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Gyvenimo kokybės indekso analizė Lietuvos savivaldybėse

Santrauka

Šis magistro darbas yra bakalauro darbo, pavadinimu „Lietuvos savivaldybių finansinių ro-
diklių analizė”, tęsinys. Magistro darbe yra nagrinėjamos 10 Lietuvos savivaldybių, turinčių
mažiausią bei didžiausią Gyvenimo kokybės indeksą (GKI) 2022 metais.

Šiame magistro darbe yra siekiama prognozuoti Gyvenimo kokybės indeksą bei jį sudaran-
čius subindeksus. Tyrime naudojami paneliniai duomenys apie Lietuvos savivaldybių Gyvenimo
kokybės indeksą bei jį sudarančius 6 subindeksus nuo 2013 iki 2022 metų. Duomenys buvo gauti
iš Lietuvos Respublikos finansų ministerijos administruojamos svetainės
www.lietuvosfinansai.lt. Duomenų analizei ir prognozių rezultatams gauti buvo naudojamos
„RStudio“ bei „Python“ programos.

Darbo tikslas yra išnagrinėti 5 Lietuvos savivaldybes pagal žemiausią bei 5 pagal aukščiau-
sią gyvenimo kokybės indeksą 2022 metais bei pateikti prognozes ir jas palyginti su tikromis
reikšmėmis.

Duomenų analizei taikomi šie metodai: ARIMA modelis, GAM modelis, LSTM modelis,
BiLSTM modelis, ADF testas, Ljung–Box testas, Durbin–Watson testas, Jarque–Bera testas,
Breusch–Pagan testas, Shapiro–Wilk testas, ARCH LM testas, GKI formulė.

Atlikus analizę gauta, kad geriausiai 2022 metų subindeksų ir GKI reikšmes prognozavo
ARIMA modelis. Šiuo modeliu prognozuotos reikšmės labiausiai atitiko realius duomenis.

Raktiniai žodžiai: GKI, Paneliniai duomenys, ARIMA modelis, GAM modelis, LSTM
modelis, BiLSTM modelis.
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Analysis of the Quality of Life Index in Lithuanian Municipalities

Abstract

This master’s thesis is a continuation of the bachelor’s thesis entitled „Analysis of financial
indicators of Lithuanian municipalities”. The master’s thesis examines 10 Lithuanian municipa-
lities with the lowest and highest Quality of Life Index (QLI) in year 2022.

This master’s thesis aims to forecast the Quality of Life Index and its constituent subindices.
The study uses panel data on the quality of life index of Lithuanian municipalities and its 6
sub-indices from years 2013 to 2022. The data was obtained from the website
www.lietuvosfinansai.lt administered by the Ministry of Finance of the Republic of Lithu-
ania. „RStudio” and „Python” programs were used for data analysis and prediction results.

The aim of this work is to examine the 5 Lithuanian municipalities according to the lowest
and 5 according to the highest quality of life index in 2022, and to present forecasts and compare
them with real values.

The following methods were used for data analysis: ARIMA model, GAM model, LSTM
model, BiLSTM model, ADF test, Ljung–Box test, Durbin–Watson test, Jarque–Bera test,
Breusch–Pagan test, Shapiro–Wilk test, ARCH LM test, QLI formula.

After the analysis, it was found that ARIMA model predicted the values of sub-indices and
QLI in 2022 the best. The values predicted by this model was the most consistent with the real
data.

Key words: QLI, Panel data, ARIMA model, GAM model, LSTM model, BiLSTM model.
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Pažymėjimai
• GKI – Gyvenimo kokybės indeksas.
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1 Įvadas
Visų šalių ekonomika pasaulyje yra nuolat besikeičiantis ir besiformuojantis procesas. Eko-

nomika kinta nuo daugelio veiksnių, ypatingai nuo šalies gyventojų poreikių ir kiekvienas iššūkis
priverčia ją prisitaikyti ir evoliucionuoti. Ne paslaptis, jog šalies ekonomika yra glaudžiai su-
sijusi su šalies finansais ir su Gyvenimo kokybės indeksu. Gyvenimo kokybės indeksas stipriai
priklauso nuo kiekvienos šalies ekonominės padėties ir yra daug kur plačiai aptarinėjamas, kaip
vienas reikšmingiausių rodiklių, kalbant apie šalies finansinį stabilumą ir gyventojų socialinę ge-
rovę. Ne išimtis yra ir Gyvenimo kokybės indeksas Lietuvos savivaldybėse. Skirtingose Lietuvos
savivaldybėse GKI skiriasi net po kelis kartus. Didžiausi skirtumai pastebimi tarp didžiųjų ir
mažųjų, nutolusių nuo didžiųjų miestų, savivaldybių. Pasak autorių Raúl López-Blanco, Juan
Herranz Martín, Ricardo S. Alonso ir Javier Prieto, gyvenimas mieste pastaruoju laikotarpiu
tampa vis dominuojančia tendencija mažųjų miestų sąskaita ir yra tikimasi, kad 2050 metais net
68% pasaulio žmonių populiacijos gyvens miestuose arba didžiuosiuose miestuose [6]. Dėl šių
priežasčių didžiuosiuose miestuose ir jų savivaldybėse Gyvenimo kokybės indekso rodiklis yra
žymiai aukštesnis. Tuo tarpu mažuosiuose miestuose ir jų savivaldybėse GKI yra žemesnis ir tai
sudaro ryškius regioninius skirtumus šalyje. Šiame darbe bus analizuojamos 5 Lietuvos savival-
dybės, turinčios aukščiausią GKI 2022 metais bei 5 savivaldybės, turinčios žemiausią GKI tais
pačiais metais. Savivaldybių GKI prognozės 2022 metams bus sudarinėjamos su 4 laiko eilučių
modeliais – Autoregresiniu integruotu slenkančio vidurkio modeliu (ARIMA), Apibendrintuoju
adityviuoju modeliu (GAM), Ilgalaikės trumpalaikės atminties modeliu (LSTM) ir Dvikrypčiu
ilgalaikės trumpalaikės atminties modeliu (BiLSTM). Pirma prognozuojami bus Gyvenimo ko-
kybės indeksą sudarantys 6 subindeksai, tuomet iš jų, padaugintų pagal kiekvieno subindekso
svorį, sumos bus gaunamas prognozuotas GKI. Gavus prognozes, šios reikšmės bus lyginamos su
tikromis to meto GKI reikšmėmis, norint ištirti, kurio modelio prognozės geriausiai atspindėjo
realias duomenų reikšmes.

Šiame darbe bus prognozuojami subindeksai ir bendras GKI 2022 metams 10–iai Lietuvos
savivaldybių, pagal žemiausias bei aukščiausias GKI reikšmes. Taip pat bus pateiktos rekomen-
dacijos, kaip savivaldybės gali pasigerinti bendrą GKI, arba bent jau jį išlaikyti.

Tyrimo tikslas: Išanalizuoti penkias žemiausią ir penkias aukščiausią Gyvenimo kokybės
indeksą Lietuvoje turinčias savivaldybes, sudaryti laiko eilučių modelius bei atlikti 2022 metų
GKI prognozes kiekvienai iš savivaldybių.
Tyrimui atlikti buvo išsikelti tokie uždaviniai:

1. Išanalizuoti mokslinę literatūrą, susijusią su Gyvenimo kokybės indeksu bei laiko eilučių
modeliais.

2. Sudaryti keturis laiko eilučių modelius subindeksams, įvertinti visų modelių statistinį ko-
eficientų reikšmingumą bei atlikti subindeksų prognozavimą.

3. Naudojant subindeksų prognozes, atlikti 2022 metų GKI prognozes penkioms žemiausią
ir penkioms aukščiausią GKI 2022 metais turinčioms savivaldybėms bei palyginti jas su
tikromis tų metų reikšmėmis.

4. Atlikus analizę, pateikti rekomendacijas savivaldybėms, kaip pagerinti GKI rodiklius, ypač
toms, kuriose rodikliai buvo žemiausi.

Darbą sudaro 2 pagrindinės dalys – teorinė ir praktinė. Teorinėje dalyje apžvelgiami praktinėje
dalyje analizuojami kintamieji bei tyrimui atlikti naudojami metodai: ARIMA modelis, GAM
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modelis, LSTM modelis, BiLSTM modelis bei modelių tikslumą nusakantys rodikliai. Prakti-
nėje dalyje apžvelgiami darbe naudojami duomenys, sudaromi modeliai, atliekamas duomenų
prognozavimas, pateikiamos darbo išvados. Darbas buvo atliktas, naudojantis „RStudio“ bei
„Python“ programomis.
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2 Teorinė dalis

2.1 Kintamieji

Kintamieji buvo analizuojami 2013 – 2021 metų laikotarpiu ir prognozės daromos 2022 me-
tams.

• Materialinių gyvenimo sąlygų subindeksas;

• Gyventojų verslumo ir verslo konkurencingumo subindeksas;

• Sveikatos paslaugų subindeksas;

• Švietimo paslaugų subindeksas;

• Demografijos, pilietinio ir visuomeninio aktyvumo subindeksas;

• Viešosios infrastruktūros, gyvenamosios aplinkos kokybės ir saugumo subindeksas;

• Gyvenimo kokybės indeksas.
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2.2 Metodologija

2.2.1 Paneliniai duomenys

Tyrimui atlikti naudojami duomenys buvo transformuoti pagal poreikį ir analizė atliekama
su paneline duomenų struktūra. Paneliniai duomenys (angl. panel data) – duomenų formatas,
kai kintamieji yra stebimi tam tikrą laiką. Paneliniai duomenys gali būti 2 rūšių – subalansuoti ir
nesubalansuoti. Subalansuoti duomenys yra tokie, kai kiekvienas kintamasis yra stebimas visais
laiko momentais. Nesubalansuoti duomenys yra tokie, kai bent vienas kintamasis stebimas ne
visais laiko momentais. Šiame darbe duomenys buvo subalansuoti.

2.2.2 Testai

• Pagerintasis (angl. augmented) Dickey–Fuller testas yra naudojamas duomenų staciona-
rumui tikrinti.

• Ljung–Box testas yra naudojamas modelio liekanų autokoreliacijai tikrinti.

• Durbin–Watson testas taip pat yra naudojamas modelio liekanų autokoreliacijai tikrinti.

• Jarque–Bera testas yra naudojamas modelio liekanų normalumui tikrinti.

• Breusch–Pagan testas yra naudojamas tikrinti modelio prielaidą apie liekanų heteroske-
dastiškumą.

• Shapiro–Wilk testas yra naudojamas modelio liekanų normalumui tikrinti.

• ARCH LM testas yra naudojamas nustatyti, ar modelio liekanų dispersija priklauso nuo
ankstesnių laikotarpių arba ar yra heteroskedastiškumo efektas.

2.2.3 ARIMA modelis

Autoregresinis integruotas slenkančio vidurkio modelis (ARIMA) yra bendras au-
toregresinio slenkančio vidurkio modelio (ARMA) apibendrinimas, kuris sujungia autoregresi-
nį (AR) procesą ir slenkančio vidurkio (MA) procesus ir sudaro laiko eilučių jungtinį modelį.
ARIMA(p, d, q) apimantys pagrindiniai modelio elementai yra tokie:

• AR: Autoregresija. Regresijos modelis, kuris naudoja priklausomybes tarp stebėjimų ir
keleto paslinktų stebėjimų (p).

• I: Integravimas. Norint laiko eilutę padaryti stacionaria, naudojamas stebėjimų skirtumas
įvairiais laiko momentais (d).

• MA: Slenkantis vidurkis. Jis atsižvelgia į priklausomybę tarp stebėjimų ir liekamųjų
klaidų terminų, kai slenkančio vidurkio modelis naudojamas lag’uotiems stebėjimams (q).

Autoregresinio modelio, kurio eilė yra (p), t.y. AR(p), formulė gali būti užrašyta kaip tiesinė
lygtis:

xt = c +
p∑

i=1
φixt−i + εt, t ∈ Z, (2.1)
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čia {xt, t ∈ Z} yra stacionarus procesas, c yra konstanta, φi yra autokoreliacijos koeficientai
esant poslinkiams 1, 2, . . . , p ir {εt, t ∈ Z} yra Gauso baltasis triukšmas su nuliniu vidurkiu ir
dispersija σ2

ε [3].
Atsitiktinis procesas X = (Xt, t ∈ T ) vadinamas stipriai stacionariu (stacionariu siaurąja

prasme), jei atsitiktinių vektorių
(Xt1 , Xt2 , . . . , Xtm) (2.2)

ir
(Xt1+h, Xt2+h, . . . , Xtm+h) (2.3)

skirstiniai sutampa su visais t1 < t2 < · · · < tm ∈ T ir tokiu h > 0, kad t1 + h, . . . , tm + h ∈ T
[7].

Gauso baltasis triukšmas
Procesas X = (Xt, t ∈ Z), kuomet Xt, t ∈ Z yra nepriklausomi atsitiktiniai dydžiai su

vienodu pasiskirstymu N (0, σ2), yra vadinamas Gauso procesu su vidurkio funkcija

mX(t) = 0, t ∈ Z, (2.4)

ir kovariacine funkcija

ΓX(s, t) =


σ2, kai s = t,

0, kai s 6= t,

s, t ∈ Z. (2.5)

Taip apibrėžtas procesas vadinamas Gauso baltuoju triukšmu [7].
Tiesinės regresijos lygtis

Yt = β0 + β1 · t + εt, (2.6)

čia

• Yt – priklausomojo kintamojo reikšmė tam tikru laiko momentu t,

• β0 – pradinė reikšmė, kai t = 0,

• β1 – trendo koeficientas,

• t – laiko momentas (metai),

• εt – paklaida, apibūdinanti atsitiktinius triukšmus.

ARIMA modelio parametrų formulės

• Standartinė paklaida:

Standartinė paklaida =
√

σ2 · V ar(x), (2.7)

čia

– σ2 – liekanų empirinė dispersija,
– V ar(x) – dispersija.
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• Liekanų empirinė dispersija (σ2):

σ2 =
∑n

i=1(yi − ŷi)2

n− p
, (2.8)

čia

– yi – stebėtos reikšmės,
– ŷi – numatytos modelio reikšmės,
– n – stebėjimų skaičius,
– p – modelio parametrų skaičius.

• Akaike informacinis kriterijus (AIC):

AIC = 2k − 2 log(L), (2.9)

čia

– k – modelio parametrų skaičius,
– L – Logaritminė tikėtinumo funkcija (Log Likelihood).

• Bajeso informacinis kriterijus (BIC):

BIC = log(n)k − 2 log(L), (2.10)

čia

– log(n) – stebėjimų skaičiaus logaritmas,
– k – modelio parametrų skaičius,
– L – Logaritminė tikėtinumo funkcija (Log Likelihood).

• Logaritminė tikėtinumo funkcija (Log Likelihood):

log L(θ) =
n∑

i=1
log f(yi|θ), (2.11)

čia

– L(θ) – tikėtinumo funkcija, apskaičiuota pagal modelio parametrus θ,
– yi – stebėtos reikšmės,
– f(yi|θ) – tikimybės tankio funkcija stebėjimui yi su parametrais θ.

• 95% Pasikliovimo intervalų formulė:

Prognozė± 1, 96 · Standartinė paklaida, (2.12)

arba

B̂t ± 1, 96 · σ, (2.13)

čia

– B̂t – prognozuota reikšmė,
– σ – liekanų empirinis standartinis nuokrypis.

11



2.2.4 GAM modelis

Apibendrintasis adityvusis modelis (GAM) yra išplėstinė daugybinės tiesinės regresijos
modelio versija, kurią galima išreikšti taip:

y = β0 + β1x1 + β2x2 + · · ·+ βpxp + ε, (2.14)

Norint įvertinti netiesinius efektus, GAM modelis kiekvieną tiesinio sąryšio komponentą βjxj

pakeičia glodžia netiesine funkcija fj(xj).
Taigi, bendroji GAM formulė yra:

y = β0 + f1(x1) + f2(x2) + · · ·+ fp(xp) + ε, (2.15)

Šis modelis vadinamas adityviuoju modeliu, nes kiekvieną fj(xj) (čia j = 1, . . . , p) kom-
ponentę apskaičiuojame atskirai ir tuomet jas susumuojame [1].

GAM modelio parametrų formulės

• Standartinė paklaida:
SE(ŷ) =

√
Var(f̂(x)) + σ2, (2.16)

čia

– Var(f̂(x)) – dispersija,
– σ2 – liekanų empirinė dispersija.

• Koreguotas determinacijos koeficientas (Adjusted R-squared) (R2
adj):

R2
adj = 1−

(
(1−R2)(n− 1)

n− p− 1

)
, (2.17)

čia

– R2 – determinacijos koeficientas (paprastas R-squared),
– n – stebėjimų skaičius,
– p – modelio kintamųjų skaičius.

• Nuokrypis (Deviance):

Nuokrypis = 2
n∑

i=1

(
yi log yi

ŷi
− (yi − ŷi)

)
, (2.18)

čia

– yi – stebėtos reikšmės,
– ŷi – modelio numatytos reikšmės.

• Kryžminės validacijos įvertis (Generalized Cross-Validation, GCV):

GCV = 1
n

n∑
i=1

(
yi − ŷi

1− vi
n

)2

, (2.19)

čia
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– yi – stebėtos reikšmės,
– ŷi – modelio numatytos reikšmės,
– vi – stebinio įtakos koeficiento (leverage) reikšmė.

• Mastelio įvertis (Scale Estimate):

Mastelio įvertis =
√∑n

i=1(yi − ŷi)2

n− p
, (2.20)

čia:

– yi – stebėtos reikšmės,
– ŷi – modelio numatytos reikšmės,
– n – stebėjimų skaičius,
– p – modelio parametrų skaičius.

2.2.5 LSTM modelis

Ilgalaikės trumpalaikės atminties (LSTM) modelis yra vienas iš rekurentinių neuro-
ninių tinklų (RNN) tipų modelių. Šis modelis sugeba mokytis ilgalaikių priklausomybių ir yra
labai populiarus dirbant su laiko eilučių duomenimis.

LSTM modelis turi trejis vartus, kurie valdo pagrindinį informacijos srautą: Įėjimo vartai,
Pamiršimo vartai ir Išėjimo vartai.

Vartai aprašomi šiomis lygtimis [4]:

• Įėjimo vartai: it = σ(Wiht−1 + Wiht),

• Pamiršimo vartai: ft = σ(Wf ht−1 + Wf ht),

• Išėjimo vartai: ot = σ(Woht−1 + Woht),

• Tarpinė ląstelės būsena: C̃t = tanh(Wcht−1 + Wcht),

• Ląstelės būsena (kitas atminties įėjimas): ct = (it · C̃t) + (ft · ct−1),

• Nauja būsena: ht = ot · tanh(ct),

čia

• Xt – įėjimo vektorius,

• ht – išėjimo vektorius,

• W, U, f – parametrų matricos ir vektorius,

• · žymi vektorių skaliarinę daugybą.

Monte Karlo pasikliovimo intervalų formulė

Pasikliovimo intervalas = vidurkis± 1, 96 · s, (2.21)

čia
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• vidurkis – tai visų Monte Karlo prognozių vidutinė reikšmė,

• s – standartinis nuokrypis.

Standartinis nuokrypis

s =

√∑
(xi − x̄)2

n
, (2.22)

čia

• xi – duomenų reikšmė,

• x̄ – duomenų vidurkis,

• n – duomenų imties dydis.

Baltasis triukšmas
Baltuoju triukšmu vadinsime nekoreliuotų atsitiktinių dydžių su vidurkiu 0 ir dispersija σ2

seką {Xt}, t ∈ N [8].

2.2.6 BiLSTM modelis

Dvikryptis ilgalaikės trumpalaikės atminties (BiLSTM) modelis yra patobulinta
LSTM modelio algoritmo versija. Dvikryptis LSTM (BiLSTM) algoritmas apjungia pageidau-
jamas dvikrypčio rekurentinio neuroninio tinklo (RNN) ir LSTM savybes.

BiLSTM sujungia dvi paslėptąsias būsenas, kurios leidžia informacijai kilti tiek iš atgalinio
sluoksnio, tiek iš į priekį einančio sluoksnio.

Čia į priekį einančios, atgalinės ir išėjimo sekos pateikiamos taip:

• Įėjimo seka:
−→
Ht = L(XtWx

−→
H

+−→H t−1W−→
H
−→
H

+ b−→
H

),

• Grįžimo seka:
←−
Ht = L(XtWx

←−
H

+←−H t−1W←−
H
←−
H

+ b←−
H

),

• Išvestis: Yt = −→HtW−→HY
+←−HtW←−HY

+ bY ,

čia −→
Ht : rodyklė virš H žymi priekine kryptimi apdorojamą informaciją,

tai yra paslėptojo sluoksnio būsena t-uoju laiko momentu, apskaičiuota iš praeities į ateitį.

←−
Ht : rodyklė virš H žymi atgaline kryptimi apdorojamą informaciją,

tai yra paslėptojo sluoksnio būsena t-uoju laiko momentu, apskaičiuota iš ateities į praeitį.

Formulėje L yra sigmoidinė funkcija, kuri laikoma LSTM dalimi BiLSTM struktūroje.
Sigmoidinė funkcija matematiškai apibrėžiama taip:

σ(x) = 1
1 + e−x

, (2.23)

ši funkcija suskirsto bet kurį realųjį skaičių į intervalą nuo 0 iki 1.
BiLSTM yra plačiai taikomas klasifikacijoje, tekstų atpažinime, kalbos atpažinime [5].
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2.2.7 Modelio tikslumą nusakančios metrikos

• Šaknis iš vidutinės kvadratinės paklaidos – RMSE (angl. Root Mean Square
Error)

RMSE =

√∑n
i=1(ŷi − yi)2

n
, (2.24)

čia

– yi – faktinė reikšmė,
– ŷi – modelio įvertinta reikšmė,
– n – stebėjimų skaičius.

• Vidutinis kvadratinis nuokrypis – MSE (angl. Mean Squared Error)

MSE = 1
n

n∑
i=1

(yi − ŷi)2, (2.25)

čia

– yi – faktinė reikšmė,
– ŷi – modelio įvertinta reikšmė,
– n – stebėjimų skaičius.

• Vidutinė absoliutinė procentinė paklaida – MAPE (angl. Mean Absolute Per-
centage Error)

MAPE = 1
n

n∑
i=1
|yi − ŷi

yi
| · 100%, (2.26)

čia

– yi – faktinė reikšmė,
– ŷi – modelio įvertinta reikšmė,
– n – stebėjimų skaičius.

2.2.8 Gyvenimo kokybės indekso formulė

Pagrindiniai Gyvenimo kokybės indeksą sudarantys subindeksai yra 6 (skliausteliuose nu-
rodytas kiekvieno subindekso svoris):

– Materialinės gyvenimo sąlygos – A (30%);
– Gyventojų verslumas ir verslo konkurencingumas – B (20%);
– Sveikatos paslaugos – C (10%);
– Švietimo paslaugos – D (10%);
– Demografija, pilietinis ir visuomeninis aktyvumas – E (15%);
– Viešoji infrastruktūra, gyvenamosios aplinkos kokybė ir saugumas – F (15%).
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GKI = A · 0.3 + B · 0.2 + C · 0.1 + D · 0.1 + E · 0.15 + F · 0.15, (2.27)
čia: A – Materialinės gyvenimo sąlygos; B – Gyventojų verslumas ir verslo konkuren-
cingumas; C – Sveikatos paslaugos; D – Švietimo paslaugos; E – Demografija, pilietinis
ir visuomeninis aktyvumas; F – Viešoji infrastruktūra, gyvenamosios aplinkos kokybė ir
saugumas [2].

2.2.9 Monte Karlo simuliacijos

Monte Karlo simuliacijos leidžia tiksliai modeliuoti neapibrėžtumus ir generuoti tikimybi-
nį rezultatų pasiskirstymą, arba kitaip tariant – apskaičiuoti pasikliovimo intervalų ribas.
Monte Karlo simuliacijos buvo naudojamos prognozuoto Gyvenimo kokybės indekso reikš-
mių 95% pasikliautiniams intervalams gauti. Kuomet buvo gautos subindeksų prognozės
bei jų 95% pasikliautiniai intervalai, buvo apskaičiuotas GKI, pagal prieš tai aprašytą
(2.27) formulę. Norint patikrinti šių reikšmių patikimumą, buvo pasitelktos Monte Karlo
simuliacijos ir šio metodo eiga atrodė taip :

1. Parenkamas simuliacijų skaičius. Kiekvienai iš savivaldybių buvo atliekama m
(m = 100) simuliacijų.

2. Subindeksų reikšmių generavimas. Tuomet visose simuliacijose subindeksų reikš-
mės S

(j)
i buvo generuojamos nepriklausomai nuo kitų subindeksų reikšmių pagal to-

lygųjį skirstinį (angl. Uniform distribution) tarp tam tikro subindekso ir savival-
dybės prognozių pasikliovimo intervalų ribų [PIapatinisi, PIviršutinisi], apskaičiuotų
remiantis kiekvienu prognozės modeliu. Analizėje buvo nuspręsta pasikliovimo in-
tervalų ribas imti 95%, kadangi šis pasikliovimo intervalų lygmuo yra dažniausiai
taikomas moksliniuose tyrimuose. Nors tai yra įprastai praktikoje taikomi standarti-
niai pasikliovimo intervalai, tačiau likusių 5% ekstremumų pašalinimas nebuvo atlik-
tas. Gautiems rezultatams tai galėjo turėti įtakos, tačiau ši analizė nebuvo atlikta,
siekiant išvengti jau gautų rezultatų keitimo ir tai yra rimtesnės teorinės analizės
reikalaujantis uždavinys. Tolygusis skirstinys duomenims buvo parinktas dėl pakan-
kamai trumpos laiko eilutės ir nedidelio duomenų kiekio, kadangi nebuvo galimybės
iki galo įvertinti subindeksų reikšmių pasiskirstymo. Buvo daroma prielaida, jog visos
reikšmės pasikliovimo intervalų ribose yra vienodo tikėtinumo:

S
(j)
i ∼ Uniform(PIapatinisi, PIviršutinisi), (2.28)

čia
– S

(j)
i – j-osios simuliacijos i-ojo subindekso reikšmė,

– [PIapatinisi, PIviršutinisi] – prognozuotų reikšmių pasikliovimo intervalai.
3. GKI apskaičiavimas kiekvienoje simuliacijoje. Kiekvienoje simuliacijoje buvo

apskaičiuojama GKI reikšmė GKI(j) pagal bendrą GKI formulę (2.27).
4. GKI pasikliovimo intervalai. Po 100 simuliacijų iš visų GKI(j) reikšmių buvo

apskaičiuotas jo vidurkis ir 95% pasikliovimo intervalai:
– 95% pasikliovimo intervalai, naudojant 2,5% ir 97,5% kvantilius:

PIPIapatinisi = Quantile0.025(GKI(j)), PIPIviršutinisi = Quantile0.975(GKI(j)).
(2.29)
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3 Praktinė dalis

3.1 Duomenų aprašymas

Tyrimui atlikti buvo naudojami 4 duomenų rinkiniai iš Lietuvos Respublikos finansų mi-
nisterijos prižiūrimos svetainės www.lietuvosfinansai.lt. Pirmi 2 rinkiniai buvo apie
10–ies Lietuvos savivaldybių Gyvenimo kokybės indeksą bei jį sudarančius 6 subindeksus
2013 – 2021 metų laikotarpiu. Pirmasis duomenų rinkinys buvo sudarytas iš 5 savivaldy-
bių (rikiuojant nuo žemiausios reikšmės): Skuodo rajono, Kalvarijos, Vilkaviškio rajono,
Lazdijų rajono ir Kelmės rajono, kuriame buvo nurodytos 6 subindeksų bei GKI reikšmės
2013 – 2021 metų laikotarpiu kiekvienai iš savivaldybių. Antrasis duomenų rinkinys buvo
sudarytas iš kitų 5 savivaldybių (rikiuojant nuo didžiausios reikšmės): Vilniaus miesto,
Kauno miesto, Klaipėdos miesto, Kauno rajono bei Birštono, ir čia taip pat buvo nurody-
tos 6 subindeksų bei GKI reikšmės 2013 – 2021 metų laikotarpiu visoms savivaldybėms.
Šie duomenys buvo paimti 2024 metų rugsėjo mėnesio 24 dieną.
Kiti 2 rinkiniai apie 2022 metų GKI ir subindeksų duomenis 10–čiai savivaldybių buvo
paimti tą pačią 2024 metų rugsėjo 24 dieną. Šie duomenys buvo naudojami prognozių
palyginimams su tikromis duomenų reikšmėmis. Šių duomenų struktūra buvo identiška
pirmų 2 duomenų rinkinių struktūrai.
Darbe analizuojamos 10 savivaldybių buvo parinktos pagal naujausius 2022 metų GKI
bei subindeksų duomenis. Penkios savivaldybės, turinčios žemiausią GKI ir penkios kitos
savivaldybės, turinčios aukščiausią GKI 2022 metais.
Duomenų rinkiniuose pagal transformuotą struktūrą rodikliai buvo išsidėstę taip:

– Materialinės gyvenimo sąlygos;
– Gyventojų verslumas ir verslo konkurencingumas;
– Sveikatos paslaugos;
– Švietimo paslaugos;
– Demografija, pilietinis ir visuomeninis aktyvumas;
– Viešoji infrastruktūra, gyvenamosios aplinkos kokybė ir saugumas;
– Gyvenimo kokybės indeksas.

Kiekvienas subindeksas dar turi keletą savo sudedamųjų komponenčių, tačiau darbe jos
neanalizuojamos (kiekvieno subindekso komponentė turi savo svorį, o visų tam tikro su-
bindekso komponenčių svorių suma yra lygi to subindekso svoriui):

– Materialinės gyvenimo sąlygos – A (30%);
∗ Vidutinis mėnesinis neto darbo užmokestis – A1 (30%);
∗ Užimtų gyventojų dalis tarp darbingo amžiaus gyventojų – A2 (20%);
∗ Registruotų bedarbių ir darbingo amžiaus gyventojų santykis – A3 (10%);
∗ Gyvenamasis fondas: naudingas plotas, tenkantis vienam gyventojui – A4 (10%);
∗ Asmenų (šeimų), buvusių sąrašuose socialiniam būstui nuomoti, skaičius, ten-

kantis 1 tūkst. gyventojų metų pabaigoje – A5 (15%);
∗ Renovuotų daugiabučių dalis – A6 (15%).

– Gyventojų verslumas ir verslo konkurencingumas – B (20%);
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∗ Veikiančių ūkio subjektų skaičius, tenkantis 1 tūkst. gyventojų – B7 (15%);
∗ Materialinės investicijos, tenkančios 1 tūkst. gyventojų – B8 (20%);
∗ Tiesioginės užsienio investicijos, tenkančios 1 gyventojui metų pabaigoje – B9

(25%);
∗ Įmonių apyvarta, tenkanti 1 tūkst. gyventojų – B10 (10%);
∗ Pridėtinė vertė gamybos sąnaudomis, tenkanti 1 tūkst. gyventojų – B11 (30%).

– Sveikatos paslaugos – C (10%);
∗ Praktikuojančių sveikatos priežiūros specialistų skaičius, tenkantis 10 tūkst. gy-

ventojų – C12 (20%);
∗ Paliatyvios pagalbos, globos, slaugos ir palaikomojo gydymo lovų skaičius, ten-

kantis 1 tūkst. gyventojų – C13 (15%);
∗ Sporto, varžybų ir sveikatingumo renginių dalyvių skaičius, tenkantis 1 tūkst.

gyventojų – C14 (15%);
∗ Lovų ligoninėse (be slaugos lovų) skaičius, tenkantis 10 tūkst. gyventojų – C15

(15%);
∗ Stacionaro ligonių skaičius, tenkantis 1 tūkst. gyventojų – C16 (15%);
∗ Mirtingumo nuo neužkrečiamų ligų skaičius 100 tūkst. gyventojų – C17 (20%).

– Švietimo paslaugos – D (10%);
∗ Vaikų, dalyvaujančių ikimokykliniame ugdyme, dalis tarp 1–6 metų amžiaus gy-

ventojų – D18 (20%);
∗ Dėl socialinių, psichologinių ir kitų priežasčių nesimokantys mokyklinio amžiaus

vaikai, tenkantys 1 tūkst. nuolatinio mokyklinio amžiaus gyventojų – D19 (10%);
∗ Profesinių mokymo įstaigų mokinių skaičius, tenkantis 1 tūkst. gyventojų – D20

(10%);
∗ Lietuvių kalbos brandos egzaminą laikiusiųjų absolventų, kurių egzamino rezul-

tatai įvertinti 86–100 taškų, dalis – D21 (10%);
∗ Matematikos brandos egzaminą laikiusių absolventų, kurių egzamino rezultatai

įvertinti 86–100 taškų, dalis – D22 (10%);
∗ Aukštos kvalifikacijos mokytojų dalis – D23 (10%);
∗ Universitetų ir kolegijų studentų skaičius, tenkantis 1 tūkst. gyventojų – D24

(20%);
∗ Geltonais autobusiukais į mokyklą vežiojamų mokinių dalis savivaldybėje – D25

(10%).
– Demografija, pilietinis ir visuomeninis aktyvumas – E (15%);

∗ Savivaldybių tarybų rinkimuose dalyvavusių rinkėjų skaičius, palyginti su visų
rinkėjų skaičiumi – E26 (25%);

∗ Išlaikomo amžiaus žmonių koeficientas metų pabaigoje, tenkantis 100 gyventojų
– E27 (20%);

∗ Bendrasis natūralios gyventojų kaitos rodiklis – E28 (25%);
∗ Atvykusių ir išvykusių asmenų skaičius (neto migracija), tenkantis 1 tūkst. gy-

ventojų – E29 (15%);
∗ Kultūros centrų dalyvių skaičius, tenkantis 1 tūkst. gyventojų – E30 (15%).

– Viešoji infrastruktūra, gyvenamosios aplinkos kokybė ir saugumas – F (15%).
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∗ Teršalų kiekis, išmestas į aplinkos orą iš stacionarių taršos šaltinių, tenkančių 1
tūkst. gyventojų – F32 (20%);

∗ Užregistruotų nusikaltimų, baudžiamųjų nusižengimų skaičius, tenkantis 100 tūkst.
gyventojų – F33 (15%);

∗ Kelių eismo įvykių skaičius, tenkantis 1 tūkst. gyventojų – F34 (10%);
∗ Automobilių kelių su patobulinta danga dalis bendrame kelių tinkle – F35 (15%);
∗ Dviračių takų ilgis metų pabaigoje, tenkantis 1 tūkst. gyventojų – F36 (10%);
∗ Keleivių apyvarta kelių transportu, tenkanti 1 tūkst. gyventojų – F37 (10%);
∗ Visų tipų apgyvendinimo įstaigose suteiktų nakvynių skaičius, tenkantis 1 tūkst.

gyventojų – F38 (5%);
∗ Muziejų skaičius, tenkantis 1 tūkst. gyventojų – F39 (5%);
∗ Savivaldybių viešosios bibliotekos, tenkančios 1 tūkst. gyventojų – F40 (5%);
∗ Kultūros centrų skaičius, tenkantis 1 tūkst. gyventojų – F41 (5%).
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3.2 Laiko eilučių modelių pritaikymas

3.2.1 ARIMA modelio pritaikymas

Pirmasis modelis, kuris buvo taikytas savivaldybių laiko eilučių duomenims buvo ARIMA
(Autoregressive Integrated Moving Average) modelis. Šis modelis, kaip ir visi kiti, buvo pa-
sirinktas pagal aktualią literatūrą [3, 4, 6]. Taip pat modelis buvo parinktas, atsižvelgiant
į jo pritaikomumą turimiems duomenims. Modeliui sudaryti buvo naudojami 2013–2021
metų subindeksų duomenys 10-čiai savivaldybių.
Pirma buvo atliekama analizė su 5 savivaldybėmis pagal žemiausią GKI, po to su 5 savi-
valdybėmis pagal aukščiausią GKI.
Duomenys buvo papildomai transformuoti ir modelis buvo taikomas kiekvienam iš 6 su-
bindeksų visoms savivaldybėms. Prieš pritaikant modelį, buvo tikrinamos tam tikros duo-
menų bei modelio prielaidos, atliekami testai. Iš transformuoto duomenų rinkinio buvo
pašalintos trūkstamos reikšmės (jei tokių buvo) bei stulpeliai konvertuoti į skaitinį duome-
nų tipą. Taip pat kiekvienai savivaldybei buvo atlikta pirminių duomenų trendo analizė,
pritaikant tiesinį regresijos modelį. Šis trendas buvo apibrėžtas kaip priklausomybė tarp
metų ir subindekso reiškmių. Tiesinės regresijos pritaikymas trendui padėjo nustatyti, ar
reikšmės laikui bėgant tolygiai didėja, ar mažėja. Rezultatai parodė, kad visose savival-
dybėse buvo teigiamas trendas (p < 0.001), rodantis nuoseklų reikšmių augimą. Atliekant
tolimesnę analizę, trendas buvo pašalintas iš pradinių duomenų, siekiant atskirti stacio-
narią dalį. Tiesa, pirminė duomenų analizė, kuri buvo atlikta su ARIMA modeliu, buvo
be trendo ir visi šio modelio bei prognozių rezultatai atspindi ARIMA reikšmes be tren-
do pirminiams duomenims. Analizės nuspręsta nepildyti su trendo rezultatais, kadangi
jie skyrėsi tik šimtųjų tikslumu ir visi ARIMA modelio ir jo prognozių rezultatai tekste
bei lentelėse yra be trendo reikšmių pradiniams duomenims. Tuomet kiekvienos savival-
dybės subindekso reikšmės buvo tikrinamos dėl stacionarumo, nes modelį galima taikyti
tik stacionariems duomenims. Stacionarumui tikrinti buvo naudojamas ADF (Augmented
Dickey–Fuller) testas. Jei testo p–reikšmė buvo didesnė už 0, 05, reiškė, jog duomenys
nestacionarūs ir buvo taikomas laiko eilutės diferencijavimas bei imti kintamųjų skirtumai
laike. Diferencijavimas - tai metodas, taikomas laiko eilučių duomenims, norint pasiekti
duomenų stacionarumą. Jis atliekamas atimant ankstesnę duomenų reikšmę iš dabarti-
nės duomenų reikšmės, taip gaunant duomenų reikšmių skirtumus laike. Diferencijuotus
duomenis, atlikus analizę, reikia grąžinti į pradinę skalę, tam, kad prognozės būtų inter-
pretuojamos lengviau ir būtų tinkamos praktiniam naudojimui. Diferencijavimą galima
taikyti kelis kartus, tai buvo atlikta ir šiame darbe su tam tikrais duomenų rinkiniais.
Jei pritaikius 1 lygio diferencijavimą nestacionarumo problema nedingdavo, būdavo taiky-
tas 2 lygio diferencijavimas, tam, kad laiko eilutė taptų stacionari ir būtų galima taikyti
ARIMA modelį. Pritaikius 2 lygio diferencijavimą, duomenys visada būdavo stacionarūs ir
tuomet buvo atliekama tolimesnė analizė. Sudarant modelį buvo naudojama auto.arima()
funkcija, kuri automatiškai parenka labiausiai tinkančius ARIMA(p, d, q) koeficientus, tad
šių koeficientų nereikėjo rinktis rankiniu būdu. Visiems subindeksams buvo pritaikytas
ARIMA(0, 0, 0) modelis ir pagal visas savybes tai buvo baltasis triukšmas, todėl modelio
parametrų, tokių kaip AR, MA ar vidurkio koeficientų su standartinėmis paklaidomis ne-
buvo. To pasekoje nebuvo įmanoma gauti ir paties ARIMA modelio pasikliovimo intervalų,
kadangi ARIMA(0, 0, 0) modelis turėjo nulinį vidurkį, bet buvo apskaičiuoti prognozių pa-
sikliovimo intervalai. Prognozių 95% pasikliovimo intervalai yra pagrįsti modelio liekanų
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dispersija bei standartine paklaida ir leidžia įvertinti prognozių tikslumą. Pritaikius mode-
lį duomenims, buvo tikrinamos modelio liekanos bei papildomai brėžiami ACF bei PACF
(atitinkamai autokoreliacijos bei dalinės autokoreliacijos) grafikai. Modelio liekanų auto-
koreliacijai tikrinti buvo taikomas Ljung–Box testas bei liekanų normalumui tikrinti buvo
naudojamas Jarque–Bera testas. Pastarasis Jarque–Bera testas rodė, jog liekanų norma-
lumas yra tinkamas modeliui, tačiau Ljung–Box testas buvo ne itin naudingas. Šis testas
negalėjo niekur nustatyti autokoreliacijos, taip pat liekanų autokoreliacijos (ACF) grafikai
parodė, jog kvadratinių ir teigiamų liekanų autokovariacijos nėra reikšmingos ir yra beveik
lygios nuliui. Tai galėjo nutikti dėl per mažo arba nulinio liekanų kiekio, arba dėl labai
mažos modelio dispersijos. ARIMA modelio liekanoms buvo atliekamas ARCH LM testas,
kuris parodė, jog liekanos buvo stabilios ir neturėjo didelių dispersijos svyravimų. Liekanų
heteroskedastiškumas buvo labai silpnas arba jo išvis nebuvo, dėl šios priežasties GARCH
efektai nebuvo nustatyti. Taip pat subindeksų reikšmės buvo tik 9 metams, o tokia trum-
pa laiko eilutė nėra pritaikyta GARCH efektams analizuoti. Kadangi darbe naudojami
laiko eilučių duomenys buvo metiniai, sezoninių svyravimų juose nebuvo, nes laiko inter-
valai yra pakankamai dideli. Taip pat autokoreliacijos funkcijos grafikai (ACF) neparodė
periodų svyravimų, todėl galima buvo daryti duomenų prielaidą, jog sezoniškumas juose
neegzistuoja. Subindeksų reikšmių ARIMA modelio bei prognozių rezultatai buvo gauti 2
būdais - be trendo priminiams duomenims ir su trendu ir stacionaria dalimi, tačiau, kaip ir
buvo minėta anksčiau, nuspręsta rezultatų su trendu nedėti į šį darbą, kadangi jie skyrėsi
tik šimtųjų tikslumu ir nebuvo labai informatyvūs. Šis ARIMA modelio algoritmas buvo
taikomas visiems subindeksams 10-čiai savivadybių.
Iš 1 lentelės matome ARIMA modelio 4 įverčių rezultatus visiems subindeksams. Pirmasis
įvertis – liekanų dispersija, arba kitaip σ2. Kuo mažesnė σ2 reikšmė, tuo geriau modelis
paaiškina duomenis, nes liekanų dispersija yra maža. Matome, jog A subindekse mažiausią
σ2 reikšmę turėjo Kelmės r. sav. 0, 001142, o didžiausią σ2 reikšmę turėjo Lazdijų r. sav.
0, 01226. Sekantys 2 įverčiai buvo Akaike informacinis kriterijus (AIC) ir Bajeso informa-
cinis kriterijus (BIC). Abu įverčiai padeda įvertinti modelio sudėtingumą. Kuo mažesnės
šių įverčių reikšmės, tuo labiau duomenims tinka modelis. Mažiausias šių įverčių reikš-
mes turėjo Kelmės r. sav., atitinkamai −28, 56 ir −28, 41, o didžiausias – Lazdijų r. sav.
−8, 94 ir −9. Ketvirtasis ARIMA modelio įvertis buvo Logaritminė tikėtinumo funkcija
(log-likelihood), kuri taip pat parodo modelio atitikimą turimiems duomenims. Šį įvertį
reikėtų vertinti kartu su AIC ir BIC įverčiais, nes jie yra gan glaudžiai susiję. Kuo didesnė
Logaritminė tikėtinumo funkcija, tuo geriau veikia modelis. Taip pat, čia matome, jog di-
džiausią logaritminę tikėtinumo funkcijos reikšmę turėjo Kelmės r. sav. 16, 28, o mažiausią
– Lazdijų r. sav. 5, 47 ir šie rezultatai stipriai koreliuoja su AIC ir BIC įverčių rezultatais.
Tad galime teigti, jog ARIMA modelis su A subindekso savivaldybių duomenimis geriau-
siai veikė su Kelmės r. sav., o prasčiausiai – su Lazdijų r. sav. Kalbant apie B subindekso
modelio rezultatus matome, jog mažiausią σ2 reikšmę turėjo Lazdijų r. sav. 0, 0001144, o
didžiausią – Kelmės r. sav. 0, 0007404, AIC ir BIC mažiausią reikšmę turėjo Vilkaviškio r.
sav., atitinkamai −46, 34 ir −46, 18. Taip pat ši savivaldybė turėjo didžiausią Logaritminės
tikėtinumo funkcijos reikšmę 25, 17, tad ARIMA modelis geriausiai suveikė su Vilkaviškio
rajono savivaldybe. Tuo tarpu didžiausią AIC ir BIC reikšmę turėjo Kelmės r. sav., ati-
tinkamai −28, 59 ir −28, 65 bei ši savivaldybė turėjo mažiausią Logaritminės tikėtinumo
funkcijos reikšmę, t.y. 15, 3. Šie įverčiai rodo, jog Kelmės rajono savivaldybė pagal B
subindekso duomenis buvo sumodeliuota prasčiausiai. Iš C subindekso duomenų matome,
jog geriausi modelio rezultatai buvo gauti su Lazdijų r. sav., šios savivaldybės AIC, BIC
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Savivaldybė σ2 AIC BIC Log Likelihood
A Subindeksas

Kalvarijos sav. 0, 005734 −14, 26 −14, 32 8, 13
Kelmės r. sav. 0,001142 −28,56 −28,41 16,28
Lazdijų r. sav. 0,01226 −8, 94 −9 5,47
Skuodo r. sav. 0,001824 −22, 28 −22, 34 12, 14
Vilkaviškio r. sav. 0, 001231 −25, 03 −25, 09 13, 52

B Subindeksas
Kalvarijos sav. 0, 0003893 −33, 09 −33, 15 17, 55
Kelmės r. sav. 0, 0007404 −28, 59 −28, 65 15, 3
Lazdijų r. sav. 0, 0001144 −41, 66 −41, 72 21, 83
Skuodo r. sav. 0, 0003901 −33, 08 −33, 13 17, 54
Vilkaviškio r. sav. 0,0001238 −46,34 −46,18 25,17

C Subindeksas
Kalvarijos sav. 0, 002666 −19, 62 −19, 68 10, 81
Kelmės r. sav. 0, 004664 −15, 71 −15, 76 8, 85
Lazdijų r. sav. 0,0005385 −30,82 −30,88 16,41
Skuodo r. sav. 0, 002916 −19 −19, 05 10, 5
Vilkaviškio r. sav. 0, 001137 −29, 53 −29, 45 15, 76

D Subindeksas
Kalvarijos sav. 0, 01432 −7, 86 −7, 91 4, 93
Kelmės r. sav. 0, 01321 −8, 42 −8, 48 5, 21
Lazdijų r. sav. 0, 00702 −14, 97 −14, 89 8, 48
Skuodo r. sav. 0, 001233 −25, 02 −25, 08 13, 51
Vilkaviškio r. sav. 0,001262 −28,7 −28,62 15,35

E Subindeksas
Kalvarijos sav. 0, 002103 −21, 29 −21, 34 11, 64
Kelmės r. sav. 0, 002761 −19, 38 −19, 43 10, 69
Lazdijų r. sav. 0,00256 −23,04 −22,96 12,52
Skuodo r. sav. 0, 005249 −14, 88 −14, 94 8, 44
Vilkaviškio r. sav. 0, 00175 −22, 57 −22, 63 12, 29

F Subindeksas
Kalvarijos sav. 0, 001 −30, 56 −30, 48 16, 28
Kelmės r. sav. 0, 002117 −21, 24 −21, 29 11, 62
Lazdijų r. sav. 0, 0009287 −27, 01 −27, 06 14, 5
Skuodo r. sav. 0,0001488 −39,82 −39,88 20,91
Vilkaviškio r. sav. 0, 0007618 −28, 39 −28, 45 15, 2

1 lentelė: ARIMA modelio rezultatai visiems subindeksams pagal mažiausią GKI turinčias sa-
vivaldybes

Čia:
σ2 – Liekanų empirinė dispersija (2.8).
AIC – Akaike informacinis kriterijus (2.9).
BIC – Bajeso informacinis kriterijus (2.10).
Log Likelihood – Logaritminė tikėtinumo funkcija (2.11).
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ir Logaritminės tikėtinumo funkcijos įverčiai buvo atitinkamai −30, 82, −30, 88 ir 16, 41.
Tuo tarpu prasčiausias ARIMA modelis C subindeksui buvo Kelmės rajono savivaldybei.
Šios savivaldybės ARIMA modelio AIC, BIC ir Logaritminės tikėtinumo funkcijos įverčiai
buvo −15, 71, −15, 76 ir 8, 85. Vertinant tuos pačius ARIMA modelio įverčius tolimesniam
D subindeksui, matome, jog geriausiai sumodeliuota buvo Vilkaviškio rajono savivaldybė,
AIC buvo −28, 7, BIC buvo −28, 62 ir Logaritminės tikėtinumo funkcijos reikšmė buvo
15, 35. Prasčiausiai sumodeliuota buvo Kalvarijos savivalybė – AIC buvo −7, 86, BIC
buvo −7, 91 bei Logaritminės tikėtinumo funkcijos reikšmė buvo 4, 93. Žiūrint į E su-
bindekso rezultatus, matome, jog geriausi modelio rezultatai atsispindėjo Lazdijų rajono
savivaldybėje, o prasčiausi – Skuodo rajono savivaldybėje. F subindekso rezultatai leidžia
daryti išvadą, jog geriausiai sumodeliuota buvo Skuodo rajono savivaldybė, o prasčiausiai
– Kelmės rajono savivaldybė.
Žiūrint į 2 lentelę, matome ARIMA modelio įverčius likusiems subindeksams. Pagal A
subindeksą aukščiausią σ2 reikšmę 0,04938 turėjo Birštono savivaldybė. Ši savivaldybė
taip pat turėjo aukščiausias AIC 0,81 bei BIC 0,75 reikšmes ir žemiausią Logaritminės
tikėtinumo funkcijos reikšmę 0,6, tad Birštono savivaldybės rezultatai pagal A subindeksą
buvo sumodeliuoti prasčiausiai. Geriausiai sumodeliuota buvo Kauno miesto savivaldybė,
kadangi jos σ2, AIC ir BIC reikšmės buvo mažiausios, o Logaritminės tikėtinumo funk-
cijos reikšmė buvo didžiausia. Sekančio B subindekso rezultatai rodo, jog prasčiausiai
sumodeliuota savivaldybė buvo Klaipėdos miesto, čia σ2 reikšmė buvo 0,03824, AIC buvo
–0,98, BIC buvo –1,04, o Logaritminės tikėtinumo funkcijos reikšmė buvo 1,49. Geriausiai
sumodeliuota savivaldybė pagal B subindekso ARIMA modelio rezultatus buvo Kauno ra-
jono savivaldybė. Kalbant apie C subindekso rezultatus, iš lentelės 2 matome, jog pagal
įverčių AIC, BIC ir Logaritminės tikėtinumo funkcijos reikšmes prasčiausiai sumodeliuota
buvo Birštono savivaldybė, jos įverčiai buvo atitinkamai –3,43, –3,48 ir 2,71. O tuo tar-
pu geriausiai sumodeliuota buvo Klaipėdos miesto savivaldybė. Tiesa, Klaipėdos miesto
savivaldybės įverčiai buvo labai panašūs ir į Vilniaus miesto savivaldybės įverčius, tad
galime teigti, jog šių abiejų miestų savivaldybės buvo geriausiai sumodeliuotos pagal C
subindeksą, geriausią GKI turinčioms savivaldybėms. Pagal D subindekso rezultatus ma-
tome, jog didžiausią σ2 reikšmę turėjo Vilniaus miesto savivaldybė. Ši savivaldybė taip
pat turėjo aukščiausias AIC –2,72 ir BIC –2,77 reikšmes bei žemiausią Logaritminės tikėti-
numo funkcijos reikšmę 2,36 ir tai rodo, jog ji sumodeliuota buvo prasčiausiai. Geriausiai
pagal D subindeksą sumodeliuota buvo Kauno rajono savivaldybė. Šios savivaldybės σ2

reikšmė buvo 0,003869, AIC buvo –17,02, BIC buvo –17,07, o Logaritminės tikėtinumo
funkcijos reikšmė buvo 9,51. E subindekso prasčiausiai sumodeliuotas reikšmes turėjo
Klaipėdos miesto savivaldybė, o geriausiai sumodeliuotas reikšmes turėjo Vilniaus mies-
to savivaldybė. Paskutiniojo F subindekso rezultatai rodo, jog prasčiausiai sumodeliuota
buvo Birštono savivaldybė, o geriausiai – Vilniaus miesto savivaldybė.

3.2.2 GAM modelio pritaikymas

Sekantis modelis, kuris buvo taikytas savivaldybių duomenims, buvo GAM modelis. Šis
modelis taip pat buvo pasirinktas pagal aktualią literatūrą [6] bei pagal modelio pritaiko-
mumą duomenims.
Analizė buvo atliekama identiška tvarka – pirma su 5 savivaldybėmis pagal žemiausią GKI,
po to su 5 savivaldybėmis pagal aukščiausią GKI. Modeliavimo procesui buvo naudojami
2013–2021 metų savivaldybių subindeksų duomenys.
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Savivaldybė σ2 AIC BIC Log Likelihood
A Subindeksas

Birštono sav. 0,04938 0,81 0,75 0,6
Kauno m. sav. 0,0007519 −31,91 −31,75 17,95
Kauno r. sav. 0,001318 −27,42 −27,26 15,71
Klaipėdos m. sav. 0,0009873 −29,73 −29,57 16,86
Vilniaus m. sav. 0,0008999 −30,47 −30,31 17,24

B Subindeksas
Birštono sav. 0,006557 −13,32 −13,38 7,66
Kauno m. sav. 0,005333 −14,77 −14,83 8,39
Kauno r. sav. 0,0023 −20,66 −20,71 11,33
Klaipėdos m. sav. 0,03824 −0,98 −1,04 1,49
Vilniaus m. sav. 0,003708 −17,32 −17,37 9,66

C Subindeksas
Birštono sav. 0,02696 −3,43 −3,48 2,71
Kauno m. sav. 0,003994 −16,8 −16,85 9,4
Kauno r. sav. 0,004222 −16,41 −16,46 9,2
Klaipėdos m. sav. 0,003493 −17,73 −17,79 9,87
Vilniaus m. sav. 0,003657 −17,41 −17,47 9,71

D Subindeksas
Birštono sav. 0,01234 −8,9 −8,95 5,45
Kauno m. sav. 0,009564 −10,68 −10,74 6,34
Kauno r. sav. 0,003869 −17,02 −17,07 9,51
Klaipėdos m. sav. 0,005811 −14,17 −14,22 8,09
Vilniaus m. sav. 0,02984 −2,72 −2,77 2,36

E Subindeksas
Birštono sav. 0,005431 −14,64 −14,7 8,32
Kauno m. sav. 0,004589 −15,82 −15,88 8,91
Kauno r. sav. 0,005186 −14,97 −15,02 8,48
Klaipėdos m. sav. 0,006423 −13,47 −13,52 7,73
Vilniaus m. sav. 0,001629 −23,07 −23,13 12,54

F Subindeksas
Birštono sav. 0,004038 −16,72 −16,77 9,36
Kauno m. sav. 0,001514 −23,59 −23,64 12,79
Kauno r. sav. 0,0008266 −32,08 −32 17,04
Klaipėdos m. sav. 0,001684 −22,84 −22,89 12,42
Vilniaus m. sav. 0,000301 −40,16 −40,08 21,08

2 lentelė: ARIMA modelio rezultatai visiems subindeksams pagal didžiausią GKI turinčias sa-
vivaldybes

Čia:
σ2 – Liekanų empirinė dispersija (2.8).
AIC – Akaike informacinis kriterijus (2.9).
BIC – Bajeso informacinis kriterijus (2.10).
Log Likelihood – Logaritminė tikėtinumo funkcija (2.11).
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Prieš pritaikant GAM modelį, duomenys buvo transformuoti į tą patį formatą, kaip ir
sudarinėjant ARIMA modelį. Taip pat buvo tikrinamos tam tikros duomenų bei modelio
prielaidos ir testai. Prieš sudarinėjant apibendrintąjį adityvųjį modelį, buvo tikrinamas
duomenų stacionarumas, naudojant ADF (Augmented Dickey–Fuller) testą. Jei duomenys
buvo nestacionarūs, buvo taikomas diferencijavimas ir sudaryti skirtumai laike, kurie pa-
dėjo pasiekti stacionarumą. Šiame modelyje buvo tikrinamos koreliacijos tarp kintamųjų
ir brėžiamas koreliacijų grafikas, siekiant patikrinti, ar nėra multikolinearumo problemos.
Tuomet buvo sudarytas bei pritaikytas GAM modelis. Taip pat duomenyse buvo paste-
bėtas ilgalaikis trendo poveikis, todėl modelyje jis buvo įtrauktas ir žymimas s(Y ear). Šis
trendas buvo didėjantis ir atspindėjo ankstesnių metų duomenų reikšmių augimo tenden-
ciją. Trendo įtraukimas į modelį pagerino tiek modeliavimo rezultatus, tiek prognozes.
Tuomet buvo peržiūrėta GAM modelio diagnostika, naudojantis gam.check(gam_model)
funkcija. Ši diagnostika tikrino liekanų pasiskirstymą, modelio dispersiją. Tai padeda
lengviau įvertinti, ar modelis gerai pritaikytas duomenims, ir, ar ateities prognozės bus
kiek įmanoma tikslesnės. Autokoreliacijai modelio liekanose nustatyti buvo naudojamas
Durbin – Watson testas. Jei šio testo p–reikšmė buvo mažesnė nei 0, 05, tai liekanose buvo
statistiškai reikšminga autokoreliacija ir tuomet buvo taikomas mišrus modelis (GAMM)
su AR(1) struktūra. Šis mišrus modelis padeda pašalinti autokoreliacijos problemą lie-
kanose. Po šio mišraus modelio vėl buvo atliekama modelio diagnostika, patikrinamos
liekanų charakteristikos. Liekanų dispersijai tikrinti buvo naudojamas Breusch–Pagan te-
stas. Jei testo p–reikšmė buvo mažesnė už 0, 05, tai rodė heteroskedastiškumo problemą,
tačiau šiame modelyje to nebuvo ir toliau buvo tikrinamas liekanų normalumas. Liekanų
normalumui tikrinti buvo naudojamas Shapiro–Wilk testas ir brėžiamas kvantilių palygi-
nimo (Q–Q plot) grafikas. Kadangi šio testo reikšmė buvo didesnė nei 0, 05 ir kvantilių
palyginimo grafike taškai buvo pasiskirstę aplink tiesę, taigi modelio liekanos buvo norma-
liai pasiskirsčiusios, modelio prielaidos buvo tenkinamos ir prognozės turėtų būti tikslios.
Liekanoms dar buvo tikrinti GARCH efektai ir atliekamas ARCH LM testas, kuris įver-
tina, ar likučių dispersija kinta laikui bėgant. Kadangi šio testo p–reikšmė buvo 0,5261,
GARCH efektai buvo nenustatyti, o tai rodė, kad likučių dispersija buvo stabili.
Šis GAM modelio algoritmas buvo taikomas visiems subindeksams 10–čiai savivadybių.

Subindeksas R2 (adj.) Nuokrypis GCV Mastelio įvertis

A −0,00587 12,3% 0,0025378 0,0021571
B 0,129 25,5% 0,00018648 0,00015547
C 0,0997 21,5% 0,0012756 0,0010843
D −0,0147 14,5% 0,0049138 0,0040351
E 0,212 39,1% 0,0017793 0,0013411
F −0,12 2,32% 0,00068147 0,00057925

3 lentelė: GAM modelio rezultatai subindeksams pagal mažiausią GKI turinčias savivaldybes
Čia:
R2 (adj.) – Koreguotas determinacijos koeficientas (2.17).
Nuokrypis – Nuokrypis (2.18).
GCV – Kryžminės validacijos įvertis (2.19).
Mastelio įvertis – Mastelio įvertis (2.20).

Gam modelio įverčiai, pateikti 3 lentelėje vaizduoja 4 statistinius GAM modelio įverčius
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visiems subindeksams. Pirmasis – Determinacijos koeficientas R2 (adj.), kuris padeda
tiksliau įvertinti modelio galingumą. Kadangi GAM modeliai naudoja ne tik linijinį sude-
rinamumą, R2 (adj.) reikšmę reikėtų interpretuoti atsargiai. Matome, jog mažiausią R2

(adj.) reikšmę turėjo F subindeksas –0,12, tuo tarpu aukščiausią šio koeficiento reikšmę
turėjo E subindeksas 0,212. Antrasis įvertis – Nuokrypis, kuris parodo modelio pritaiko-
mumą duomenims. Kuo mažesnis nuokrypis, tuo geriau modelis paaiškina duomenis, tad
matome, jog mažiausią reikšmę turėjo F subindeksas 2,32%, o didžiausią šio įverčio reikšmę
turėjo E subindeksas 39,1%. Trečiasis įvertis yra kryžminio validavimo įvertis (Generalized
Cross-Validation), kuris naudojamas parenkant modelio hiperparametrus. Kuo mažesnė
GCV reikšmė, tuo geriau. Mažiausią GCV reikšmę šioje lentelėje matome B subindeksui
0,00018648, o didžiausią – D subindeksui 0,0049138. Ir paskutinysis – Mastelio įvertis,
kuris parodo liekanų dispersiją. Kuo mažesnis mastelio įvertis, tuo geriau, nes tai rodo,
jog modelis geriau atitinka duomenis ir liekanų dispersija atitinkamai irgi yra maža. Iš
šios 3 lentelės matome, jog mažiausią mastelio įvertį turėjo B subindeksas 0,00015547, o
didžiausią – D subindeksas 0,0040351.

Subindeksas R2 (adj.) Nuokrypis GCV Mastelio įvertis

A −0,123 2,07% 0,0048907 0,0041571
B −0,042 9,16% 0,0052855 0,0044927
C −0,0787 5,96% 0,0037643 0,0031997
D 0,395 56,4% 0,0034449 0,0024215
E −0,0549 8,04% 0,003048 0,0025908
F −0,0213 11% 0,0010097 0,00085826

4 lentelė: GAM modelio rezultatai subindeksams pagal didžiausią GKI turinčias savivaldybes
Čia:
R2 (adj.) – Koreguotas determinacijos koeficientas (2.17).
Nuokrypis – Nuokrypis (2.18).
GCV – Kryžminės validacijos įvertis (2.19).
Mastelio įvertis – Mastelio įvertis (2.20).

Iš GAM modelio rezultatų subindeksams, pateiktų 4 lentelėje, matome identiškai suskirs-
tytus statistinius GAM modelio įverčius. Mažiausią Determinacijos koeficientą R2 (adj.)
turėjo A subindeksas –0,123, o didžiausią – D subindeksas 0,395. Nuokrypio įverčio ma-
žiausią reikšmę turėjo A subindeksas 2,07%, o didžiausią – D subindeksas 56,4%. Trečiasis,
kryžminio validavimo įvertis, (Generalized Cross-Validation), kuris naudojamas parenkant
modelio hiperparametrus, mažiausias buvo F subindeksui 0,0010097, o didžiausias – B
subindeksui 0,0052855. Mažiausią mastelio įvertį turėjo F subindeksas 0,00085826, o di-
džiausią – B subindeksas 0,0044927.
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Savivaldybė Įvertis Paklaida 95% P.I.

A Subindeksas
Kalvarijos sav. 0,0653 0,0164 [0,0331; 0,0974]
Kelmės r. sav. −0,0040 0,0232 [−0,0495; 0,0415]
Lazdijų r. sav. −0,0108 0,0232 [−0,0563; 0,0347]
Skuodo r. sav. 0,0015 0,0232 [−0,0440; 0,0470]
Vilkaviškio r. sav. 0,0011 0,0232 [−0,0445; 0,0466]

B Subindeksas
Kalvarijos sav. 0,0150 0,0044 [0,0064; 0,0237]
Kelmės r. sav. −0,0060 0,0062 [−0,0182; 0,0062]
Lazdijų r. sav. −0,0121 0,0062 [−0,0243; 0,0001]
Skuodo r. sav. −0,0136 0,0062 [−0,0258; −0,0013]
Vilkaviškio r. sav. −0,0065 0,0062 [−0,0188; 0,0057]

C Subindeksas
Kalvarijos sav. 0,0178 0,0051 [0,0078; 0,0279]
Kelmės r. sav. 0,0041 0,0072 [−0,0100; 0,0181]
Lazdijų r. sav. −0,0144 0,0072 [−0,0284; −0,0003]
Skuodo r. sav. 0,0002 0,0072 [−0,0139; 0,0142]
Vilkaviškio r. sav. −0,0081 0,0072 [−0,0222; 0,0059]

D Subindeksas
Kalvarijos sav. 0,0078 0,0118 [−0,0152; 0,0309]
Kelmės r. sav. −0,0005 0,0166 [−0,0330; 0,0320]
Lazdijų r. sav. −0,0114 0,0166 [−0,0439; 0,0211]
Skuodo r. sav. 0,0078 0,0166 [−0,0247; 0,0403]
Vilkaviškio r. sav. −0,0047 0,0166 [−0,0372; 0,0278]

E Subindeksas
Kalvarijos sav. −0,0126 0,0083 [−0,0288; 0,0037]
Kelmės r. sav. −0,0018 0,0117 [−0,0248; 0,0211]
Lazdijų r. sav. 0,0095 0,0117 [−0,0134; 0,0325]
Skuodo r. sav. 0,0081 0,0117 [−0,0149; 0,0310]
Vilkaviškio r. sav. 0,0098 0,0117 [−0,0132; 0,0327]

F Subindeksas
Kalvarijos sav. 0,0128 0,0085 [−0,0039; 0,0295]
Kelmės r. sav. −0,0002 0,0120 [−0,0238; 0,0234]
Lazdijų r. sav. −0,0042 0,0120 [−0,0278; 0,0194]
Skuodo r. sav. −0,0090 0,0120 [−0,0326; 0,0146]
Vilkaviškio r. sav. −0,0055 0,0120 [−0,0291; 0,0181]

5 lentelė: GAM modelių įverčiai pagal mažiausią GKI turinčias savivaldybes ir 95% pasikliovimo
intervalai

Čia:
Įvertis – Modelio įverčio reikšmė.
Paklaida – Standartinė paklaida (2.16).
95% P.I. – 95% Pasikliovimo intervalas (2.12).
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GAM modelių įverčiai pagal mažiausią GKI turinčias savivaldybes, pateikti 5 lentelėje, at-
skleidė, jog pagal A subindekso duomenis atitiko 95% pasikliovimo intervalus. Didžiausią
modelio įverčio koeficientą turėjo Kalvarijos savivaldybė 0,0653, taip pat ši savivaldybė
turėjo ir mažiausią standartinės paklaidos reikšmę 0,0164. Kitų savivaldybių standartinės
paklaidos reikšmės sutapo ir buvo didesnės, o mažiausią modelio įverčio koeficiento reikšmę
turėjo Lazdijų rajono savivaldybė –0,0108. B subindekse visi įverčiai taip pat atitiko 95%
pasikliovimo intervalus, o didžiausią įvertį turėjo taip pat Kalvarijos savivaldybė 0,0150.
Taip pat ši savivaldybė turėjo mažiausią standartinės paklaidos reikšmę 0,0044. Mažiau-
sią modelio įverčio reikšmę, B subindekso duomenimis, turėjo Skuodo rajono savivaldybė
–0,0136. C subindekso duomenyse taip pat visi įverčiai patenka į 95% pasikliovimo interva-
lą. Mažiausią įverčio reikšmė čia turėjo Lazdijų r. sav. –0,0144, o mažiausią standartinės
paklaidos reikšmę turėjo Kalvarijos sav. 0,0051. D subindekso įverčiai taip pat patenka į
pasikliovimo intervalo ribas. Mažiausią įverčio reikšmę turėjo Lazdijų r. sav. –0,0114, di-
džiausią – Kalvarijos ir Skuodo rajono savivaldybės 0,0078. E subindekso modelio įverčiai
taip pat atitinka 95% pasikliovimo intervalų ribas. Čia didžiausią įverčio reikšmę turėjo
Vilkaviškio rajono savivaldybė 0,0098, o mažiausią turėjo Kalvarijos savivaldybė –0,0126.
F subindekso kiekvienos savivaldybės GAM modelio įverčių koeficientų reikšmės atitinka
pasikliovimo intervalų ribas. Čia didžiausią įverčio reikšmę turėjo Kalvarijos savivaldybė
0,0128, o mažiausią – Skuodo rajono savivaldybė –0,0090.
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Savivaldybė Įvertis Paklaida 95% P.I.

A Subindeksas
Birštono sav. 0,0856 0,0228 [0,0409; 0,1303]
Kauno m. sav. −0,0059 0,0322 [−0,0691; 0,0573]
Kauno r. sav. 0,0035 0,0322 [−0,0597; 0,0667]
Klaipėdos m. sav. −0,0207 0,0322 [−0,0839; 0,0425]
Vilniaus m. sav. 0,0001 0,0322 [−0,0631; 0,0633]

B Subindeksas
Birštono sav. 0,0334 0,0237 [−0,0131; 0,0798]
Kauno m. sav. 0,0131 0,0335 [−0,0526; 0,0787]
Kauno r. sav. 0,0273 0,0335 [−0,0384; 0,0930]
Klaipėdos m. sav. 0,0129 0,0335 [−0,0528; 0,0786]
Vilniaus m. sav. 0,0567 0,0335 [−0,0090; 0,1224]

C Subindeksas
Birštono sav. 0,0225 0,0111 [0,0007; 0,0443]
Kauno m. sav. 0,0022 0,0157 [−0,0286; 0,0329]
Kauno r. sav. −0,0045 0,0157 [−0,0353; 0,0262]
Klaipėdos m. sav. −0,0040 0,0157 [−0,0347; 0,0268]
Vilniaus m. sav. −0,0063 0,0157 [−0,0370; 0,0245]

D Subindeksas
Birštono sav. 0,0180 0,0174 [−0,0161; 0,0521]
Kauno m. sav. −0,0093 0,0246 [−0,0575; 0,0390]
Kauno r. sav. −0,0038 0,0246 [−0,0521; 0,0444]
Klaipėdos m. sav. −0,0077 0,0246 [−0,0559; 0,0405]
Vilniaus m. sav. −0,0178 0,0246 [−0,0660; 0,0305]

E Subindeksas
Birštono sav. 0,0042 0,0180 [−0,0311; 0,0395]
Kauno m. sav. −0,0059 0,0255 [−0,0558; 0,0440]
Kauno r. sav. 0,0103 0,0255 [−0,0396; 0,0602]
Klaipėdos m. sav. −0,0124 0,0255 [−0,0623; 0,0375]
Vilniaus m. sav. −0,0135 0,0255 [−0,0634; 0,0364]

F Subindeksas
Birštono sav. 0,0279 0,0104 [0,0076; 0,0482]
Kauno m. sav. −0,0196 0,0146 [−0,0483; 0,0091]
Kauno r. sav. −0,0190 0,0146 [−0,0477; 0,0097]
Klaipėdos m. sav. −0,0165 0,0146 [−0,0452; 0,0122]
Vilniaus m. sav. −0,0173 0,0146 [−0,0460; 0,0114]

6 lentelė: GAM modelių įverčiai pagal didžiausią GKI turinčias savivaldybes ir 95% pasikliovimo
intervalai

Čia:
Įvertis – Modelio įverčio reikšmė.
Paklaida – Standartinė paklaida (2.16).
95% P.I. – 95% Pasikliovimo intervalas (2.12).
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Kalbant apie GAM modelio koeficientus ir pasikliovimo intervalus didžiausią GKI turin-
čioms savivaldybėms, iš 6 lentelės matome, jog pagal A subindekso duomenis visi įverčiai
atitiko 95% pasikliovimo intervalą. Pagal A subindekso duomenis didžiausią įverčio reikš-
mę turėjo Birštono savivaldybė 0,0856, o mažiausią turėjo Klaipėdos miesto savivaldybė
–0,0207. Tuomet pagal B subindekso duomenis visi įverčiai taip pat atitiko pasikliovimo
intervalus. Didžiausią iverčio reikšmę turėjo Vilniaus miesto savivaldybė 0,0567, o ma-
žiausią – Klaipėdos miesto savivaldybė 0,0129. C subindekso modelio įverčiai atitiko 95%
pasikliovimo intervalus. Didžiausią įverčio reikšmę turėjo Birštono savivaldybė 0,0225,
taip pat ši savivaldybė turėjo ir mažiausią standartinės paklaidos reikšmę 0,0111, o ma-
žiausią įverčio reikšmę turėjo Vilniaus miesto savivaldybė –0,0063. Pagal D subindekso
duomenis visi įverčiai atitiko pasikliovimo intervalų ribas. Čia didžiausią įverčio reikšmę
turėjo taip pat Birštono savivaldybė 0,0180, o mažiausią turėjo vėlgi Vilniaus miesto sa-
vivaldybė –0,0178. E bei F subindeksų duomenyse matome, jog GAM modelių įverčiai
visur atitiko pasikliovimo intervalus. Didžiausią įverčio reikšmę, E subindekso duomeni-
mis, turėjo Kauno rajono savivaldybė 0,0103, o mažiausią – Vilniaus miesto savivaldybė
–0,0135. Birštono savivaldybė pagal F subindekso duomenis turėjo didžiausią modelio
įverčio koeficiento reikšmę 0,0279, o mažiausią turėjo Kauno miesto savivaldybė –0,0196.

3.2.3 LSTM modelio pritaikymas

Trečiasis modelis, taikytas savivaldybių subindeksams, o po to ir gyvenimo kokybės in-
deksui prognozuoti, buvo LSTM (Long Short–Term Memory) modelis. Tiek LSTM, tiek
sekantis BiLSTM, modeliai buvo sudarinėjami su „Python” programa, kadangi tai yra gi-
liojo mokymosi modeliai. LSTM modelis buvo parinktas, atsižvelgiant į aktualią literatūrą
[3, 4, 5, 6]. Modelis buvo pasirinktas ir dėl savo patikimumo prognozuojant laiko eilučių
duomenis. Šis, giliojo neuroninio tinklo, modelis įsisavina duomenų informaciją per ilgą
laikotarpį ir geba ignoruoti triukšmą, tad jis yra tinkamas panelinių duomenų analizei bei
prognozavimui.
Prieš sudarinėjant modelį, buvo pasitelkta ta pati transformuotų duomenų struktūra, kaip
ir su ARIMA bei GAM modeliais. Tuomet buvo tikrinamas duomenų stacionarumas – svar-
biausia laiko eilučių duomenų analizės prielaida. Stacionarumas buvo tikrinamas su ADF
(Augmented Dickey – Fuller) testu. Jei duomenyse buvo aptiktas nestacionarumas, buvo
atliktas diferencijavimas ir pritaikyti skirtumai laike. Kadangi LSTM modelis yra jautrus
duomenų skalės skirtumams, buvo atliktas normalizavimas. Normalizavimas visas duome-
nų reikšmes sumažino iki intervalo [0, 1], taip užtikrindamas efektyvesnį modelio veikimą
bei tikslesnės ateities prognozes. Normalizavimui atlikti buvo pasitelkta MinMaxScaler
funkcija.
LSTM modelis buvo sukurtas, naudojant šias 3 komponentes: Įvesties sluoksnis, LSTM
sluoksnis bei tankio sluoksnis. Įvesties (Input) sluoksnis buvo 3 laiko žingsnių. Šios 3 anks-
tesnės duomenų reikšmės padėjo prognozuoti 4–ąją. Tuomet pagrindinė neuronų struktūra
šiame modelyje buvo 1 LSTM sluoksnis su 50 neuronų. Šis sluoksnis fiksuoja laiko priklau-
somybes, kurios yra duomenyse. Taip pat, šis sluoksnis turi sudėtingą vidinę struktūrą,
kurią sudaro LSTM ląstelės su 3 pagrindiniais vartais: Įėjimo vartai (Input Gate), Pamirši-
mo vartai (Forget Gate) ir Išėjimo vartai (Output Gate). Įėjimo vartai kontroliuoja, kokią
naują informaciją iš įvesties įtraukti į ląstelės būseną. Pamiršimo vartai nusprendžia, kuri
informacija iš ląstelės būsenos turi būti pamiršta, bei išėjimo vartai, kurie skirti, jog nu-
spręstų, kuri dalis ląstelės būsenos turėtų būti išvedama į kitą sluoksnį arba gaunama kaip
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galutinė prognozė. Ir paskutinysis – Tankio (Dense) sluoksnis, kuris sujungia LSTM sluoks-
nio išėjimą su vienintele prognozuota išvesties reikšme. Modelis buvo taikytas, naudojant
Adam optimizatorių, kuris yra dažniausiai naudojamas giliojo mokymosi algoritmuose dėl
greito ir efektyvaus optimizavimo. Modelio optimizavimas yra būtinas tam, jog LSTM mo-
delis galėtų mokytis. Nuostolių funkcija modelyje buvo vidutinio kvadratinio nuokrypio
(MSE). Ji padėjo nustatyti, kaip mokymosi metu modelis atnaujina savo svorius. Norint iš-
vengti modelio „persimokymo” (overfitting), buvo naudojama EarlyStopping funkcija. Jei
modelio nuostolių reikšmė nesumažėja per 2 epochas iš eilės – modelio mokymasis yra su-
stabdomas. Tai padėjo išvengti per daug gero modelio pritaikymo treniravimo duomenims
ir netikslių ateities prognozių. Modelio treniravimas vyko per 5 epochas ir jo treniravimas
bei testavimas buvo atliekamas su tais pačiais duomenimis. Toliau buvo atliekama vieno
žingsnio prognozė subindeksams kiekvienai iš savivaldybių.
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A subindeksas
Savivaldybė 1E 2E 3E 4E 5E Pokytis %
Kalvarijos sav. 0,4541 0,4395 0,4252 0,4113 0,3976 12,44%
Kelmės r. sav. 0,5689 0,5518 0,5349 0,5183 0,5018 11,79%
Lazdijų r. sav. 0,2969 0,2851 0,2737 0,2627 0,2520 15,12%
Skuodo r. sav. 0,6341 0,6122 0,5906 0,5693 0,5481 13,56%
Vilkaviškio r. sav. 0,3218 0,3077 0,2941 0,2809 0,2683 16,63%

B subindeksas
Kalvarijos sav. 0,3365 0,3265 0,3168 0,3072 0,2979 11,47%
Kelmės r. sav. 0,1244 0,1177 0,1113 0,1051 0,0992 20,26%
Lazdijų r. sav. 0,7394 0,7142 0,6896 0,6655 0,6420 13,17%
Skuodo r. sav. 0,4956 0,4728 0,4503 0,4281 0,4063 18,02%
Vilkaviškio r. sav. 0,2765 0,2698 0,2632 0,2568 0,2506 9,37%

C subindeksas
Kalvarijos sav. 0,3018 0,2931 0,2846 0,2764 0,2684 11,07%
Kelmės r. sav. 0,2040 0,2001 0,1964 0,1928 0,1893 7,21%
Lazdijų r. sav. 0,5684 0,5500 0,5320 0,5144 0,4972 12,53%
Skuodo r. sav. 0,4811 0,4616 0,4425 0,4238 0,4055 15,71%
Vilkaviškio r. sav. 0,2828 0,2742 0,2660 0,2580 0,2502 11,53%

D subindeksas
Kalvarijos sav. 0,3071 0,2989 0,2910 0,2833 0,2757 10,22%
Kelmės r. sav. 0,5727 0,5534 0,5344 0,5157 0,4974 13,15%
Lazdijų r. sav. 0,5195 0,5029 0,4867 0,4709 0,4554 12,34%
Skuodo r. sav. 0,4056 0,3947 0,3841 0,3736 0,3634 10,40%
Vilkaviškio r. sav. 0,3432 0,3316 0,3205 0,3097 0,2993 12,79%

E subindeksas
Kalvarijos sav. 0,3733 0,3643 0,3555 0,3471 0,3389 9,22%
Kelmės r. sav. 0,4842 0,4694 0,4549 0,4409 0,4273 11,75%
Lazdijų r. sav. 0,3836 0,3680 0,3527 0,3379 0,3236 15,64%
Skuodo r. sav. 0,3364 0,3245 0,3131 0,3022 0,2917 13,29%
Vilkaviškio r. sav. 0,3680 0,3561 0,3446 0,3333 0,3225 12,36%

F subindeksas
Kalvarijos sav. 0,1727 0,1639 0,1555 0,1472 0,1393 19,34%
Kelmės r. sav. 0,4766 0,4566 0,4372 0,4182 0,3998 16,11%
Lazdijų r. sav. 0,2077 0,2006 0,1937 0,1872 0,1810 12,86%
Skuodo r. sav. 0,2294 0,2236 0,2180 0,2126 0,2075 9,55%
Vilkaviškio r. sav. 0,3435 0,3299 0,3167 0,3039 0,2915 15,14%

7 lentelė: LSTM modelio mokymosi nuostoliai per 5 epochas ir procentinis sumažėjimas ma-
žiausią GKI turinčioms savivaldybėms

Čia:
1E – 1 Epochos reikšmė, 2E – 2 Epochos reikšmė ir t.t.

Žvelgiant į 7 lentelę, kuri atspindi LSTM Modelio mokymosi nuostolius per 5 epochas,
mažiausią GKI turinčioms savivaldybėms, matome visų savivaldybių pagal 6 subindeksus
5 epochų konvergavimą treniruojant LSTM modelį. Kuomet pirmą kartą buvo sudari-
nėjamas LSTM modelis, epochų skaičius buvo 10, tačiau dėl per ilgo modelio suveikimo
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laiko, epochų skaičius buvo pakeistas į 5. Penkios epochos buvo pasirinktos, atsižvelgiant į
geriausią modelio prisitaikymą prie duomenų, nesukeliant prieš tai minėtos modelio persi-
mokymo „overfitting” problemos. Pasirinkus šį epochų skaičių, modelis padėjo sumažinti
nuostolių funkcijos reikšmes bei padidinti savo tikslumą. Pagal A subindeksą, iš 7 lentelės
matome, kaip sumažėjo Mažiausių kvadratų nuostolių funkcijos reikšmės nuo pirmos iki
penktos epochos kiekvienai savivaldybei. Didžiausią nuostolių funkcijos sumažėjimą pa-
tyrė Vilkaviškio rajono savivaldybė. Jos nuostolių funkcijos reikšmė sumažėjo nuo 0,3218
pirmoje epochoje iki 0,2683 penktoje epochoje, procentaliai tai yra 16,63%. Mažiausiai
nuostolių funkcija sumažėjo Kelmės rajono savivaldybėje 11,79%. Kalbant apie B su-
bindekso duomenis, matome, jog labiausiai nuostolių funkcija sumažėjo Kelmės rajono
savivaldybei 20,26%, o mažiausiai – Vilkaviškio rajono savivaldybei 9,37%. C subindek-
so modelio epochų konvergavimo rezultatuose matome, jog labiausiai nuostolių funkcijos
reikšmė sumažėjo Skuodo rajono savivaldybėje 15,71%, o mažiausiai Kelmės rajono savi-
valdybėje 7,21%. Tuomet matome, jog pagal D subindeksą didžiausias reikšmių pokytis
buvo Kelmės rajono savivaldybėje ir atitiko 13,15%, o mažiausias buvo Kalvarijos savival-
dybėje ir atitiko 10,22%. E subindekso rezultatai rodo, jog didžiausią nuostolių funkcijos
reikšmę turėjo Lazdijų r. sav., kuri sumažėjo nuo 0,3836 iki 0,3236 (15,64%), o mažiausiai
pakitusią reikšmę turėjo Kalvarijos savivaldybė – nuo 0,3733 iki 0,3389 (9,22%). Ir pas-
kutiniojo – F subindekso rezultatai rodo, jog didžiausias nuostolių funkcijos pokytis buvo
Kalvarijos savivaldybėje 19,34%, o mažiausias – Skuodo rajono savivaldybėje 9,55%.
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A subindeksas
Savivaldybė 1E 2E 3E 4E 5E Pokytis %
Birštono sav. 0,5181 0,5001 0,4825 0,4655 0,4490 13,34%
Kauno m. sav. 0,1360 0,1297 0,1235 0,1176 0,1119 17,72%
Kauno r. sav. 0,3671 0,3583 0,3498 0,3415 0,3334 9,18%
Klaipėdos m. sav. 0,6499 0,6295 0,6095 0,5899 0,5706 12,20%
Vilniaus m. sav. 0,3183 0,3058 0,2936 0,2819 0,2705 15,02%

B subindeksas
Birštono sav. 0,2251 0,2185 0,2121 0,2059 0,2000 11,15%
Kauno m. sav. 0,3488 0,3358 0,3230 0,3106 0,2984 14,45%
Kauno r. sav. 0,4758 0,4645 0,4534 0,4424 0,4314 9,33%
Klaipėdos m. sav. 0,3698 0,3552 0,3410 0,3274 0,3142 15,04%
Vilniaus m. sav. 0,3586 0,3482 0,3380 0,3280 0,3182 11,27%

C subindeksas
Birštono sav. 0,3921 0,3805 0,3691 0,3581 0,3473 11,43%
Kauno m. sav. 0,2248 0,2207 0,2167 0,2128 0,2090 7,03%
Kauno r. sav. 0,3983 0,3847 0,3714 0,3584 0,3457 13,21%
Klaipėdos m. sav. 0,3021 0,2930 0,2843 0,2758 0,2676 11,42%
Vilniaus m. sav. 0,2061 0,2028 0,1996 0,1965 0,1936 6,07%

D subindeksas
Birštono sav. 0,5710 0,5511 0,5317 0,5130 0,4949 13,33%
Kauno m. sav. 0,2650 0,2522 0,2398 0,2278 0,2162 18,42%
Kauno r. sav. 0,2938 0,2848 0,2761 0,2676 0,2594 11,71%
Klaipėdos m. sav. 0,3331 0,3193 0,3061 0,2933 0,2809 15,67%
Vilniaus m. sav. 0,5454 0,5287 0,5125 0,4967 0,4812 11,77%

E subindeksas
Birštono sav. 0,3501 0,3371 0,3244 0,3123 0,3005 14,17%
Kauno m. sav. 0,3994 0,3861 0,3732 0,3608 0,3487 12,69%
Kauno r. sav. 0,3809 0,3696 0,3586 0,3480 0,3377 11,34%
Klaipėdos m. sav. 0,1978 0,1930 0,1885 0,1843 0,1804 8,80%
Vilniaus m. sav. 0,5833 0,5605 0,5386 0,5174 0,4969 14,81%

F subindeksas
Birštono sav. 0,3148 0,3019 0,2894 0,2773 0,2657 15,60%
Kauno m. sav. 0,7945 0,7687 0,7437 0,7193 0,6955 12,46%
Kauno r. sav. 0,2364 0,2248 0,2135 0,2024 0,1917 18,91%
Klaipėdos m. sav. 0,2125 0,2072 0,2022 0,1974 0,1930 9,18%
Vilniaus m. sav. 0,3187 0,3082 0,2981 0,2885 0,2793 12,36%

8 lentelė: LSTM modelio mokymosi nuostoliai per 5 epochas ir procentinis sumažėjimas didžiau-
sią GKI turinčioms savivaldybėms

Čia:
1E – 1 Epochos reikšmė, 2E – 2 Epochos reikšmė ir t.t.

Kalbant apie LSTM modelio epochų rezultatus, pagal didžiausią GKI turinčias savivaldy-
bes, pateiktus 8 lentelėje matome, jog Mažiausių kvadratų nuostolių funkcijos didžiausias
pokytis buvo Kauno miesto savivaldybėje. Čia funkcijos reikšmės nuo 1 iki 5 epochos
kito nuo 0,1360 iki 0,1119 (17,72%), tuo tarpu mažiausias pokytis buvo Kauno rajono
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savivaldybėje – nuo 0,3671 iki 0,3334 (9,18%). B subindekso rezultatuose matome, jog
didžiausias pokytis buvo Klaipėdos miesto savivaldybėje 15,04%, o mažiausias – Kauno
rajono savivaldybėje 9,33%. Tuo tarpu pastaroji, Kauno rajono savivaldybė, pagal C su-
bindekso duomenis turėjo didžiausią nuostolių funkcijos pokytį 13,21%, o mažiausią turėjo
Vilniaus miesto savivaldybė 6,07%. Kalbant apie D subindekso duomenis, čia didžiausią
Mažiausių kvadratų nuostolių funkcijos reikšmę turėjo Kauno miesto savivaldybė 18,42%,
o mažiausią – Kauno rajono savivaldybė 11,71%. Paskutiniuosiuose E ir F subindeksuose
didžiausias nuostolių funkcijų reikšmes turėjo atitinkamai Vilniaus miesto 14,81% ir Kau-
no rajono savivaldybės 18,91%, o mažiausią procentinį pokytį abiejuose subindeksuose
turėjo Klaipėdos miesto savivaldybė, atitinkamai 8,8% bei 9,18%. Visų kitų savivaldybių
nuostolių funkcijų reikšmes per 5 epochas galima pamatyti 8 lentelėje .

3.2.4 BiLSTM modelio pritaikymas

Ketvirtas modelis, taikytas savivaldybių laiko eilučių duomenims prognozuoti, buvo BiLSTM
(Bidirectional Long Short–Term Memory) modelis. Šis dvikryptis modelis yra patobulinta
LSTM modelio versija. Šio modelio prognozavimo technika išsiskiria tuo, jog yra sudaryta
iš 2 krypčių. Pirmoji kryptis, einanti į priekį, arba kitaip - „Forward”, remiasi ankstesniais
laiko žingsniais, o sekanti, atgalinė kryptis „Backward”, analizuoja praeities duomenų in-
formaciją, atsižvelgdama į būsimus laiko žingsnius, sudarinėjant prognozes. Pagrindinis
skirtumas tarp LSTM ir BiLSTM modelių yra toks, jog LSTM modelis prognozuoja tik iš
praeities duomenų, o tuo tarpu BiLSTM modelis prognozuoja 2 kryptimis – iš praeities į
dabartį ir iš ateities į dabartį. Prognozavimas 2 kryptimis pagerina dabarties reikšmių mo-
deliavimą ir modeliuotų reikšmių prognozių tikslumą. BiLSTM modelis buvo sudarytas,
naudojantis „Python” programa ir parinktas pagal aktualią literatūrą [5]. Tad BiLSTM
modelis buvo sudarytas, norint palyginti šio bei kito giliojo mokymosi modelio LSTM
prognozes.
Sudarinėjant BiLSTM modelį, buvo analizuojami savivaldybių laiko eilučių duomenys,
kurie buvo transformuoti identiškai, kaip ir prieš tai aprašytų modelių analizėje. Trans-
formuotiems duomenims buvo tikrinama stacionarumo prielaida, naudojantis ADF (Aug-
mented Dickey–Fuller) testu. Jei šio testo p–reikšmė buvo didesnė, nei 0, 05, reiškė, jog
duomenys buvo nestacionarūs ir buvo atliekamas diferencijavimas. Taip pat duomenys
buvo normalizuoti, naudojant MinMaxScaler funkciją, intervale [0;1]. Normalizavimas
padeda užtikrinti efektyvesnį modelio veikimą ir tikslesnes prognozes, nes duomenys būna
toje pačioje skalėje.
BiLSTM modelis buvo sukurtas, naudojant 3 komponentes: Įvesties sluoksnis, Dvikryptis
LSTM sluoksnis ir Tankio sluoksnis. Įvesties (Input) sluoksnis turėjo 3 laiko žingsnius,
kaip ir LSTM modelyje. Tuomet, pagrindinis Dvikryptis LSTM sluoksnis turėjo 50 neu-
ronų ir veikė 2 kryptimis (Forward ir Backward). Šio sluoksnio ląstelės viduje naudojami
3 pagrindiniai vartai (Įėjimo, Pamiršimo ir Išėjimo vartai), kurie reguliuoja, kokią infor-
maciją išsaugoti arba atmesti kiekviename laiko žingsnyje. Paskutinis – Tankio (Dense)
sluoksnis susieja dvikrypčio LSTM sluoksnio išėjimą su viena galutine prognoze. BiLSTM
modelis buvo optimizuotas, naudojant efektyvų Adam optimizavimo algoritmą bei Vidu-
tinio kvadratinio nuokrypio nuostolių funkciją. Taip pat, norint išvengti „persimokymo”
(overfitting) problemos, buvo naudojama EarlyStopping funkcija, jei modelio nuostoliai
per 2 epochas nesumažėjo. Modelis buvo treniruojamas per 5 epochas. Modelio trenira-
vimas ir testavimas vyko su tais pačiais duomenimis ir toliau buvo atliekama 1 žingsnio
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prognozė subindeksams.

A subindeksas
Savivaldybė 1E 2E 3E 4E 5E Pokytis %
Kalvarijos sav. 0,4213 0,4003 0,3798 0,3600 0,3408 19,11%
Kelmės r. sav. 0,5691 0,5402 0,5120 0,4846 0,4579 19,54%
Lazdijų r. sav. 0,3052 0,2875 0,2708 0,2548 0,2398 21,43%
Skuodo r. sav. 0,7925 0,7515 0,7115 0,6725 0,6345 19,94%
Vilkaviškio r. sav. 0,3083 0,2890 0,2707 0,2535 0,2374 23,00%

B subindeksas
Kalvarijos sav. 0,3224 0,3086 0,2954 0,2826 0,2704 16,13%
Kelmės r. sav. 0,1679 0,1545 0,1420 0,1302 0,1192 29,01%
Lazdijų r. sav. 0,6743 0,6368 0,6005 0,5654 0,5315 21,18%
Skuodo r. sav. 0,7306 0,6886 0,6480 0,6088 0,5710 21,85%
Vilkaviškio r. sav. 0,2943 0,2824 0,2709 0,2599 0,2494 15,26%

C subindeksas
Kalvarijos sav. 0,2966 0,2830 0,2699 0,2572 0,2450 17,40%
Kelmės r. sav. 0,2159 0,2094 0,2033 0,1977 0,1924 10,88%
Lazdijų r. sav. 0,6402 0,6140 0,5885 0,5637 0,5396 15,71%
Skuodo r. sav. 0,6569 0,6248 0,5936 0,5632 0,5337 18,75%
Vilkaviškio r. sav. 0,2590 0,2491 0,2395 0,2304 0,2216 14,44%

D subindeksas
Kalvarijos sav. 0,2891 0,2783 0,2679 0,2580 0,2485 14,04%
Kelmės r. sav. 0,6149 0,5871 0,5601 0,5339 0,5085 17,30%
Lazdijų r. sav. 0,4712 0,4472 0,4240 0,4016 0,3801 19,33%
Skuodo r. sav. 0,3759 0,3619 0,3482 0,3349 0,3221 14,31%
Vilkaviškio r. sav. 0,2823 0,2701 0,2586 0,2477 0,2374 15,91%

E subindeksas
Kalvarijos sav. 0,3535 0,3428 0,3325 0,3225 0,3130 11,46%
Kelmės r. sav. 0,4289 0,4065 0,3853 0,3652 0,3462 19,28%
Lazdijų r. sav. 0,3384 0,3200 0,3024 0,2854 0,2692 20,45%
Skuodo r. sav. 0,3467 0,3301 0,3142 0,2991 0,2846 17,91%
Vilkaviškio r. sav. 0,3162 0,3018 0,2880 0,2749 0,2624 17,01%

F subindeksas
Kalvarijos sav. 0,1495 0,1389 0,1288 0,1190 0,1097 26,62%
Kelmės r. sav. 0,4563 0,4324 0,4091 0,3866 0,3648 20,05%
Lazdijų r. sav. 0,2602 0,2458 0,2324 0,2197 0,2080 20,06%
Skuodo r. sav. 0,2319 0,2245 0,2174 0,2107 0,2044 11,86%
Vilkaviškio r. sav. 0,2929 0,2766 0,2609 0,2458 0,2313 21,03%

9 lentelė: BiLSTM modelio mokymosi nuostoliai per 5 epochas ir procentinis sumažėjimas ma-
žiausią GKI turinčioms savivaldybėms

Čia:
1E – 1 Epochos reikšmė, 2E – 2 Epochos reikšmė ir t.t.

Šioje 9 lentelėje matome BiLSTM modelio mokymosi nuostolių rezultatus per 5 epochas,
mažiausią GKI turinčioms savivaldybėms. BiLSTM modelyje epochų mokymosi procesas
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yra toks pats, kaip ir LSTM modelyje. Čia taip pat buvo pirma parinktos 10 epochų, tačiau
dėl per ilgo modelio veikimo laiko, epochų skaičius buvo pakeistas į 5. Pagal A subindek-
so rezultatus visoms savivaldybėms matome, jog Mažiausių kvadratų nuostolių funkcijos
didžiausias sumažėjimas buvo Vilkaviškio rajono savivaldybėje – nuo 0,3083 iki 0,2374
(23,00%), o mažiausias buvo Kalvarijos savivaldybėje – nuo 0,4213 iki 0,3408 (19,11%).
Kalbant apie B subindekso rezultatus, matome, jog nuostolių funkcijos didžiausias skir-
tumas tarp 1 ir 5 epochos buvo Kelmės rajono savivaldybėje 29,01%, o mažiausias buvo
Vilkaviškio rajono savivaldybėje 15,26%. C subindekso rezultatai rodo, jog didžiausias
nuostolių funkcijos reikšmės pokytis buvo Skuodo rajono savivaldybėje 18,75%, o mažiau-
sias buvo Kelmės rajono savivaldybėje 10,88%. Tuomet D subindekso epochų rezultatai
rodo, jog didžiausias epochų skirtumas buvo Lazdijų rajono savivaldybėje ir siekė 19,33%,
tuo tarpu mažiausias 5 epochų skirtumas lyginant nuo 1 iki 5 buvo Kalvarijos savivaldy-
bėje ir siekė 14,04%. Paskutiniuosiuose E ir F subindeksuose atitinkamai didžiausi epochų
skirtumai buvo Lazdijų rajono (20,45%) ir Kalvarijos (26,62%) savivaldybėse, o mažiausi
skirtumai buvo atitinkamai Kalvarijos 11,46% ir Skuodo rajonų savivaldybėse 11,86%.
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A subindeksas
Savivaldybė 1E 2E 3E 4E 5E Pokytis %
Birštono sav. 0,4546 0,4321 0,4103 0,3891 0,3686 18,92%
Kauno m. sav. 0,1656 0,1552 0,1453 0,1360 0,1272 23,19%
Kauno r. sav. 0,3286 0,3164 0,3049 0,2940 0,2838 13,63%
Klaipėdos m. sav. 0,6096 0,5834 0,5578 0,5326 0,5079 16,68%
Vilniaus m. sav. 0,2988 0,2826 0,2670 0,2521 0,2377 20,45%

B subindeksas
Birštono sav. 0,2395 0,2299 0,2208 0,2123 0,2042 14,74%
Kauno m. sav. 0,3818 0,3610 0,3410 0,3220 0,3038 20,43%
Kauno r. sav. 0,4996 0,4798 0,4605 0,4415 0,4230 15,33%
Klaipėdos m. sav. 0,3968 0,3775 0,3591 0,3415 0,3246 18,20%
Vilniaus m. sav. 0,3330 0,3188 0,3050 0,2917 0,2787 16,31%

C subindeksas
Birštono sav. 0,3643 0,3488 0,3339 0,3194 0,3054 16,17%
Kauno m. sav. 0,2296 0,2238 0,2182 0,2129 0,2078 9,49%
Kauno r. sav. 0,3950 0,3741 0,3540 0,3349 0,3166 19,85%
Klaipėdos m. sav. 0,2867 0,2748 0,2633 0,2522 0,2416 15,73%
Vilniaus m. sav. 0,2043 0,1997 0,1953 0,1912 0,1872 8,37%

D subindeksas
Birštono sav. 0,4146 0,3920 0,3702 0,3490 0,3286 20,74%
Kauno m. sav. 0,3129 0,2946 0,2770 0,2601 0,2440 22,02%
Kauno r. sav. 0,2849 0,2728 0,2613 0,2504 0,2400 15,76%
Klaipėdos m. sav. 0,3142 0,2973 0,2813 0,2662 0,2519 19,83%
Vilniaus m. sav. 0,4520 0,4325 0,4136 0,3953 0,3776 16,46%

E subindeksas
Birštono sav. 0,3844 0,3646 0,3459 0,3282 0,3115 18,96%
Kauno m. sav. 0,3249 0,3083 0,2924 0,2773 0,2630 19,05%
Kauno r. sav. 0,3415 0,3284 0,3159 0,3040 0,2926 14,32%
Klaipėdos m. sav. 0,2111 0,2033 0,1959 0,1891 0,1829 13,36%
Vilniaus m. sav. 0,4501 0,4227 0,3964 0,3714 0,3477 22,75%

F subindeksas
Birštono sav. 0,3419 0,3232 0,3053 0,2882 0,2718 20,50%
Kauno m. sav. 0,7154 0,6768 0,6397 0,6041 0,5700 20,32%
Kauno r. sav. 0,3845 0,3606 0,3378 0,3160 0,2953 23,20%
Klaipėdos m. sav. 0,2070 0,1998 0,1933 0,1874 0,1821 12,03%
Vilniaus m. sav. 0,3443 0,3283 0,3131 0,2987 0,2852 17,17%

10 lentelė: BiLSTM modelio mokymosi nuostoliai per 5 epochas ir procentinis sumažėjimas
didžiausią GKI turinčioms savivaldybėms

Čia:
1E – 1 Epochos reikšmė, 2E – 2 Epochos reikšmė ir t.t.

BiLSTM modelio mokymosi nuostolių 10 lentelėje matome BiLSTM modelio mokymosi
nuostolius per 5 epochas, didžiausią GKI turinčioms savivaldybėms. Pagal A subindekso
duomenis, didžiausias pokytis tarp epochų buvo Kauno miesto savivaldybėje – nuo 0,1656
iki 0,1272 (23,19%), o mažiausias buvo Kauno rajono savivaldybėje – nuo 0,3286 iki 0,2838
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(13,63%). Pagal B subindekso duomenis matome, jog didžiausias epochų pokytis tarp 1 ir
5 buvo Kauno miesto savivaldybėje – nuo 0,3818 iki 0,3038 (20,43%), o mažiausias Biršto-
no savivaldybėje – nuo 0,2395 iki 0,2042 (14,74%). Kalbant apie C subindekso rezultatus,
didžiausią nuostolių funkcijos pokytį turėjo Kauno rajono savivaldybė – nuo 0,3950 iki
0,3166 (19,85%), o mažiausią turėjo Vilniaus miesto savivaldybė – nuo 0,2043 iki 0,1872
(8,37%). D ir E subindeksų rezultatai rodo, jog didžiausi Mažiausių kvadratų nuostolių
funkcijos reikšmių pokyčiai buvo atitinkamai Kauno miesto savivaldybėje – nuo 0,3129 iki
0,2440 (22,02%) ir Vilniaus miesto savivaldybėje – nuo 0,4501 iki 0,3477 (22,75%). O ma-
žiausi pokyčiai buvo atitinkamai Kauno rajono savivaldybėje 15,76% bei Klaipėdos miesto
savivaldybėje 13,36%. Paskutiniojo F subindekso epochų rezultatai rodo, jog didžiausias
pokytis buvo Kauno rajono savivaldybėje 23,20%, o mažiausias – Klaipėdos miesto savi-
valdybėje 12,03%.

3.3 Prognozavimas

3.3.1 ARIMA modelio prognozės

Sudarius 4 modelius subindeksų duomenims, buvo atliktas laiko eilučių prognozavimas
2022 metams, t.y., vieneriems metams į priekį. Norint prognozuoti GKI, visų pirma reikia
turėti subindeksų prognozes. Pirmos prognozės buvo atliktos su ARIMA modeliu. Kaip
buvo minėta anksčiau, jei laiko eilutė buvo nestacionari, jai buvo taikytas diferencijavimas
ir imti skirtumai laike. Kadangi po skirtumų laike 2013 metų reikšmės kai kur tapo tuščios,
jas reikėjo pašalinti. Atliekant prognozavimą, kai kur buvo imtos ne originalios duomenų
reikšmės, o skirtumai laike. Taigi, tuo atveju, ARIMA modelis buvo pritaikytas jau di-
ferencijuotiems duomenims, tad norint gauti vėl originalias prognozuotas reikšmes reikėjo
panaikinti diferencijavimą. Jei laiko eilutei buvo atliktas pirmo lygio diferencijavimas, prie
prognozuotos reikšmės buvo pridedama paskutinė originalios laiko eilutės reikšmė. Jei rei-
kėjo taikyti antro lygio diferencijavimą, tai prognozuotos reikšmės buvo susumuojamos su
paskutiniu skirtumu tarp ankstesnių metų ir dar pridėtos prie priešpaskutinės originalios
reikšmės ir taip gautos originalios prognozuotos subindeksų reikšmės. Kuomet jau buvo
gautos subindeksų prognozės, prognozuotos reikšmės buvo padaugintos iš atitinkamų svo-
rių, susumuotos ir buvo gautas Gyvenimo kokybės indeksas. Gyvenimo kokybės indekso
prognozuotoms reikšmėms tikrinti buvo pasitelktos Monte Karlo simuliacijos (žr. 2.2.9
skyrelį). Monte Karlo simuliacijos leidžia įvertinti GKI prognozių tikslumą, atsižvelgiant į
kiekvieno subindekso prognozuotas reikšmes. Kiekvienai savivaldybei buvo atliekama 100
simuliacijų. Simuliacijų metu subindeksų reikšmės buvo generuojamos atsitiktinai, laikant,
jog skirstinys yra tolygusis. Reikšmės atspindėjo galimus subindeksų svyravimus. Tuomet
sugeneruotos subindeksų reikšmės simuliacijų metu buvo padaugintos iš savo svorių ir bu-
vo gautos GKI reikšmės. Iš visų gautų GKI reikšmių, kurių buvo 100, buvo apskaičiuotas
GKI vidurkis ir gauti 95% pasikliovimo intervalai. Pasikliovimo intervalai buvo gauti pa-
sitelkiant 2,5% ir 97,5% kvantilius. Ši analizė padėjo įvertinti prognozuotų GKI reikšmių
patikimumą ir buvo taikoma su visais kitais likusiais modeliais: GAM, LSTM ir BiLSTM.
Kalbant apie ARIMA modelio prognozių rezultatus pagal mažiausią GKI turinčias savi-
valdybes kiekvienam iš subindeksų, 11 lentelėje matome, jog pagal A subindekso duome-
nis, visos prognozės atitiko 95% pasikliovimo intervalus. Didžiausią liekanų dispersijos
ir standartinės paklaidos reikšmę turėjo Lazdijų rajono savivaldybė, atitinkamai 0,01226
ir 0,1107, o mažiausias atitinkamas reikšmes turėjo Kelmės r. sav. 0,001142 ir 0,0316.
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Savivaldybė Prognozė σ2 Paklaida 95% P.I.

A Subindeksas
Kalvarijos sav. 0,72768 0,005734 0,0757 [0,5795, 0,8758]
Kelmės r. sav. 0,85726 0,001142 0,0316 [0,7951, 0,9194]
Lazdijų r. sav. 0,72289 0,01226 0,1107 [0,5059, 0,9399]
Skuodo r. sav. 0,81978 0,001824 0,0427 [0,7361, 0,9035]
Vilkaviškio r. sav. 0,76828 0,001231 0,0351 [0,6992, 0,8374]

B Subindeksas
Kalvarijos sav. 0,13388 0,0003893 0,0197 [0,0954, 0,1724]
Kelmės r. sav. 0,09938 0,0007404 0,0272 [0,0461, 0,1527]
Lazdijų r. sav. 0,06186 0,0001144 0,0107 [0,0409, 0,0828]
Skuodo r. sav. 0,04916 0,0003901 0,0198 [0,0104, 0,0879]
Vilkaviškio r. sav. 0,1044 0,0001238 0,0104 [0,0840, 0,1248]

C Subindeksas
Kalvarijos sav. 0,37361 0,002666 0,0516 [0,2725, 0,4747]
Kelmės r. sav. 0,4529 0,004664 0,0683 [0,3180, 0,5878]
Lazdijų r. sav. 0,4169 0,0005385 0,0232 [0,3714, 0,4624]
Skuodo r. sav. 0,33993 0,002916 0,0540 [0,2330, 0,4469]
Vilkaviškio r. sav. 0,38497 0,001137 0,0337 [0,3187, 0,4513]

D Subindeksas
Kalvarijos sav. 0,37402 0,01432 0,1196 [0,1396, 0,6084]
Kelmės r. sav. 0,42818 0,01321 0,1149 [0,2029, 0,6535]
Lazdijų r. sav. 0,41722 0,00702 0,0838 [0,2520, 0,5824]
Skuodo r. sav. 0,49527 0,001233 0,0351 [0,4263, 0,5642]
Vilkaviškio r. sav. 0,35427 0,001262 0,0355 [0,2848, 0,4237]

E Subindeksas
Kalvarijos sav. 0,42008 0,002103 0,0459 [0,3301, 0,5101]
Kelmės r. sav. 0,23013 0,002761 0,0525 [0,1273, 0,3330]
Lazdijų r. sav. 0,38483 0,00256 0,0506 [0,2857, 0,4840]
Skuodo r. sav. 0,20834 0,005249 0,0724 [0,0664, 0,3503]
Vilkaviškio r. sav. 0,32588 0,00175 0,0418 [0,2430, 0,4087]

F Subindeksas
Kalvarijos sav. 0,47743 0,001 0,0316 [0,4155, 0,5393]
Kelmės r. sav. 0,56753 0,002117 0,0460 [0,4763, 0,6588]
Lazdijų r. sav. 0,54469 0,0009287 0,0305 [0,4847, 0,6047]
Skuodo r. sav. 0,57452 0,0001488 0,0122 [0,5506, 0,5985]
Vilkaviškio r. sav. 0,52398 0,0007618 0,0276 [0,4699, 0,5781]

11 lentelė: ARIMA modelio prognozavimo rezultatai su 95% prognozių pasikliovimo intervalais
pagal mažiausią GKI turinčias savivaldybes

Čia:
σ2 – Liekanų empirinė dispersija (2.8).
Paklaida – Standartinė paklaida (2.7).
95% P.I. – 95% Pasikliovimo intervalas (2.12).
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B subindekso modelio rezultatai rodo, jog visos prognozės taip pat atitiko pasikliovimo
intervalus. Didžiausią liekanų dispersijos ir standartinės paklaidos reikšmę turejo Kelmės
r. sav., atitinkamai 0,0007404 ir 0,0272, o mažiausią liekanų dispersijos reikšmę turėjo
Lazdijų r. sav. 0,0001144. Mažiausią standartinės paklaidos reikšmę turėjo Vilkaviškio
r. sav. 0,0104. C subindekso reikšmių prognozės taip pat atitiko 95% pasikliovimo in-
tervalų ribas. Čia didžiausią liekanų dispersijos reikšmę 0,004664 turėjo Kelmės rajono
savivaldybė, taip pat ši savivaldybė turėjo ir didžiausią standartinės paklaidos reikšmę
0,0683. Mažiausias standartinės paklaidos ir liekanų dispersijos reikšmes turėjo Lazdijų r.
sav. 0,0232 ir 0,0005385. Kalbant apie likusius D, E bei F subindeksus, matome, jog jų
prognozės visur atitiko pasikliovimo intervalus. Mažiausias liekanų dispersijos ir standar-
tinės paklaidos reikšmes turėjo Skuodo rajono savivaldybė 0,001233 ir 0,0351. Tuo tarpu
didžiausias šių koeficientų reikšmes turėjo Kalvarijos savivaldybė, atitinkamai 0,01432 ir
0,1196. Kalbant apie E subindekso mažiausias liekanų dispersijos ir standartinės paklaidos
reikšmes, matome, jog jas turėjo Vilkaviškio r. sav. 0,00175 ir 0,0418. Didžiausias šių ko-
eficientų reikšmes pagal E subindekso duomenis turėjo Skuodo r. sav. 0,005249 ir 0,0724.
Ir pagal paskutiniojo F subindekso duomenis matome, jog didžiausias liekanų dispersijos
ir standartinės paklaidos reikšmes turėjo Kelmės rajono savivaldybė 0,002117 ir 0,0460, o
mažiausias turėjo Skuodo rajono savivaldybė 0,0001488 ir 0,0122.
Žvelgiant į ARIMA modelio prognozių rezultatus kartu su pasikliovimo intervalais pa-
gal didžiausią GKI turinčias savivaldybes, 12 lentelėje matome, jog pagal A subindeksą
visos savivaldybių prognozės atitiko 95% pasikliovimo intervalus. Čia mažiausią liekanų
dispersijos ir standartinės paklaidos reikšmę turėjo Kauno miesto savivaldybė 0,0007519
ir 0,0256. O didžiausias šių koeficientų reikšmes turėjo Birštono savivaldybė 0,04938 ir
0,2222. Tuomet pagal B subindekso duomenis matome, jog prognozės taip pat atitiko
pasikliovimo intervalus. Didžiausias reikšmes tiek liekanų dispersijos, tiek standartinės
paklaidos turėjo Klaipėdos miesto savivaldybė 0,03824 ir 0,196, o mažiausias šių koefici-
entų reikšmes turėjo Kauno rajono savivaldybė 0,0023 ir 0,048. C subindekso rezultatai
rodo, jog prognozės taip pat atitiko pasikliovimo intervalus. Didžiausias liekanų disper-
sijos bei standartinės paklaidos reikšmes turėjo Birštono savivaldybė 0,02696 ir 0,1642, o
mažiausias – Klaipėdos miesto savivaldybė, atitinkamai 0,003493 ir 0,0591. Tuomet pa-
gal D subindekso duomenis matome, jog didžiausias pastarųjų koeficientų reikšmes turėjo
Vilniaus miesto savivaldybė 0,02984 ir 0,1727, o mažiausias liekanų dispersijos bei stan-
dartinės paklaidos reikšmes turėjo Kauno rajono savivaldybė 0,003869 ir 0,0622. E ir F
subindeksų duomenys rodo, jog prognozės taip pat atitiko pasikliovimo intervalus. Pagal
E subindekso rezultatus matome, jog didžiausias liekanų dispersijos bei standartinės pa-
klaidos reikšmes turėjo Klaipėdos miesto savivaldybė 0,006423 ir 0,0801, o mažiausias –
Vilniaus miesto savivaldybė 0,001629 ir 0,0404. Paskutiniojo F subindekso prognozių re-
zultatai rodo, jog pastarųjų koeficientų didžiausias reikšmes turėjo Birštono savivaldybė,
atitinkamai 0,004038 ir 0,0635, o mažiausias liekanų dispersijos bei standartinės paklaidos
reikšmes turėjo Vilniaus miesto savivaldybė 0,000301 ir 0,0174.
Turint originalias reikšmes, visi prognozuoti subindeksai buvo susumuoti bei padauginti iš
savo svorių (pagal GKI (2.27) formulę). Tuomet buvo gautos GKI reikšmės 2022 metams.
Originalios subindeksų ir GKI prognozės buvo lyginamos su 2022 metų tikrais visų su-
bindeksų bei GKI duomenimis. Tam buvo naudojamos RMSE, MSE ir MAPE metrikos,
kurios parodo įvairias paklaidas tarp tikrų ir prognozuotų reikšmių. Kadangi prognozavi-
mas buvo atliekamas ta pačia tvarka kaip ir modeliavimas, lentelėse ARIMA_MIN stulpe-
lis atspindi prasčiausių savivaldybių tikrų ir prognozuotų rezultatų skirtumus, o stulpelis
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Savivaldybė Prognozė σ2 Paklaida 95% P.I.

A Subindeksas
Birštono sav. 1,07778 0,04938 0,2222 [0,6423, 1,5133]
Kauno m. sav. 1,25017 0,0007519 0,0256 [1,2000, 1,3003]
Kauno r. sav. 1,27549 0,001318 0,0340 [1,2080, 1,3429]
Klaipėdos m. sav. 1,14010 0,0009873 0,0294 [1,0825, 1,1977]
Vilniaus m. sav. 1,40685 0,0008999 0,0281 [1,3518, 1,4619]

B Subindeksas
Birštono sav. 0,35679 0,006557 0,081 [0,1972, 0,5164]
Kauno m. sav. 0,76415 0,005333 0,073 [0,6203, 0,9080]
Kauno r. sav. 0,68523 0,0023 0,048 [0,5902, 0,7803]
Klaipėdos m. sav. 0,89076 0,03824 0,196 [0,5064, 1,2751]
Vilniaus m. sav. 1,57352 0,003708 0,061 [1,4531, 1,6939]

C Subindeksas
Birštono sav. 0,56415 0,02696 0,1642 [0,2424, 0,8859]
Kauno m. sav. 0,79891 0,003994 0,0632 [0,6750, 0,9228]
Kauno r. sav. 0,40153 0,004222 0,0650 [0,2749, 0,5282]
Klaipėdos m. sav. 0,71792 0,003493 0,0591 [0,6011, 0,8347]
Vilniaus m. sav. 0,68478 0,003657 0,0605 [0,5662, 0,8034]

D Subindeksas
Birštono sav. 0,57883 0,01234 0,1111 [0,3601, 0,7976]
Kauno m. sav. 0,67055 0,009564 0,0978 [0,4789, 0,8622]
Kauno r. sav. 0,44913 0,003869 0,0622 [0,3272, 0,5711]
Klaipėdos m. sav. 0,59388 0,005811 0,0762 [0,4445, 0,7433]
Vilniaus m. sav. 0,67671 0,02984 0,1727 [0,3382, 1,0152]

E Subindeksas
Birštono sav. 0,51493 0,005431 0,0737 [0,3705, 0,6594]
Kauno m. sav. 0,39402 0,004589 0,0677 [0,2613, 0,5267]
Kauno r. sav. 0,70547 0,005186 0,0720 [0,5643, 0,8466]
Klaipėdos m. sav. 0,32519 0,006423 0,0801 [0,1682, 0,4822]
Vilniaus m. sav. 0,53937 0,001629 0,0404 [0,4602, 0,6185]

F Subindeksas
Birštono sav. 0,83212 0,004038 0,0635 [0,7076, 0,9566]
Kauno m. sav. 0,56328 0,001514 0,0389 [0,4871, 0,6395]
Kauno r. sav. 0,53926 0,0008266 0,0288 [0,4828, 0,5957]
Klaipėdos m. sav. 0,5928 0,001684 0,0410 [0,5124, 0,6732]
Vilniaus m. sav. 0,59248 0,000301 0,0174 [0,5584, 0,6266]

12 lentelė: ARIMA modelio prognozavimo rezultatai su 95% prognozių pasikliovimo intervalais
pagal didžiausią GKI turinčias savivaldybes

Čia:
σ2 – Liekanų empirinė dispersija (2.8).
Paklaida – Standartinė paklaida (2.7).
95% P.I. – 95% Pasikliovimo intervalas (2.12).
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ARIMA_MAX geriausių savivaldybių skirtumus.

ARIMA_MIN ARIMA_MAX
RMSE 0, 02960291 0, 069199542
MSE 0, 000876333 0, 004788577
MAPE 5, 6697742% 6, 8970725%

13 lentelė: ARIMA modelio metrikų rezultatai
Čia:
RMSE – Šaknis iš vidutinės kvadratinės paklaidos (2.24).
MSE – Vidutinis kvadratinis nuokrypis (2.25).
MAPE – Vidutinė absoliutinė procentinė paklaida (2.26).

Iš 13 lentelės, kurioje atvaizduoti ARIMA modelio metrikų rezultatai, matome, jog ARIMA
modelis geriau prognozavo savivaldybes, pasirinktas pagal žemiausią GKI. Čia šaknies iš
vidutinės kvadratinės paklaidos reikšmė buvo 0, 02, vidutinis kvadratinis nuokrypis buvo
tik 0, 0008, o vidutinė absoliutinė procentinė paklaida nesiekė 6%. Visos šios 3 metrikos
yra kur kas mažesnės, nei savivaldybių pagal aukščiausią GKI.

Savivaldybės Prognozuotas GKI Tikras GKI 95% P.I.
Kalvarijos sav. 0, 4544695 0, 4537610 [0, 4109; 0, 5068]
Kelmės r. sav. 0, 4848102 0, 4760570 [0, 4474; 0, 5300]
Lazdijų r. sav. 0, 4520790 0, 4734530 [0, 3717; 0, 5164]
Skuodo r. sav. 0, 4567150 0, 4527395 [0, 4184; 0, 4884]
Vilkaviškio r. sav. 0, 4527632 0, 4648895 [0, 4155; 0, 4804]

14 lentelė: Mažiausių prognozuotų ir tikrų reikšmių pagal ARIMA modelį palyginimas
Čia:
95% P.I. – Monte Karlo simuliacijomis gautas GKI 95% pasikliovimo intervalas; žr. 2.2.9 skyrelį.

Iš mažiausių prognozuotų ir tikrų reikšmių pagal ARIMA modelį palyginimų, pateiktų
14 lentelėje matome, jog pagal prognozuotas ir tikras reikšmes savivaldybių išsirikiavimas
skiriasi. Pagal prognozuotas reikšmes, nuo žemiausią GKI turinčios savivaldybės, išsidės-
tymas atrodo taip: Lazdijų r. sav., Vilkaviškio r. sav., Kalvarijos sav., Skuodo r. sav. bei
Kelmės r. sav. O pagal tikras reikšmes atrodo taip: Skuodo r. sav., Kalvarijos sav., Vilka-
viškio r. sav., Lazdijų r. sav. ir Kelmės r. sav. Tad vienintelė Kelmės r. sav. atitiko 5-ąją
vietą pagal prognozuotas ir tikrąsias reikšmes. Tikras ir prognozuotas reikšmes galima pa-
lyginti 1 paveiksle. Taip pat matome, jog pagal ARIMA modelį mažiausią GKI turinčioms
savivaldybėms prognozuotos GKI reikšmės atitiko Monte Karlo simuliacijų būdu gautas
GKI 95% pasikliovimo intervalų ribas.
Iš didžiausių prognozuotų ir tikrų reikšmių pagal ARIMA modelį palyginimų, pateiktų 15
lentelėje, matome, jog pagal prognozuotas ir tikras reikšmes, pagal aukščiausią GKI, savi-
valdybių prognozių išsidėstymas atrodo taip: Vilniaus m. sav., Kauno m. sav., Kauno r.
sav., Klaipėdos m. sav. bei Birštono sav. O pagal tikras reikšmes atrodo taip: Vilniaus m.
sav., Kauno m. sav., Klaipėdos m. sav., Kauno r. sav. bei Birštono sav. Trijų savivaldybių
išsirikiavimas sutapo tiek pagal prognozuotas, tiek pagal tikras reikšmes – Vilniaus, Kauno
miestų ir Birštono. Reikšmių skirtumai pavaizduoti ir 2 paveiksle. Pagal ARIMA modelį
didžiausią GKI turinčioms savivaldybėms prognozuotos reikšmės atitiko 95% pasikliovimo
intervalų ribas, tad galime teigti, jog prognozės gavosi pakankamai tikslios.
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1 pav.: Mažiausių prognozuotų ir tikrų reikšmių pagal ARIMA modelį palyginimas

2 pav.: Didžiausių prognozuotų ir tikrų reikšmių pagal ARIMA modelį palyginimas
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Savivaldybės Prognozuotas GKI Tikras GKI 95% P.I.
Birštono sav. 0, 7110475 0, 7394860 [0, 5888; 0, 8590]
Kauno m. sav. 0, 8184231 0, 7960150 [0, 7747; 0, 8625]
Kauno r. sav. 0, 7914692 0, 7740490 [0, 7492; 0, 8356]
Klaipėdos m. sav. 0, 7890612 0, 7774145 [0, 7012; 0, 8719]
Vilniaus m. sav. 1, 0426848 1, 00141005 [0, 9973; 1, 1005]

15 lentelė: Didžiausių prognozuotų ir tikrų reikšmių pagal ARIMA modelį palyginimas
Čia:
95% P.I. – Monte Karlo simuliacijomis gautas GKI 95% pasikliovimo intervalas; žr. 2.2.9 skyrelį.

3.3.2 GAM modelio prognozės

Sekantis modelis, kuriuo buvo atliekamas prognozavimas savivaldybių Gyvenimo kokybės
indeksui, buvo Apibendrintasis Adityvusis modelis. Šiuo modeliu buvo prognozuoti su-
bindeksai 2022 metams. Iš subindeksų prognozių, padaugintų pagal atitinkamus svorius,
sumos buvo gautas GKI. Prognozės buvo atliekamos vieneriems metams į priekį. Suda-
rinėjant šio modelio prognozes, prieš tai buvo taikomas diferencijavimas nestacionarioms
laiko eilutėms. Atlikus diferencijavimą, buvo pašalintos 2013 metų reikšmės, nes jos tapo
tuščios. Norint gauti originalias prognozuotas reikšmes, buvo pašalinti skirtumai laike.
Jei buvo atliekamas pirmo lygio diferencijavimas, prognozuotai reikšmei atstatyti prie jos
buvo pridėdama paskutinė originalios laiko eilutės reikšmė. Jei buvo taikomas antro ly-
gio diferencijavimas, prognozuotos reikšmės buvo sudedamos su paskutiniu skirtumu tarp
ankstesnių metų ir ši suma pridėdama prie priešpaskutinės originalios reikšmės. Tokiu
būdu buvo atstatytos originalios prognozuotos subindeksų reikšmės, lygiai taip pat, kaip
tai buvo daroma atliekant prognozes su ARIMA modeliu.
Iš GAM modelių prognozių, pateiktų 16 lentelėje, matome visų savivaldybių pagal ma-
žiausią GKI subindeksų prognozes 2022 metams bei jų pasikliovimo intervalus. Matome,
jog visos prognozės atitinka 95% pasikliovimo intervalus, taip pat ir modelio įverčiai šioms
savivaldybėms atitiko pasikliovimo intervalus, tad galime daryti prielaidą, jog prognozės
yra pakankamai tikslios ir modelis gerai atitiko duomenis.
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Savivaldybė Metai Prognozė 95% P.I.

A Subindeksas
Kalvarijos sav. 2022 0,7628 [0,7199; 0,8056]
Kelmės r. sav. 2022 0,8271 [0,7842; 0,8699]
Lazdijų r. sav. 2022 0,7472 [0,7043; 0,7900]
Skuodo r. sav. 2022 0,8563 [0,8135; 0,8992]
Vilkaviškio r. sav. 2022 0,8044 [0,7616; 0,8472]

B Subindeksas
Kalvarijos sav. 2022 0,1525 [0,1381; 0,1669]
Kelmės r. sav. 2022 0,1120 [0,0976; 0,1264]
Lazdijų r. sav. 2022 0,0684 [0,0539; 0,0828]
Skuodo r. sav. 2022 0,0542 [0,0398; 0,0686]
Vilkaviškio r. sav. 2022 0,1080 [0,0936; 0,1224]

C Subindeksas
Kalvarijos sav. 2022 0,3710 [0,3133; 0,4287]
Kelmės r. sav. 2022 0,4543 [0,3966; 0,5120]
Lazdijų r. sav. 2022 0,3999 [0,3422; 0,4576]
Skuodo r. sav. 2022 0,3375 [0,2798; 0,3952]
Vilkaviškio r. sav. 2022 0,3742 [0,3165; 0,4319]

D Subindeksas
Kalvarijos sav. 2022 0,4060 [0,3419; 0,4701]
Kelmės r. sav. 2022 0,4596 [0,3955; 0,5237]
Lazdijų r. sav. 2022 0,4378 [0,3737; 0,5019]
Skuodo r. sav. 2022 0,5351 [0,4710; 0,5991]
Vilkaviškio r. sav. 2022 0,3815 [0,3174; 0,4456]

E Subindeksas
Kalvarijos sav. 2022 0,3499 [0,2786; 0,4211]
Kelmės r. sav. 2022 0,1581 [0,0868; 0,2293]
Lazdijų r. sav. 2022 0,3241 [0,2528; 0,3954]
Skuodo r. sav. 2022 0,1462 [0,0749; 0,2174]
Vilkaviškio r. sav. 2022 0,2654 [0,1942; 0,3367]

F Subindeksas
Kalvarijos sav. 2022 0,4912 [0,4690; 0,5134]
Kelmės r. sav. 2022 0,5811 [0,5589; 0,6033]
Lazdijų r. sav. 2022 0,5543 [0,5321; 0,5765]
Skuodo r. sav. 2022 0,5793 [0,5571; 0,6015]
Vilkaviškio r. sav. 2022 0,5323 [0,5101; 0,5545]

16 lentelė: GAM modelių prognozės pagal mažiausią GKI turinčias savivaldybes ir jų 95%
pasikliovimo intervalai

Čia:
95% P.I. – 95% Pasikliovimo intervalas (2.12).
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Savivaldybė Metai Prognozė 95% P.I.

A Subindeksas
Birštono sav. 2022 1,1648 [1,1054; 1,2243]
Kauno m. sav. 2022 1,2517 [1,1922; 1,3111]
Kauno r. sav. 2022 1,2770 [1,2175; 1,3364]
Klaipėdos m. sav. 2022 1,1416 [1,0821; 1,2010]
Vilniaus m. sav. 2022 1,4083 [1,3489; 1,4678]

B Subindeksas
Birštono sav. 2022 0,3960 [0,3342; 0,4578]
Kauno m. sav. 2022 0,8164 [0,7546; 0,8782]
Kauno r. sav. 2022 0,7517 [0,6899; 0,8135]
Klaipėdos m. sav. 2022 0,9428 [0,8810; 1,0046]
Vilniaus m. sav. 2022 1,6694 [1,6076; 1,7313]

C Subindeksas
Birštono sav. 2022 0,6442 [0,5976; 0,6909]
Kauno m. sav. 2022 0,8811 [0,8345; 0,9278]
Kauno r. sav. 2022 0,4771 [0,4304; 0,5237]
Klaipėdos m. sav. 2022 0,7940 [0,7474; 0,8407]
Vilniaus m. sav. 2022 0,7586 [0,7119; 0,8052]

D Subindeksas
Birštono sav. 2022 0,6947 [0,5704; 0,8190]
Kauno m. sav. 2022 0,7772 [0,6529; 0,9014]
Kauno r. sav. 2022 0,5612 [0,4369; 0,6854]
Klaipėdos m. sav. 2022 0,7020 [0,5777; 0,8263]
Vilniaus m. sav. 2022 0,7748 [0,6505; 0,8991]

E Subindeksas
Birštono sav. 2022 0,4980 [0,4511; 0,5450]
Kauno m. sav. 2022 0,3712 [0,3243; 0,4182]
Kauno r. sav. 2022 0,6988 [0,6519; 0,7458]
Klaipėdos m. sav. 2022 0,2959 [0,2489; 0,3428]
Vilniaus m. sav. 2022 0,5090 [0,4620; 0,5559]

F Subindeksas
Birštono sav. 2022 0,8482 [0,8211; 0,8752]
Kauno m. sav. 2022 0,5597 [0,5327; 0,5867]
Kauno r. sav. 2022 0,5363 [0,5093; 0,5633]
Klaipėdos m. sav. 2022 0,5923 [0,5653; 0,6194]
Vilniaus m. sav. 2022 0,5913 [0,5642; 0,6183]

17 lentelė: GAM modelių prognozės pagal didžiausią GKI turinčias savivaldybes ir jų 95%
pasikliovimo intervalai

Čia:
95% P.I. – 95% Pasikliovimo intervalas (2.12).

Iš GAM modelių prognozių pagal didžiausią GKI pateiktų 17 lentelėje, matome, jog vi-
sų savivaldybių prognozių rezultatai atitiko 95% pasikliovimo intervalų ribas. Kadangi ir
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GAM modelio įverčiai didžiausią GKI turinčioms savivaldybėms pagal visus subindeksus
atitiko pasikliovimo intervalų ribas, galime daryti prielaidą, jog prognozės gavosi pakan-
kamai tikslios ir modelio pritaikymas duomenims buvo tinkamas.
Gavus originalias savivaldybių subindeksų prognozes ir iš subindeksų prognozių sumos
gautą GKI 2022 metams, šios reikšmės buvo lyginamos su tikrais savivaldybių subindeksų
ir GKI duomenimis. Tam buvo pasitelktos 3 metrikos – Šaknis iš vidutinės kvadrati-
nės paklaidos (RMSE), Vidutinis kvadratinis nuokrypis (MSE) ir Vidutinė absoliutinė
procentinė paklaida (MAPE). Kadangi prognozavimas buvo atliekamas panašiu duomenų
transformavimo principu ir tokia pačia tvarka kaip ir su ARIMA modelio prognozėmis,
lentelėse GAM_MIN stulpelis atspindi prasčiausių savivaldybių tikrų ir prognozuotų re-
zultatų skirtumus, o stulpelis GAM_MAX geriausių savivaldybių rezultatų skirtumus.

GAM_MIN GAM_MAX
RMSE 0, 047377992 0, 189435096
MSE 0, 002244674 0, 035885656
MAPE 9, 1599295% 17, 0608229%

18 lentelė: GAM modelio metrikų rezultatai
Čia:
RMSE – Šaknis iš vidutinės kvadratinės paklaidos (2.24).
MSE – Vidutinis kvadratinis nuokrypis (2.25).
MAPE – Vidutinė absoliutinė procentinė paklaida (2.26).

GAM modelio metrikų rezultatai, pateikti 18 lentelėje, atspindi, jog GAM modelis geriau
prognozavo savivaldybes, pasirinktas pagal žemiausią GKI. Matome, jog šaknies iš vidu-
tinės kvadratinės paklaidos reikšmė buvo 0, 04, vidutinis kvadratinis nuokrypis buvo tik
0, 0022, o vidutinė absoliutinė procentinė paklaida buvo 9,15%. Visos šios 3 metrikos yra
kur kas mažesnės, nei savivaldybių pagal aukščiausią GKI, tačiau, lyginant su ARIMA
modelio metrikomis, ARIMA modelis prognozavo kur kas geriau.

Savivaldybės Prognozuotas GKI Tikras GKI 95% P.I.
Kalvarijos sav. 0, 4631833 0, 4537610 [0, 4396; 0, 4881]
Kelmės r. sav. 0, 4727958 0, 4760570 [0, 4474; 0, 4959]
Lazdijų r. sav. 0, 4533531 0, 4734530 [0, 4298; 0, 4720]
Skuodo r. sav. 0, 4638170 0, 4527395 [0, 4427; 0, 4813]
Vilkaviškio r. sav. 0, 4581520 0, 4648895 [0, 4376; 0, 4793]

19 lentelė: Mažiausių prognozuotų ir tikrų reikšmių pagal GAM modelį palyginimas
Čia:
95% P.I. – Monte Karlo simuliacijomis gautas GKI 95% pasikliovimo intervalas; žr. 2.2.9 skyrelį.

Pagal prognozuotas ir tikras reikšmes savivaldybių išsirikiavimas skiriasi, tačiau yra iden-
tiškas, kaip ir su ARIMA modeliu. Reikšmių skirtumus matome ir 19 lentelėje. Pagal
prognozuotas reikšmes, nuo žemiausią GKI turinčios savivaldybės, išsidėstymas atrodo
taip: Lazdijų r. sav., Vilkaviškio r. sav., Kalvarijos sav., Skuodo r. sav. bei Kelmės
r. sav. O pagal tikras reikšmes atrodo taip: Skuodo r. sav., Kalvarijos sav., Vilkaviškio
r. sav., Lazdijų r. sav. ir Kelmės r. sav. Tad vienintelė Kelmės r. sav. atitiko 5–ąją
vietą pagal prognozuotas ir tikrąsias reikšmes. Taip pat 19 lentelėje matome, jog visos
prognozuotos GKI reikšmės atitiko 95% pasikliovimo intervalų ribas, kurios buvo gautos
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3 pav.: Mažiausių prognozuotų ir tikrų reikšmių pagal GAM modelį palyginimas

Monte Karlo simuliacijų būdu. Reikšmių skirtumus galima palyginti ir 3 paveiksle.

Savivaldybės Prognozuotas GKI Tikras GKI 95% P.I.
Birštono sav. 0, 5338101 0, 7394860 [0, 7340; 0, 7897]
Kauno m. sav. 0, 7136675 0, 7960150 [0, 8147; 0, 8696]
Kauno r. sav. 0, 6649527 0, 7740490 [0, 7943; 0, 8487]
Klaipėdos m. sav. 0, 7542423 0, 7774145 [0, 7877; 0, 8409]
Vilniaus m. sav. 1, 1530922 1, 00141005 [1, 0448; 1, 1036]

20 lentelė: Didžiausių prognozuotų ir tikrų reikšmių pagal GAM modelį palyginimas
Čia:
95% P.I. – Monte Karlo simuliacijomis gautas GKI 95% pasikliovimo intervalas; žr. 2.2.9 skyrelį.

Prognozuotų ir tikrų reikšmių skirtumai pagal GAM modelį, pateikti 20 lentelėje pagal
savivaldybių išsidėstymą daug kur sutapo. Pagal prognozuotas reikšmes savivaldybių išsi-
dėstymas atrodo taip: Vilniaus m. sav., Klaipėdos m. sav., Kauno m. sav., Kauno r. sav.,
bei Birštono sav. O pagal tikras reikšmes atrodo taip: Vilniaus m. sav., Kauno m. sav.,
Klaipėdos m. sav., Kauno r. sav. bei Birštono sav. Taigi, pagal išsidėstymą nuo didžiausią
GKI turinčių savivaldybių, sutapo Vilniaus miesto savivaldybė, Kauno rajono ir Biršto-
no savivaldybės. Taip pat 20 lentelėje matome, jog prognozuotos GKI reikšmės neatitiko
Monte Karlo simuliacijomis gautų pasikliovimo intervalų rėžių. Tikrų ir prognozuotų GKI
reikšmių skirtumus galima pamatyti ir 4 paveiksle.

3.3.3 LSTM modelio prognozės

Trečiasis modelis, kuriuo buvo atliekamas laiko eilučių prognozavimas buvo Ilgalaikės
trumpalaikės atminties neuronų tinklo (Long Short–Term Memory) modelis. Šis mode-
lis yra tinkamas, norint išlaikyti bei išanalizuoti ilgalaikes priklausomybes tarp duomenų
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4 pav.: Didžiausių prognozuotų ir tikrų reikšmių pagal GAM modelį palyginimas

žingsnių. Šiuo modeliu buvo prognozuoti visi 6 savivaldybių subindeksai 2022 metams. Iš
subindeksų prognozių, padaugintų pagal atitinkamus svorius, sumos buvo gautas GKI ir
prognozės buvo atliekamos vieneriems metams į priekį. Prognozėms atlikti su LSTM mode-
liu, buvo naudojama vieno žingsnio prognozė (1-step ahead forecast) 2022 metų reikšmėms
gauti. Kai kurios duomenų reikšmės iš ankstesnių metų buvo pašalintos dėl nustatyto laiko
žingsnių skaičiaus. Kaip ir buvo minėta anksčiau, šiame modelyje buvo naudojami 3 laiko
žingsniai, reiškiantys, kad kiekvienai prognozei sudaryti, modelis naudodavo tris ankstes-
nių metų duomenų reikšmes kaip įvestį. Norėdamas prognozuoti 2022 metų reikšmę, mode-
lis naudojo tik 2019, 2020 ir 2021 metų duomenis. Kadangi kai kurie duomenys buvo dife-
rencijuoti ir normalizuoti, gavus jų prognozes, reikėjo paversti jas į originalias prognozuotas
reikšmes. Prognozuotos reikšmės, kurios buvo normalizuotos naudojant MinMaxScaler
funkciją, buvo konvertuotos atgal į originalų mastelį, taikant atvirkštinę transformaciją tuo
pačiu metodu. Tam buvo naudojama funkcija scaler.inverse_transform(), kuri grąžino
reikšmes iš normalizuoto intervalo [0; 1] į pradines reikšmes. Jei buvo atliktas diferencija-
vimas, prognozuotai reikšmei atstatyti reikėjo prie jos pridėti paskutinę originalios laiko
eilutės reikšmę. Pavyzdžiui, prognozuojant 2022 metus, pridėjome prognozuotą skirtu-
mą prie paskutinės originalios 2021 metų reikšmės. Antro lygio diferencijavimas su šiuo
modeliu nebuvo taikomas. Šis procesas užtikrino, kad galutines prognozes būtų galima
interpretuoti, kaip realius duomenis.
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Savivaldybė Metai Prognozė 95% P.I.

A Subindeksas
Kalvarijos sav. 2022 0,7272 [0,7184; 0,7354]
Kelmės r. sav. 2022 0,3786 [0,3454; 0,4058]
Lazdijų r. sav. 2022 0,6713 [0,6650; 0,6786]
Skuodo r. sav. 2022 0,2990 [0,2502; 0,3440]
Vilkaviškio r. sav. 2022 0,7854 [0,7827; 0,7872]

B Subindeksas
Kalvarijos sav. 2022 0,1356 [0,1345; 0,1367]
Kelmės r. sav. 2022 0,0884 [0,0864; 0,0908]
Lazdijų r. sav. 2022 0,0462 [0,0437; 0,0484]
Skuodo r. sav. 2022 0,0210 [0,0181; 0,0234]
Vilkaviškio r. sav. 2022 0,0942 [0,0930; 0,0955]

C Subindeksas
Kalvarijos sav. 2022 0,3583 [0,3510; 0,3638]
Kelmės r. sav. 2022 0,4341 [0,4294; 0,4389]
Lazdijų r. sav. 2022 0,3893 [0,3861; 0,3927]
Skuodo r. sav. 2022 0,3096 [0,3042; 0,3159]
Vilkaviškio r. sav. 2022 0,3621 [0,3587; 0,3662]

D Subindeksas
Kalvarijos sav. 2022 0,2872 [0,2819; 0,2919]
Kelmės r. sav. 2022 0,3516 [0,3459; 0,3566]
Lazdijų r. sav. 2022 0,2884 [0,2763; 0,3020]
Skuodo r. sav. 2022 0,4866 [0,4824; 0,4900]
Vilkaviškio r. sav. 2022 0,3403 [0,3385; 0,3417]

E Subindeksas
Kalvarijos sav. 2022 0,3830 [0,3797; 0,3855]
Kelmės r. sav. 2022 0,1669 [0,1583; 0,1743]
Lazdijų r. sav. 2022 0,3252 [0,3163; 0,3344]
Skuodo r. sav. 2022 0,1314 [0,1211; 0,1391]
Vilkaviškio r. sav. 2022 0,2718 [0,2651; 0,2783]

F Subindeksas
Kalvarijos sav. 2022 0,4459 [0,4420; 0,4491]
Kelmės r. sav. 2022 0,5138 [0,5091; 0,5182]
Lazdijų r. sav. 2022 0,5361 [0,5347; 0,5372]
Skuodo r. sav. 2022 0,5696 [0,5693; 0,5699]
Vilkaviškio r. sav. 2022 0,4969 [0,4954; 0,4980]

21 lentelė: LSTM modelių prognozės pagal mažiausią GKI turinčias savivaldybes ir jų 95%
pasikliovimo intervalai

Čia:
95% P.I. –95% Monte Karlo pasikliovimo intervalai (2.21).

LSTM modelio prognozių rezultatai, pateikti 21 lentelėje, atspindi savivaldybių, pagal vi-
sus subindeksus, prognozių reikšmes bei jų pasikliovimo intervalus. Iš pateiktų duomenų
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matome, jog visos savivaldybių prognozės patenka į 95% pasikliovimo intervalus, tad gali-
me daryti prielaidą, jog subindeksų prognozės gavosi pakankamai tikslios. LSTM modelio
pasikliovimo intervalų gauti nepavyko, kadangi šis modelis nėra pritaikytas pasikliauti-
niams intervalams skaičiuoti. Šio modelio tikslumą geriau vertinti per jo prognozių pasik-
liovimo intervalus, kurie tiesiogiai atspindi prognozių patikimumą. Tam buvo pasitelktas
Monte Karlo metodas ir šiuo metodu prognozių pasikliovimo intervalai buvo apskaičiuoti
atliekant daugkartines LSTM modelio prognozes su įvesties duomenimis. Kiekvienam su-
bindeksui prognozės buvo atliekamos kelis kartus, kiekvieną kartą prie įvesties duomenų
pridedant nedidelį atsitiktinį triukšmą, siekiant įvertinti modelio prognozių neapibrėžtu-
mą. Gavus subindeksų prognozių imtį, buvo apskaičiuotas imties prognozių vidurkis ir
standartinis nuokrypis bei tuomet buvo apskaičuoti pasikliovimo intervalai kiekvienam iš
subindeksų, kiekvienai savivaldybei.
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Savivaldybė Metai Prognozė 95% P.I.

A Subindeksas
Birštono sav. 2022 0,9545 [0,9427; 0,9662]
Kauno m. sav. 2022 1,2269 [1,2241; 1,2297]
Kauno r. sav. 2022 1,2434 [1,2274; 1,2593]
Klaipėdos m. sav. 2022 0,6145 [0,5508; 0,6781]
Vilniaus m. sav. 2022 1,3794 [1,3754; 1,3834]

B Subindeksas
Birštono sav. 2022 0,3518 [0,3455; 0,3581]
Kauno m. sav. 2022 0,7269 [0,7203; 0,7335]
Kauno r. sav. 2022 0,6976 [0,6877; 0,7076]
Klaipėdos m. sav. 2022 0,7517 [0,7297; 0,7736]
Vilniaus m. sav. 2022 1,6008 [1,5896; 1,6119]

C Subindeksas
Birštono sav. 2022 0,2931 [0,2839; 0,3023]
Kauno m. sav. 2022 0,7893 [0,7820; 0,7967]
Kauno r. sav. 2022 0,3546 [0,3476; 0,3616]
Klaipėdos m. sav. 2022 0,6969 [0,6879; 0,7060]
Vilniaus m. sav. 2022 0,6852 [0,6739; 0,6965]

D Subindeksas
Birštono sav. 2022 0,4917 [0,4911; 0,4923]
Kauno m. sav. 2022 0,6156 [0,6075; 0,6237]
Kauno r. sav. 2022 0,4180 [0,4145; 0,4215]
Klaipėdos m. sav. 2022 0,5241 [0,5182; 0,5301]
Vilniaus m. sav. 2022 0,5198 [0,4863; 0,5534]

E Subindeksas
Birštono sav. 2022 0,4168 [0,4082; 0,4254]
Kauno m. sav. 2022 0,3173 [0,2969; 0,3376]
Kauno r. sav. 2022 0,6621 [0,6593; 0,6648]
Klaipėdos m. sav. 2022 0,3244 [0,3139; 0,3349]
Vilniaus m. sav. 2022 0,4752 [0,4677; 0,4826]

F Subindeksas
Birštono sav. 2022 0,7901 [0,7855; 0,7946]
Kauno m. sav. 2022 0,5146 [0,5066; 0,5226]
Kauno r. sav. 2022 0,5094 [0,5012; 0,5177]
Klaipėdos m. sav. 2022 0,5811 [0,5731; 0,5891]
Vilniaus m. sav. 2022 0,5897 [0,5885; 0,5909]

22 lentelė: LSTM modelių prognozės pagal didžiausią GKI turinčias savivaldybes ir jų 95%
pasikliovimo intervalai

Čia:
95% P.I. – 95% Monte Karlo pasikliovimo intervalai (2.21).

LSTM modelių prognozių pagal didžiausią GKI turinčias savivaldybes lentelėje 22, taip pat
matome kiekvieno subindekso prognozes savivaldybėms pagal didžiausią GKI bei pasiklio-
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vimo intervalus. Pagal didžiausią GKI turinčias savivaldybes, LSTM modelio prognozės
taip pat atitiko 95% pasikliovimo intervalų ribas, tad galime daryti prielaidą, jog subindek-
sų prognozės gavosi pakankamai tikslios. Šiuo atveju LSTM modelio pasikliovimo intervalų
gauti nepavyko, tačiau, tuo pačiu, prieš tai minėtuoju Monte Karlo metodu, buvo gautos
subindeksų prognozių pasikliovimo intervalų reikšmės.

LSTM_MIN LSTM_MAX
RMSE 0, 131017793 0, 144688622
MSE 0, 017165662 0, 020934797
MAPE 18, 7228421% 13, 5503493%

23 lentelė: LSTM modelio metrikų rezultatai
Čia:
RMSE – Šaknis iš vidutinės kvadratinės paklaidos (2.24).
MSE – Vidutinis kvadratinis nuokrypis (2.25).
MAPE – Vidutinė absoliutinė procentinė paklaida (2.26).

LSTM modelio metrikų rezultatuose, pateiktuose 23 lentelėje, matome, jog LSTM modelis
geriau prognozavo savivaldybes, pasirinktas pagal žemiausią GKI, tačiau metrikos atrodo
panašiai ir skiriasi nedaug. Matome, jog pagal žemiausią GKI šaknies iš vidutinės kvad-
ratinės paklaidos reikšmė buvo 0, 13, vidutinis kvadratinis nuokrypis buvo tik 0, 017, o
vidutinė absoliutinė procentinė paklaida buvo 18,7%.

Savivaldybės Prognozuotas GKI Tikras GKI 95% P.I.
Kalvarijos sav. 0, 431114 0, 4537610 [0, 4306; 0, 4370]
Kelmės r. sav. 0, 295376 0, 4760570 [0, 3025; 0, 3198]
Lazdijų r. sav. 0, 410607 0, 4734530 [0, 4046; 0, 4110]
Skuodo r. sav. 0, 299064 0, 4527395 [0, 2637; 0, 2919]
Vilkaviškio r. sav. 0, 438736 0, 4648895 [0, 4386; 0, 4412]

24 lentelė: Mažiausių prognozuotų ir tikrų reikšmių pagal LSTM modelį palyginimas
Čia:
95% P.I. – Monte Karlo simuliacijomis gautas GKI 95% pasikliovimo intervalas; žr. 2.2.9 skyrelį.

Iš mažiausių prognozuotų ir tikrų reikšmių pagal LSTM modelį palyginimų, pavaizduotų
24 lentelėje, matome, jog pagal prognozuotas ir tikras reikšmes savivaldybių išsirikiavimas
labai skiriasi. Pagal prognozuotas reikšmes, nuo žemiausią GKI turinčios savivaldybės,
išsidėstymas atrodo taip: Kelmės r. sav., Skuodo r. sav., Lazdijų r. sav., Kalvarijos sav.
ir Vilkaviškio r. sav. O pagal tikras reikšmes atrodo taip: Skuodo r. sav., Kalvarijos
sav., Vilkaviškio r. sav., Lazdijų r. sav. ir Kelmės r. sav. GKI reikšmių skirtumus
galima palyginti ir 5 paveiksle. Kelmės bei Skuodo rajonų savivaldybių prognozuotos GKI
reikšmės neatitiko 95% pasikliovimo intervalų ribų, tad galimai šių savivaldybių prognozės
nėra iki galo tikslios.
Iš didžiausių prognozuotų ir tikrų reikšmių pagal LSTM modelį palyginimų, pateiktų 25
lentelėje, matome, jog pagal prognozuotas ir tikras reikšmes, pagal aukščiausią GKI, sa-
vivaldybių išsidėstymas atrodo taip: Vilniaus m. sav., Kauno m. sav., Kauno r. sav.,
Birštono sav. bei Klaipėdos m. sav. O pagal tikras reikšmes atrodo taip: Vilniaus m.
sav., Kauno m. sav., Klaipėdos m. sav., Kauno r. sav. bei Birštono sav. Taigi, pagal
išsidėstymą nuo didžiausią GKI turinčių savivaldybių, sutapo Vilniaus ir Kauno miestų
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Savivaldybės Prognozuotas GKI Tikras GKI 95% P.I.
Birštono sav. 0, 611588 0, 7394860 [0, 6110; 0, 6201]
Kauno m. sav. 0, 778940 0, 7960150 [0, 7749; 0, 7827]
Kauno r. sav. 0, 767285 0, 7740490 [0, 7600; 0, 7715]
Klaipėdos m. sav. 0, 579085 0, 7774145 [0, 5734; 0, 6131]
Vilniaus m. sav. 1, 009772 1, 00141005 [1, 0091; 1, 0192]

25 lentelė: Didžiausių prognozuotų ir tikrų reikšmių pagal LSTM modelį palyginimas
Čia:
95% P.I. – Monte Karlo simuliacijomis gautas GKI 95% pasikliovimo intervalas; žr. 2.2.9 skyrelį.

savivaldybės. Pagal LSTM modelį prognozuoti GKI likusioms 5 savivaldybėms atitiko
95% pasikliovimo intervalų ribas. Tad galime teigti, jog šių savivaldybių prognozės LSTM
modeliu gavosi pakankamai tikslios. Tikrų ir prognozuotų GKI reikšmių skirtumus galima
pamatyti ir 6 paveiksle.

3.3.4 BiLSTM modelio prognozės

Ketvirtasis modelis, kuriuo buvo atliekamas savivaldybių subindeksų prognozavimas, buvo
Dvikryptis Ilgalaikės trumpalaikės atminties (BiLSTM) modelis. Šis modelis yra geresnė
LSTM modelio versija. Prognozavimas BiLSTM modeliu buvo atliktas visų 10–ies savival-
dybių subindeksų reikšmėms, kurių iš viso buvo 6. Gavus subindeksų prognozes, jos buvo
padaugintos iš savo svorių bei sudėtos, ir taip buvo gautos savivaldybių Gyvenimo koky-
bės indekso prognozės metams į priekį. BiLSTM modelio prognozės buvo atliktos beveik
identiškai, kaip ir su LSTM modeliu. Buvo taikyta vieno žingsnio prognozė (1–step ahead
forecast) bei naudojami 3 laiko žingsniai, kurie padėjo gauti 2022 metų prognozių reikšmes.
Prognozavime naudoti trys laiko žingsniai reiškė, jog modelis naudodavo trejų ankstesnių
metų duomenų reikšmes kaip įvestį, kiekvienai prognozei gauti. Norint prognozuoti 2022
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metų subindeksų reikšmes, modelis naudojo tik 2019, 2020 ir 2021 metų duomenis. Prieš
sudarant BiLSTM modelį, duomenys buvo normalizuoti ir kai kurie iš jų diferencijuoti, tad
gavus prognozes, reikėjo jas paversti į originalias prognozuotas reikšmes. Prognozių reikš-
mės, kurioms buvo taikytas normalizavimas, naudojant MinMaxScaler funkciją, buvo
konvertuotos atgal į originalų mastelį, taikant atvirkštinę transformaciją tuo pačiu meto-
du. Šiai konvertacijai buvo naudojama scaler.inverse_transform() funkcija, kuri grąžino
reikšmes iš normalizuotos skalės intervale [0;1] į pradines reikšmes. Jei duomenims buvo
atliktas diferencijavimas, prognozuotai originaliai reikšmei atstatyti reikėjo prie jos pridėti
paskutinę originalios laiko eilutės reikšmę – prognozuojant 2022 metus, pridėjome prog-
nozuotą skirtumą prie paskutinės originalios 2021 metų reikšmės. Šiame modelyje 2 lygio
diferencijavimas nebuvo atliktas. Šios 2 transformacijos užtikrino, jog galutinės prognozės
bus originalios.
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Savivaldybė Metai Prognozė 95% P.I.

A Subindeksas
Kalvarijos sav. 2022 0,7134 [0,7066; 0,7187]
Kelmės r. sav. 2022 0,3112 [0,2799; 0,3404]
Lazdijų r. sav. 2022 0,6808 [0,6725; 0,6881]
Skuodo r. sav. 2022 0,3689 [0,3256; 0,4007]
Vilkaviškio r. sav. 2022 0,7904 [0,7871; 0,7938]

B Subindeksas
Kalvarijos sav. 2022 0,1353 [0,1342; 0,1364]
Kelmės r. sav. 2022 0,0898 [0,0879; 0,0918]
Lazdijų r. sav. 2022 0,0486 [0,0459; 0,0510]
Skuodo r. sav. 2022 0,0219 [0,0195; 0,0245]
Vilkaviškio r. sav. 2022 0,0941 [0,0931; 0,0954]

C Subindeksas
Kalvarijos sav. 2022 0,3619 [0,3559; 0,3668]
Kelmės r. sav. 2022 0,4529 [0,4466; 0,4571]
Lazdijų r. sav. 2022 0,3938 [0,3901; 0,3968]
Skuodo r. sav. 2022 0,3024 [0,2955; 0,3085]
Vilkaviškio r. sav. 2022 0,3705 [0,3651; 0,3762]

D Subindeksas
Kalvarijos sav. 2022 0,2877 [0,2827; 0,2929]
Kelmės r. sav. 2022 0,3486 [0,3436; 0,3545]
Lazdijų r. sav. 2022 0,2971 [0,2848; 0,3067]
Skuodo r. sav. 2022 0,4806 [0,4771; 0,4833]
Vilkaviškio r. sav. 2022 0,3448 [0,3431; 0,3461]

E Subindeksas
Kalvarijos sav. 2022 0,3822 [0,3793; 0,3855]
Kelmės r. sav. 2022 0,1766 [0,1690; 0,1831]
Lazdijų r. sav. 2022 0,3129 [0,3075; 0,3190]
Skuodo r. sav. 2022 0,1334 [0,1241; 0,1432]
Vilkaviškio r. sav. 2022 0,2718 [0,2667; 0,2760]

F Subindeksas
Kalvarijos sav. 2022 0,4607 [0,4568; 0,4646]
Kelmės r. sav. 2022 0,5253 [0,5188; 0,5311]
Lazdijų r. sav. 2022 0,5367 [0,5354; 0,5386]
Skuodo r. sav. 2022 0,5705 [0,5701; 0,5709]
Vilkaviškio r. sav. 2022 0,5010 [0,4992; 0,5027]

26 lentelė: BiLSTM modelių prognozės pagal mažiausią GKI turinčias savivaldybes ir jų 95%
pasikliovimo intervalai

Čia:
95% P.I. – 95% Monte Karlo pasikliovimo intervalai (2.21).

BiLSTM modelių prognozės pagal mažiausią GKI turinčias savivaldybes, pateiktos 26 len-
telėje, atskleidė, jog visos prognozės patenka į 95% pasikliovimo intervalų ribas, tad taip
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pat galime daryti prielaidą, jog prognozės yra gan tikslios. BiLSTM modelio pasikliovimo
intervalų gauti nebuvo galimybės, kadangi šis modelis taip pat nėra pritaikytas jiems skai-
čiuoti ir šio modelio prognozių tikslumas buvo vertinamas pagal prognozių pasikliovimo
intervalus. Prognozių pasikliovimo intervalai buvo skaičiuojami pasitelkiant prieš tai ap-
rašytą Monte Karlo metodą, kuomet turėdami subindeksų prognozių imtį apskaičiavome
jų vidurkį, standartinį nuokrypį bei gavome pasikliovimo intervalus.
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Savivaldybė Metai Prognozė 95% P.I.

A Subindeksas
Birštono sav. 2022 0,9660 [0,9353; 0,9968]
Kauno m. sav. 2022 1,2290 [1,2265; 1,2315]
Kauno r. sav. 2022 1,2437 [1,2323; 1,2551]
Klaipėdos m. sav. 2022 0,6324 [0,5895; 0,6752]
Vilniaus m. sav. 2022 1,3814 [1,3751; 1,3877]

B Subindeksas
Birštono sav. 2022 0,3543 [0,3534; 0,3552]
Kauno m. sav. 2022 0,7315 [0,7211; 0,7419]
Kauno r. sav. 2022 0,7057 [0,6992; 0,7122]
Klaipėdos m. sav. 2022 0,7627 [0,7378; 0,7877]
Vilniaus m. sav. 2022 1,6054 [1,5917; 1,6191]

C Subindeksas
Birštono sav. 2022 0,3013 [0,2802; 0,3224]
Kauno m. sav. 2022 0,7928 [0,7862; 0,7995]
Kauno r. sav. 2022 0,3643 [0,3510; 0,3776]
Klaipėdos m. sav. 2022 0,7019 [0,6927; 0,7111]
Vilniaus m. sav. 2022 0,6860 [0,6792; 0,6928]

D Subindeksas
Birštono sav. 2022 0,5009 [0,4887; 0,5132]
Kauno m. sav. 2022 0,6136 [0,6056; 0,6215]
Kauno r. sav. 2022 0,4193 [0,4169; 0,4216]
Klaipėdos m. sav. 2022 0,5264 [0,5221; 0,5307]
Vilniaus m. sav. 2022 0,5258 [0,4958; 0,5558]

E Subindeksas
Birštono sav. 2022 0,4193 [0,3998; 0,4387]
Kauno m. sav. 2022 0,3205 [0,3072; 0,3337]
Kauno r. sav. 2022 0,6659 [0,6573; 0,6745]
Klaipėdos m. sav. 2022 0,3307 [0,3290; 0,3324]
Vilniaus m. sav. 2022 0,4755 [0,4654; 0,4856]

F Subindeksas
Birštono sav. 2022 0,7958 [0,7884; 0,8032]
Kauno m. sav. 2022 0,5138 [0,5052; 0,5224]
Kauno r. sav. 2022 0,5102 [0,5038; 0,5166]
Klaipėdos m. sav. 2022 0,5845 [0,5787; 0,5903]
Vilniaus m. sav. 2022 0,5905 [0,5881; 0,5929]

27 lentelė: BiLSTM modelių prognozės pagal didžiausią GKI turinčias savivaldybes ir jų 95%
pasikliovimo intervalai

Čia:
95% P.I. – 95% Monte Karlo pasikliovimo intervalai (2.21).

Iš BiLSTM modelių prognozių pagal didžiausią GKI turinčias savivaldybes rezultatų, pa-
teiktų 27 lentelėje, matome BiLSTM modelio prognozes subindeksams likusioms 5 savival-
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dybėms bei jų pasikliovimo intervalus. Čia visos prognozės atitinka pasikliovimo intervalų
ribas ir tai parodo, jog galima daryti prielaidą apie pakankamai tikslias modelio prognozes.
Prognozių 95% pasikliovimo intervalai taip pat buvo apskaičiuoti pasitelkiant Monte Kar-
lo metodą, gavus subindeksų prognozių imties vidurkį bei standartinį nuokrypį. Turint
visų subindeksų prognozes savivaldybėms, buvo atliekamas Gyvenimo kokybės indekso
prognozavimas, susumuojant bei padauginant visus subindeksus iš jų svorių.

BiLSTM_MIN BiLSTM_MAX
RMSE 0, 126871418 0, 13660098
MSE 0, 016096357 0, 018659828
MAPE 17, 4617448% 12, 7335764%

28 lentelė: BiLSTM modelio metrikų rezultatai
Čia:
RMSE – Šaknis iš vidutinės kvadratinės paklaidos (2.24).
MSE – Vidutinis kvadratinis nuokrypis (2.25).
MAPE – Vidutinė absoliutinė procentinė paklaida (2.26).

BiLSTM modelio metrikų rezultatuose, pateiktuose 28 lentelėje, matome, jog BiLSTM
modelis geriau prognozavo savivaldybes, pasirinktas pagal žemiausią GKI, tačiau metrikos
atrodo panašiai ir labiausiai skiriasi tik vidutinė absoliutinė procentinė paklaida. Matome,
jog pagal žemiausią GKI šaknies iš vidutinės kvadratinės paklaidos reikšmė buvo 0, 12,
vidutinis kvadratinis nuokrypis buvo tik 0, 016, o vidutinė absoliutinė procentinė paklaida
buvo apytiksliai 17,5%.

Savivaldybės Prognozuotas GKI Tikras GKI 95% P.I.
Kalvarijos sav. 0, 439237 0, 4537610 [0, 4299; 0, 4341]
Kelmės r. sav. 0, 315167 0, 4760570 [0, 2869; 0, 3045]
Lazdijų r. sav. 0, 413636 0, 4734530 [0, 4072; 0, 4131]
Skuodo r. sav. 0, 285841 0, 4527395 [0, 2862; 0, 3070]
Vilkaviškio r. sav. 0, 445429 0, 4648895 [0, 4418; 0, 4450]

29 lentelė: Mažiausių prognozuotų ir tikrų reikšmių pagal BiLSTM modelį palyginimas
Čia:
95% P.I. – Monte Karlo simuliacijomis gautas GKI 95% pasikliovimo intervalas; žr. 2.2.9 skyrelį.

Šioje mažiausių prognozuotų ir tikrų reikšmių pagal BiLSTM modelį 29 lentelėje matome,
jog pagal prognozuotas ir tikras reikšmes savivaldybių išsirikiavimas labai skiriasi. Pagal
prognozuotas reikšmes, nuo žemiausią GKI turinčios savivaldybės, išsidėstymas atrodo
taip: Skuodo r. sav., Kelmės r. sav., Lazdijų r. sav., Kalvarijos sav. ir Vilkaviškio r.
sav. O pagal tikras reikšmes atrodo taip: Skuodo r. sav., Kalvarijos sav., Vilkaviškio r.
sav., Lazdijų r. sav. ir Kelmės r. sav. Pagal tikrą ir prognozuotą savivaldybių išsidėstymą
nuo mažiausią GKI turinčios savivaldybės sutapo tik vienintelė Skuodo r. sav. Šioje 29
lentelėje nei viena prognozuota GKI reikšmė neatitiko 95% pasikliovimo intervalų ribų.
GKI reikšmių skirtumus galima palyginti ir 7 paveiksle.
Šioje didžiausių prognozuotų ir tikrų reikšmių pagal BiLSTM modelį 30 lentelėje matome,
jog pagal prognozuotas ir tikras reikšmes, pagal aukščiausią GKI, savivaldybių išsidėstymas
atrodo taip: Vilniaus m. sav., Kauno m. sav., Kauno r. sav., Birštono sav. bei Klaipėdos
m. sav. O pagal tikras reikšmes atrodo taip: Vilniaus m. sav., Kauno m. sav., Klaipėdos
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7 pav.: Mažiausių prognozuotų ir tikrų reikšmių pagal BiLSTM modelį palyginimas

Savivaldybės Prognozuotas GKI Tikras GKI 95% P.I.
Birštono sav. 0, 624114 0, 7394860 [0, 6126; 0, 6326]
Kauno m. sav. 0, 783171 0, 7960150 [0, 7772; 0, 7849]
Kauno r. sav. 0, 772244 0, 7740490 [0, 7646; 0, 7739]
Klaipėdos m. sav. 0, 590795 0, 7774145 [0, 5889; 0, 6171]
Vilniaus m. sav. 1, 017690 1, 00141005 [1, 0119; 1, 0217]

30 lentelė: Didžiausių prognozuotų ir tikrų reikšmių pagal BiLSTM modelį palyginimas
Čia:
95% P.I. – Monte Karlo simuliacijomis gautas GKI 95% pasikliovimo intervalas; žr. 2.2.9 skyrelį.

m. sav., Kauno r. sav. bei Birštono sav. Taigi, pagal išsidėstymą nuo didžiausią GKI
turinčių savivaldybių, sutapo Vilniaus ir Kauno miestų savivaldybės ir šis išsidėstymas yra
identiškas, kaip ir su LSTM modeliu pagal didžiausias prognozuotas ir tikras GKI reikšmes.
Čia taip pat matome, jog visos prognozės atitiko 95% pasikliovimo intervalų ribas, kurios
buvo gautos Monte Karlo simuliacijų būdu. Tikrų ir prognozuotų GKI reikšmių skirtumus
galima pamatyti ir 8 paveiksle.
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8 pav.: Didžiausių prognozuotų ir tikrų reikšmių pagal BiLSTM modelį palyginimas

4 Išvados bei rekomendacijos

Šiame darbe buvo atliktas tyrimas apie 10–ies Lietuvos savivaldybių Gyvenimo kokybės
indeksą ir jį sudarančius subindeksus. Buvo išanalizuotos penkios žemiausią ir penkios
aukščiausią Gyvenimo kokybės indeksą Lietuvoje turinčios savivaldybės, sudaryti mode-
liai ir atliktos 2022 metų GKI prognozės, kurios buvo lyginamos su tikromis reikšmėmis.
Modeliai buvo atrinkti pagal aktualią bei išnagrinėtą mokslinę literatūrą, laiko eilučių
duomenims. Savivaldybės buvo parinktos pagal 2022 metų duomenis. Penkios savival-
dybės pagal žemiausias GKI reikšmes (rikiuojant nuo žemiausios reikšmės) buvo: Skuodo
rajono, Kalvarijos, Vilkaviškio rajono, Lazdijų rajono ir Kelmės rajono. Penkios savivaldy-
bės pagal aukščiausias GKI reikšmes (rikiuojant nuo didžiausios reikšmės) buvo: Vilniaus
miesto, Kauno miesto, Klaipėdos miesto, Kauno rajono bei Birštono. Modeliams sudaryti
bei prognozėms atlikti buvo naudojami 2013 – 2021 metų paneliniai Lietuvos savivaldybių
subindeksų duomenys. Sudėjus visų subindeksų prognozes, kurias reikėjo dar papildomai
padauginti iš jų svorių, buvo gautas Gyvenimo kokybės indeksas. 2022 metų duomenys
tiek subindeksų, tiek GKI buvo naudojami prognozuotų ir tikrų reikšmių palyginimams.
Iš viso buvo sudaryti 4 laiko eilučių modeliai, tokie kaip Autoregresinis integruotas slen-
kančio vidurkio modelis (ARIMA), Apibendrintasis adityvusis modelis (GAM), Ilgalaikės
trumpalaikės atminties modelis (LSTM) bei patobulinta šio modelio versija – Dvikryp-
tis Ilgalaikės trumpalaikės atminties modelis (BiLSTM). Kiekvieno subindekso duomenų
rinkiniai buvo transformuojami į panelinę struktūrą, tikrinamos duomenų prielaidos, su-
darinėjami modeliai, tuomet tikrinamos tam tikros modelių prielaidos. Daug kur buvo
susiduriama su duomenų nestacionarumo problema, todėl buvo atliktas diferencijavimas
ir imti kintamųjų skirtumai laike. Darbe buvo aptarti visų modelių tam tikrų koeficientų
statistiniai reikšmingumai kiekvienam iš subindeksų. Sekantis žingsnis buvo subindeksų
prognozavimas visoms savivaldybėms ir šios prognozės buvo tikrinamos pagal 95% pasi-
kliovimo intervalų ribas. Kadangi visos prognozės atitiko pasikliovimo intervalus, buvo
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galima daryti prielaidą, jog jos yra tikslios ir tuomet jau buvo atliktas Gyvenimo kokybės
indekso prognozavimas savivaldybėms. Visos subindeksų prognozės buvo padaugintos iš
savo atitinkamų svorių bei susumuotos ir buvo gautas GKI pagal keturis skirtingus laiko
eilučių modelius. Čia buvo pastebėta, jog vieni modeliai tiksliau prognozavo GKI reikš-
mes, o kiti prasčiau. GKI prognozuotų reikšmių tikslumui vertinti buvo pasitelktas Monte
Karlo simuliacijų metodas. ARIMA modeliu prognozuotos GKI reikšmės visur atitiko 95%
pasikliovimo intervalų ribas. GAM modelyje pasikliovimo intervalų ribas atitiko tik pagal
mažiausią GKI turinčių savivaldybių prognozuotos reikšmės. Tuomet pagal LSTM mo-
delį prognozuotos GKI reikšmės didžiąja dalimi atitiko pasikliovimo intervalus – Kelmės
bei Skuodo rajonų savivaldybių GKI prognozės nepateko į 95% pasikliovimo intervalų ri-
bą. O pagal paskutinįjį taikytą BiLSTM modelį, pasikliovimo intervalų ribas atitiko tik
tos GKI reikšmės, kurios buvo pagal didžiausią GKI turinčias savivaldybes. Tad galime
teigti, jog ARIMA modeliu gautos prognozės buvo labiausiai tikslios, taip pat ir LSTM
modeliu gautos prognozės didžiąja dalimi irgi buvo tikslios. GAM ir BiLSTM mode-
liais gautos GKI prognozės turėjo tik dalinį tikslumą. Monte Karlo simuliacijų metodui
prognozuotų reikšmių pasikliovimo intervalams buvo pasirinktas 95% lygmuo, kadangi tai
standartinis bei dažniausiai moksliniuose tyrimuose praktikoje taikomas lygmuo. Likusių
5% ekstremumų reikšmėms analizė nebuvo atlikta, kadangi tai yra sudėtingesnės analizės
reikalaujantis uždavinys ir, to pasekoje, darbo analizėje gauti rezultatai galėjo būti ne iki
galo tikslūs. Taip pat tikslumui įvertinti buvo naudojamos 3 metrikos: Šaknis iš vidutinės
kvadratinės paklaidos, Vidutinis kvadratinis nuokrypis ir Vidutinė absoliutinė procentinė
paklaida. Atsižvelgiant į metrikų rezultatus, buvo pastebėta, jog geriausiai prognozavo
Autoregresinis integruotas slenkančio vidurkio modelis (ARIMA) bei Dvikryptis Ilgalaikės
trumpalaikės atminties (BiLSTM) modelis. Šių modelių metrikų rezultatai buvo mažiausi.
Apibendrintasis adityvusis modelis (GAM) bei Ilgalaikės trumpalaikės atminties (LSTM)
modelis prognozavo kur kas prasčiau, nes jų metrikos turėjo aukščiausias reikšmes, o tai
rodo prastą prognozių atitikimą realiems duomenims. Taip pat tikrų ir prognozuotų reikš-
mių, pagal mažiausią GKI turinčias savivaldybes, metrikų rezultatai beveik visur buvo
mažesni. Taigi, ARIMA modelio prognozės tiek pagal pasikliovimo intervalus, tiek pagal
metrikų rezultatus buvo tiksliausi. Lyginant po 5 mažiausias ir 5 didžiausias GKI reikšmes
turinčias savivaldybes pagal tikrus ir prognozuotus 2022 metų duomenis – atitikimų pagal
savivaldybių išsirikiavimą buvo nedaug, nors reikšmės labai stipriai nesiskyrė. Progno-
zuotos ir tikros Vilniaus bei Kauno miestų savivaldybių GKI reikšmės pagal išsidėstymą
sutapo ARIMA, LSTM bei BiLSTM modeliuose. Birštono savivaldybė sutapo ARIMA ir
GAM modeliuose. Pastarajame GAM modelyje irgi sutapo Vilniaus miesto savivaldybė
ir Kauno rajono savivaldybė. Taip pat ARIMA bei GAM modeliuose, pagal prognozuotų
ir tikrų mažiausią GKI turinčių savivaldybių išsidėstymą, sutapo Kelmės rajono savival-
dybė. BiLSTM modelyje sutapo Skuodo rajono savivaldybė pagal tikrų ir prognozuotų
savivaldybių GKI reikšmių išsidėstymą. Taigi, apibendrinus galima teigti, jog prognozuo-
tos 2022 metų GKI reikšmės ne iki galo atitiko originalius to meto duomenis. Prognozuotų
subindeksų reikšmės tobulai neatitiko realių jų reikšmių ir, to pasekoje, gavome ne iki ga-
lo realias duomenų reikšmes atitinkantį Gyvenimo kokybės indeksą, kuris buvo gautas iš
subindeksų, padaugintų pagal atitinkamus savo svorius, sumos. Iš darbe pateiktų lente-
lių matome, jog prognozuotos ir tikros reikšmės skyrėsi ir ne iki galo atitiko savivaldybių
išsirikiavimą. Reikšmių neatitikimams daug įtakos galėjo turėti modeliavimo rezultatai,
trumpa laiko eilutė, ne iki galo tinkamai parinkti modeliai.
Rekomendacijos tolimesniems bei panašios tematikos tyrimams būtų tokios, jog reikėtų
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analizuoti ilgesnę laiko eilutę, kadangi tuomet galimai prognozės labiau atitiktų realius
duomenis. Taip pat būtų naudinga išmėginti ir kitus modelius bei kuo labiau įsigilinti į jų
struktūrą, prieš sudarinėjant prognozes. Rekomenduotina į analizę įtraukti kuo daugiau
subindeksus sudarančių komponenčių, nes tai gali pagerinti modelių charakteristikas ir
prognozavimą. Kadangi Monte Karlo simuliacijų metodo metu pasikliovimo intervalų
lygmuo buvo pasirinktas 95%, likusios 5% ekstremumų reikšmės liko neišnagrinėtos. Taigi,
dar viena rekomendacija panašios tematikos tyrimams būtų tokia, jog reikėtų išnagrinėti
ir 5% ekstremumų poveikį pasikliovimo intervalams bei prognozių tikslumui. Ši analizė
yra svarbi modeliuojant ir interpretuojant kiekvieno subindekso reikšmes, kurios nulemia
ir paties Gyvenimo kokybės indekso prognozuotą reikšmę bei jos patikimumą. Taip pat
tokia analizė padėtų atskleisti galimus modelių taikymo intervalus, kuomet laiko eilutė yra
pakankamai trumpa.
Lietuvos savivaldybės pasigerinti ir/arba išlaikyti savo Gyvenimo kokybės indeksą gali
keliais būdais. Savivaldybės galėtų skatinti ekonominę plėtrą per mokestines lengvatas
smulkiajam ir vidutiniam verslui. Tai taip pat gal net padėtų pritraukti naujų investicijų
į tam tikras savivaldybes. Smulkusis bei vidutinis klestintis verslas pritrauktų ir naujų
turistų, kurie taip pat prisidėtų prie savivaldybių ekonomikos gerinimo. Kita svarbi sritis
yra švietimas – savivaldybės turėtų stengtis išlaikyti kuo didesnį mokyklų, darželių ir ki-
tų neformaliojo ugdymo įstaigų skaičių, norint, jog visi šalies gyventojai gautų kokybišką
išsilavinimą, nepriklausomai nuo savo gyvenamosios aplinkos. Sveikatos paslaugų prieina-
mumas – taip pat svarbi sritis, į kurią savivaldybėms reikėtų susitelkti, norint išlaikyti ne
tik aukštą šių paslaugų lygį, bet ir sukurti palankias darbo sąlygas sveikatos specialistams,
kuriuos vis sunkiau pritraukti dirbti į mažuosius šalies miestus bei savivaldybes. Norint
pritraukti jaunus bei profesionalius sveikatos paslaugų specialistus, reikia stengtis kur-
ti palankias darbo sąlygas bei gerinti kiekvienos savivaldybės infrastruktūrą, pavyzdžiui,
skatinti žaliųjų erdvių didinimą bei didesnį subsidijų kiekį būstui įsigyti. Infrastruktūros
gerinimas prisidėtų ne tik prie geresnių sąlygų savivaldybių gyventojams, bet ir didintų
kiekvienos iš jų demografinį lygmenį.
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5 Priedai

Šiame priede yra sudėti visi 4 modeliai su prognozėmis bei metrikų palyginimais. Kitų subindeksų
koduose keitėsi tik atitinkami duomenų rinkiniai ir analizė buvo atliekama identiškai, tad priede
pateiktas tik vieno subindekso analizės kodas. ARIMA ir GAM modeliai buvo rašyti su Rstudio
programa. LSTM ir BiLSTM modeliai buvo rašyti su „Python” programa. Paskutinis kodas yra
Monte Karlo simuliacijų taikymas 95% pasikliovimo intervalams gauti.

# Load necessary libraries
library(forecast)
library(readxl)
library(dplyr)
library(writexl)
library(tseries)
library(lmtest)
library(FinTS)

# Load the data
A_MAX <- read_excel("/mif/stud3/2019/ugli6286/reshaped_A_MAX.xlsx")

# Convert columns to appropriate data types
A_MAX$Year <- as.numeric(A_MAX$Year)
A_MAX$Value <- as.numeric(A_MAX$Value)

A_MAX <- na.omit(A_MAX)

cat("Structure of the data:\n")
print(str(A_MAX))

unique_municipalities <- unique(A_MAX$Dimension)
cat("\nUnique municipalities found:\n")
print(unique_municipalities)

# Create an empty data frame to store predictions and diagnostics
predictions <- data.frame(

Municipality = character(),
Year = numeric(),
Predicted_Value = numeric(),
Lower_95_CI = numeric(),
Upper_95_CI = numeric(),
ADF_P_Value = numeric(),
Jarque_Bera_P_Value = numeric(),
Breusch_Pagan_P_Value = numeric(),
ARCH_LM_P_Value = numeric(),
stringsAsFactors = FALSE

)

# Loop through each municipality
for (municipality in unique_municipalities) {
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cat("\n#########################################\n")
cat("Processing:", municipality, "\n")

municipality_data <- A_MAX %>% filter(Dimension == municipality)

# Ensure enough data points exist
if (nrow(municipality_data) < 3) {
cat("Insufficient data for analysis. Skipping...\n")
next

}

# Fit a linear trend model
trend_model <- lm(Value ~ Year, data = municipality_data)
bp_test <- bptest(trend_model)
bp_test_p_value <- bp_test$p.value

# Detrend the data
trend_values <- predict(trend_model, newdata = municipality_data)
detrended_data <- municipality_data$Value - trend_values
ts_data_orig <- ts(detrended_data, start = min(municipality_data$Year), frequency = 1)

adf_test_orig <- adf.test(ts_data_orig)
adf_test_p_value <- adf_test_orig$p.value

ts_data <- ts_data_orig
differencing_applied <- FALSE
if (adf_test_p_value > 0.05) {
ts_data <- diff(ts_data_orig, differences = 1)
differencing_applied <- TRUE
adf_test_diff <- adf.test(ts_data)
adf_test_p_value <- adf_test_diff$p.value

}

arima_model <- tryCatch({
auto.arima(ts_data)

}, error = function(e) {
cat("ARIMA model failed for", municipality, ": ", e$message, "\n")
return(NULL)

})

if (is.null(arima_model)) next

# Forecasting with ARIMA
arima_forecast <- tryCatch({
forecast_result <- forecast(arima_model, h = 1)
list(mean = forecast_result$mean,

lower = forecast_result$lower[, 2],
upper = forecast_result$upper[, 2])

}, error = function(e) {
cat("ARIMA prediction failed for", municipality, ": ", e$message, "\n")
return(list(mean = 0, lower = 0, upper = 0))

})

# Restore forecasts to original scale if differencing was applied
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if (differencing_applied) {
last_value <- tail(municipality_data$Value, 1)
predicted_value <- last_value + as.numeric(arima_forecast$mean)
predicted_lower <- last_value + as.numeric(arima_forecast$lower)
predicted_upper <- last_value + as.numeric(arima_forecast$upper)

} else {
predicted_value <- as.numeric(arima_forecast$mean)
predicted_lower <- as.numeric(arima_forecast$lower)
predicted_upper <- as.numeric(arima_forecast$upper)

}

# Perform diagnostics
jb_test <- jarque.bera.test(residuals(arima_model))
jb_test_p_value <- jb_test$p.value

arch_test <- tryCatch({
FinTS::ArchTest(residuals(arima_model))

}, error = function(e) {
return(NULL)

})
arch_lm_p_value <- if (!is.null(arch_test)) arch_test$p.value else NA

# Plot ACF and PACF for residuals
cat("Plotting ACF and PACF for", municipality, "...\n")
par(mfrow = c(1, 2)) # Arrange plots side-by-side
acf(residuals(arima_model), main = paste("ACF for", municipality))
pacf(residuals(arima_model), main = paste("PACF for", municipality))

# Append results to the predictions data frame
predictions <- rbind(predictions, data.frame(
Municipality = municipality,
Year = max(municipality_data$Year) + 1,
Predicted_Value = as.numeric(predicted_value),
Lower_95_CI = as.numeric(predicted_lower),
Upper_95_CI = as.numeric(predicted_upper),
ADF_P_Value = adf_test_p_value,
Jarque_Bera_P_Value = jb_test_p_value,
Breusch_Pagan_P_Value = bp_test_p_value,
ARCH_LM_P_Value = arch_lm_p_value

))
}

cat("\nPredictions for All Municipalities:\n")
print(predictions)

output_file <- "Predictions_with_Original_Scale.xlsx"
write_xlsx(predictions, output_file)

cat("\nPrediction process completed. Results saved to", output_file, "\n")

library(Metrics)
VISI_MAX_FORECASTAI_2022 <-
\\
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read_excel("/mif/stud3/2019/ugli6286/A_MAX_PROGNOZES.xlsx")
TIKROS_REIKSMES_2022 <-
\\
read_excel("/mif/stud3/2019/ugli6286/TIKROS_REIKSMES_MAX_2022.xlsx")
prognozes <-
\\
VISI_MAX_FORECASTAI_2022[, c("A", "B", "C", "D", "E", "F", "GKI")]
tikros_reiksmes
\\
<- TIKROS_REIKSMES_2022[, c("A", "B", "C", "D", "E", "F", "GKI")]
tikros_reiksmes <- as.numeric(tikros_reiksmes)
prognozes <- as.numeric(prognozes)
valid_indices <- !is.na(tikros_reiksmes) & !is.na(prognozes)
tikros_reiksmes <- tikros_reiksmes[valid_indices]
prognozes <- prognozes[valid_indices]
if (length(tikros_reiksmes) != length(prognozes)) {

stop("The actual and forecast vectors must have the same length.")
}

# RMSE: Root Mean Square Error
rmse_value <- rmse(tikros_reiksmes, prognozes)
print(paste("RMSE:", rmse_value))

# MSE: Mean Squared Error
mse_value <- mse(tikros_reiksmes, prognozes)
print(paste("MSE:", mse_value))

# MAPE: Mean Absolute Percentage Error
mape_value <- mape(tikros_reiksmes, prognozes)
print(paste("MAPE:", mape_value))

library(readxl)
library(dplyr)

VISI_MAX_FORECASTAI_2022 <-

read_excel("/mif/stud3/2019/ugli6286/A_MAX_PROGNOZES.xlsx")

# Rename the "Municipality" column to "Dimensija"
VISI_MAX_FORECASTAI_2022 <- VISI_MAX_FORECASTAI_2022 %>%

rename(Dimensija = Municipality)

# Check if the column has been renamed successfully
print(colnames(VISI_MAX_FORECASTAI_2022))

library(ggplot2)

prognozes <- VISI_MAX_FORECASTAI_2022[, c("Dimensija", "GKI")]
tikros_reiksmes <- TIKROS_REIKSMES_2022[, c("Dimensija", "GKI")]
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merged_data <- merge(prognozes, tikros_reiksmes,

by = "Dimensija", suffixes = c("_prognoze", "_tikra"))

library(ggplot2)

merged_data <- merge(prognozes, tikros_reiksmes, by = "Dimensija", suffixes =

c("_prognoze", "_tikra"))

merged_data <- merge(prognozes, tikros_reiksmes, by = "Dimensija", suffixes =

c("_prognoze", "_tikra"))

ggplot(merged_data, aes(x = Dimensija)) +
geom_bar(aes(y = GKI_tikra, fill = "Actual Values"), stat = "identity",

width = 0.6,

position = position_nudge(x = -0.15)) +
geom_bar(aes(y = GKI_prognoze, fill = "Forecasted Values"),

stat = "identity", width = 0.4, position = position_nudge(x = 0.15)) +
labs(title = "Didžiausių prognozuotų ir tikrų reikšmių pagal

ARIMA modelį palyginimas",
x = "Dimensija",
y = "GKI reikšmė") +

theme_minimal() +
theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
scale_fill_manual(name = "Legenda",

values = c("Actual Values" = "red",
\\
"Forecasted Values" = "blue"))

#################GAM######################

library(mgcv) # For fitting GAM models
library(dplyr) # For data manipulation
library(ggplot2) # For plotting
library(readxl) # For reading Excel files
library(lmtest) # For Durbin-Watson test
library(car) # For testing heteroscedasticity
library(corrplot)
library(writexl)
library(tseries) # For the Augmented Dickey-Fuller Test

# Load the dataset (update the path accordingly if not in the same directory)
data <- read_excel("/mif/stud3/2019/ugli6286/cleaned_df_A_long.xlsx")

data$Dimensija <- as.factor(data$Dimensija)
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str(data)

# Augmented Dickey-Fuller test
is_stationary <- function(x) {

adf_test <- adf.test(x, alternative = "stationary")
return(adf_test$p.value < 0.05)

}

# Check if the data is stationary
stationary_check <- data %>%

group_by(Dimensija) %>%
summarize(is_stationary = is_stationary(Value_A))

print("Stationarity Check:")
print(stationary_check)

if (all(stationary_check$is_stationary)) {
# If all time series are stationary, use original data
print("All series are stationary. No differencing required.")
data_diff <- data
use_diff <- FALSE

} else {
# If any time series is non-stationary, apply differencing
print("Non-stationary series detected. Applying differencing.")
data_diff <- data %>%
group_by(Dimensija) %>%
arrange(Year) %>%
mutate(Value_A_diff = c(NA, diff(Value_A))) %>%
ungroup() %>%
na.omit() # Remove NA values created by differencing

use_diff <- TRUE
}

# Check for correlation between numerical predictors
cor_matrix <- cor(data_diff %>% select_if(is.numeric))
print("Correlation Matrix:")
print(cor_matrix)
corrplot(cor_matrix)

# Fit a GAM model using appropriate data
response_var <- if (use_diff) "Value_A_diff" else "Value_A"
formula <- as.formula(paste(response_var, "~ s(Year, k = min(10, num_unique_years))

+ Dimensija"))
num_unique_years <- length(unique(data_diff$Year))
gam_model <- gam(formula, data = data_diff)

# Display a summary of the GAM model
summary(gam_model)

fitted_values <- fitted(gam_model)
residuals <- resid(gam_model)
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par(mfrow = c(1, 1))
gam.check(gam_model)

# Check for autocorrelation in residuals using Durbin-Watson test
dw_test <- dwtest(gam_model)
print("Durbin-Watson Test for Autocorrelation:")
print(dw_test)

# If autocorrelation is significant, fit a GAMM model with an autoregressive structure
if (dw_test$p.value < 0.05) {

print("Autocorrelation detected. Fitting a GAMM model with AR(1) structure.")

gamm_model <-

gamm(as.formula(paste(response_var, "~ s(Year,

k = min(10, num_unique_years)) + Dimensija")),
correlation = corAR1(form = ~ Year | Dimensija),

data = data_diff)

# Extract and summarize the GAM part of the model
gam_model <- gamm_model$gam
summary(gam_model)

plot(gam_model, pages = 1)

par(mfrow = c(1, 1))
gam.check(gam_model)

fitted_values <- fitted(gam_model)
residuals <- resid(gam_model)

}

# Check for homoscedasticity using residuals vs fitted values plot
plot(fitted_values, residuals,

main = "Residuals vs Fitted Values",
xlab = "Fitted Values",
ylab = "Residuals",
pch = 20, col = "blue")

abline(h = 0, col = "red")

# Breusch-Pagan test approximation using linear model
lm_model <- lm(residuals ~ fitted_values)
bp_test <- bptest(lm_model)
print("Breusch-Pagan Test for Homoscedasticity:")
print(bp_test)

# ARCH LM Test for heteroscedasticity
arch_lm_test <- ArchTest(residuals, lags = 1)
print("ARCH LM Test for Conditional Heteroscedasticity:")
print(arch_lm_test)

# Check for normality of residuals using Q-Q plot and Shapiro-Wilk test
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qqnorm(gam_model$residuals)
qqline(gam_model$residuals, col = "red")
shapiro_test <- shapiro.test(gam_model$residuals)
print("Shapiro-Wilk Test for Normality of Residuals:")
print(shapiro_test)

data_diff$pred_diff <- predict(gam_model, newdata = data_diff)

last_year <- max(data$Year)
future_data <- data.frame(

Dimensija = unique(data$Dimensija),
Year = last_year + 1

)

future_data$pred_diff <- predict(gam_model, newdata = future_data)

combined_data_diff <- bind_rows(data_diff, future_data)

# Back-transform predictions to original values
if (use_diff) {

# For future data, add differenced predictions to the last actual value
combined_data <- combined_data_diff %>%
group_by(Dimensija) %>%
mutate(pred = ifelse(is.na(Value_A), lag(Value_A) + pred_diff, Value_A)) %>%
ungroup()

} else {
# If no differencing was used, predictions are already on original scale
combined_data <- combined_data_diff %>%
mutate(pred = pred_diff)

}

# Plot actual vs predicted values
ggplot(combined_data, aes(x = Year, y = Value_A, color = Dimensija)) +

geom_line() +
geom_line(aes(y = pred), linetype = "dashed") +
labs(title = "Actual vs Predicted Values (Including Future Prediction)",

x = "Year",
y = "Value",
color = "Dimensija") +

theme_minimal()

future_predictions <- combined_data %>%
filter(Year == last_year + 1) %>%
select(Dimensija, Year, pred)

print("Future Predictions (Original Scale):")
print(future_predictions)

write_xlsx(future_predictions, "A_MIN_fr_GAM_OriginalScale.xlsx")
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gam_summary <- summary(gam_model)
param_coef_estimates <- gam_summary$p.coeff
param_coef_se <- gam_summary$se[1:length(param_coef_estimates)]
param_coef_lower_95 <- param_coef_estimates - 1.96 * param_coef_se
param_coef_upper_95 <- param_coef_estimates + 1.96 * param_coef_se
param_coef_ci <- data.frame(

Estimate = param_coef_estimates,
Std.Error = param_coef_se,
Lower_95 = param_coef_lower_95,
Upper_95 = param_coef_upper_95

)
print("Confidence Intervals for Parametric Coefficients:")
print(param_coef_ci)

last_year <- max(data$Year)
future_data <- data.frame(

Dimensija = unique(data$Dimensija),
Year = last_year + 1

)

predictions <- predict(gam_model, newdata = future_data, se.fit = TRUE)

# Calculate 95% confidence intervals for predictions (on differenced scale)
future_data$pred_diff <- predictions$fit
future_data$se <- predictions$se.fit
future_data$lower_95_diff <- future_data$pred_diff - 1.96 * future_data$se
future_data$upper_95_diff <- future_data$pred_diff + 1.96 * future_data$se

last_values <- data %>%
group_by(Dimensija) %>%
summarize(last_Value_A = last(Value_A))

# Merge with future_data to back-transform
future_data <- merge(future_data, last_values, by = "Dimensija", all.x = TRUE)

# Back-transform to original values
future_data$pred <- future_data$last_Value_A + future_data$pred_diff
future_data$lower_95 <- future_data$last_Value_A + future_data$lower_95_diff
future_data$upper_95 <- future_data$last_Value_A + future_data$upper_95_diff

# Display back-transformed results
print("Predictions with Confidence Intervals for 2022 (Original Scale):")
print(future_data[, c("Dimensija", "Year", "pred", "lower_95", "upper_95")])

library(writexl)
write_xlsx(future_data, "predictions_with_ci_2022_original_scale.xlsx")

install.packages("Metrics")
library(Metrics)
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VISI_MIN_FORECASTAI_2022 <-

read_excel("/mif/stud3/2019/ugli6286/GAM_FR_MAX.xlsx")
TIKROS_REIKSMES_2022 <-

read_excel("/mif/stud3/2019/ugli6286/TIKROS_REIKSMES_MAX_2022.xlsx")
prognozes <- VISI_MIN_FORECASTAI_2022[, c("A", "B", "C", "D", "E", "F", "GKI")]
tikros_reiksmes <- TIKROS_REIKSMES_2022[, c("A", "B", "C", "D", "E", "F", "GKI")]
tikros_reiksmes <- as.numeric(tikros_reiksmes)
prognozes <- as.numeric(prognozes)
valid_indices <- !is.na(tikros_reiksmes) & !is.na(prognozes)
tikros_reiksmes <- tikros_reiksmes[valid_indices]
prognozes <- prognozes[valid_indices]
if (length(tikros_reiksmes) != length(prognozes)) {

stop("The actual and forecast vectors must have the same length.")
}

# RMSE: Root Mean Square Error
rmse_value <- rmse(tikros_reiksmes, prognozes)
print(paste("RMSE:", rmse_value))

# MSE: Mean Squared Error
mse_value <- mse(tikros_reiksmes, prognozes)
print(paste("MSE:", mse_value))

# MAPE: Mean Absolute Percentage Error
mape_value <- mape(tikros_reiksmes, prognozes)
print(paste("MAPE:", mape_value))

library(ggplot2)
library(dplyr)
library(readxl)

VISI_MIN_FORECASTAI_2022 <-

read_excel("/mif/stud3/2019/ugli6286/GAM_FR_MAX.xlsx")
TIKROS_REIKSMES_2022 <-

read_excel("/mif/stud3/2019/ugli6286/TIKROS_REIKSMES_MAX_2022.xlsx")
VISI_MIN_FORECASTAI_2022 <- VISI_MIN_FORECASTAI_2022 %>%

rename(Dimensija = Dimension)
# Ensure prognozes and tikros_reiksmes have "Dimensija" and "GKI" columns
# (Make sure the column names "Dimensija" and "GKI" exist in the data)
prognozes <- VISI_MIN_FORECASTAI_2022[, c("Dimensija", "GKI")]
tikros_reiksmes <- TIKROS_REIKSMES_2022[, c("Dimensija", "GKI")]

merged_data <- merge(prognozes,

tikros_reiksmes, by = "Dimensija",

suffixes = c("_prognoze", "_tikra"))

merged_data$GKI_prognoze <- as.numeric(merged_data$GKI_prognoze)
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merged_data$GKI_tikra <- as.numeric(merged_data$GKI_tikra)

ggplot(merged_data, aes(x = Dimensija)) +
geom_bar(aes(y = GKI_tikra, fill = "Tikros reikšmės"), stat = "identity",

width = 0.6, position = position_nudge(x = -0.15)) +

geom_bar(aes(y = GKI_prognoze, fill = "Prognozuotos reikšmės"), stat =

"identity", width = 0.4, position = position_nudge(x = 0.15)) +
labs(title = "Didžiausių prognozuotų ir tikrųjų GKI reikšmių palyginimas

pagal GAM modelį",
x = "Dimensija",
y = "GKI reikšmė") +

theme_minimal() +
theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
scale_fill_manual(name = "Legenda",

values = c("Tikros reikšmės" = "red",
\\
"Prognozuotos reikšmės" = "blue"))

#############LSTM (PYTHON)################

import pandas as pd
import numpy as np
from sklearn.preprocessing import MinMaxScaler
from statsmodels.tsa.stattools import adfuller
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense, Input
from tensorflow.keras.callbacks import EarlyStopping
import matplotlib.pyplot as plt
from google.colab import files

data = {
'Dimensija': [

'Kalvarijos sav.', 'Kalvarijos sav.', 'Kalvarijos sav.', 'Kalvarijos sav.',
'Kalvarijos sav.', 'Kalvarijos sav.', 'Kalvarijos sav.', 'Kalvarijos sav.',
'Kalvarijos sav.', 'Kelmės r. sav.', 'Kelmės r. sav.', 'Kelmės r. sav.',
'Kelmės r. sav.', 'Kelmės r. sav.', 'Kelmės r. sav.', 'Kelmės r. sav.',
'Kelmės r. sav.', 'Kelmės r. sav.', 'Lazdijų r. sav.', 'Lazdijų r. sav.',
'Lazdijų r. sav.', 'Lazdijų r. sav.', 'Lazdijų r. sav.', 'Lazdijų r. sav.',
'Lazdijų r. sav.', 'Lazdijų r. sav.', 'Lazdijų r. sav.', 'Skuodo r. sav.',
'Skuodo r. sav.', 'Skuodo r. sav.', 'Skuodo r. sav.', 'Skuodo r. sav.',
'Skuodo r. sav.', 'Skuodo r. sav.', 'Skuodo r. sav.', 'Skuodo r. sav.',
'Vilkaviškio r. sav.', 'Vilkaviškio r. sav.', 'Vilkaviškio r. sav.',
'Vilkaviškio r. sav.', 'Vilkaviškio r. sav.', 'Vilkaviškio r. sav.',
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'Vilkaviškio r. sav.', 'Vilkaviškio r. sav.', 'Vilkaviškio r. sav.'
],
'Year': [

2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021,
2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021,
2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021,
2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021,
2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021

],
'Value_A': [

0.20556, 0.28418, 0.30282, 0.38959, 0.45862, 0.43443, 0.55733, 0.65501, 0.72768,
0.30558, 0.39871, 0.41876, 0.53798, 0.59643, 0.62586, 0.6996, 0.76196, 0.79596,
0.28714, 0.28933, 0.38787, 0.50116, 0.57036, 0.59479, 0.75885, 0.70464, 0.72289,
0.28593, 0.42171, 0.51963, 0.61808, 0.68883, 0.71142, 0.78536, 0.83856, 0.81978,
0.23772, 0.30878, 0.41908, 0.4818, 0.57453, 0.67193, 0.73805, 0.75046, 0.76828

]
}

data_df = pd.DataFrame(data)

import tensorflow as tf

results with confidence intervals

for all municipalities
forecast_results = pd.DataFrame()

# Loop through each unique municipality in the dataset
for dimensija in data_df['Dimensija'].unique():

print(f"Processing Dimensija: {dimensija}")

# Filter data for the current municipality
data_filtered = data_df[data_df['Dimensija'] == dimensija].sort_values('Year')
data_filtered = data_filtered[['Year', 'Value_A']].dropna()

# Check stationarity using the Augmented Dickey-Fuller test
adf_test = adfuller(data_filtered['Value_A'])
is_stationary = adf_test[1] < 0.05
print(f"ADF Test p-value for {dimensija}: {adf_test[1]}")
print(f"Is the series stationary? {'Yes' if is_stationary else 'No'}")

# Apply differencing if non-stationary
if not is_stationary:

data_filtered['Value_A_diff'] = data_filtered['Value_A'].diff().dropna()
use_diff = True

else:
data_filtered['Value_A_diff'] = data_filtered['Value_A']
use_diff = False

data_filtered = data_filtered.dropna().reset_index(drop=True)

scaler = MinMaxScaler()
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data_filtered['Value_A_scaled'] = scaler.fit_transform(data_filtered

[['Value_A_diff']])

# Prepare data for LSTM
def prepare_lstm_data(data, time_steps=3):

X, y = [], []
for i in range(len(data) - time_steps):

X.append(data[i:(i + time_steps)])
y.append(data[i + time_steps])

return np.array(X), np.array(y)

# Prepare data with a time step of 3
time_steps = 3
X, y = prepare_lstm_data(data_filtered['Value_A_scaled'].values,
\\
time_steps=time_steps)
X = X.reshape(X.shape[0], X.shape[1], 1)

# Define the LSTM model with Monte Carlo Dropout
model = Sequential([

Input(shape=(X.shape[1], 1)),
LSTM(units=50, return_sequences=False),
Dropout(0.2), # Add dropout for Monte Carlo Dropout
Dense(units=1)

])

model.compile(optimizer='adam', loss='mean_squared_error')

# Early stopping to prevent overfitting
early_stopping = EarlyStopping(monitor='loss', patience=2)

# Train the model with 5 epochs
model.fit(X, y, epochs=5, batch_size=16, verbose=1, callbacks=[early_stopping])

# Prepare input for 1-step ahead forecast (2022)
last_sequence = X[-1].reshape(1, X.shape[1], 1)

confidence intervals
n_simulations = 100
forecasts = []

for _ in range(n_simulations):
# Enable training mode for dropout
forecast = model(last_sequence, training=True)
forecast = scaler.inverse_transform(forecast)
if use_diff:

forecast = forecast + data_filtered['Value_A'].iloc[-1]
forecasts.append(forecast[0][0])

mean_forecast = np.mean(forecasts)
lower_bound = np.percentile(forecasts, 2.5)
upper_bound = np.percentile(forecasts, 97.5)
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forecast_results = pd.concat([forecast_results, pd.DataFrame({
'Dimensija': [dimensija],
'Year': [2022],
'Forecasted Value': [mean_forecast],
'Lower Bound (95%)': [lower_bound],
'Upper Bound (95%)': [upper_bound]

})], ignore_index=True)

print("Forecasted Values for 2022 with Confidence Intervals for

all municipalities:")
print(forecast_results)

output_file = "LSTM_forecasts_2022_with_confidence_intervals.xlsx"
forecast_results.to_excel(output_file, index=False)
files.download(output_file)

print("All municipalities processed and results with confidence intervals saved.")

from sklearn.metrics import mean_squared_error, mean_absolute_percentage_error
import numpy as np

tikros_reiksmes_data = {
"A": [0.74140, 0.80879, 0.79039, 0.80556, 0.76796],
"B": [0.13774, 0.10744, 0.06810, 0.05530, 0.09606],
"C": [0.35373, 0.44110, 0.42171, 0.28825, 0.45036],
"D": [0.34077, 0.43364, 0.40508, 0.54266, 0.36401],
"E": [0.48025, 0.25536, 0.41586, 0.20636, 0.36403],
"F": [0.41537, 0.57436, 0.51772, 0.57311, 0.52832],
"GKI": [0.453761, 0.476057, 0.473453, 0.452740, 0.464890]

}

prognozes_data = {
"A": [0.717336, 0.315453, 0.692689, 0.372487, 0.785212],
"B": [0.134374, 0.088556, 0.045192, 0.021080, 0.090844],
"C": [0.352636, 0.456985, 0.389510, 0.309845, 0.357391],
"D": [0.286674, 0.345632, 0.267010, 0.480986, 0.339668],
"E": [0.373410, 0.162068, 0.317972, 0.123349, 0.269467],
"F": [0.460638, 0.523043, 0.536098, 0.570110, 0.499181],
"GKI": [0.431114, 0.295376, 0.410607, 0.299064, 0.438736]

}

actual_numeric_values = np.hstack([tikros_reiksmes_data[key] for

key in tikros_reiksmes_data.keys()])
forecasted_numeric_values = np.hstack([prognozes_data[key] for

key in prognozes_data.keys()])

# Calculate RMSE for the numeric data
rmse = np.sqrt(mean_squared_error(actual_numeric_values, forecasted_numeric_values))
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# Calculate MSE for the numeric data
mse = mean_squared_error(actual_numeric_values, forecasted_numeric_values)

# Calculate MAPE for the numeric data
mape = mean_absolute_percentage_error(actual_numeric_values, forecasted_numeric_values)

# Print the metrics
print("RMSE:", rmse)
print("MSE:", mse)
print("MAPE:", mape)
#LSTM

#################BiLSTM (PYTHON)#############

import pandas as pd
import numpy as np
from sklearn.preprocessing import MinMaxScaler
from statsmodels.tsa.stattools import adfuller
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Bidirectional, LSTM, Dense, Input, Dropout
from tensorflow.keras.callbacks import EarlyStopping
import matplotlib.pyplot as plt
from google.colab import files

data = {
'Dimensija': [

'Kalvarijos sav.', 'Kalvarijos sav.', 'Kalvarijos sav.', 'Kalvarijos sav.',
'Kalvarijos sav.', 'Kalvarijos sav.', 'Kalvarijos sav.', 'Kalvarijos sav.',
'Kalvarijos sav.', 'Kelmės r. sav.', 'Kelmės r. sav.', 'Kelmės r. sav.',
'Kelmės r. sav.', 'Kelmės r. sav.', 'Kelmės r. sav.', 'Kelmės r. sav.',
'Kelmės r. sav.', 'Kelmės r. sav.', 'Lazdijų r. sav.', 'Lazdijų r. sav.',
'Lazdijų r. sav.', 'Lazdijų r. sav.', 'Lazdijų r. sav.', 'Lazdijų r. sav.',
'Lazdijų r. sav.', 'Lazdijų r. sav.', 'Lazdijų r. sav.', 'Skuodo r. sav.',
'Skuodo r. sav.', 'Skuodo r. sav.', 'Skuodo r. sav.', 'Skuodo r. sav.',
'Skuodo r. sav.', 'Skuodo r. sav.', 'Skuodo r. sav.', 'Skuodo r. sav.',
'Vilkaviškio r. sav.', 'Vilkaviškio r. sav.', 'Vilkaviškio r. sav.',
'Vilkaviškio r. sav.', 'Vilkaviškio r. sav.', 'Vilkaviškio r. sav.',
'Vilkaviškio r. sav.', 'Vilkaviškio r. sav.', 'Vilkaviškio r. sav.'

],
'Year': [

2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021,
2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021,
2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021,
2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021,
2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021

],
'Value_A': [

0.20556, 0.28418, 0.30282, 0.38959, 0.45862, 0.43443, 0.55733, 0.65501,
0.72768, 0.30558, 0.39871, 0.41876, 0.53798, 0.59643, 0.62586, 0.6996,
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0.76196, 0.79596, 0.28714, 0.28933, 0.38787, 0.50116, 0.57036, 0.59479,
0.75885, 0.70464, 0.72289, 0.28593, 0.42171, 0.51963, 0.61808, 0.68883,
0.71142, 0.78536, 0.83856, 0.81978, 0.23772, 0.30878, 0.41908, 0.4818,
0.57453, 0.67193, 0.73805, 0.75046, 0.76828

]
}

data_df = pd.DataFrame(data)
forecast_results = pd.DataFrame()

for dimensija in data_df['Dimensija'].unique():
print(f"Processing Dimensija: {dimensija}")

data_filtered = data_df[data_df['Dimensija'] == dimensija].
\\
sort_values('Year')
data_filtered = data_filtered[['Year', 'Value_A']].dropna()

adf_test = adfuller(data_filtered['Value_A'])
is_stationary = adf_test[1] < 0.05

if not is_stationary:
data_filtered['Value_A_diff'] = data_filtered['Value_A'].diff().dropna()
use_diff = True

else:
data_filtered['Value_A_diff'] = data_filtered['Value_A']
use_diff = False

data_filtered = data_filtered.dropna().reset_index(drop=True)

scaler = MinMaxScaler()
data_filtered['Value_A_scaled'] = scaler.fit_transform(data_filtered

[['Value_A_diff']])

def prepare_lstm_data(data, time_steps=3):
X, y = [], []
for i in range(len(data) - time_steps):

X.append(data[i:(i + time_steps)])
y.append(data[i + time_steps])

return np.array(X), np.array(y)

time_steps = 3
X, y = prepare_lstm_data(data_filtered['Value_A_scaled'].values,
\\
time_steps=time_steps)
X = X.reshape(X.shape[0], X.shape[1], 1)

model = Sequential([
Input(shape=(X.shape[1], 1)),
Bidirectional(LSTM(units=50, return_sequences=False)),
Dropout(0.2),
Dense(units=1)

])
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model.compile(optimizer='adam', loss='mean_squared_error')
early_stopping = EarlyStopping(monitor='loss', patience=2)

model.fit(X, y, epochs=5, batch_size=16, verbose=1, callbacks=[early_stopping])

last_sequence = X[-1].reshape(1, X.shape[1], 1)
n_simulations = 100
forecasts = []

for _ in range(n_simulations):
forecast = model(last_sequence, training=True)
forecast = scaler.inverse_transform(forecast)
if use_diff:

forecast = forecast + data_filtered['Value_A'].iloc[-1]
forecasts.append(forecast[0][0])

mean_forecast = np.mean(forecasts)
lower_bound = np.percentile(forecasts, 2.5)
upper_bound = np.percentile(forecasts, 97.5)

forecast_results = pd.concat([forecast_results, pd.DataFrame({
'Dimensija': [dimensija],
'Year': [2022],
'Forecasted Value': [mean_forecast],
'Lower Bound (95%)': [lower_bound],
'Upper Bound (95%)': [upper_bound]

})], ignore_index=True)

print("Forecasted Values for 2022 with Confidence Intervals for all municipalities:")
print(forecast_results)

output_file = "BiLSTM_forecasts_2022_with_confidence_intervals.xlsx"
forecast_results.to_excel(output_file, index=False)
files.download(output_file)

print("All municipalities processed and results with confidence intervals saved.")

from sklearn.metrics import mean_squared_error, mean_absolute_percentage_error
import numpy as np

tikros_reiksmes_data = {
"A": [0.74140, 0.80879, 0.79039, 0.80556, 0.76796],
"B": [0.13774, 0.10744, 0.06810, 0.05530, 0.09606],
"C": [0.35373, 0.44110, 0.42171, 0.28825, 0.45036],
"D": [0.34077, 0.43364, 0.40508, 0.54266, 0.36401],
"E": [0.48025, 0.25536, 0.41586, 0.20636, 0.36403],
"F": [0.41537, 0.57436, 0.51772, 0.57311, 0.52832],
"GKI": [0.453761, 0.476057, 0.473453, 0.452740, 0.464890]

}

prognozes_data = {
"A": [0.729870, 0.376812, 0.689834, 0.328980, 0.793293],
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"B": [0.138884, 0.087790, 0.047068, 0.021926, 0.093110],
"C": [0.359308, 0.450323, 0.386282, 0.298581, 0.366773],
"D": [0.297661, 0.345876, 0.288346, 0.485979, 0.344706],
"E": [0.378030, 0.173031, 0.331055, 0.125038, 0.282342],
"F": [0.467318, 0.526605, 0.534342, 0.570335, 0.502134],
"GKI": [0.439237, 0.315167, 0.413636, 0.285841, 0.445429]

}

actual_numeric_values = np.hstack([tikros_reiksmes_data[key] for

key in tikros_reiksmes_data.keys()])
forecasted_numeric_values = np.hstack([prognozes_data[key] for

key in prognozes_data.keys()])

# Calculate RMSE for the numeric data
rmse = np.sqrt(mean_squared_error(actual_numeric_values, forecasted_numeric_values))

# Calculate MSE for the numeric data
mse = mean_squared_error(actual_numeric_values, forecasted_numeric_values)

# Calculate MAPE for the numeric data
mape = mean_absolute_percentage_error(actual_numeric_values,

forecasted_numeric_values)

# Print the metrics
print("RMSE:", rmse)
print("MSE:", mse)
print("MAPE:", mape)
#BiLSTM

#############Monte Karlo SIMULIACIJU KODAS#############################

# Load necessary libraries
library(readxl)
library(openxlsx)
library(dplyr)

arima_file <- "/mif/stud3/2019/ugli6286/ARIMA_CI.xlsx"
gam_file <- "/mif/stud3/2019/ugli6286/GAM_CI.xlsx"
lstm_file <- "/mif/stud3/2019/ugli6286/LSTM_CI.xlsx"
bilstm_file <- "/mif/stud3/2019/ugli6286/BiLSTM_CI.xlsx"

arima_data <- read_excel(arima_file) %>%
select(Savivaldybė, Subindeksas, Prognozė, PI_Lower, PI_Upper)

gam_data <- read_excel(gam_file) %>%
select(Savivaldybė, Subindeksas, Prognozė, PI_Lower, PI_Upper)

lstm_data <- read_excel(lstm_file) %>%
select(Savivaldybė, Subindeksas, Prognozė, PI_Lower, PI_Upper)
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bilstm_data <- read_excel(bilstm_file) %>%
select(Savivaldybė, Subindeksas, Prognozė, PI_Lower, PI_Upper)

arima_data <- arima_data %>%
mutate(Prognozė = as.numeric(Prognozė),

PI_Lower = as.numeric(PI_Lower),
PI_Upper = as.numeric(PI_Upper))

gam_data <- gam_data %>%
mutate(Prognozė = as.numeric(Prognozė),

PI_Lower = as.numeric(PI_Lower),
PI_Upper = as.numeric(PI_Upper))

lstm_data <- lstm_data %>%
mutate(Prognozė = as.numeric(Prognozė),

PI_Lower = as.numeric(PI_Lower),
PI_Upper = as.numeric(PI_Upper))

bilstm_data <- bilstm_data %>%
mutate(Prognozė = as.numeric(Prognozė),

PI_Lower = as.numeric(PI_Lower),
PI_Upper = as.numeric(PI_Upper))

arima_data <- arima_data %>%
filter(!is.na(PI_Lower) & !is.na(PI_Upper) & PI_Lower < PI_Upper)

gam_data <- gam_data %>%
filter(!is.na(PI_Lower) & !is.na(PI_Upper) & PI_Lower < PI_Upper)

lstm_data <- lstm_data %>%
filter(!is.na(PI_Lower) & !is.na(PI_Upper) & PI_Lower < PI_Upper)

bilstm_data <- bilstm_data %>%
filter(!is.na(PI_Lower) & !is.na(PI_Upper) & PI_Lower < PI_Upper)

# Combine data into a single list for processing
model_data <- list(ARIMA = arima_data, GAM = gam_data,

LSTM = lstm_data, BiLSTM = bilstm_data)

subindex_weights <- c(0.3, 0.2, 0.1, 0.1, 0.15, 0.15)

# Monte Carlo simulation parameters
n_sim <- 100 # Number of simulations
set.seed(123)

calculate_gki_ci <- function(data, weights, n_sim) {
municipalities <- unique(data$Savivaldybė)
gki_results <- data.frame(Municipality = character(),
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GKI_Mean = numeric(),
GKI_Lower = numeric(),
GKI_Upper = numeric())

for (mun in municipalities) {

mun_data <- subset(data, Savivaldybė == mun)

mun_data <- mun_data[order(mun_data$Subindeksas), ]

mun_data <- mun_data[!is.na(mun_data$PI_Lower)
& !is.na(mun_data$PI_Upper), ]

mun_data <- mun_data[mun_data$PI_Lower < mun_data$PI_Upper, ]

if (nrow(mun_data) < length(weights)) {
warning(paste("Skipping municipality:",

mun, "- insufficient data"))
next

}

# Monte Carlo simulations for each subindex
simulations <- replicate(n_sim, {
subindex_values <- mapply(function(lower, upper) {
runif(1, min = lower, max = upper)

}, mun_data$PI_Lower, mun_data$PI_Upper)

# Calculate GKI for this simulation
sum(subindex_values * weights)

})

# Calculate mean and 95% confidence intervals for GKI
gki_mean <- mean(simulations)
gki_ci <- quantile(simulations, probs = c(0.025, 0.975))

gki_results <- rbind(gki_results, data.frame(
Municipality = mun,
GKI_Mean = gki_mean,
GKI_Lower = gki_ci[1],
GKI_Upper = gki_ci[2]

))
}

return(gki_results)
}

# Process each model's data
results_list <- lapply(model_data, calculate_gki_ci,

weights = subindex_weights, n_sim = n_sim)

# Save results to Excel
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output_file <- "GKI_CI_Results.xlsx"
wb <- createWorkbook()

for (model_name in names(results_list)) {
addWorksheet(wb, model_name)
writeData(wb, model_name, results_list[[model_name]])

}

saveWorkbook(wb, output_file, overwrite = TRUE)

cat("GKI confidence intervals saved to:", output_file)
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