-09-09

1. TITLE OF THE WORK (TITLE):
“Event Goose™: Event Organisation and Registration Platform
2. CONTENT OF THE ANALYTICAL AND RESEARCH WORK:

2.1.

2.2.

Conduct analysis of the market to define existing event planning solutions to understand
market trends and identify current gaps in these solutions;
Conduct comparative analysis of “Event Goose” with existing solutions to highlight unique

features and competitive advantages.

3. DESIGN SYSTEM FUNCTIONS:

3.1.

3.2.

3.3.

3.4.

3.5.
3.6.

3.7.

3.8.

3.9.

Allow users to input event details such as location, dates, and optional tags or categories to
create and manage events within specific regions;

Allow non-registered users to search and view available events, with the ability to register
a user to proceed with registration selected event;

Provide functionality for users to read and post content related to their participation in
offered events (post functionality only for registered users);

Integrate features that will recommend events based on user preferences and defined
financial limits (only for registered users);

Enable registering for events directly through the platform (only for registered users);
Implements basic platform security (like authorization and authentication, secure password
storage etc.);

Registered users (without paid subscription) would be limited to get discount or sales offers
on events.

Offer user subscription model where users pay for premium features, such as maintaining
an unlimited history of past and future events planning, ad-free account and early access to
new features at a platform;

Offer businesses to have separate subscription plan to list their events' advertisement at

platform, enhancing events visibility and promotion to potential customers.

4. SYSTEM DESCRIPTION DOCUMENTATION AND INSTRUCTIONS:

17

4.1.
4.2.

Terms of Service and System Policy for the user;
System management, content moderation, and user support documentation for the

administration.

. SYSTEM DESIGN TOOLS, SOFTWARE AND HARDWARE REQUIREMENTS:

5.1.
5.2.
5.3.

5.4.
5.5.
5.6.
5.7.
5.8.
5.9.

5.10.

5.11.
. SYSTEM TESTING AND EVALUATION:

6.1.
6.2.
6.3.

System design: draw.io;

Development environment - VS Code text redactor;

System development tools: Java 21 (Spring Framework Environment) for backend,
TypeScript (React library), CSS for frontend, and Docker for containerization;

Database management systems: PostgreSQL and S3 bucket for file storage;

Testing suite: Jest, JUnit, Postman, Firefox Developer Tools;

Version control system tool — Git/GitHub/GitLab;

Cloud service - AWS for hosting and managing system;

Operating system environment - Linux based (Ubuntu/Debian);

Hardware requirements: x86-64 processor with at least 4 cores, at least 4GB RAM, at least
20GB of storage;

APIs of third-party services: location and map services, event booking, payment processing,
AWS tools;

Payment gateways: Stripe and/or PayPal.

Preparation of system testing strategy;
Evaluation of test results;

Comparison of the designed system with functional and business requirements.

. THESIS PRESENTATION REQUIREMENTS:

7.1.

7.2.

7.3.

The thesis description completed in accordance to the methodological requirements for the
final thesis;

Presentation of the thesis include multimedia elements such as screenshots, diagrams, and
live demo;

The defence of the thesis should last 6-8 minutes, including an oral presentation and a slide

presentation.

18

3. PROJECT DESIGN

The main purpose of the “Event Goose” project is to optimize and simplify the events planning
process on the most favorable conditions for individuals and organizations by integrating into a single
platform for management such aspects of event management as search for available events, managing
participant registrations, and coordinating event details. This is important because plan activities often
involve switching between multiple services and platforms, which can complicate the process of
organizing and managing your events. Also, many find it difficult to align their desires with market
offers on a single platform, which can lead to a negative influence on the user experience.

The implementation of “Event Goose” is planned as a web-based system, which will ensure
its multi-platform and ease of management. The backend of the system will be developed using
Spring Framework and the frontend will be created using React library, which provides a dynamic
user interface. With the help of this configuration, it will be possible to achieve one more purpose of
the information system as accessibility for users on different devices and operating systems, which

in turn will possibly expand the number of potential customers.

3.1. General characteristics of the researched problem area

Events planning is not an easy task, at least it includes setting up the event details, managing
participant registrations, promoting the event, and ensuring a smooth execution in order to get the
most positive experience from the future activities. However, it is because of the variety of actions
that need to be taken, individuals and organizers face the problem of integrating all aspects efficiently,
which can lead to oversights, poor attendance, or a mismatch between the promised event’s-based
experiences and the actual outcome. “Event Goose” is a solution that allows to streamline this
multifaceted sphere through a platform web interface, solving specific problems such as integration
of disparate event management services and their alignment with promoting events to the right

audience, and streamlining participant registration.

3.2. Information management policy of “Event Goose”

“Event Goose” follows a robust information management policy that ensures data integrity,
confidentiality, and availability. The policy includes procedures for collecting, storing, processing
and sharing of only necessary for work of the system data. Special attention is paid to compliance
with global data protection regulations such as GDPR [25], encrypt the sensitive information is

encrypted without compromising application performance. Also, the current policy giving users

19

options/control over their information by allowing to delete, edit, and request only the information

that is necessary and related directly to the user making the request.

3.3. Information flow analysis

The efficient orchestration of data is very important for providing a good user experience. In

this subchapter, will be provided overview of information flow within “Event Goose”, explaining

data moves and transform across the system using a Data Flow Diagram.

The diagram below (see Figure 1) shows the user journey from authentication to payment,

emphasizing the seamless integration of services provided by “Event Goose”.

Users

Credentials

User accounts

Payment

Authenficated

Event
planning

Event Event
Processed preferences options
credentials
Account Event detalls
verification
¥ Booking details

+ Reservation
status
Bookings
Processing Payment g
status status & details
Y
7 N Payment
confirmation

anagemen

Selected
event

Service
availability

Payment
details

Payment
processing

Transaction
processing

Payment
gateway
providers

Source: created by author by Dzmitry Papkou (2024) based on Yourdon and DeMarco notation.

Figure 1: Data Flow Diagram for “Event Goose” information flow

Third-party
service
providers

20

Describing a whole data flow process, where everything starts from users are authenticated
when they begin interacting with the system. The system queries user preferences, which are then
passed to the event planning module. This module interacts with the database to obtain personalized
event recommendations based on the user’s interests and past interactions.

At the same time, third-party service providers are integrated into the architecture to provide
real-time availability and booking capabilities if selected event provided by platform partners.

Once services are selected, the reservation system connects the user's chosen options and
sends them to confirm the booking. The payment process then begins, where transaction details are
processed and handled, calling the payment gateway providers to complete the financial transactions

if such exists.

3.4. Information flow analysis

One of the most basic things about any system is the functions it performs, because without a
clear understanding of what the system is supposed to do, it is difficult to design anything. In this
subchapter, will present the core functional and non-functional requirements for “Event Goose” based
on previously conducted event planning industry research in the chapter 1 in order from most
important to least important to give a deeper understanding planned system design concept and its

functional purpose.

Functional requirements:
1. Search and filter events options based on user preferences;
Generate events recommendations based on user actions at the platform;
Integrate with third-party services for gathering more events;
Allow users to customize and save their event plans;

Allow users to create accounts and manage its settings;

I L

Authenticate and authorize users to access different parts of the platform based on their user
roles and permissions;

~

Support multiple languages;
8. Provide customer support via email;

9. Allow users to share information about the events.

Non-Functional requirements:
1. System uptime shall be 98% (2% for technical break and unexpected situations);

21

The system must support at least 1000 concurrent users;

a & D

The response time for any action shall not exceed 20 seconds;

Compliance with GDPR and other relevant data protection regulations;

The system must have scalability to accommodate a growing data volume.

Following given requirements, the Use Case diagram below (see Figure 2) offers a visual

representation of the system's functionality from the perspectives of different actors within the “Event

Goose”.

"Event Goose” System

- qentands Access premium
Manage subscriptions <----------- S
{if subscribed)

Manage content and
advertising

Log in into the system

N\ :
Registemuh Review and share

experience from

event Manage event

registrations
L. F

¢ gincludasy »

c¢includey » y
Plan event ~ ------------- * Manage event tickets

£ e
~, cdincludess

-4 Manage events
details

< ¢includesy »

\‘&

Write email) Create an event
to support View events

Register new account

Guest User

Source: created by author by Dzmitry Papkou (2024) based on UML standards notation.

/;’,’-‘\\.

Administrator

Maintain user
accounts

Monitor system health
and security

Figure 2: Use Case Diagram for “Event Goose” system

22

Taking a closer look at the diagram, we can identify three main actors and fifteen use cases
for those users.

Where:

¢ Registered users are empowered to plan events, manage event registrations, access premium
features (if subscribed), and engage with community-driven content by sharing their event
experiences.

e Guest users can view event details and register new accounts.

e Administrators handle content management, monitor system health and security, and maintain
user accounts.

3.5. Selection and description of computerized tasks

In the event planning industry, “Event Goose” implements many computerized tasks to ensure
the most positive user experience and the smoothest system operation. The diagram below (see Figure
3) illustrates the relationships between the different entities within the system.

Registration_Field_Value
Registration PK|id
PK | id #—o9 FK | registration_id
FK | user_id FK | event_registration_field_id
FK | event_id field_value
tat P ——
status PredefinedRegistrationField
registration_date ok
ticket_url
field_name
EventInvitation field_type
PK | id description
FK | user_id
FK | event_id
status EventRegistrationField
invitation_token PK |id
created_at FK | predefined_field_id
updated_at Eventimage FK | event_id
PK | id i
o required
PK | id FK | event_id oy
SubscriptionGroup Subscription FK | event_id s3_key
FK| subscription_id p——] PK| id FK | subscription_id s_private
d uploaded_at
4 FK| group_id FK | user_id FK | user_is
type amount
price date Event EvebtLocationMapping
start_date User payment_methoc PK | id = FK | event_id
end_date PK|id FK | user_id FK | location_id
name name
surname UsersInteraction description
PK|id date
UserGrop username ,
email FK | user_id start_time E L
FK | user_id - ventLocation
Group - email_verified K 4 end_time
ek —— FK| group_id event] ; PKid
‘ < | new_email guest_id price latitude
old_email interaction_type status longitude
created_at interaction_time popularity address
Notification updated_at capacity ity
active feedback_rating
PK|id N . . postal_code
prefferred_location premium_capacity
FK | user_id regulan_capacity country
message - color capacity
created_at UsersPreferrence is_private description
oK |id = EventCategoryLink
is_read .
FK | user_id EventCategory o4 FK | event_id Eo e
—
FK | category_id PK | id FK |category i FK | event_id
FK |tag_id
< name FK | tag_id
keywords description
published
popularity
EventTag
PK|id
name

Source: created by author by Dzmitry Papkou (2024) based on Chen notation

Figure 3: Entity-Relationship Diagram for “Event Goose” database schema
23

Here is a breakdown of the tasks presented in the diagram:

e User: The system manages user information through the User entity, handling attributes such
as email, username, roles, and subscription status.

e Event Planning: Users can plan or attend events, which are represented by the Event entity.
This includes attributes such as event name, description, date, location, and ticket price. Event
are categorized through the EventCategory entity, and specific details of the event location
are managed through the EventLocation entity.

e Event Registration: Users can register for events through the Registration entity, which
tracks the event, user, and registration status. Additionally, users can invite others to events,
tracked by the Eventlnvitation entity.

e Payment Processing: All financial transactions are managed through the Payment entity.
This includes payments related to event registrations, subscription fees, and any other
financial interactions within the system.

e Event Comments: Users can get feedback thought notification system or ask questions about
events, which are managed by the Notification entity, allowing interaction and engagement
with other users.

e Subscription Management: Users may have different access levels based on their
subscriptions. The Subscription entity tracks the user’s subscription type and associated
features, while the SubscriptionGroup and Group entities manage the grouping of users based
on their subscription tiers.

e Location and Region Management: Events are tied to destinations and regions based on the
country, managed by the EventLocation entity.

3.6. Description of computerization tools

The development of “Event Goose” will utilize a range of computerization tools, starting from
using draw.io for the system and analysis diagrams, as this tool is well known for easy for utilization
and is free to use. For the backend will be used Java 21 with Spring Framework Environment based
on the Gradle build tool. The frontend will be build using React library with TypeScript shell to create
more reliable and dynamic code and CSS for design. Also, data storage is planned to use such
technologies as PostgreSQL for general data, and S3 for files storage. Both frontend and backend
technologies like Jest and JUnit and external tools like Postman, Firefox Developer Tools will be
suited for testing the application. Speaking about the deployment of the system, it will include using

Docker for containerization and AWS as cloud hosting for the application and for CI/CD will be

24

utilising Git version control system tool with code upload to GitLab with automatic duplication to

private GitHub repository as reserve backup copy.

3.7. Business model

Talking about the planned business model for “Event Goose” can have several vectors of
development.

e Freemium: Firstly, the simplest and the most user-oriented way of business development is
the “freemium” model when basic features will be available to all users for free, but if a user
wants an extended version with unlimited history of past and future trips, ad-free account and
early access to new features on a platform, he will be charged a small subscription fee in line
with market prices.

e Business subscription: In addition, it is planned to introduce a separate subscription/payment
model for businesses that can advertise and promote their events or services on the “Event
Goose” platform.

e Referral commissions: The last vector of the planned business model is to receive referral
commissions from external booking sites like www.eventbookings.com using affiliate

programs.

3.8. Hierarchy of computerized function

The hierarchical structure of the “Event Goose” is designed to organize and streamline the
various computerized functions of the developed system, where clearly provided five main
computerized functions: customer support, third-party services integration, payments management,

event planning, and user management.

25

"Event Goose"

| Customer | Th"d_.p arty | Payments | . | User
services Event planning
support . : management management
integration
FAQ and Help | | API |ntegrrat|0n — Payment notify || Event‘ details — User registration
center for event tickets view
Support tickets APl integration . Search for event User
— — —|Expense tracking| [. — o
system for events options authentication
| | APl services || Persoqal event || Profile
— creation and
management management
management
; . | | Subscription
)) — F!egll§tralt|0n management
API configuration— verification
| | Guestusers
Limited access
API monitoring [— ()

Source: created by author by Dzmitry Papkou (2024) based on the Functional Hierarchy Diagram notation

Figure 4: Hierarchy of Computerized Functions Diagram

Based on the updated diagram (see Figure 4), we can see how the functions are organized
within the event planning system. Below is a detailed description of each responsibility:

Customer Support:
e FAQ and Help center: Provides users with answers to common questions and troubleshooting
guides to resolve issues quickly.

e Support tickets system: Allows users to submit and track support tickets for personalized
assistance and issue resolution.

Third-party services integration:

e APl integration for event tickets: Connects with external services to manage event ticketing
and bookings seamlessly.
e APl integration for events: Links with external event services for broader event booking and

management options.

26

API services management:
o API configuration: Manages the setup and configuration of APIs to ensure proper
integration with third-party services.
o API monitoring: Monitors the performance and uptime of APIs to ensure a smooth

user experience and quick issue detection.

Payments management:

Payment notify: Provide user notifications for event-related expenses.
Expense tracking: Tracks all expenses associated with events, including ticket purchases,

venue costs, and other related fees.

Event planning:

Event details view: Allows users to view detailed information about events, including date,
location, and ticket availability.

Search for event options: Provides users with search functionality to discover and filter events
based on preferences such as location, category, and price.

Personal event creation and management: Users can create and manage their own events,

handling details such as event description, date, and ticket pricing.

User management:

3.9.

User registration: Facilitates the creation of new user accounts.

User authentication: Manages user login and authentication to ensure secure access to the
platform.

Profile management: Allows users to manage their personal profiles, including preferences,
event history, and settings.

Subscription management: Handles user subscriptions, including billing and access to
premium features.

Guest users (Limited access): Provides limited functionality for guest users, allowing them to

view events and explore features without registering.

Computerized system data flow

In this subsection, will be explained in details the data flow in the “Event Goose” system using

a sequence diagram below (see Figure 5). This diagram illustrates the user journey from

authentication to payment, emphasizing the integration of the services provided.

It all starts with users logging in using their username and password. The “Authentication and

authorization” component processes these credentials and returns the authentication result. For

27

authenticated users, the system allows them to plan events by retrieving event data and options from
third-party services. Once the user selects an event, the system checks availability, processes the
payment for event registration, confirms the payment, and updates the registration status in the “Event
Goose” system. Unauthenticated users are restricted in their actions and can only view event options

but cannot proceed with registration, payments, or event management.

sd "Event Goose"J

User i Authentication & Ewvent planning Third-party

Payment system

authorization and registration services

Login (username & password)

Authentication result
(success or failure)

Plan event (event details)

Retrieve event options

Provide event results (available events)

alt) [Authenticated user |

Select event option (option)

Check availability (option)

Availability result
(success or failure)

Confirm event registration (details)

"] Initiate transaction
(transaction details)

Process payment (payment details)

Payment confirmation: (success or failure)

[Update registration status (success or failure)

[Not authenticated user]

Source: created by author by Dzmitry Papkou (2024) based on UML standards notation

Figure 5: System Sequence Diagram

3.10. Conceptual object model

The conceptual object model for this project focuses on the central entity: Event, with all other
entities revolving around the management and organization of events, aligning closely with the entity
relationship diagram described previously (see Figure 3).

Events table itself contains details such as the event’s unique ID, name, description, date, time,
and capacity. At the same time, each event is linked to a User through the user_id foreign key,
representing the creator or manager of the event, whose data are stored in the Users table, with
attributes like name, email, and username, as well as roles and permissions defined through
associations with the Groups table. These associations are managed by the User Groups table,

enabling role-based access control for event management.

28

Events are further enriched by their geographical details, with links to Event Locations, which
describe the venue's name, address, and capacity. The Event Locations table connects events to the
destinations and countries they occur in, via foreign keys referencing the Destinations and Countries
tables. Destinations and countries are defined hierarchically, with destinations linking to countries
and potentially multiple Regions for more granular location data.

Users can explore and engage with events through various categorizations. The Event
Categories table and the Event Categories Links table define and assign categories to events, enabling
users to search for and filter events based on their interests.

Event participation is tracked through the Registrations table, which stores user registrations
for events, where each registration is linked to both the event and the user, ensuring proper
management of attendees and invitations for events are managed via the Event Invitations table,
where users receive unique invitation tokens and interaction with events is further happens by the
Comments table, allowing attendees to leave feedback or ask questions, linked both to events and
users.

Payments for event participation and other related services are tracked in the Payments table.
This table records transactions between users and the system for events or subscriptions, ensuring a
comprehensive financial overview. Subscription services are managed in the Subscriptions table, with
links to Groups through the Subscription Groups table, enabling premium features or access levels
based on subscription status.

3.11. System states, processes, and functioning scenario description

This section shows the state of the art of the system designed to interact with users for event
planning and registration purposes, guiding them through the entire process. The system is built to
lead the user from authentication to final confirmation, including robust error handling implemented
at each stage to ensure a smooth user experience.

The system's state is visually represented in the diagram below (see Figure 6), which illustrates
the user's journey from the start of a session to the successful completion of a transaction, such as
event registration. The sequence begins with the user logging into the system, where authentication
is checked. If login issues occur, the system efficiently prompts the user to correct their credentials
or restore their account if needed.

Once authenticated, the user proceeds to plan or create an event. At this stage, they can enter
event details, review options, and finalize the event setup. The system incorporates error-catching

mechanisms to detect and resolve data entry errors or system failures during this process

29

Start

Error occurs

User authentification

Successful login

Error occurs

Dashboard display

Plan event

Error occurs

Event planning

Finalize event details l Error handling

Error occurs

Event processing

Complete registration

Error occurs

Payment processing

Payment success

Confirmation and Error resolved

notification

Finish

®

Source: created by author by Dzmitry Papkou (2024) based on UML standards notation

Figure 6: System State Diagram

. After finalizing the event details, the system handles event registration management and
processes any related transactions. As in the previous steps, the system is equipped to manage issues
such as payment failures or registration conflicts, promptly resolving them and keeping the user
informed. The last stage involves confirmation and notification, where the system confirms the event
or registration and notifies the user of a successful transaction, completing the main interaction

between the user and the system.

3.12. A formal description of calculations

The core of the system is based on the capacity management of events. Each event has

a predefined capacity C, which is stored in the Events table. The number of registered users R is
30

tracked dynamically through the Registrations table. Before allowing a new user to register for an
event, the system checks if the available capacity is greater than zero:
C—R>0 (1)
If the event has reached its capacity (R =C), additional registrations are blocked. In certain
scenarios, such as events offering priority registration for premium users, the total capacity can be
divided into two segments:
Ctotal = Cregular + Cpremium @)
where Cregular is reserved for regular users and Cpremium is reserved for premium users.
The system allows dynamic reallocation of unused premium spots to regular users as the event
registration deadline approaches, using:
Cremaining = Cpremiumunused + Cregularunused (3)
This ensures optimal usage of all available spots without overbooking.
In addition to capacity management, user preferences play massive role in event
recommendations and registrations. The system should track user preferences in the Users table,
including preferred event categories, locations, and pricing. When recommending events to a user,

the system calculates a preference match score P:
P = (4)

where M is the number of attributes (such as category and location) that match the user's

M
T

preferences, and T is the total number of relevant event attributes. If P = 1, the event fully aligns with
the user’s preferences. Events with higher P values are prioritized in the user's recommendations. To
further enhance user experience, the system should evaluate the quality of each event using feedback
from previous participants and event popularity. The event quality score Q is calculated as follows:

Q=a-F+B-P+y-U (5)
Where:
. F is the average user rating for the event.
. P is the ratio of registered users to total capacity:
P=2 (6)
o U fit is the preference match score calculated earlier.
. a, B, and y are weight coefficients assigned to feedback, popularity, and user fit,

respectively.

31

3.13. Comparison of similar software packages

Referring to the analysis section, this comparison examines the main features, strengths, and
limitations of platforms like “Eventbrite”, “Meetup”, “Ticketmaster”, and the conceptualized “Event
Goose”. By assessing how these platforms address user needs, personalization, flexibility, mobile
usability, and business-specific customization, we can better understand the current market and
identify ways to innovate within the industry. This section | will compare “Event Goos” to similar
solutions, including “Eventbrite”, “Meetup”, and “Ticketmaster”, to evaluate how its features align

with industry standards and where it may introduce unique value.

Table 1
Comparative Analysis of Events Management Platforms

Feature/System

“Eventbrite”

“Meetup”

“Ticketmaster”

Event creation and
management

Comprehensive tools for
creating and managing
events

Suitable for community
events but limited
customization

Primarily for large events,
concerts, and sports

Ticket sales integration

Integrated ticket sales
and payment processing

Limited to RSVPs and
external ticketing

Strong integration with ticket
sales

User account creation

Yes

Yes

Yes

Event discovery and search

Advanced filtering and
recommendations

Location and interest-based
groups

Recommended events and
shows

Multilingual support

Yes

Yes

Yes

Mobile application

Yes

Yes

Yes

Subscription model

Primarily free and event-
based fees

Primarily free, focuses on
social groups

Ticket fees are the primary
revenue

Referral system

No

No

No

Data security

GDPR compliant, with
encrypted transactions

Basic compliance, but
limited features

High standards for large
events

Scalability and reliability

Supports large events
with high traffic

Suitable for small to
medium-sized events

Designed for massive
audiences

Source: created by author by Dzmitry Papkou (2024) based on comparative analysis of “Eventbrite”, “Meetup”, and “Ticketmaster”
platforms

Based on the analysis table above (see Table 1), it is clear that “Event Goose” in theory meets
most of the industry standards, offering to the user a wide range of functions not inferior to
competitors can become a valuable platform in event planning industry.

Talking in the details we can see that table outlines the comparative analysis, examining core
features across platforms such as event creation, ticket integration, user account functionality, and
multilingual support. “Eventbrite” have a comprehensive event management tools, integrated
ticketing, and advanced discovery functions, appealing to organizers of all sizes. “Meetup”, on the

other hand, focuses on community-driven gatherings, with features centred on group creation and

32

social connection; it uses a freemium model to make basic services accessible while offering premium
options for additional tools. “Ticketmaster” stands out for its strong ticketing capabilities and ability
to manage large events reliably, catering to major entertainment venues and large-scale organizers
through its established infrastructure and high-reliability system.

In contrast, “Event Goose” is envisioned to combine these strengths with several advantages.
So, it should be designed to excel in user engagement through personalized recommendations based
on user behaviour and preferences - an area where existing platforms offer limited support.
Additionally, “Event Goose” could support a broader range of event types, allowing customization
for both intimate gatherings and large-scale events, thereby providing flexibility that accommodates
diverse needs. The inclusion of a referral system and a freemium subscription model introduces
additional revenue streams, appealing to individual users and business clients alike. Prioritizing
scalability and data privacy allow to address industry concerns over system reliability and user data
protection. That way these differentiators will guide the system's development and design, ensuring

that it meets both current industry standards and emerging user expectations

3.14. General guidelines for systems’ users and administrators

This subchapter provides general rules and guidelines for users and administrators interacting
with the Event Goose platform. As the planned system is a web-based application designed to
simplify the process of managing event-related aspects and registration at the events themselves, the
platform is planned primarily as a service rather than a tool that does require the installation of

additional software, so extensive guidelines and documentation are kept to a minimum.

3.14.1. Terms of Service and System Policies for the user

The following is a global set of rules and guidelines that define the expectations of all users,
including individuals and organizations:
1. Access and platform usage:
e Users are responsible for ensuring the accuracy of the information provided during account
registration.
e Event organizers must ensure that all event details, such as dates, descriptions, and pricing,
are accurate and comply with applicable laws.
e Users are prohibited from engaging in fraudulent or malicious activities, including creating
fake events or misusing the platform to distribute inappropriate content.

2. Content guidelines:
33

Event listings must not include offensive, harmful, or illegal content. All posted materials are
subject to moderation.
Users retain ownership of their content but grant "Event Goose™ the right to use and display

it for platform purposes.

3. Privacy and data processing:

The platform adheres to data protection regulations such as GDPR, ensuring the
confidentiality and security of user data.
Users may request access to, edit, or delete their personal data in compliance with the

platform’s privacy policy.

4. System reliability and limits:

The platform is provided "as-is" and may experience occasional downtime for maintenance
or updates.

Event Goose reserves the right to modify or discontinue features without prior notice.

5. Communication policy:

3.14.2.

Users can reach out to the platform's support team through the provided contact email

(support@traveldrago.com). Administrators will respond to user inquiries within 48 hours.

System management, content moderation, and user support guidelines for the

administration

As for the administrator's guide, the currently planned implementation of the Event Goose

demo does not provide a dedicated administrator interface, all administrative actions and support

functionality are managed programmatically, but like the user, the administrator has responsibilities

and rights, which are described below:

1. Account Management:

Administrators have the right to suspend the accounts of users who violate the Platform's
Terms of Service.

Users will be notified of account suspension and may appeal the decision by contacting
support.

2. Content Moderation:

Administrators are responsible for reviewing flagged content and ensuring that it complies
with platform rules.

Decisions to remove content will be communicated to affected users within 48 hours.

3. Support and communication:

34

e Administrators handle all user queries, complaints and appeals through
(support@traveldrago.com) email address.
e Responses are issued within 48 hours of receiving the inquiry.
4. Platform Maintenance:
¢ Internal system logs and database queries are used to monitor the health and performance of
the platform.
e Administrators are responsible for implementing updates and resolving technical issues.
5. Security and Compliance:
e All administrative actions are logged for auditing and reporting.
e Administrators ensure that the system complies with relevant data protection regulations and

report to address security vulnerabilities founded in the system.

3.15. Conclusion on project design

The project design of the "Event Goose" platform has laid the essential groundwork for
creating a system aligned with the challenges and requirements of the modern event management
market, provided in the analysis chapter. During this phase was analysed the core functionalities
necessary for managing events and outlined a framework for implementing them within a time
allocated for that project.

The most important component of the design phase was defining the hierarchical structure of
data, which included users, events, categories, locations, and related entities. This was done by
providing a database schema design and explained using an entity-relationship model that organizes
data into interconnected tables. For example, events are linked to users, categories, and tags,
providing a relational structure that supports advanced functionalities such as filtering and
recommendations, while inclusion of tables like event locations, registration fields, and payments
reflects the diverse aspects of event management, enabling the system to address both organizer and
attendee requirements.

Moreover, the selection of modular system architecture dividing frontend, backend,
deployment and hosting concepts promoting flexibility in for development, allowing different
components to function independently while ensuring integration. The design also prioritized
extensibility, ensuring that additional features or integrations can be seamlessly added in the future
by leveraging a selection of established development stack, such as Java for the backend, React for
the frontend and AWS for cloud hosting. This way, the specified system design provides a foundation
phase sets the direction for the implementation, supporting the system's development adheres to the

planned design and achieves its intended functionality.
35

4. INFORMATION SYSTEM PROJECT IMPLEMENTATION

This chapter will cover such aspects as the design and implementation of the system, the
analysis of the information to be processed, and the specification of input and output data, as well as
the classification of this information and the flow of data in the system in the form of data tables and
illustrative examples of the information to be transferred through.

4.1. Description of the classification and coding system

To provide users with a seamless event planning experience, the classification and coding
system must enable efficient filtering and organization of event searches, primarily based on user
preferences and secondarily according to the system’s capabilities. The developed classification
system, in its final state, should include key categories such as event types, locations, and user-
specific preferences, allowing users to better tailor their event search and participation.

The hierarchical user authority structure within the system will ensure proper role-based
access and control. Administrators will have full control over the platform, managing user accounts,
handling event listings, monitoring platform usage, and resolving user issues. Event organizers will
be responsible for managing and updating event details, handling registrations, and interacting with
attendees. General users will use the platform to browse and participate in events, provide feedback,
and interact with support for any platform-related requests.

The coding classification system for “Event Goose” will be designed to integrate its key
components e.g. frontend, backend, and database while ensuring that each is thoroughly tested before
integration. The frontend must be responsive, adhering to modern technological standards, and
accessible across various devices, ensuring an intuitive and web interface. The backend will handle
business logic, user authentication and authorization, and communication with third-party APIs for
features like payments and notifications. The database will be structured to efficiently store and
retrieve event data, supporting advanced query processing for searching, filtering, and categorization,

while ensuring data integrity and security throughout the system.

4.2. System architecture design

The architecture of “Event Goose” system is built using AWS cloud services, with a focus on
scalability, security, and availability, where the main components include a frontend hosted on AWS
S3 through CloudFront, a backend system deployed on EC2 instances managed through Docker
containers, and an integrated database via Amazon RDS.

36

Frontend S3 Cognito SES
0
E Public subnet Private subnet
Load Balancer EE EC2 instance contents
& 15
> — (@)
@/ docker S

Nginx

User Route 53 CloudFront

Global network 0

NAT Gateway

Backend 53

Source: created by author by Dzmitry Papkou (2024) based on AWS Architecture Diagram Guidelines

Figure 7: AWS System Architecture

The architecture diagram above (see Figure 7) outlines the key flows and components:

e Route 53: DNS service used to route incoming traffic to the appropriate cloud services.

e CloudFront: Content delivery network responsible for delivering static resources quickly to
users across the globe, retrieving the static files from Frontend S3.

e Frontend S3: Stores static content like HTML, CSS, and JavaScript files that compose the
user interface of the “Event Goose” application.

e VPC: The application infrastructure is hosted in an isolated network where security and access
controls are defined. It includes both a public and a private subnet.

e Public Subnet: Hosts the Load Balancer and NAT Gateway, enabling incoming user requests
to be routed to the private subnet, while allowing the backend components to access the
internet securely.

e Private Subnet: Contains EC2 instances running Docker containers, which serve backend
functionalities. The backend includes business logic, user management, and API
communication.

e Nginx and Docker: The Nginx server running on EC2 acts as a reverse proxy to route traffic
form Load Balancer to Docker containers which is used to manage backend application.

e RDS: This service utilized as the master database to store event-related data, user preferences,
and a user itself.

e Backend S3: Used for storing different versions of backend configurations.
37

e Cognito: Handles user authentication and authorization, providing secure access control based
on user roles, including admins, organizers, and general users, and hold user passwords for
security reason.

e SES: Manages email notifications, providing the system with the ability to send updates and
confirmations to users.

The .gitlab-ci.yml is a file used by frontend and backend with the simmilar staging structure
but with different configurations for GitLab CI/CD pipelines to automate the build, testing,
packaging, and deployment of the application.

build test package push deploy

@ build s} QO test o @ package o ©® push o @ deploy_production >

Source: created by author by Dzmitry Papkou (2024).

Figure 8: GitLab CI/CD Pipeline

The pipeline consists of the following stages of robust deployment process (see Figure 8):

1. Build: This stage compiles the codebase, ensuring that the system dependencies and
components are properly built for the target environment.

2. Test: Unit and integration tests are executed during this stage to validate the correctness of
the business logic, database connections, and third-party integrations.

3. Package: Once testing is successful, the application is packaged into archive, preparing it for
deployment.

4. Push: The prepared archives are pushed to the AWS S3, making them available for the
deployment phase.

5. Deploy: The final stage is confirmed manually by system maintainer and during this stage
application is deployed to the production environment utilizing rollback mechanisms in case

of unsuccessful deployment process.

4.3. Frontend architecture design

The frontend of the platform is organized as shown in the provided directory structure follows
a modular approach where each functionality is grouped into relevant folders, ensuring clear

separation of concerns.

38

~ TRAVELDRAGO-FRONTEND

> public

5 hooks
» interfaces

index.tsx
theme.ts
v tests
verage
App.test.tsx
do
.gitignore
& .gitlab-ci.yml
.prettierignore
{} .prettierrc
jest-setup.is
jest.config.ts
{} package

{} package
README.md
tsconfig.json

Source: created by author by Dzmitry Papkou (2024).

Figure 9: Frontend Package Structure

As shown on the diagram above (see Figure 9) the public folder contains static assets that are
directly served to the client, such as the index.html file and icons, while main application logic resides
within the src folder, which houses different parts of the frontend system.

The components directory is responsible for holding reusable Ul elements like buttons, forms,
or modals, which are used across multiple pages of the application. Constant values used across the

system, such as API endpoints or configuration variables, are stored in the constants folder. The

39

context directory is used for managing global state to share data across different components without
prop drilling. The data folder contains mock data or data structures used for populating the frontend
during development or testing phases. The hooks folder is designed to manage custom React hooks
that encapsulate common logic, such as fetching data or handling user authentication, making them
reusable across components. Interfaces, stored in the interfaces folder, define the TypeScript types
and structures used across the project, ensuring strong typing and reducing runtime errors. The main
entry point of the frontend application is the App.tsx file, where the application’s layout and routing
are handled. Global TypeScript types are stored in Globals.d.ts, and styling for the application is
managed via the index.css and theme.ts files. The index.tsx is responsible for rendering the entire
application to the DOM (Document Object Model).

Testing is handled through the test’s directory, where unit and integration tests are written,
ensuring that each component and service functions as expected. The jest-setup.ts and jest.config.ts
files provide the configuration for the Jest testing framework. The gitlab-ci.yml file defines the
continuous integration pipeline for the project, outlining the steps needed for building, testing, and
deploying the frontend. Additionally, project dependencies are managed via the package.json and

package-lock.json files, while Prettier configuration files handle code formatting.

4.4. Backend architecture design

The project backend uses a combination of Java, Gradle, Docker, and Liquibase for
development, testing, and production deployment. The backend is designed with scalability and
flexibility in mind, using Docker for containerization and Liquibase for managing database

migrations.

40

EXPLORER: TRAVELDR
> .ebextensions
> .platform
> gradle
SIC
“ main
v java/com/traveldrago/backend

» configurations

Application.java

» changelog

master.xml

prod.yaml

.dockerignore

.editorconfig
.gitignore

.gitlab-ci

build.gradle

gradlew.bat

Source: created by author by Dzmitry Papkou (2024).

Figure 10: Backend Package Structure

As shown on the diagram above (see Figure 10) he src folder contains the core application
logic, where the configurations directory purpose to carry out configuration-related code, such as web
security settings, CORS policies, AWS connection configuration and low-level settings loaded during
startup of the application to provide common component. Controllers in the controllers folder handle
incoming HTTP requests, while dtos define the structure of data exchanged objects between the
frontend and backend. The exceptions folder manages custom exception handling, ensuring consistent

41

error responses. Business logic resides in the services folder, and data is handled by repositories,
which interact with the database using JPA repository dependencies. Models represent the
application's core database entities, and mappers are used to convert between domain objects and
DTOs.

Database management is achieved using Liquibase - a version control tool for database
schema changes. In the resources/db/changelog folder, Liquibase configuration files such as
changelog-master.xml define the database schema versioning for both development and production
environments. The application-dev.yaml and application-prod.yaml files contain environment-
specific properties, including database credentials, API configurations, and other settings required to
run the application in different environments. This ensures that the backend behaves appropriately in
both development and production setups.

For the deployment in the application is utilized Docker, that way the Dockerfile into the file
structure specifying the steps required to build the backend into a Docker image. At the same time
you can see a multi-container setup through docker-compose.yml file which is used to startup
application and its dependencies, such as the database during local development. However, for
production, the platform relies on stand-alone Docker containers defined in Dockerrun.aws.json, a

configuration file that AWS uses for deploying backend on EC2 instance.

» .ebextensions
01_docker.config
custom_nginx.config

platform /nginx /conf.d
http-settings.conf

nocache-headers.conf

proxy.conf

security-headers.conf

Source: created by author by Dzmitry Papkou (2024).

Figure 11: Nginx and Docker Configuration for Backend

The .ebextensions folder contains AWS Elastic Beanstalk configuration files that are very
important for defining how the Docker containers should run in the AWS environment. The
01 _docker.config and custom_nginx.config files provide custom settings for the containerized
application, including additional commnads to the Nginx configuration and Docker runtime options.
The .platform/nginx/conf.d/ directory includes several configuration files like http-settings.conf,

42

proxy.conf, and security-headers.conf, which customize how Nginx handles HTTPS requests, proxies

traffic, and enforces security headers.

4.5. Input data specification

The input data specification verify that all necessary information is collected accurately for
various user interactions within the event planning and management system. The following outlines
the required fields for different functionalities in the system:

e Login: Users must provide their email or username and password to authenticate themselves
within the system, what ensures secure access to personalized event management features.

e Registration of a new user: New users are required to input at least their email, password,
and username to create an account. Additionally, users can specify an optional subscription
status, which may grant access to premium event features or early registration privileges.

e Eventsearch: Users input various event-related details such as event location (destination or
country), event category (e.g., music, sports, conferences), event dates, and any specific
preferences like event type or price range. This helps users find events that align with their
interests and availability.

e Event registration: To register for an event, users must provide their user 1D, event ID, and
optional depending on the event the number of tickets they wish to purchase. The system in
case of ticket specification calculates the total price based on the ticket quantity and ensures
that the event's capacity is not exceeded before completing the registration.

e Payment: Users provide their user 1D, payment amount, payment method, and payment date
to complete transactions for event bookings or subscription services.

e Event invitation management: Users can input the event ID and the list of invitees (user
IDs) when sending out event invitations.

e Event ticket purchase: When purchasing event tickets, users must input their user 1D, event

ID, ticket quantity, and ticket price.

4.6. Output data specification

The output data specification, based on the input functionality, is presented below in the form
of REST API responses, typically formatted in JSON with expected outputs corresponding to each
functionality and accompanied by appropriate REST response codes for both successful and failed

operations.

43

Login:
Upon successful login, users receive the following data:

o user_id: The unique identifier for the user.

. username: The user's username.

o email: The user's email address.

o role_id: The user's role within the system (e.g., admin, regular user).
. auth_token: A token for session management and authentication.

Response codes:
o Success: 200 (OK) — User successfully authenticated.

o Failure: 401 (Unauthorized) — Invalid credentials.

New user registration:

After successfully registering a new user, the following information is returned:

o user_id: The newly created user's unique identifier.

o username: The username chosen during registration.

. email: The user's registered email address.

. subscription_status: The user's subscription status (if applicable).

Response codes:
. Success: 201 (Created) — User account successfully created.

. Failure: 400 (Bad Request) — Registration failed due to missing or invalid input.

Event search:

Users receive a list of events matching their search criteria, including:

o event_id: Unique identifier for each event.

o name: The name of the event.

o date: The date of the event.

o location: The location of the event (destination or country).
o category: The category of the event (e.g., music, sports).

o price: The price of the event.

Response codes:
o Success: 200 (OK) — Events successfully retrieved.

o Failure: 404 (Not Found) — No events found matching the criteria.

44

Event registration:

Upon successful registration for an event, users receive a confirmation with:

o booking_id: The unique identifier for the event booking.

o user_id: The unique identifier of the user registering for the event.
o event_id: The unique identifier of the event.

o number_of tickets: The number of tickets purchased.

. total_cost: The total cost of the tickets purchased.

Response codes:
o Success: 200 (OK) — Event registration completed.

o Failure: 400 (Bad Request) — Invalid registration request or event is full.

Payment:

After successfully processing a payment for an event, users receive:

o payment_id: The unique identifier for the payment transaction.
o user_id: The unique identifier of the user making the payment.
. amount_paid: The total amount paid.

. payment_method: The method of payment (e.g., credit card, PayPal).
. payment_date: The date of the payment.

o status: The payment status (e.g., successful, pending).

Response codes:
. Success: 200 (OK) — Payment successfully processed.

. Failure: 402 (Payment Required) — Payment could not be processed.

Event invitation management:

After sending out event invitations, users receive:

J invitation_id: The unique identifier for the invitation.

o event_id: The unique identifier of the event.

o invitee list: A list of user IDs for the invitees.

o status: The status of the invitations (e.g., sent, pending).

Response codes:
o Success: 200 (OK) — Invitations successfully sent.

o Failure: 400 (Bad Request) — Failed to send invitations due to missing or invalid input.

45

Event ticket purchase:

Upon successfully purchasing tickets for an event, users receive:

o ticket_id: The unique identifier for the event ticket(s).

o user_id: The unique identifier of the purchaser.
o event_id: The unique identifier of the event.
o number_of tickets: The number of tickets purchased.

Response codes:

o Success: 200 (OK) — Tickets successfully purchased.

o Failure: 400 (Bad Request) — Invalid purchase request or event is full.

4.7. Database project

Based on the Entity-Relationship Diagram (see Figure 3), the following tables are presented

database project of developed system with more detailed specifications of database entities, all

including columns of the tables, data types, descriptions, and constraints.

TRUE

Table 2
Users

Column Type Constraints Description
id UUID PK, NOT NULL Slir;i)que identifier for each user (Cognito
name VARCHAR (50) NULL POSSIBLE First name of the user
surname VARCHAR (50) NULL POSSIBLE Surname of the user
username VARCHAR (50) NOT NULL, UNIQUE Unique username for the user
email VARCHAR (50) NOT NULL, UNIQUE |Unique email address for the user
email_verified BOOLEAN NOT NULL Whether the user's email is verified
new_email VARCHAR (100) NOT NULL Temporary new email for the user
old_email VARCHAR (100) NOT NULL Previous email of the user
created_at TIMESTAMP NOT NULL Account creation timestamp
updated_at TIMESTAMP NOT NULL Last update timestamp
active BOOLEAN NOT NULL, DEFAULT Whether the account is active

preferred_location

VARCHAR (255)

NULL POSSIBLE

User’s preferred location by default the
location of user from the Ul

Source: created by author by Dzmitry Papkou (2024) based on Relational Database Management System standards

The Users table is designed to store information about users of the system. Each user has a

unique identifier (id), which is a UUID that serves as the primary key. Additional fields store personal

information such as name, surname, username, and email, table also includes verification status

46

(email_verified) and logs important timestamps for account creation (created_at) and updates

(updated_at). The active field, with a default value of TRUE, determines if a user’s account is active.

Table 3
Group
Column Type Constraints Description
id SERIAL PK, NOT NULL Unique identifier for each group
name VARCHAR (255) NOT NULL, UNIQUE Name of the group

Source: created by author by Dzmitry Papkou (2024) based on Relational Database Management System standards

The Group table stores information about different user groups within the system. The primary

key (id) is an auto-incrementing serial integer, ensuring each group is uniquely identified. Each group

also has a name, which must be unique across the system.

Table 4
User Group
Column Type Constraints Description
user_id UuID NOT NULL, FK Reference to the user (users.id)
group_id INT NOT NULL, FK Reference to the group (groups.id)

Source: created by author by Dzmitry Papkou (2024) based on Relational Database Management System standards

The User Group table represents a many-to-many relationship between users and groups. It

consists of two foreign keys: user_id, referencing the Users table, and group_id, referencing the

Group table.
Table 5
Event
Column Type Constraints Description
id UuID PK, NOT NULL Unique identifier for each event
user_id UuID NOT NULL, FK Reference to the user (users.id)
name VARCHAR (255) NOT NULL Name of the event
description TEXT NULL POSSIBLE Description of the event
date DATE NOT NULL Date of the event
start_time TIME NOT NULL Event start time
end_time TIME NOT NULL Event end time
price DECIMAL (10,2) NULL POSSIBLE Price for the event
capacity INT NULL POSSIBLE Capacity of the event
popularity INT NULL POSSIBLE
status VARCHAR (50) NOT NULL Status of the event

47

Table 5
(continued)

Column

Type

Constraints

Description

is_private

BOOLEAN

NOT NULL, DEFAULT
TRUE

Whether the event is private

color

VARCHAR (7)

NULL POSSIBLE

Event color for Ul representation

feedback_rating

DECIMAL (3, 2)

NULL POSSIBLE

Average feedback rating

premium_capacity

INT

NULL POSSIBLE

Reserved capacity for premium users

regular_capacity

INT

NULL POSSIBLE

Capacity for regular users

Source: created by author by Dzmitry Papkou (2024) based on Relational Database Management System standards

The Event table stores information about system events. Each event has a unique identifier

(id), which serves as the primary key. The user_id field is a foreign key referencing the Users table,
indicating which user created the event. It also includes fields for name, description, event date, time,
and optionally, price and capacity. The status field indicates the state of the event, while is_private

(default TRUE) indicates whether the event is private.

Table 6
Event Location
Column Type Constraints Description
id SERIAL PK, NOT NULL Unique identifier for each event location
latitude DECIMAL (10, 8) NOT NULL Latitude coordinate
longitude DECIMAL (11, 8) NOT NULL Longitude coordinate
address VARCHAR (255) NOT NULL Detailed address of the location
city VARCHAR (100) NULL POSSIBLE Name of the city
postal_code VARCHAR (20) NULL POSSIBLE Postal code of the location
country VARCHAR (100) NOT NULL Name of the country
capacity INT NULL POSSIBLE Capacity of the location
description TEXT NULL POSSIBLE Additional details about the location

Source: created by author by Dzmitry Papkou (2024) based on Relational Database Management System standards

The Event Location table contains information about venues where events are held. Each

record includes a unique identifier (id), geographical coordinates (latitude, longitude), and address
details (address, city, postal_code, country). The table also provides optional fields for capacity,
specifying the maximum number of attendees, and description, allowing for additional details about

the venue.

48

Event Location Mapping

Table 7

Column Type Constraints Description
event_id UuibD NOT NULL, FK Reference to the event (events.id)
location_id INT NOT NULL, FK Reference to the location

(event_location.id)

Source: created by author by Dzmitry Papkou (2024) based on Relational Database Management System standards

The Event Location Mapping table establishes a many-to-many relationship between events

and categories. It contains two foreign keys: event_id (referencing the Events table) and category id

(referencing the Event Category table), with both fields forming a composite primary key.

Table 8
Event Category
Column Type Constraints Description
id SERIAL PK, NOT NULL Unique identifier for each event category
name VARCHAR (255) NOT NULL Name of the category
description TEXT NULL POSSIBLE Additional information about the category
published BOOLEAN NOT NULL, DEFAULT Whether the category is published
FALSE
popularity INT NULL POSSIBLE Popularity score of the category

Source: created by author by Dzmitry Papkou (2024) based on Relational Database Management System standards

The Event Category table stores predefined categories for events. It has a primary key (id) and

a name field. This table is used to categorize events, allowing users to filter or group events by

category.
Table 9
Event Categories Link
Column Type Constraints Description
event_id UuID NOT NULL, FK Reference to the event (events.id)
category _id INT NOT NULL, FK Zf/f:rf”gaet:;zi;?ggory

Source: created by author by Dzmitry Papkou (2024) based on Relational Database Management System standards

The Event Categories Link table establishes a many-to-many relationship between events and

categories. It contains two foreign keys: event_id (referencing the Event table) and category id

(referencing the Event Category table), with both fields forming a composite primary key.

49

Table 10

Event Tag
Column Type Constraints Description
id SERIAL PK, NOT NULL Unique identifier for each event tag
name VARCHAR (255) NOT NULL Name of the tag

Source: created by author by Dzmitry Papkou (2024) based on Relational Database Management System standards

The Event Tag table stores predefined tag for events. It has a primary key (id) and a name

field. This table is used to tagged events, allowing users to filter or group events by tag.

Table 11
Event Tags Link
Column Type Constraints Description
event_id UuID NOT NULL, FK Reference to the event (events.id)
tag_id INT NOT NULL, FK Reference to the tag (event_tag.id)

Source: created by author by Dzmitry Papkou (2024) based on Relational Database Management System standards

The Event Tags Link table establishes a many-to-many relationship between events and tags.

It contains two foreign keys: event_id (referencing the Event table) and tag_id (referencing the Event

Tag table), with both fields forming a composite primary key.

Table 12
Event Invitation
Column Type Constraints Description
id UuID PK, NOT NULL Unique identifier for each invitation
event_id UuID NOT NULL, FK Reference to the event (events.id)
user_id UuID NOT NULL, FK Reference to the user (users.id)
invitation_token UuID NOT NULL, UNIQUE Unique token for the invitation
status VARCHAR (50) NOT NULL Status of the invitation
created_at TIMESTAMP NOT NULL Timestamp of creation
updated_at TIMESTAMP NOT NULL Last update timestamp

Source: created by author by Dzmitry Papkou (2024) based on Relational Database Management System standards

The Event Invitations table stores invitations sent to users for events. Each invitation has a

unique identifier (id) and references both an event (event id) and a user (user_id). The
invitation_token is a unique token for tracking each invitation, and the status field tracks the status of

the invitation (e.g., accepted, declined).

50

Table 13

Notification
Column Type Constraints Description
id UuID PK, NOT NULL Unique identifier for each notification
user_id uulID NOT NULL, FK Reference to the user (users.id)
message VARCHAR (255) NOT NULL Content of the notification
created_at TIMESTAMP NOT NULL Notification creation timestamp
is_read BOOLEAN :;IAOESEULL' DEFAULT Whether the notification has been read

Source: created by author by Dzmitry Papkou (2024) based on Relational Database Management System standards

The Notification table tracks system-generated notifications sent to users, where each
notification is uniquely identified by an id and linked to a user via the user_id field. The message
field contains the content of the notification, while the created_at field logs when the notification was

issued and is_read field indicates whether the notification has been viewed by the user.

Table 14
Registration
Column Type Constraints Description
id UuID PK, NOT NULL Unique identifier for each registration
event_id UuID NOT NULL, FK Reference to the event (events2.id)
user_id UuID NOT NULL, FK Reference to the user (users.id)
registration_date TIMESTAMP NOT NULL Date of registration
status VARCHAR (50) NOT NULL Status of the registration
ticket_url VARCHAR (512) |NULL POSSIBLE Ej::i’;”ce to the user ticket in private s3

Source: created by author by Dzmitry Papkou (2024) based on Relational Database Management System standards

The Registration table logs user registrations for events. It has a unique identifier (id) as the
primary key and two foreign keys: event_id (referencing the Events table) and user_id (referencing
the Users table). This table stores when a user registered for an event, along with an optional status
field and a link to the secure S3 bucket cloud storage where keeped ticket confirming user reqistration

under ticket_url.

51

Table 15

Payment

Column Type Constraints Description
id UuID PK, NOT NULL Unique identifier for each payment
user_id UuID NOT NULL, FK Reference to the user (users.id)
event_id UuID NOT NULL, FK Reference to the event (events.id)
subscription_id UuID NOT NULL, FK Zﬁfgggggggg;”b“”ptio”
amount DECIMAL (10,2) NOT NULL Amount of the payment
date TIMESTAMP NOT NULL Payment date
payment_method VARCHAR (50 NOT NULL Payment method used

Source: created by author by Dzmitry Papkou (2024) based on Relational Database Management System standards

The Payment table tracks all payments made within the system, both for events and

subscriptions tracking the amount paid, the payment date (date), and the payment method
(payment_method). It has a primary key (id), and foreign keys user_id, event_id, and subscription_id,
referencing the Users, Event, and Subscription tables respectively, where constraint ensures that at
least one of event id or subscription_id is valid for each payment or set default value cast to
“00000000-0000-0000-0000-000000000000” respectively.

Table 16
Subscription
Column Type Constraints Description
id UuID PK, NOT NULL Unique identifier for each subscription
user_id UuID NOT NULL, FK Reference to the user (users.id)
type VARCHAR (50) NOT NULL Type of subscription
price DECIMAL (10,2 NOT NULL Price of the subscription
start_date DATE NOT NULL Subscription start date
end_date DATE NOT NULL Subscription end date

Source: created by author by Dzmitry Papkou (2024) based on Relational Database Management System standards

The Subscription table stores information about user subscriptions. Each subscription has a
unique identifier (id) and a foreign key (user_id) linking it to the Users table. The table purpose is to
track the type of subscription, its price, and the start and end dates and to manage recurring or one-

time subscriptions to system services.

52

Table 17
Subscription Group

Column Type Constraints Description

Reference to the subscription

subscription_id UUID NOT NULL, FK (subscriptions.id)

group_id INT NOT NULL, FK Reference to the group (groups.id)
Source: created by author by Dzmitry Papkou (2024) based on Relational Database Management System standards

The Subscription Group table links user subscriptions to groups, enabling special access or
privileges based on subscription status. It contains foreign keys subscription_id (referencing the
Subscription table) and group_id (referencing the Group table), with both fields together forming the
composite primary key.

Table 18
Predefined Registration Field
Column Type Constraints Description
id SERIAL PK, NOT NULL Unique identifier for each predefined field
field_name VARCHAR (255) NOT NULL Name of the field
field_type VARCHAR (50) NOT NULL Data type of the field
description TEXT NULL POSSIBLE Additional details about the field

Source: created by author by Dzmitry Papkou (2024) based on Relational Database Management System standards

The Predefined Registration Field table stores reusable fields that event organizers can include
in registration forms, where each field is uniquely identified by an id, with additional fields for the
field_name and field_type, and optional description field provides further details about predefined
fields.

Table 19
Event Registration Field
Column Type Constraints Description
id SERIAL PK, NOT NULL #;i(?ue identifier for each registration
event_id UuID NOT NULL, FK Reference to the event (events.id)
predefined field_id |INT NOT NULL, FK Reference to the predefined field

(predefined_registration_field.id)

required BOOLEAN NOT NULL Indicator whether the field is mandatory
Source: created by author by Dzmitry Papkou (2024) based on Relational Database Management System standards

The Event Registration Field table links predefined fields to specific events. It contains two
foreign keys: event_id, referencing the Event table, and predefined_field_id, referencing the

Predefined Registration Field table. The required field indicates whether the field is mandatory.
53

Registration Field Value

Table 20

Column Type Constraints Description
id SERIAL PK, NOT NULL Unique identifier for each value
registration_id UUID NOT NULL, FK Reference to the registration
(registration.id)
event_registration_field_id | INT NOT NULL, FK Reference FO th? reg|§trat|'on field
(event_registration_field.id)
field_value TEXT NOT NULL Value provided for the field

Source: created by author by Dzmitry Papkou (2024) based on Relational Database Management System standards

The Registration Field Value table stores user-provided data for custom registration linking

a registration to a specific registration field via the registration_id and event_registration_field_id

fields and field_value fields captures the user's response.

Table 21
Users Preference
Column Type Constraints Description
id UuID PK, NOT NULL Unique identifier for each preference
user_id UuID NOT NULL, FK Reference to the user (users.id)
category._id INT NULL POSSIBLE, FK | Reference to the category
(event_category.id)
tag_id INT NULL POSSIBLE, FK Reference to the tag (event_tag.id)
keywords TEXT NULL POSSIBLE Keywords related to preferences

Source: created by author by Dzmitry Papkou (2024) based on Relational Database Management System standards

The Users Preference table captures individual user preferences for personalization uniquely

identifying each record by an id and links to Users, Category, or Tag tables via the user_id,

category_id, and tag_id foreign keys. The keywords field allows for storing additional preferences

not covered by predefined categories or tags.

Table 22
Users Interaction
Column Type Constraints Description
id INT PK, NOT NULL Unique identifier for each interaction
user_id UuID NULL POSSIBLE, FK Reference to the user (users.id)
event_id UuID NOT NULL, FK Reference to the event (events.id)
guest_id uulID NULL POSSIBLE Reference to a guest user if applicable
interaction_type VARCHAR (50) NOT NUL Type of interaction (e.g., like, share)
interaction_time TIMESTAMP NOT NUL Timestamp of the interaction

Source: created by author by Dzmitry Papkou (2024) based on Relational Database Management System standards

54

The Users Interaction table logs user interactions with events where interaction itself is
uniquely identified by an id and references a user or guest via the user_id or guest_id fields and an
event via the event_id foreign key field. The interaction_type field captures the nature of the

interaction (e.g., like, share), while the interaction_time field records when it occurred.

Table 23
Event Image
Column Type Constraints Description
id UuID PK, NOT NULL Unique identifier for each image
event_id UuID NOT NULL, FK Reference to the event (events.id)
s3_key UuID NOT NULL, FK Identifier for the image in S3 storage
is_private UuibD NOT NULL, UNIQUE Whether the image is private or public
uploaded_at TIMESTAMP NOT NULL Timestamp of when the image was
uploaded

Source: created by author by Dzmitry Papkou (2024) based on Relational Database Management System standards

The Event Image table stores metadata about images associated with events where each image
is uniquely identified by an id and linked to an event via the event_id field. The s3_key specifies S3
cloud bucket storage location, while the is_private field determines whether the image is public or

private and the uploaded_at field logs time when the image was uploaded.

4.8. Information processing, search, and retrieval

All information in “Event Goose” is processed according to privacy rules described in
subchapter “1.2. Company's information management policy”, also before collecting and processing
personal data that will be encrypted for security the system must obtain the consent of users. In
addition, the user's system must provide the ability for the user to change their data such as password
or email, username, etc., at any time.

For data processing will be used PostgreSQL, where SQL queries will allow sorting and
filtering of data and search for the result required by the user by sending queries to the server,
considering that the connections between the client and the server will be encrypted using HTTPS
protocol, and sensitive personal data will be stored in mostly encrypted form for security. Then after
processing, this data will be returned to the user in the form of a JSON response and displayed on the
web page in a convenient form that will allow users to quickly find the necessary information to
manage their events.

It is worth noting that lists of special offers for events like discounts will be available to all

registered users based on their subscription plan, it should also be possible to search for services by

55

destination and filter results by various criteria, but it should be noted that only administrators will
be able to modify or delete available by “Event Goose” offers. In case if offer was created by the
external company with special request to the “Event Goose”, it also should be deleted or managed

only by system administrators by special email request.

4.9. System testing and results evaluation

The testing environment was prepared as part of the predevelopment setup process, but actual
test scripts were not implemented, as of the "Event Goose" application was conducted within the
constraints of a tight development timeline, which significantly influenced the strategic decision to
allocate the available time and resources to feature development and system design and to skip test
automation. Moreover, since the platform being developed is not a commercial product, this removes
the developer and owner's responsibility to the customer to ensure that the project is constantly tested
under an automated environment.

This way unit tests and in similarly integration testing was only partially conducted, while no
formal test cases were written, integration was estimation processed during the development process
as a part of basic validation from development instruments and frameworks utilized. For instance,
during the creation of features like user authentication and database operations, the interactions
between the frontend, backend, cloud services and database were tested manually verifying that these
components worked smoothly with each other and that no crashes and significant errors occurred.

Thus, as discussed earlier, manual testing was the primary method used to identify and correct
potential problems. Interacted directly with the application by simulating real-world usage scenarios
to identify flaws issues, which provided valuable insights of system work process that helped
eliminate most of the obvious problems during the development phase.

In addition, database testing was partly solved by Liquibase, which was used to manage and
test schema migration, ensuring versioning of changes to the database structure that prevented cause
of conflicts and errors on project compilation and in continuous deployment. Although specific test
cases for database queries and performance were not developed, informal checks confirmed that the
database performed reliably under typical usage conditions. For example, adding, fetching, and
modifying data through the application interface did not result in data failures or inconsistencies,
indicating that the integration of the database and other components functioned as expected.

56

4.10. Conclusion on information system project

The system implementation of the "Event Goose" system following the framework defined in
chapter 3, providing an overview on the functional system prototype. The backend, implemented
using Java and the Spring Framework, and the frontend, developed with React and TypeScript, were
integrated to what confirmed by integrated system operation between independent component, while
the system's deployment on AWS, supported by containerization through Docker and a continuous
integration pipeline provides production ready system.

Key components of the platform after development, including event management, secure data
and payment processing, and database operations, were successfully implemented. The Liquibase-
managed database structure is also done, allowing data handling and modifications integration of the
features such as event tagging, location mapping, and notifications demonstrates the platform's ability
to meet outlined requirements. That represents the practical realization of the project design, ensuring

that the core functionalities of the system align with the initial objectives

57

CONCLUSIONS

1. The market analysis of event planning platforms such as “Eventbrite”, “Meetup”, and
“Ticketmaster” revealed significant gaps in personalization, scalability, and feature integration. These
findings were insightful and helpful enough in shaping the design of new information system by
identifying the need for an all-in-one platform that integrates event creation, discovery, promotion,
and registration. Later by addressing these gaps, "Event Goose" sets itself apart as a solution designed
to meet evolving user expectations and industry standards, laying the groundwork for a competitive
event management system in event planning market

2. The system integrates core functionalities, including event search, creation, promotion, and
participant registration, providing a cohesive platform for managing events effectively. The backend,
developed with Java and the Spring Framework, supported by PostgreSQL, ensures a strong
foundation for any business logic operations, eliminating the need for users to rely on multiple tools,
simplifying processes and enhancing efficiency in facilitates event planning and participation, and
offering clear and organized pathways for users to manage events from start till end.

3. The implementation of the web interface delivered to users the gateway to see and managing
various aspects of developed system through the browser, demonstrating core functionalities, such as
event creation, registration, and discovery, with are accessible and efficiently integrated with backend
systems to ensure smooth and consistent operations and data delivery. The implemented design for
now prioritizes features integration to demonstrate abilities of the platform, making it more
demonstrative than final implemented, what make it well-suited for future enhancements and
expansion as user needs evolve.

4. The integration with AWS services for project deployment was established and deployed
using Docker containers on AWS EC2 instances, where required static assets hosted on private and
public S3 buckets and delivered globally via CloudFront for optimal performance scale. Amazon
RDS provided a scalable database solution, while Cognito and SES were integrated as secure user
authentication and efficient communication tools. As well, partially automated CI/CD pipeline was
implemented, with a minimal manual intervention for image building align on security reasons of
human based control over application deployment process.

5. The payment system model was introduced and conceptually implemented as a part of
platform functionality, using a Stripe test environment. Although full implementation of payment
integration remains a future task, the groundwork for a multi-currency and secure transaction
framework has been established. This integration addresses requirements for user and business
transactions, with plans for realization of proposed methods of platform monetization like freemium,
subscription and referral model.

58

Recommendations

Future improvements for “Event Goose” should prioritize the integration of real-time data
management by implementing a real-time server solution like Redis to handle dynamic updates for
event registrations and participant interactions efficiently. Enhancing the frontend's optimization and
adaptability will ensure consistent performance across all devices, including mobile platforms,
broadening accessibility. Automating testing processes and writing a comprehensive suite of tests,
including unit and integration tests, will significantly improve system reliability and maintainability.
Additionally, completing the integration of the payment system and improve of the CI/CD pipeline
specifically in the system versioning for production deployments will strengthen the platform's
readiness for broader use.

59

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]
[13]

[14]

[15]
[16]

[17]

REFERENCES

Spring Framework Documentation. (n.d.). Spring Framework Official Documentation.

Available at: https://spring.io/projects/spring-framework.

React Documentation. (n.d.). React Official Documentation. Available at:

https://reactjs.org/docs/getting-started.html.

Java Documentation. (n.d.). Java Official Documentation. Available at:

https://docs.oracle.com/javase/21/docs/.

Material-Ul Documentation. (n.d.). MUI: React Component Library Documentation.

Available at: https://mui.com/material-ui/getting-started/overview/.

Google API Documentation. (n.d.). Google Cloud API Documentation. Available at:
https://cloud.google.com/apis/docs.

AWS APl Documentation. (n.d.). AWS Official Documentation. Available at:
https://docs.aws.amazon.com/index.html.

Allied Market Research. (n.d.). Events Industry Market. Available at:

https://www.alliedmarketresearch.com/events-industry-market.
Eventcube. (2024). Key Event Industry Statistics, Data, Trends, and Insights in 2024. Available

at: https://www.eventcube.io/blog/key-event-industry-statistics-data-trends-and-insights-in-
2024.
Quadrant2Design. (n.d.). The Events Industry: Key Statistics. Available at:

https://www.quadrant2design.com/the-events-industry-key-statistics/.

Upmetrics. (n.d.). Event Planning Industry Statistics. Available at:
https://upmetrics.co/blog/event-planning-industry-statistics.

Eventbrite. (n.d.). Event Management Platform. Available at:

https://www.eventbrite.com/blog/event-management-platform

Eventbrite. (n.d.). About Eventbrite. Available at: https://www.eventbrite.com/.

Meetup. (n.d.). About Meetup: Connecting Communities. Available at:
https://www.meetup.com/.

Ticketmaster. (n.d.). Ticketmaster Official Website. Available at:

https://www.ticketmaster.com/.

Manning, C. D., Raghavan, P., & Schitze, H. (2008). Introduction to Information Retrieval.
Cambridge University Press. Chapter 6: Scoring, Term Weighting, and the Vector Space
Model, pp. 120-125.

Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix Factorization Techniques for Recommender
Systems. IEEE Computer Society.

60

https://spring.io/projects/spring-framework
https://reactjs.org/docs/getting-started.html
https://docs.oracle.com/javase/21/docs/
https://mui.com/material-ui/getting-started/overview/
https://cloud.google.com/apis/docs
https://docs.aws.amazon.com/index.html
https://www.alliedmarketresearch.com/events-industry-market
https://www.eventcube.io/blog/key-event-industry-statistics-data-trends-and-insights-in-2024
https://www.eventcube.io/blog/key-event-industry-statistics-data-trends-and-insights-in-2024
https://www.quadrant2design.com/the-events-industry-key-statistics/
https://upmetrics.co/blog/event-planning-industry-statistics
https://www.eventbrite.com/blog/event-management-platform
https://www.eventbrite.com/
https://www.meetup.com/
https://www.ticketmaster.com/

[18]

[19]

[20]

[21]

[22]
[23]

[24]

[25]

[26]

Fowler, M., & Scott, K. (2000). UML Distilled: A Brief Guide to the Standard Object Modeling
Language. Addison-Wesley.

Chen, P. P. (1976). The Entity-Relationship Model: Toward a Unified View of Data. ACM
Transactions on Database Systems, 1(1), pp. 9-36. Yourdon, E. (1989). Modern Structured
Analysis. Yourdon Press.

Booch, G., Rumbaugh, J., & Jacobson, 1. (2005). The Unified Modeling Language User Guide.
Addison-Wesley.

Amazon Web Services. (2024). AWS Architecture Icons and Guidelines. Available at:
https://aws.amazon.com/architecture/icons/.

GitLab. (n.d.). GitLab CI/CD Documentation. Available at: https://docs.gitlab.com/ee/ci/.
Codd, E. F. (1970). A Relational Model of Data for Large Shared Data Banks.
Communications of the ACM, 13(6), pp. 377-387.

Silberschatz, A., Korth, H. F., & Sudarshan, S. (2019). Database System Concepts. McGraw-
Hill.

European Parliament and Council of the European Union. (2016). Regulation (EU) 2016/679

of the European Parliament and of the Council of 27 April 2016 on the protection of natural
persons with regard to the processing of personal data and on the free movement of such data
(General Data Protection Regulation). Official Journal of the European Union, L 119/1.
Available at: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679

Lopata and V. Moskaliova, (2017). Methodological guidelines for professional practice and

writing bachelor’s thesis.

61

https://nam10.safelinks.protection.outlook.com/?url=https%3A%2F%2Faws.amazon.com%2Farchitecture%2Ficons%2F&data=05%7C02%7CDzmitry.Papkou%40nasdaq.com%7C73dbe62decab4ac1fe9708dd1280fa85%7Cd0b75e95684a45e38d2d53fa2a6a513f%7C0%7C0%7C638687067461913519%7CUnknown%7CTWFpbGZsb3d8eyJFbXB0eU1hcGkiOnRydWUsIlYiOiIwLjAuMDAwMCIsIlAiOiJXaW4zMiIsIkFOIjoiTWFpbCIsIldUIjoyfQ%3D%3D%7C0%7C%7C%7C&sdata=7hMNVGSwkAyBNHBdYPL0or231p0SQa0C3jZIANIu2dY%3D&reserved=0
https://nam10.safelinks.protection.outlook.com/?url=https%3A%2F%2Fdocs.gitlab.com%2Fee%2Fci%2F&data=05%7C02%7CDzmitry.Papkou%40nasdaq.com%7C73dbe62decab4ac1fe9708dd1280fa85%7Cd0b75e95684a45e38d2d53fa2a6a513f%7C0%7C0%7C638687067461942415%7CUnknown%7CTWFpbGZsb3d8eyJFbXB0eU1hcGkiOnRydWUsIlYiOiIwLjAuMDAwMCIsIlAiOiJXaW4zMiIsIkFOIjoiTWFpbCIsIldUIjoyfQ%3D%3D%7C0%7C%7C%7C&sdata=68PJhjFrzFNuyepjkLMTUbUOsKkWG8czMt6pWXonb%2Bw%3D&reserved=0
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679

