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From Markowitz’s Mean-Variance portfolio optimization to Conditional
Value-at-Risk

Abstract

This master’s thesis explores methods of portfolio optimization. Starting from the mean-
variance approach Sharpe ratio is calculated and the efficient frontier is plotted to minimize the
variance for different returns. To assess the tail risk of the return distribution Conditional Value-
at-Risk (CVaR) is estimated. Data includes stock and Bitcoin closing prices and is obtained from
Yahoo Finance [12]. The code for the empirical analysis is produced using Matlab programming
language [6]. As Bitcoin price is highly volatile and might behave asymmetrically to traditional
assets non-parametric methods are used to estimate CVaR. The usage of copulas allows to
estimate the distribution of return vectors by modeling marginals individually. To estimate
the copula density the kernel density is used. Simulated returns from the estimation are used
to optimize CVaR. The contribution to the research lies in the utilization of non-parametric
methods to analyze Bitcoin expected return and risk trade-off. Therefore, in this analysis risk
perception of investors is analyzed in highly volatile market conditions. The aim of this thesis
is to compare both optimization methods for a portfolio consisting of both traditional and
non-traditional assets. Results indicate that CVaR creates a more diversified portfolio than
mean-variance model. Also, CVaR allocates at least 10% of funds to Bitcoin for all portfolios, as
it is viewed as a non-linear return driver. Mean-variance model increases allocation to Bitcoin
with the growth of portfolio risk, because it sees volatility directly as risk.

Key words: mean-variance, CVaR, efficient frontier, Bitcoin, copula, non-parametric.
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Nuo Markowitz vidurkio – dispersijos portfelio optimizavimo iki sąlyginės
vertės pokyčio rizikos

Santrauka

Šis magistro darbas tyrinėja portfelio optimizavimo metodus. Pirmasis pasirinktas vidurkio–
dispersijos modelis, suskaičiuotas optimalus Šarpo rodiklis ir nubrėžtas efektyvumo frontas mi-
nimizuojantis grąžų dispersiją pasirinktai grąžai. Sąlyginės vertės pokyčio rizikos metodas bu-
vo pasirinktas norint įvertinti skirstinio uodegos riziką. Praktinėje darbo dalyje nagrinėjamos
2018-2023 akcijų ir Bitkoino uždarymo kainos iš Yahoo Finance [12], programavimui naudota
Matlab programavimo kalba [6]. Prieš pasirenkant modelį buvo atsižvelgta į Bitkoino kainos
nepastovumą ir asimetrinį ryšį su tradiciniais finansiniais instrumentais, todėl tolesnei analizei
buvo pasirinktas neparametrinis metodas sąlyginės vertės pokyčio rizikos skaičiavimui. Kopulų
naudojimas supaprastina vektorių modeliavimą atskirdamas marginaliuosius skirstinius ir kopu-
lą. Kopulos skaičiavime naudojama branduolio tankio funkcija. Simuliuotos investicijų grąžos
naudojamos CVaR optimizavime. Šis darbas prisideda prie egzistuojančios literatūros pritai-
kydamas neparametrinius metodus Bitkoino tikėtinų grąžų ir rizikos analizėje. Šiame darbe
investuotojų rizikos jautrumas analizuojamas į portfelį įtraukus ypač nepastovius instrumentus.
Darbo tikslas–palyginti abu optimizavimo modelius portfeliui, kuris sudarytas iš tradicinių ir
netradicinių finansinių instrumentų. Rezultatai rodo, kad naudojant CVaR modelį gaunamas la-
biau diversifikuotas portfelis, nei naudojant variacijos–dispersijos modelį. Taip pat, skaičiuojant
CVaR metodu kiekviename iš analizuotų portfelių bent 10 % lėšų investuojama į Bitkoiną, nes
dėl šio instrumento netiesiško ryšio su tradicinėmis akcijomis CVaR modelyje jis tampa vienu
iš pagrindinių grąžos variklių. Kita vertus, vidurkio–dispersijos modeliu nustatytuose portfe-
liuose Bitkoino procentinė dalis auga didėjant rizikai, todėl galima teigti, kad šis modelis grąžų
nepastovumą laiko tiesioginiu aukštos rizikos požymiu.

Raktiniai žodžiai: vidurkis–dispersija, CVaR, efektyvumo frontas, Bitkoinas, kopula, ne-
parametrinis modelis.
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1 Introduction
Portfolio optimization is the core goal in financial management with the aim of constructing

a portfolio with the best risk-return trade-off. Markowitz [5] introduced a model that analyzes
the mean and variance of investment assets. The aim of this method is to create such portfolio
that would maximize return for a given level of risk, or would minimize risk for a given level of
return. However, focusing on portfolio mean and defining risk as variance might be an overly
simplistic approach to evaluate an investment portfolio. This approach might fail to account
for skewness of fat tails of a distribution. This equal treatment of the upside and the downside
asset volatility might lead to inaccurate results. These shortcomings are addressed by CVaR
model. It focuses on the mitigation of the tail risk and measures worst-case scenario loss beyond
a pre-specified confidence level. CVaR method is useful for risk-averse investors who try to have
minimal losses during extreme market downturns, especially prominent for cryptocurrencies like
Bitcoin.

In this study I compare portfolio efficient frontiers and weight allocations to certain assets
resulting from both mean-variance and CVaR models. Analysis includes traditional stocks that
are listed on the exchange and Bitcoin. This thesis highlights how both approaches differ in the
treatment of risk and the trade-offs between risk and return. For the mean-variance approach I
calculate Sharpe ratio and plot the efficient frontier to minimize variance for different returns.
For the second approach, the CVaR optimization, I implement non-parametric methods. I use
copulas to estimate the distribution by modeling marginals separately. I use marginal cumulative
density functions to transform my data and get marginals uniform over [0,1]. For copula density
estimations I use kernel density. I sample from copula and obtain simulated returns which by
using the inverse cumulative density functions are transformed back to the original marginal
distribution. Lastly, by minimizing CVaR with the simulated returns I obtain the results and
plot the efficient frontier.

By implementing both parametric and non-parametric methods this thesis aims to provide
comparison of both portfolio optimization models and offers insights for investors with different
risk appetites. The structure of this thesis is the following: first section is the introduction,
in the second section I analyze relevant literature for mean-variance model and alternative
risk methods. The third section outlines sample selection logic and the methodology used for
both models. In the fourth section I present the findings of the practical assessment and the
comparison between two methods. Lastly, the fifth section concludes the takeaways of this
master’s thesis and provides thought for further analysis.
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2 Relevant literature review
In this section I introduce the concept of Markowitz’s mean-variance model and outline its

shortcomings. Also, I discuss the implications of including Bitcoin in the portfolio. To assess
the limitations of the mean-variance model I analyze literature on the alternative risk models
such as Value-at-Risk (VaR), CVaR and compare them.

2.1 Markowitz’s Mean-Variance Optimization framework
Markowitz [5] first formulated portfolio selection known as the mean-variance optimization

framework. He states that to achieve an optimal portfolio, an investor should take into account
a trade-off between expected return and variance. Key assumptions of the model are that
the investors are rational and risk-averse, and markets are efficient. The rationality constraint
makes sure that an investor would prefer a higher return under the same level of risk. And the
risk aversion leads to them wanting a lower risk for the same return level. The mean-variance
optimization problem derives the efficient frontier, which is comprised of portfolios with the
efficient trade-off between risk and return. The portfolios that lie on the efficient frontier are
efficient and will be chosen by rational investors as they want maximum expected return with
lowest risk. Markowitz [5] defines risk as standard deviation or variance of returns. The drawback
of this strong assumption is that it ignores the skewness and flat tails of distributions. In this
case, equally treating upside and downside asset volatility might lead to incorrect findings. For
example, sensitivity to estimation error in expected returns using historical averages which might
not reflect the future market trends falls as a criticism of the mean-variance model [7]. Merton
[7] highlights that errors occur estimating the covariance matrix because of large number of
parameters used in the estimation. As with n number of assets we would need to estimate
n(n−1)

2 covariance terms.
The introduction of Bitcoin is studied as a diversification tool for a portfolio of stocks [1].

The authors use the mean-variance framework and optimize the portfolio using Monte Carlo
simulations. The results suggest that Bitcoin acts as a diversification tool, as almost all portfolios
with Bitcoin performed much better compared to portfolios without it. However, they point out
that because of high price fluctuations, allocation to Bitcoin should be limited. Some research
[11] states that adding Bitcoin to a diversified portfolio minimizes portfolio variance. They find
that Bitcoin significantly increases diversification as the correlation between it and other assets
is low.

2.2 Alternative risk measures
The shortcomings of the mean-variance model paved the way for the introduction of al-

ternative risk measures. Conditional Value-at-Risk model, also called Expected Shortfall was
introduced [9]. It addresses the drawbacks of VaR which only focuses on the loss of a specific
percentile. Using CVaR authors [9] calculate the mean loss beyond the VaR threshold, leading
to its better performance catching the downside risk. The authors use a linear optimization
of CVaR, demonstrating that the computational efficiency can be applied to the case of large
portfolios. Results of this article show that CVaR model generates more robust solutions during
the crisis periods than the mean-variance or VaR methods.

Moreover, Banihashemi and Navidi [2] analyze Iranian company stock price data from 2015 to
2016 and compare VaR model with the CVaR. They calculate both measures using historical and
Monte Carlo simulations. Authors conclude that CVaR model provides more accurate results
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compared to VaR, especially in capturing the tail risk. Nedela [8] compares the traditional
Markowitz model with the CVaR model extending data by including stock prices from the
United States, China and the United Kingdom markets. Empirical results do not indicate which
model is more suitable for assessing risk during the crisis period. However, investors would have
a lower level of risk creating a portfolio with the CVaR model compared to using mean-variance
method.

Semenov and Smagulov [10] use copulas for their estimation of the dependencies between fi-
nancial assets. They estimate both VaR and CVaR using three different copula models. Authors
compare the results with historical estimates and find that using any of the copula specifications
outperformed historical estimates based on their predictability.

6



3 Sample selection and research methodology
In this section I present the data and the methodology used for the optimization of both

mean-variance and CVaR models. I outline the sample selection criteria used for this analysis.
Also, I provide the mathematical formulations for both models as well as the non-parametric
approach for the CVaR estimation.

3.1 Sample selection criteria
This thesis seeks to extend Markowitz’s mean-variance optimization model paying attention

to its shortcomings regarding the downside risk. CVaR model is introduced as an extension to
the mean-variance model. I select a sample for both models from 2018.01.01 to 2023.12.31, a
six-year sample captures both market downturn and growth cycles. The source of the data is
Yahoo Finance [12] and the sample includes both stock and cryptocurrency price data. For this
analysis I choose eight assets and obtain their daily closing prices out of which one is Bitcoin, the
rest are Apple, Microsoft Corporation, Alphabet, Amazon, Netflix, JPMrogan Chase and Co.
and Tesla company stocks all denominated in USD. I add Bitcoin to my portfolio based on the
research [4] stating that introducing Bitcoin improves the risk-return trade-off of a traditional
asset portfolio. The reason is that even though Bitcoin has high volatility, the correlation with
other assets is low.

3.2 Data preparation
Percentage returns are chosen for this analysis as they allow to directly compare different

assets regardless of their price level. I calculate daily returns for each asset individually using
closing prices, defined as:

Ri, t = Pi, t − Pi,t−1
Pi,t−1

, (3.1)

where Ri, t ∈ R for n assets.

• Ri,t is the return of the i-th asset on day t.

• Pi, t: Closing price of the i-th asset at time t.

Portfolio includes n assets, the vector of daily returns Rt is defined as:

Rt = (R1t, R2t, . . . , Rnt)

• µ = E[Rt]: Vector of mean returns.

• Σ = Cov(Rt) = E[(Rt − µ)(Rt − µ)⊤]: Covariance matrix of asset returns.

The vector of expected returns µ and covariance matrix of asset returns Σ are calculated as:

µ = 1
T

T∑
t=1

Rt, Σ = 1
T − 1

T∑
t=1

(Rt − µ)(Rt − µ)⊤.
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3.3 Markowitz Mean-Variance optimization
The first model I use is the Markowitz mean-variance optimization model introduced by

Markowitz [5]. The model assumes risk aversion of the investors and claims that higher risk
needs to be compensated by higher expected return. Using the mean-variance optimization
framework I create a portfolio that finds combinations of expected return against the risk of
these assets. The goal is to perform a minimization problem and achieve the smallest risk for a
given return.

Firstly, I determine the weights w = [w1, w2, . . . , wn]⊤, where each wi is defined as a percen-
tage of an investment allocated to a security i, and ∑n

i=1 wi = 1.
The portfolio return Rp represents the actual portfolio return at a specific time and is

determined as:
Rp =

n∑
i=1

wiRi = w⊤Rt, (3.2)

where Rt is the return vector of the individual assets.
Using the mean-variance optimization model for this analysis, I assume that the return proxy

is the expected return, while the risk proxy is the variance of the asset returns. Also, a portfolio
set should be formed using any combination of the constraints specified above.

Then the portfolio expected return which represents the average portfolio return over time
is calculated as follows:

E[Rp] = E[w⊤Rt] = w⊤µ. (3.3)

Also, the variance and standard deviation is expressed as:

σ2
p = Var(Rp) = Var(w⊤Rt) = w⊤Σw, (3.4)

σp =
√

σ2
p =

√
Var(Rp) =

√
Var(w⊤Rt) =

√
w⊤Σw. (3.5)

where the covariance matrix of returns is defined as Σ.

3.4 Sharpe Ratio
Sharpe ratio is a measure comparing the return of the portfolio with its risk. As risk increases

by one unit, it shows the additional amount of return received by an investor, therefore, showing
how greatly investors are compensated for taking extra risk. According to the Modern Portfolio
theory, tangency portfolio that lies on the efficient frontier maximizes the Sharpe ratio.

The Sharpe ratio is defined as:

Sharpe Ratio = E[Rp] − rf

σp
,

Where E[Rp]−rf is the risk premium and it measures the excess return of the portfolio compared
to the risk-free rate. σp is the volatility of the portfolio. Moreover, rf is a risk-free rate of return.
This return is a benchmark used to determine excess returns. For this analysis I choose return
on Treasury bills as my risk-free rate.

Now, after substituting E[Rp] and σp as defined in (3.3) and (3.5) :

Sharpe Ratio = w⊤µ − rf√
w⊤Σw

(3.6)

To get the optimal portfolio I search for the maximum of the Sharpe ratio:

8



max
w

w⊤µ − rf√
w⊤Σw

, (3.7)

subject to:
n∑

i=1
wi = 1, wi ≥ 0.

These conditions imply that the portfolio weights sum to 1. Meaning that the full portfolio is
invested without borrowing or any leftover funds. Also, no short selling of the assets is allowed,
as weights of the portfolio have to be non-negative. For this analysis the portfolio is long-only,
with all capital fully allocated.

To solve the optimization problem I use the Lagrange multipliers:

L(w, λ) = w⊤Σw − λ1(w⊤µ − rtarget) − λ2(1⊤w − 1),

where rtarget is the desired return of the portfolio and 1 is a vector of ones. Solving ∂L
∂w = 0 gives

the result as follows:
w = Σ−1(λ1µ + λ21).

Lastly, I plot the efficient frontier that minimizes the variance for different target returns,
defined as:

min
w

w⊤Σw, (3.8)

subject to:

w⊤µ = rtarget,
n∑

i=1
wi = 1, wi ≥ 0.

3.5 Conditional Value-at-Risk (CVaR) optimization
Introduced by Rockafellar and Uryasev [9], Conditional Value-at-Risk assesses the tail risk

of the distribution of an investment portfolio. It takes the weighted mean of the losses in the
tail of the distribution, in turn measuring the expected loss that goes beyond the Value-at-Risk
(VaRα) point at confidence level α. The use of CVaR instead of VaR benefits the most when
the asset or an asset class is less stable over time. When dealing with high-volatility assets,
VaR might not be able to catch all the volatility as it is indifferent to anything past its risk
threshold. Therefore, the worst-case loss scenario at a time period is represented by VaR, the
CVaR represents the expected loss if we cross that worst-case bound. In this analysis, I add
cryptocurrencies into the portfolio and to account for the high volatility of their returns I employ
the CVaR method.

Firstly, for confidence level α, the VaRα is defined as the α-quantile of the return distribution
F (Rp):

VaRα = inf{x ∈ R : F (x) ≥ α}. (3.9)

where F (x) = P (X ≤ x) is the cumulative distribution function of the random variable X.
I choose α, the confidence level, to be 95% (or 0.95).
CVaR measures the expected returns conditional on it being less than or equal to VaRα,

defined as:
CVaRα = E[Rp | Rp ≤ VaRα].
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Using the formulation introduced in [9], it is calculated as:

CVaRα = ν + 1
1 − α

E [max(0, ν − Rp)] , (3.10)

where ν = VaRα.

3.6 Copula estimation method
Copulas are defined as multivariate cumulative distribution functions where marginal pro-

bability distribution of a variable is uniform on [0,1]. Copula models the dependence between
random variables separately from the marginal distributions.

For clarity analyzing a bivariate case, according to Sklar’s theorem there exists a unique
copula C for any bivariate distribution function FX,Y (x, y) with continuous marginals FX(x)
and FY (y), defined as:

FX,Y (x, y) = C(FX(x), FY (y)). (3.11)
Formally, following [3], I use the definition of copula C(u, v)

[0, 1]2 → [0, 1]

and it maps the vector on the unit square and has the following properties:

1. C(u, v) in an non-decreasing function in each u and v.

2. C(1, v) = v and C(u, 1) = u, for all u, v ∈ [0, 1].

3. For au ≤ bu and av ≤ bv, the probability P (U ∈ [au, bu], V ∈ [av, bv]) has to be non-
negative. The third property leads to the rectangle inequality:

2∑
i=1

2∑
j=1

(−1)i+jC(ui, vj) ≥ 0,

with u1 = au, u2 = bu, v1 = av, and v2 = bv.

Furthermore, the copula density c(u, v) is defined as:

c(u, v) = ∂2C(u, v)
∂u∂v

. (3.12)

• X, Y : returns of the securities.

• FX(x), FY (y): Marginal cumulative density functions (CDFs) of asset returns.

• u, v: variables calculated from the margins, uniform over [0, 1].

For this analysis I use copulas as they allow me to estimate the distribution of asset return
vectors by modeling marginals separately. It is useful for my portfolio with stocks and cryp-
tocurrencies, as Bitcoin has a non-linear correlation with traditional stocks. Other correlation
measures might fail to estimate the tail dependence, especially, the co-movements during the
market crisis periods. Also, cryptocurrencies introduce higher asymmetry, Bitcoin and other
stocks might correlate differently depending on market conditions (bullish vs. bearish mar-
kets). To capture these portfolio characteristics I continue with the copula estimation model
and extend it using non-parametric kernel density estimation.
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3.7 Kernel density
Kernel-based estimation is a non-parametric model that estimates the probability density

function of a variable (in this case asset return). The copula density c(u, v) is estimated as a
function of the joint density f(x, y) and the marginal densities fX(x) and fY (y), equal to:

c(u, v) = f(F −1
X (u), F −1

Y (v))
fX(F −1

X (u))fY (F −1
Y (v))

. (3.13)

where

• f(F −1
X (u), F −1

Y (v)) is the joint density f(x, y).

• fX(F −1
X (u)), fX(F −1

Y (v)) are the marginal densities fX(x) and fY (y).

• F −1
X (u) and F −1

Y (v) are inverse cumulative distribution functions mapping u and v from
[0, 1] to the original X and Y space.

Joint density f(x, y) is approximated using kernel density as:

f̂(x, y) = 1
nhXhY

N∑
i=1

K

(
x − xi

hX

)
K

(
y − yi

hY

)
, (3.14)

with marginal densities fX(x) and fY (y) estimated as:

f̂X(x) = 1
nhX

N∑
i=1

K

(
x − xi

hX

)
.

• n: Number of observations.

• hX , hY : Bandwidth parameters used to smoothen the data.

• K(·): Kernel function, calculated as:

K(z) = 1√
2π

e−z2/2.

• f̂(x, y): Joint kernel density estimate for X and Y .

• f̂X(x), f̂Y (y): Marginal kernel density estimates for X and Y .

Using the mathematical framework outlined in sections 3.5, 3.6 and 3.7 I estimate CVaR
following these steps:

1. I use CDFs FX(x) and FY (y) to transform historical asset returns to marginals that are
uniform over [0,1], defined as:

ui = FX(xi), vi = FY (yi), where ui, vi ∈ [0, 1].

2. To estimate the copula density c(u, v) I apply kernel density estimation, leading to copula
density being defined as:

ĉ(u, v) = f̂(F −1
X (u), F −1

Y (v))
f̂X(F −1

X (u))f̂Y (F −1
Y (v))

,

where f̂(x, y) is the joint density, and f̂X(x), f̂Y (y) are marginal densities.
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3. By sampling from the copula I obtain simulated returns Rs. I use the inverse CDFs and
transform each pair of sampled (u, v) to the original marginal distribution and define the
portfolio return:

X = F −1
X (u), Y = F −1

Y (v).

Rs = wXX + wY Y,

where wX and wY are the portfolio weights of assets X and Y .

4. I approximate equation (3.10) using simulated portfolio returns Rs,i

CVaRα = ν + 1
(1 − α)N

N∑
i=1

max(0, ν − Rs,i), (3.15)

5. Lastly, I solve the CVaR optimization problem where I minimize CVaR:

min
w,ν

ν + 1
(1 − α)N

N∑
i=1

max(0, ν − w⊤Ri), (3.16)

subject to:

w⊤µ ≥ rtarget,
n∑

j=1
wj = 1, wj ≥ 0.
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4 Data analysis and results
The last section of the main part includes the data and results of the analysis. First, I

plot the efficient frontier and its weights for the mean-variance model. Secondly, I perform the
same procedure for the CVaR model. Lastly, I compare both models, outline the differences
in results and discuss the reasons for these differences. I perform all calculations using Matlab
programming language [6].

4.1 Portfolio return data
To examine the data, firstly, I plot asset returns of all eight securities. It includes: Ap-
ple (AAPL), Microsoft Corporation (MSFT), Alphabet (GOOGL), Amazon (AMZN), Netflix
(NFLX), JPMrogan Chase and Co. (JPM), Tesla (TSLA), Bitcoin (BTC). From a first look at
Figure 1 most of the distributions look mostly symmetric around the mean, which suggests a
normal distribution as a good fit. However, some assets show deviations and asymmetry. All
distributions display high kurtosis as they have sharp peaks and most of the data is concentrated
around the mean. Returns with high kurtosis tend to have heavy tails and more outliers. BTC,
TSLA and NFLX distributions have the heaviest tails, it suggests that they might suffer from
extreme returns, both positive and negative. The most volatile asset is BTC with the range of
returns from -0.4 to 0.2. The second most volatile is NFLX with returns ranging from -0.3 to
0.1. Other assets have narrower ranges of returns and falling somewhere in the range from -0.2
to 0.2.

Figure 1: Histograms of asset returns

According to the returns data and the asset lifetime, I specify three asset groups based on
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the perceived risk profile. First includes stable stocks, such as APPL, MSFT, GOOGL, JPM
exhibiting the most stable returns around the mean. The second group includes growth assets
and includes AMZN and NFLX. Lastly, I define the third group as higher-risk assets and it
contains TSLA and BTC which are newer assets then the rest.

4.2 Mean-Variance optimization results
Using Matlab built-in functions for mean-variance optimization, two conditions are met implic-
itly. First, it ensures a valid finite mean vector of returns. Second, the feasible portfolio set is
a non-empty and compact set.

After the mean-variance optimization I plot the efficient frontier presented in Figure 2. The
X-axis shows the risk measured by standard deviation and it ranges from around 1.5% to 4%.
The Y-axis represents the expected return of a portfolio. As risk increases the mean return
can rise from 0.8% to 2.4%. The efficient frontier is the steepest in the low risk segment up to
standard deviation of 2%. In this segment returns begin from around 0.8% and can increase
to 1.5% with standard deviation below 2%. This segment includes conservative, risk-averse
investors, who choose portfolios with low volatility. The moderate risk segment starts where
standard deviation is above 2%. It represents most of the investors with higher risk tolerance,
as it finds a balance between moderate risk and higher return. Average return for this segment
is from the range of 1,5% to 2%. The last segment is the high-risk segment, where the return
increases but at a diminishing rate compared to the standard deviation. Portfolios from this
segment might allocate more funds to the third group of assets. An investor would have to
double their risk to 4% to get a higher return by only 0.4% compared to the moderate segment.
For example, increasing the standard deviation from 1.5% to 2.5% would lead to an increase in
return by 0.9 p.p., but rising risk from 3% to 4% would result in the growth of the mean return
by just 0.4%.
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Figure 2: Efficient frontier for Mean-Variance estimation

Another way to analyze the efficient frontier is to plot ten portfolios that lie on the efficient
frontier and compare their weights. The area plot in Figure 3 shows a mix of different assets
in each of the plotted ten portfolios. The X-axis of this area plot represents each of the ten
portfolios, from one to ten, while the Y-axis shows the weight assigned to an asset. Each color
represents one of our eight assets and is indicated by the legend. Larger area shows that more
funds are allocated to that asset. For example, if I want to analyze the second portfolio I find
number two on the X-axis and see that blue area at the bottom (APPL) has a weight of 20%
(Y-axis). This means that the second portfolio allocates 20% of funds to APPL. Portfolios are
listed from the least risky (number 1) to the riskiest (number 10). First three portfolios are
the most diversified and stable assets have the highest weight. For instance, the first portfolio
includes all assets, focusing on stable stocks and allocating almost no funds to the riskier assets
such as BTC and TSLA. Moreover, AAPL, MSFT and JPM account for around 80% of the total
allocation for the third portfolio, indicating portfolio stability. Starting from the sixth portfolio
the investment strategy turns to aggressive. Over 60% of the funds are allocated to TSLA and
the rest to BTC. These high weights indicate the high return potential of the higher-risk asset
group.
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Figure 3: Weights for Mean-Variance portfolio

To find the highest risk-return combination among all portfolios on the frontier I estimate the
tangency portfolio, for my risk-free rate I use Treasury bill rate. Tangency portfolio is an optimal
portfolio that lies on the frontier where the efficient frontier is tangent to the capital allocation
line. It has the highest Sharpe ratio, representing the optimal risky allocation, combining risky
assets with the risk-free Treasury bills. This tangency portfolio is represented by a star in
Figure 4 and has asset weights as indicated in Table 1. The standard deviation of the tangency
portfolio is 2,1% with the expected return of 1,6%. From Table 1 we can see that this portfolio is
comprised of four assets. Most of the weight is concentrated in the stable stocks, such as AAPL
and MSFT. However, the tangency portfolio allocates over a tenth of the funds to Bitcoin,
highlighting high potential future returns.
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Figure 4: Tangent portfolio for Mean-Variance estimation

Asset Weight (%)
AAPL 25.4
MSFT 35.8

GOOGL 0
AMZN 0
NFLX 0
JPM 0
TSLA 25.7
BTC 13.1

Table 1: Target portfolio weights

4.3 CVaR optimization results
Mean-variance optimization relies on the assumption of linearity and it fails to account for a more
complex, non-linear dependence. Standard deviation might fail to account for the asymmetries
and the tail risk of the more extreme events. As I include Bitcoin into my portfolio and its
price fluctuates considerably, I need a more flexible approach to estimate the potential risk of
high losses. That is why I implement a non-parametric CVaR return optimization model. Using
copula estimation method with kernel density specification I create an empirical distribution and
generate 1000 simulated scenarios. I plot simulated returns for each asset in Figure 5. Comparing
the distributions from Figure 1 to Figure 5 they appear similar. Both historical and simulated
returns exhibit comparable means, variances and the shapes of distributions. It indicates that
the simulations accurately replicated the historical trends in the data. Importantly, the tails of
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the distributions align closely, as the CVaR focuses on the tail risk. Histograms suggest that
using the simulated data CVaR should catch extreme events effectively.

Figure 5: Histogram of returns for asset scenarios

After analyzing simulated return data I plot the efficient frontier using CVaR portfolio op-
timization. The X-axis shows portfolio CVaR focusing on the loss beyond the 95% confidence
level and it ranges from around 4% to 8.5%. The Y-axis represents the expected return of a
portfolio. With increase of risk the expected return can rise from 0.4% to 2.5%. Similarly to
the mean-variance portfolio, CVaR efficient frontier exhibits diminishing marginal returns. For
instance, increasing CVaR from 4% to 5% lead to a higher return by 0.8 p.p. However, moving
from 7% to 8% return increases by 0.4 p.p. Highest return to CVaR ratio is achieved at around
CVaR of 0.5%. The benefit of the CVaR model is that it minimizes the impact of market cri-
sis, which is an especially important quality considering investing in high-volatility assets like
Bitcoin.
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Figure 6: Efficient frontier for CVaR estimation

To ensure that the results of both models are comparable I also estimate ten portfolios for
the CVaR optimization problem. These portfolio lie on the efficient frontier and I plot each of
their weights in Figure 7. As before, the X-axis shows the portfolio number, while the Y-axis
indicates its weight. Eight portfolios out of ten exhibit high diversification, some investing in
all assets. On the far left I plot more conservative portfolios with around 85% of their funds
allocated to the stable stock group. Each of those uses around 30% of their total funds to acquire
GOOGL stock. Interestingly, even the conservative investors allocate some of their capital to
Bitcoin, average Bitcoin weight is 10%. Risk-seeking investors on the far right do not diversify
their portfolio and moderately increase Bitcoin weight to 25% and massively increase investment
size to TSLA.
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Figure 7: Weights for CVaR portfolio

4.4 Comparison of models
In this section I compare the efficient frontiers and the weight allocation for mean-variance
estimation and the CVaR optimization. Both of these approaches optimize portfolio risk-return
trade-off. However, they differ in their assumptions and view of risk. Mean-variance model
minimizes portfolio variance or standard deviation, while CVaR model focuses on extreme losses
and aims to catch the tail risk. I plot both mean-variance and CVaR efficient frontiers in Figure
8. In this figure the Markowitz mean-variance frontier showed in a blue dashed line is flatter than
CVaR frontier plotted in a solid red line at lower levels of risk. For mean-variance portfolio an
increase in returns would require a higher increase in risk. Markowitz efficient frontier becomes
steeper at the far right of the graph, when the increase in risk has a diminishing growth in return.
CVaR efficient frontier, on the other hand, is steeper at low levels of CVaR achieving higher
returns for the same level of risk. It is in line with the specification of the method, as CVaR
aims to provide insight for risk-averse investors and manage tail risk, especially, in the low-risk
region. When both efficient frontier lines reach high risk at 8% they converge reflecting similar
investment behavior in risky assets. The CVaR model provides an advantage for risk-averse
investors by achieving higher expected returns for the same risk. They should be chosen by
investors looking for stability and would like to avoid extreme losses. Markowitz mean-variance
model performs well at high-risk segments focusing on the maximization of returns.
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Figure 8: Comparison of efficient frontiers

I examine the weight allocations of assets within the portfolios to gain a deeper understanding
about the structure of efficient portfolios for each model.

Comparing Markowitz mean-variance optimization model to CVaR I see an earlier intro-
duction of BTC for CVaR portfolio. This introduction occurs because CVaR aims to mitigate
the tail-risk focusing on the return potential and views BTC as a non-linear return driver. For
low to moderate risk portfolios BTC stays at a stable rate of 10%, while mean-variance method
starts with a minimal allocation to BTC and increases it with the growth of risk. Markowitz
portfolios exhibit a sharp reduction in stable assets focusing on only three stable assets and
decreasing their share as we move to risky portfolios. On the other hand, CVaR portfolio is
well diversified, with 90% of funds allocated to stable or growth stocks. It gradually reduces the
share of less risky assets as the risk profile changes from risk-averse to risk-seeking investors. It
reflects a strong focus on tail-risk mitigation.

Overall, the weight allocation shows that Markowitz model invests in less number of assets
and favors high risk-return trade-offs. On the other hand, CVaR model allows for a more
diversified portfolio to avoid the extreme downside risk.
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Figure 9: Comparison of weights
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5 Conclusion
This thesis compares mean-variance method and the CVaR model used to optimize portfolio
return, focusing on their efficient frontiers and portfolio weight allocations. The results show
that while both models try to get the best risk-return trade-off, the difference in methodology
leads to distinct outputs for investors based on their risk tolerance. Overall, CVaR efficient
frontier is higher and steeper than mean-variance frontier for lower-risk portfolios. Markowitz’s
mean-variance efficient frontier becomes steeper and coincides with the CVaR efficient frontier
at higher levels of risk where the increase in risk has diminishing returns. Results indicate
that CVaR model aims to reduce tail risk and best suits risk-averse investors as it gets the
highest return in low-risk regions. If an investor is looking for stability and minimal losses,
then choosing a portfolio from the CVaR efficient frontier would yield the highest return. Mean-
variance portfolio performs equally as good as CVaR at higher risk levels as both models allocate
heavily to high-risk assets.

Additionally, CVaR model produces more diversified portfolios for low to moderate risk
investors. It introduces highly volatile assets like Bitcoin earlier and keeps it at around 10%, as
it views Bitcoin as a return diver. The mean-variance model starts with smaller allocation to
Bitcoin and increases it when moving to more risky portfolios.

This thesis contributes to the existing literature by comparing mean-variance and CVaR
models and analyzing not only traditional stocks, but also Bitcoin. This thesis highlights that
Bitcoin as a high-return asset based on this research should be included even in low-risk port-
folios. However, allocating most of the funds to it would still be a high-risk position. Further
research could extend this analysis and evaluate how portfolio weights would change based on
the market conditions, estimating separate efficient frontiers for bull and bear markets. Also,
this CVaR model could be used to focus on only cryptocurrencies, such as Bitcoin, Ethereum,
other emerging tokens, to assess the tail-risk during different market conditions.

23



References
[1] W. Bakry, A. R. Khaki, S. Al-Mohamad, and N. El-Kanj, Bitcoin and Portfolio Diversi-

fication: A Portfolio Optimization Approach, Journal of Risk and Financial Management,
vol. 14, no. 7, 2021, article 282. https://papers.ssrn.com/sol3/papers.cfm?abstract_
id=3614606

[2] S. Banihashemi and S. Navidi, Portfolio Performance Evaluation in Mean-CVaR Frame-
work: A Comparison with Non-Parametric Methods Value at Risk in Mean-VaR Analysis,
Operations Research Perspectives, vol. 4, 2017, pp. 21–28. https://www.econstor.eu/
bitstream/10419/178274/1/1-s2.0-S2214716016300665-main.pdf

[3] R. De Matteis, Fitting Copulas to Data, Diploma Thesis, Institute of Mathematics, Uni-
versity of Zurich, June 2001. https://citeseerx.ist.psu.edu/document?repid=rep1&
type=pdf&doi=1c55760c6fda7782f7fc13f666d5e79343b41656

[4] A. Eisl, S. M. Gasser, and K. Weinmayer, Caveat Emptor: Does Bitcoin Improve Port-
folio Diversification?, SSRN Electronic Journal, 2015. https://doi.org/10.2139/ssrn.
2408997

[5] H. Markowitz, Portfolio Selection, The Journal of Finance, vol. 7, no. 1, 1952, pp. 77–91.
https://www.jstor.org/stable/2975974

[6] MathWorks Quant Team, CVaR Portfolio Optimization. MATLAB Central File
Exchange, 2024. https://www.mathworks.com/matlabcentral/fileexchange/38288-
cvar-portfolio-optimization. Accessed on December 5, 2024.

[7] R. C. Merton, On Estimating the Expected Return on the Market: An Exploratory In-
vestigation, Journal of Financial Economics, vol. 8, no. 4, 1980, pp. 323–361. https:
//www.sciencedirect.com/science/article/abs/pii/0304405X80900070

[8] D. Neděla, Comparison of Selected Portfolio Approaches with Benchmark, Proceed-
ings of the 38th International Conference on Mathematical Methods in Economics,
Brno, Czech Republic, 2020, pp. 1–8. https://www.researchgate.net/publication/
344370105_Comparison_of_Selected_Portfolio_Approaches_with_Benchmark

[9] R. T. Rockafellar and S. Uryasev, Optimization of Conditional Value-at-Risk, Journal of
Risk, vol. 2, no. 3, 2000, pp. 21–41. https://www.ise.ufl.edu/uryasev/files/2011/11/
CVaR1_JOR.pdf

[10] M. Semenov and D. Smagulov, Portfolio Risk Assessment Using Copula Models,
arXiv preprint arXiv:1707.03516, 2017. https://www.researchgate.net/publication/
318392526_Portfolio_Risk_Assessment_using_Copula_Models

[11] E. Symitsi and K. J. Chalvatzis, The Economic Value of Bitcoin: A Portfolio Analysis of
Currencies, Gold, Oil, and Stocks, Research in International Business and Finance, vol. 48,
2019, pp. 97–110. https://ideas.repec.org/a/eee/riibaf/v48y2019icp97-110.html

[12] Yahoo Finance, Historical Price Data. Accessed on December 5, 2024. https://finance.
yahoo.com

24

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3614606
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3614606
https://www.econstor.eu/bitstream/10419/178274/1/1-s2.0-S2214716016300665-main.pdf
https://www.econstor.eu/bitstream/10419/178274/1/1-s2.0-S2214716016300665-main.pdf
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=1c55760c6fda7782f7fc13f666d5e79343b41656
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=1c55760c6fda7782f7fc13f666d5e79343b41656
https://doi.org/10.2139/ssrn.2408997
https://doi.org/10.2139/ssrn.2408997
https://www.jstor.org/stable/2975974
https://www.mathworks.com/matlabcentral/fileexchange/38288-cvar-portfolio-optimization
https://www.mathworks.com/matlabcentral/fileexchange/38288-cvar-portfolio-optimization
https://www.sciencedirect.com/science/article/abs/pii/0304405X80900070
https://www.sciencedirect.com/science/article/abs/pii/0304405X80900070
https://www.researchgate.net/publication/344370105_Comparison_of_Selected_Portfolio_Approaches_with_Benchmark
https://www.researchgate.net/publication/344370105_Comparison_of_Selected_Portfolio_Approaches_with_Benchmark
https://www.ise.ufl.edu/uryasev/files/2011/11/CVaR1_JOR.pdf
https://www.ise.ufl.edu/uryasev/files/2011/11/CVaR1_JOR.pdf
https://www.researchgate.net/publication/318392526_Portfolio_Risk_Assessment_using_Copula_Models
https://www.researchgate.net/publication/318392526_Portfolio_Risk_Assessment_using_Copula_Models
https://ideas.repec.org/a/eee/riibaf/v48y2019icp97-110.html
https://finance.yahoo.com
https://finance.yahoo.com


A Appendix
Below is the Matlab code used for this analysis:

datamystock = readtable('stock_closing_prices_2.xlsx');
sstocksandbtc = {'AAPL', 'MSFT', 'GOOGL', 'AMZN', 'NFLX', 'JPM', '

TSLA', 'BTC'};
atrnr = numel(sstocksandbtc);
rett = tick2ret(datamystock{:, sstocksandbtc});
porfo = Portfolio('AssetList', sstocksandbtc , 'RiskFreeRate', 0.01/

252);
porfo = estimateAssetMoments(porfo , rett);
porfo = setDefaultConstraints(porfo);
weigmystock = estimateMaxSharpeRatio(porfo);
[riskyone , returnone] = estimatePortMoments(porfo , weigmystock);
figure;
tobe = uitabgroup;
tobe1 = uitab(tobe, 'Title', 'EF');
ex = axes('Parent', tobe1);
[vid, kov] = getAssetMoments(porfo);
scatter(ex, sqrt(diag(kov)), vid, 'oc', 'filled');
text(sqrt(diag(kov)) + 0.0003, vid, sstocksandbtc , 'FontSize', 5);
hold on
[riskytwo , returntwo] = plotFrontier(porfo , 10);
plot(riskyone , returnone , 'p', 'MarkerSize', 15, 'MarkerEdgeColor', '

r', 'MarkerFaceColor', 'k');
hold off;
figure;
plotAssetHist(sstocksandbtc , rett);
nrber = 1000;
astscen = simEmpirical(rett, nrber);
pppp = PortfolioCVaR('Scenarios', astscen);
pppp = setDefaultConstraints(pppp);
pppp = setProbabilityLevel(pppp, 0.95);
figure;
plotAssetHist(sstocksandbtc , astscen);
figure;
wghtone = estimateFrontier(pppp);
plotFrontier(pppp, wghtone);
plotWeight(wghtone , sstocksandbtc , '');
Number = 6;
plotCVaRHist(pppp, wghtone , rett, Number , 50)
portfwoogh = Portfolio;
portfwoogh = setAssetList(portfwoogh , sstocksandbtc);
portfwoogh = estimateAssetMoments(portfwoogh , rett);
portfwoogh = setDefaultConstraints(portfwoogh);
whgttwos = estimateFrontier(portfwoogh);
plotFrontier(portfwoogh ,whgttwos);
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plotWeight(whgttwos , sstocksandbtc , '');
prtone = estimatePortReturn(pppp,wghtone);
prttwo = estimatePortReturn(pppp,whgttwos);
priskone = estimatePortRisk(pppp,wghtone);
prisktwo = estimatePortRisk(pppp,whgttwos);
figure
plot(priskone ,prtone ,'-r',prisktwo , prttwo ,'--b')
plotWeight2(wghtone , whgttwos , sstocksandbtc)
function scenstock = simEmpirical(ret,nScenario)
[no,nstock] = size(ret);
g = zeros(no,nstock);
for o = 1:nstock

g(:,o) = ksdensity(ret(:,o),ret(:,o),'function','cdf');
end
[ro, dfff] = copulafit('t',g);
ri = copularnd('t',ro,dfff,nScenario);
scenstock = zeros(nScenario ,nstock);
for o = 1:nstock

scenstock(:,o) = ksdensity(ret(:,o),ri(:,o),'function','icdf');
end
end
function plotAssetHist(symbol ,ret)
figure
stocknr = numel(symbol);
clr = 3;
rows = ceil(stocknr/clr);
for k = 1:stocknr

subplot(rows,clr,k);
histogram(ret(:,k));
title(symbol{k});

end
end
function plotCVaRHist(p, w, ret, portNum , nBin)
portfoliostockrt = ret*w(:,portNum);
valueatrisk = estimatePortVaR(p,w(:,portNum));
condvalueatrisk = estimatePortRisk(p,w(:,portNum));
valueatrisk = -valueatrisk;
condvalueatrisk = -condvalueatrisk;
figure;
go = histogram(portfoliostockrt ,nBin);
hold on;
ed = go.BinEdges;
calcl = go.Values.*(ed(1:end -1) < valueatrisk);
htwo = histogram('BinEdges',ed,'BinCounts',calcl);
htwo.FaceColor = 'r';
plot([condvalueatrisk;condvalueatrisk],[0;max(go.BinCounts)*0.80],'--

r')
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text(ed(1), max(go.BinCounts)*0.85,['CVAR = ' num2str(round(-
condvalueatrisk ,4))])

hold off;
end
function plotWeight(wght, smb, title)
figure;
wght = round(wght'*100,1);
area(wght);
title(title);
legend(smb);
end
function plotWeight2(weigonestock , wighstock2 , smb)
figure;
weigonestock = round(weigonestock '*100,1);
area(weigonestock);
legend(smb);
wighstock2 = round(wighstock2 '*100,1);
area(wighstock2);
legend(smb);
end
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