
VILNIUS UNIVERSITY

FACULTY OF MATHEMATICS AND INFORMATICS

MODELLING AND DATA ANALYSIS STUDY PROGRAMME

Master’s thesis

Multi­task learning for survival analysis using pathology
images

Daugialypis mokymasis išgyvenamumo analizėje naudojantis
patologijos vaizdais

Ovidijus Kuzminas

Supervisor : assoc. prof. Linas Petkevičius

Scientific advisors : prof. Arvydas Laurinavičius

res. Dovilė Žilėnaitė­Petrulaitienė

sr. res. Allan Rasmusson

Reviewer : assoc. prof. Tadas Žvirblis

Vilnius

2025

Acknowledgements

I am grateful to the National Center of Histopathology for the dataset that was key to this study.

Their continuous mentoring and guidance during the course of research has helped this thesis get

done.

I’m also so grateful for my family for all of their support and understanding. They were patient

and encouraging so I could devote the time and energy required for my courses and research.

2

Summary

This thesis introduced amulti­task learning framework for survival analysis from a combination

of histopathological images and clinical data. The integration of structured tabular data and unstruc­

tured whole­slide images (WSIs) improves the prediction of survival probability and time­to­event

outcomes. The approach is based on usafe of pre­trained convolutional neural networks for feature

extraction, watershed segmentation for preprocessing, parametric tile selection, and a multi­layer

perceptron model for multi­task inference. The pipeline achieves a significant improvement in sur­

vivability estimation, reaching concordance index of 0.829 on the validation dataset and 0.823 on

the test dataset, and outperforming baseline methods like Cox regression which was analyzed for

the same dataset in the previous work. This research contributes to the field by presenting an effi­

cientmethodology for integrating clinical and histopathological data, proposing framework for image

preprocessing and tile selection, and employing customized loss functions for survival analysis tasks.

Keywords: Multi­task learning, survival analysis, histopathology images, feature extraction,

deep learning.

3

Santrauka

Magistro darbe pasiūlyta daugialypio mokymosi sistema, skirta histopatologijos vaizdų ir

klinikinių duomenų išgyvenamumo analizei. Struktūrizuotų lentelių duomenų ir nestruktūrizuotų

didelės raiškos vaizdų integravimas pagerina išgyvenamumo tikimybės ir laiko iki įvykio kintamųjų

prognozavimą. Metodas grindžiamas iš anksto apmokytais konvoliuciniais neuroniniais tinklais, skir­

tais požymių išskyrimui, watershed segmentavimu, skirtu išankstiniam apdorojimui, parametrine

vaizdo dalių atranka ir daugiasluoksniu perceptronomodeliu, skirtu daugialypėms prognozėms. Nau­

dojant šią sistemą gerokai pagerinamas išgyvenamumo prognozavimas, kaip rodo 0.829 atitikimo in­

deksas (angl. c­index) validacijos duomenų rinkinyje ir 0.823 ­ testiniame duomenų rinkinyje, ir tai

lenkia Cox regresiją, kuri analizuota to pačio duomenų rinkinio kontekste. Šiuo tyrimu prisidedama

srities plėtojimo pateikiant veiksmingą klinikinių ir histopatologinių duomenų integravimometodiką,

pasiūlant vaizdų pirminio apdorojimo ir vaizdo dalių parinkimo sistemą ir taikant naujas nuostolių

funkcijas išgyvenamumo analizės užduotims.

Raktiniai žodžiai: daugelio tikslų mokymasis, išgyvenamumo analizė, histopatologijos vaizdai,

informatyvių požymių ištraukimas, gilusis mokymasis.

4

List of Figures

Figure 1. Different WSI zoom levels . 13

Figure 2. CNN feature extraction visualization [38]. 14

Figure 3. Watershed segmentation visualization [10]. 18

Figure 4. Five randomly selected whole­slide images from the dataset. 27

Figure 5. WSI­level feature extraction comparison in predictive performance 31

Figure 6. Comparison of segmented WSI with cosine dissimilarity ranking 31

Figure 7. Ranking percentile RSF inference results . 32

Figure 8. Architecture of the MLP Model . 34

Figure 9. Finalized pipeline . 36

5

List of Tables

Table 1. Descriptive Statistics for Numerical Features . 26

Table 2. Performance Comparison of Feature Extractors 29

Table 3. Performance Comparison of Segmentation Techniques 30

Table 4. Watershed Connectivity Tuning Results . 30

Table 5. Tunable Hyperparameters . 35

Table 6. Best training related hyperparameters . 36

Table 7. Model Performance Metrics . 38

6

Contents

Summary . 3

Santrauka . 4

List of Figures . 5

List of Tables . 6

List of abbreviations . 9

Introduction . 10

1 Related work . 12

1.1 CNNs for Survival Analysis with Histopathological Images 12

1.2 Tile Selection and Preprocessing in Histopathology 12

1.3 Multi­Task Learning for Survival Analysis . 13

1.4 Feature Extraction with Pre­Trained CNNs . 13

1.5 Combining Imaging and Tabular Data for Prognostic Modeling 14

1.6 Custom Loss Functions for Survival Analysis . 14

2 Methodology . 15

2.1 Histopathology and Its Digital Transformation . 15

2.2 Survival analysis . 15

2.2.1 Censoring . 15

2.2.2 Cox Regression . 16

2.2.3 Random Survival Forest . 16

2.2.4 Hazard Functions . 16

2.2.5 Concordance Index . 17

2.2.6 Brier Score . 17

2.3 Watershed segmentation . 17

2.4 Deep Learning . 18

2.4.1 Activation Functions . 19

2.4.2 Multi­layer Perceptron . 19

2.4.3 Dropout . 19

2.4.4 Convolutional Neural Networks . 20

2.4.5 Transfer Learning . 20

2.4.6 Residual networks Architecture . 20

2.4.7 ViT Architecture . 21

2.4.8 Loss Functions . 21

2.4.9 AdamW optimizer . 21

2.4.10 Multi­task Learning . 22

2.4.11 Imbalance handling . 22

2.5 Data splitting . 23

2.6 Min­max feature scaling . 23

2.7 Cosine dissimilarity . 23

2.8 Bayesian hyperparameter optimization . 24

2.9 Principal component analysis . 24

2.10 Regression metrics . 25

7

3 Experiments . 26

3.1 Dataset . 26

3.2 Data Splitting . 27

3.3 Feature Extractor Comparison . 28

3.4 Segmentation Comparison . 29

3.5 Selecting Tiles . 30

3.6 Multi layer perceptron setup . 32

3.6.1 Data loading . 32

3.6.2 Loss functions and optimization . 32

3.6.3 Architecture . 34

3.6.4 Callbacks . 34

3.7 Hyperparameter optimization . 35

3.8 Evaluating Model . 36

3.9 Other experiments . 37

4 Results and Conclusions . 38

4.1 Results . 38

4.2 Limitations . 38

4.3 Conclusions . 39

Appendix 1. Code samples . 43

8

List of abbreviations

Abbreviation Full Form

H&E hematoxylin and eosin

WSI whole­slide image

DL deep learning

NN neural network

CNN convolutional neural network

MTL multi­task learning

RSF random survival forest

c­index concordance index

ReLU rectified linear unit

MLP multi­layer perceptron

ResNet residual networks

ViT visual transformer

NLL negative log likelihood

SGD stochastic gradient descent

MSE mean squared error

PCA principal component analysis

MAE mean absolute error

R2 coefficient of determination

TTE time­to­event

9

Introduction

Cancer is a major societal, public health, and economic problem in the 21st century, respon­

sible for 16.8% deaths worldwide. Specifically, breast cancer is a leading cause of cancer­related

mortality among women globally [4]. underscoring the pressing need for accurate prognostic tools

to improve patient outcomes. Current approaches heavily rely on clinical and pathological markers,

including tumor size, lymph node involvement, and receptor expression [43]. While the visually

scored biomarkers hold significant prognostic power, the majority of prognostic features are still

remain unused within the pathology images.

The survival analysis is an essential part of clinical research that provides tools to predict time­

to­event data (e.g., disease recurrence or death) [37]. Survival analysis helps in clinical research for

assessing treatment efficacy and understanding disease progression. Traditional survival analysis

methods such as the Cox proportional hazards model are commonly used. Nevertheless, they have

some limitations especially for non­linear relationships, high dimensionality or a large quantities of

censored data [33]. Such drawbacks prevent exploiting rich structured and unstructured data which

are available for each patient.

Histopathological images are gold standard in cancer diagnosis and prognosis because they

provide insights about the tumor and its microenvironment. They include nuclear structure and

other tissue components that can be related to tumor advancement, immune reaction, and devel­

opment [28]. However, the manual assessment of such images is time­intensive and may introduce

biases. Last decades advances in deep learning, and more specifically, computer vision techniques

have greatly enhanced the process of examining histopathological images [40]. Despite the fact that

histopathological images are high dimensional, the general hypothesis is that only a small portion of

information inside the image is relevant while making the predictions.

Common tasks where deep learning models are employed in pathology are traditional com­

puter vision tasks: classification (f.e. malignant vs benign), detection and segmentation. Neural

networks are proficient in grasping the complex relationships and patterns, which enable to solve

quite sophisticated medical problems. Problems that occur with traditional Cox proportional haz­

ards model or manual feature extraction could be mitigated by employing deep learning techniques.

However, generic problem that occurs with deep learning is the prediction’s inexplicability [39].

Deep learning employment on survival analysis tasks’ showed state of the art performance

when combination of structured and unstructured is available for records [39]. In the analysis by

Wiegrebe et al. customizability of loss functions and dealing with censoring type and ratio are

considered advantegous points of deep learning frameworks in survival analysis.

Multi­task learning frameworks represent a transformative approach in survival analysis,

10

leveraging shared learning across related tasks to optimize generalization capability [42]. These

frameworks have the ability to improve the accuracy and robustness of the model since different

tasks such as estimation of survival probability and estimation of the time to the event can be

trained together and make use of the shared representation. This is especially advantageous when

different types of data like imaging and clinical data need to be combined in order to fully represent

prognostic factors concerning a patient. Multi­task learning facilitates the need to make accurate

predictions but also the need to understand the underlying model which can aid in making better

clinical decisions in the future. Since its nature permits the use of less data to achieve more, it is a

very effective method for the enhancement of precision medicine practices.

Thesis’ aim: Propose a deep­learning basedmethodology to infer patient’s survivabilitymetrics

from fusing histopathology image features and tabular data.

Objectives:

• Determine well­performing image preprocessing techniques;

• Review state­of­the­art methods and compare existing pre­trained models and their ability to

extract low­level image features for survival analysis;

• Build parametric tile selection framework;

• Create multi­task model for survivability and time­to­event predictions.

Problem statement: There are limited number of researches which would specifically try to ex­

tract cumulative information from histopathological images and clinical variables in order to predict

patient’s survival metrics. Additionally, there are no open­sourced, robust frameworks for prepro­

cessing, feature extraction and modelling of these histopathological imagery for survival analysis.

Structure of the thesis:

• Related work section will cover the researches that are similar in terms of their goals, methods

and techniques.

• Methodology sectionwill introduce theoretical side of techniques andmethods thatwere used

for this thesis.

• Experiments section will cover the proposed approach for integrating heterogeneous data

sources in survival analysis predictions.

• Results and conclusions section will shortly summarize the experiment results.

Results achieved: Multitask learning model developed during this study significantly improved

survival estimation and obtained a good concordance index (c­index: 0.829 for validation, 0.823 for

test datasets) as well as beating baseline Cox Regression [43]. Major contributions are efficient in­

tegration of clinical and histopathological data, tile selection via cosine dissimilarity ranking, and a

regularised shallow MLP architecture with customized loss functions for dual­task prediction of sur­

vival likelihood and time­to­event.

11

1 Related work

The area of computational pathology has advanced in the analysis of histopathological images,

especially in the segments of detection and segmentation in which deep learning methods are in­

volved. For instance, Ronneberger et al. came up with the UNet architecture [30], a widely used

method for the purposes of segmentation in the presence of images such as cellular and tissue struc­

tures. Kumar et al. also achieved similar results as they created methods for the separation of cell

nuclei in images [24] which prove useful in differentiating the heterogeneity within tumors.

More attention has been directed towards detection of targeted features from the tissue sam­

ples. Coudray et al. for example employed the use of Convoliutional neural networks (CNNs) to

accurately recognize targeted lung cancer types from whole slide images [7], and their findings were

similar to those of experts. The impact of automation in these images spans a broad range, including

locating regions of interest and performing image classification tasks. But the main emphasis is more

on the establishing the presence of a situation, disease, condition rather than regular assessment of

individuals.

As much emphasis is placed on detection and segmentation which seem to be favored re­

search avenues, there is limited work that has focused on survival analysis where prediction of life

expectancy is done. The aforementioned features are always incorporated, but are very general to

the extent of reliance on manually chosen features or other available data and are inefficient in har­

vesting the detail in patterns and structures available in WSIs. This gap emphasizes the need for new

methods that explore Whole slide images (WSIs) for predictive tasks beyond diagnosis.

1.1 CNNs for Survival Analysis with Histopathological Images

The survival computations using CNNs in histopathology are a less explored domain than their

use in classification, detection and segmentation applications. Simulations like DeepConvSurv [19]

and Pathomic Fusion [5] have shown that histopathology can be used to model the prediction of

survival. DeepConvSurv: CNNs are used to extract features from histopathological images directly

which are then used in survivalmodels to compute time­to­event response. Pathomic Fusion extends

this by combining imaging data with clinical and genomic information to provide a unified cancer

prognostic strategy. These results show the promise of CNNs in survival analysis and highlight that

higher­level tile selection and feature extraction is required to achieve best­practice performance.

Even though they seem like good ideas, it remains difficult for the industry to come up with generic

benchmarks and datasets for survival analysis work. We would need better tests and standardised

frameworks to compare and optimise methods for this in future work.

1.2 Tile Selection and Preprocessing in Histopathology

WSIs are normally partitioned into small image tiles for data analysis because of the resolution

as presented in Figure 1. It is extremely difficult to choose tiles corresponding to the most effective

prediction of survival. The earlier experiments have used heuristics, like tiles with the most tissue

12

content or tiles in well­defined tumour sites [9]. Recent studies have applied ranking to classify tiles

on the basis of feature proximity to regions of interest [27]. Ranking tiles by cosine dissimilarity and

pooling features using percentile­based selection offer powerful tool for noise reduction and iden­

tifying diagnostically relevant areas to coincide with these advances. Also, pre­processing methods

such as color normalization and stain deconvolution can help to improve the extracted features due

to minimizing variance among slides. These techniques are useful to build scalable and generalized

pipelines for datasets.

Figure 1. Different WSI zoom levels

1.3 Multi­Task Learning for Survival Analysis

MTL models have emerged in survival analyses because they can take advantage of common

representations across tasks. For example, Zhu et al. had suggested an intertask survival model that

simultaneously predicted survival probabilities and recurrence risks [11], making it more robust by

using additional information from other tasks. Integration of prediction of survival probability with

time­to­event can increase the interpretation and predictive power, especially when we combine

features from various data sources like histological images and clinical parameters. This method

allows the model to deal with other aspects of survival analysis, including the difference between

long­term survivors and patients with advanced disease. Furthermore, MTL models innately prevent

overfitting by training on common, task­neutral models. These are therefore best suited for limited

datasets or very large inputs.

1.4 Feature Extraction with Pre­Trained CNNs

Pre­trained CNNs are capable of extracting relevant patterns employing stacked convolutional

layers from the imagery as presented in the Figure 2. Moreover, CNNs have already been widely

used to feature extract histopathological images for their efficacy and universality. Architectures like

ResNet [17], DenseNet [18], EfficientNet [35] have proved effective for low­level and mid­level fea­

tures. These features are then usually further enriched for survival analysis through pooling or tile

selection methods to keep the prognostic data preserved. These approaches and new strategies for

prioritizing diagnostically useful features include ranking and tiles selection methods on cosine dis­

similarity. The pre­trained models saves the compute cost and time required to train networks on

13

a new set of data and utilizes rich feature representations learned on large­scale data. This transfer

learning model has been successfully applied to general purpose capabilities in task specific applica­

tions, including survival analysis in histopathology. In future research, specialized pre­training could

be added to further increase model performance and robustness.

Figure 2. CNN feature extraction visualization [38].

1.5 Combining Imaging and Tabular Data for Prognostic Modeling

A combination of structured tabular data and unstructured image data is crucial to build robust

survival models. For example, Mobadersany et al. [27] have shown that merging histopathological

and clinical variables together substantially enhances the prediction of survival over either data for­

mat. Multi­modal neural networks or feature fusions across multiple inputs can help models detect

complementary data. By integrating imaging and clinical data, the model incorporates macroscopic

tissue structure and context variables of the patient, which enhances an overall picture of disease

progression. Attention mechanisms or feature fusion can also highlight the most important informa­

tion of eachmodality. These techniques make prognosticmodels bothmore precise andmore useful

for clinical decision making.

1.6 Custom Loss Functions for Survival Analysis

Loss functions in DL are not adapted to the specific problems of survival analysis, including

censored data and unbalanced events. Custom loss functions, such as negative log­likelihood (NLL)

for survival odds and mean squared error (MSE) for time­to­event prediction, have been used in the

past [1]. Moreover, loss functions defined on the concordance index have also been reported to

improve survival predictions ranking power [31]. If weights are added to loss function, it can further

improve the class balancing by giving greater weight to low­representation events. These customised

loss functions optimize the generalisation capabilities of the model, especially for datasets with large

numbers of censored observations. Adaptive loss functions, with weights being changed dynamically

according to model performance or distribution, may be a promising area of future work.

14

2 Methodology

2.1 Histopathology and Its Digital Transformation

Histopathology is the microscopical study of tissues or cells to diagnose and evaluate disease

[25]. Histopathologists usually diagnose using biopsies – patches of skin, for example, or tissues

from the liver or kidney – to pinpoint lesions, describe states of disease, and help clinicians care

for patients. Particularly, for cancer diagnosis, histopathologists study the cell structures and tissue

organisation to identify tumor type, severity and treatment response. The hematoxylin and eosin

(H&E) stain is still the standard way to visualize tissue anatomy and help pathologists detect the

most significant structures and pathologies that can make or break diagnosis.

The discipline has entered the midst of a huge digital transformation in recent years, what’s

sometimes called digital pathology. High­resolutionwhole slide imaging (WSI) lets pathologists trans­

form glass slides into digital files to store, share and examine histological samples remotely. More

than just practical ease of use, digital pathology opened new avenues for computational research.

Combining AI and ML techniques, digital pathology systems can detect micromorphological changes

quickly, measure biomarkers, and assist in complex diagnoses to make diagnosis more accurate,

efficient and reproducible. This combination also supports large­scale, data­driven research pro­

grammes that lead to personalized medicine and the standardization of diagnostic tests [22, 29].

In all, integrating traditional histopathology and modern digital workflows enhances diagnos­

tics, international partnerships and research pipelines. As histopathology takes shape in the digital

age, it will become the foundation ofmodern pathology, for patients, clinicians and researchers alike.

2.2 Survival analysis

Survival analysis is a set of statistical methods for examining time­to­event outcomes — the

timing and likelihood of death, disease relapse, or other endpoints of interest. Survival models have

to contend with the unique issues that censored data presents, as well as time­varying risk dynamics,

in contrast to regression techniques. These approaches are used inmedicine, engineering, economics

and other fields for a variety of purposes, providing a glimpse of how certain covariates affect survival

and event probability over time [23, 36].

2.2.1 Censoring

The challenge in survival data is censored observation. Censorship arises if the timeof the event

cannot be known—either because the participant had not yet witnessed it by the end of the study,

or because they were lost to follow­up. While censoring could take many forms (left­side, two­side),

in this study only the right­side censoring will be discussed.

Suppose we observe n individuals. For the i­th individual, let Ti denote the event time, δi ∈
{0,1} indicate whether the event was observed or censored, andXi represent predictor variables:

15

δi =

1 if the event is observed,

0 if the event is censored.

The observed data can be represented as triplet:

{(
Yi, δi, Xi

)}n

i=1
,

where

Yi = min(Ti, Ci),

and Ci > 0 is the (strictly positive) censoring time.

2.2.2 Cox Regression

The Cox proportional hazards model is a semi­parametric model commonly used to assess the

relationship between covariates and the hazard function [8]. Let h(t| ~X) be the conditional hazard

function given covariate vector ~X = (X1, . . . ,Xp)
T . The Cox model assumes:

h(t| ~X) = h0(t) exp(β1X1 + β2X2 + · · ·+ βpXp),

where h0(t) is the baseline hazard function and βj are regression coefficients estimating the log­risk

increase associated with covariates Xj , for j ∈ {1, 2, . . . , p}, where p represents the number of

covariates. The estimation of ~β leverages partial likelihood methods, avoiding assumptions about

the baseline hazard [23, 36].

2.2.3 Random Survival Forest

Random survival forests (RSF) are time­to­event variants of the random forest algorithm. Such

approaches develop a set of survival trees each of which divides the feature space into leaves similar

to the conditional survival function. The resulting prediction is often an estimated survival rate of all

the trees in the forest. RSFs can account for high­dimensional interactions and nonlinearities without

the limiting assumptions of parametric or semi­parametric models. They provide general non­linear

modeling and robust performance across a broad range of scenarios [20].

2.2.4 Hazard Functions

h(t) is the hazard function which describes how fast things are happening at time t, if nothing

has happened before t. Formally:

h(t) = lim
∆t→0

P (t ≤ T < t+∆t | T ≥ t)

∆t
.

This function can also tell you how risk evolves over time. These have the survival function S(t) =

P (T > t) that can be estimated with the Kaplan­Meier estimator or by modeling and the cumulative

16

hazard functionH(t), defined as:

H(t) =

∫ t

0

h(u) du.

2.2.5 Concordance Index

Concordance index (c­index): This indicates the prediction quality of a survival model with re­

spect to the order of time of events. It scores howwell themodel can order subjects by risk correctly.

For twopeople i and j, c­indexwould add the predicted risks/predicted survival times to the observed

event times to see if the model is always placing greater risk on the person with the earlier event. It

is between 0.5 (not much better than guessing) and 1.0 (absolute correct prediction) [14].

2.2.6 Brier Score

The Brier score is a standard scoring rule for probabilistic predictions. In terms of survival anal­

ysis, it could be stated at a time t like this::

fBS(t) =
1

n

n∑
i=1

(
I(Ti > t)− Ŝ(t|Xi)

)2

,

where I is an indicator function and Ŝ(t|Xi) is estimated survival probability of i at time t. Lower

Brier scores mean higher predictive accuracy [13].

2.3 Watershed segmentation

Watershed segmentation is the idea of image brightness as topographical elevations, where

bright pixels are peaks and dark pixels are valleys. With water conjured up from lower intensities in

mind, there naturally emerge catchment basins. Where these basins would meet, watershed lines

appear, which help cut the image into useful chunks as presented in Figure 3. This is often used in

medical images and is often used along with gradient­based filtering and morphological operations

to reduce over­segmentation and increase the quality of partitions [12].

A marker­based version of the watershed transform streamlines this process with pre­

generated seeds for buildings or sights of interest. These seeds control partitioning and keep

the end result segmentation more inline with feature in the image. By using markers at the correct

placement and pre­processing with smoothing or gradient processing, the algorithm will have better

and stable partitions.

Image pre­processing like gradient filtering help to sharpen object boundaries, andmorpholog­

ical transformations smooth intensity changes resulting inmore consistent and reliable segmentation

results. Formedical imaging, these advancesmake sure that themost important information – tumor

margins or organ structures – is being segmented more consistently.

The pseudocode 1 algorithm shows a very reduced implementation of the watershed algo­

rithm. It starts by computing gradient magnitude image with discontinuity of intensity and sort pix­

els on gradient value. Each pixel is then allocated a basin if it matches one specific basin, or to the

17

Figure 3. Watershed segmentation visualization [10].

watershed boundary if there are multiple basins that work equally well. This way we can ensure the

final segmentation makes use of topographic information and pre­processing, and create partitions

that can then be used for an analysis, diagnostic or decision making step.

1 algorithmWatershed Segmentation

1: # Inputs:
2: Input: I – input image

3: Input: M – initial markers (basins)

4: # Pre-processing: Compute gradient magnitude image G
5: G := GradientMagnitude(I)
6: Sort all pixels inG in ascending order by their gradient value

7: Initialize each marker inM as a separate basin label

8: for each pixel p in sorted order do

9: LetN(p) be the neighbors of p that have assigned basins

10: ifN(p) contains pixels from exactly one basin then

11: Assign p to that basin

12: else ifN(p) contains pixels from multiple distinct basins then

13: Mark p as a watershed boundary pixel

14: end if

15: end for

16: # Output:
17: Output: Final segmentation defined by basins and watershed boundaries

2.4 Deep Learning

Deep learning is the application of learning higher levels of representations through neural

networks directly from raw data. Such systems identify complex patterns without manually com­

posing features, and thus are suitable for image classification, segmentation and feature extraction.

For the analysis of three­dimensional histopathological photographs, deep neural networks provide

a robust way to image morphological and structural changes in tissue slides. With the incorpora­

18

tion of learned representations into the feature extraction, selection, and inference pipelines we can

improve the performance and powerful generalization [41].

2.4.1 Activation Functions

Activation functions introduce nonlinearity to neural networks so that they approximate com­

plex processes. If nonlinear activations weren’t present, the result of layering several linear layers is

simply to create a linear mapping. Some of the popular activation functions are the sigmoid:

σ(x) =
1

1 + e−x

and the hyperbolic tangent (tanh). But perhaps the most commonly used activation in deep learning

today is the Rectified Linear Unit (ReLU):

ReLU(x) = max(0, x).

The ReLU doesn’t get saturatedwith positive inputs, it is nonlinear, and it is also very computationally

easy. Its widespread deployment has drastically increased training stability and performance on large

image processing problems [41].

2.4.2 Multi­layer Perceptron

Multi­layer perceptron (MLP) is one of themost elementary neural network designs. It consists

of one or more fully connected (dense) layers that are each translating an input vector into an output

vector with a learned linear transformation and a nonlinear activation. Given an input vector x ∈ Rd,

a single MLP layer can be expressed as:

h = σ(Wx+ b),

where W and b are learnable parameters, and σ(·) is the chosen activation function. MLP, when

aggregated with several of these layers, can model high­level functions and can be a malleable piece

of an architecture. MLPs are typically layered over feature extractors (e.g., convolutional backbones)

to do classification, regression or any downstream operation. [41].

2.4.3 Dropout

Dropout is regularization method that allows to minimize overfitting by randomly eliminating

some neurons while training. To have the probability p of dropout, every neuron is zeroed with

probability p:

h̃ = h� ε, εi ∼ Bernoulli(1− p),

where � denotes element­wise multiplication. Training on such stochastically thin networks trains

the model with stronger generalizations. This method reduces the ability of deep networks to learn

training data trends and makes them better at absorbing new, invisible inputs [41].

19

2.4.4 Convolutional Neural Networks

Convolutional neural networks (CNNs) take advantage of the spatial representation of the im­

ages by convolutional layers using local, shared­weight filters. This dramatically decreases the num­

ber of input parameters and yields translation­invariant visual representations.

Convolution Layers: A 2D convolution operation over an input image Xwith a kernel K of sizeM×N

is given by:

Yi,j =

⌊
M
2

⌋∑
m=−

⌊
M
2

⌋
⌊
N
2

⌋∑
n=−

⌊
N
2

⌋Xi+m, j+nKm,n.

This operation learns local spatial features (edges, textures, etc) and then iterates over the image to

glean a hierarchy of features.

Pooling Layers: Pooling layers make feature maps spatially smaller, resulting in greater spatial con­

sistency and reduced computation. Max pooling finds the maximum within a single area:

Yij = max
(u,v)∈Rij

Xu,v,

while average pooling takes the average. This downsampling aims the network towards the best

features and gives a kind of translation invariance [41].

2.4.5 Transfer Learning

Transfer learning uses the information learned from a pretrained model (once trained on a big,

rich dataset) to start training on a new task or dataset. Transfer learning does not initialize all pa­

rameters at random, but instead frommodel weights that already encode general­purpose features.

This often means a decrease in labeled data and training time to perform competitively. Formally,

let ~θpre denote the pretrained parameters. The transfer learning process initializes the new model

parameters ~θ0 as:
~θ0 ← ~θpre,

and then task­driven training works on the parameters in a new dataset. It is especially useful for

domains with limited annotations (eg, in medical image applications) and allows models to skip over

having to learn the low­level patterns (edges, textures) from the scratch [41].

2.4.6 Residual networks Architecture

Residual networks (ResNet) solves the issue of training very deep neural networks. As you

increase the network depth gradient disappear and accuracy of training diminishes. ResNet adds

skip connected residual blocks:

y = F (x) + x,

where x is the input andF (x) is a sequence of convolutional and nonlinear layers. By letting gradients

run through the skip links, deeper networks are stable and easier to train. ResNet architectures are

20

now the default platforms formany image tasks to extract feature from large and intricate image data

sets efficiently. [41].

2.4.7 ViT Architecture

Vision Transformer (ViT) system applies self­attention to image patches instead of convolutions.

The picture is separated into patches, linearly projected and fed to a Transformer encoder. The self­

attention learns dependences between these patches so that the model detects global relationships

in the image. Given queriesQ, keysK, and values V :

Attention(Q,K,V) = softmax

(
QK>
√
d

)
V,

where d is the embedding dimension. Performing these operations again and again gives ViT the

complete representations without the locality of convolution. This can be especially helpful in ad­

hoc imaging fields, where the features of interest might be spread over many large pictures [41].

2.4.8 Loss Functions

Loss functions are the variance between output predictions and ground­truth labels, and they

guide optimization. The cross­entropy loss is often used in classification. Letting yi denote the true

class indicator and ŷi the predicted probability:

LCE = −
∑
i

yi log(ŷi).

For regression tasks, the mean squared error (MSE) is a standard choice:

LMSE =
1

N

N∑
i=1

(ŷi − yi)
2.

The other popular loss is Negative log­likelihood loss (NLLLoss) used with the log­softmax out­

put layer for classification. Only for a single data point that actually is of class. For a single data point

with true class c:

LNLL = − log(ŷc),

where ŷc is the likelihood of having the right class. NLLLoss directly guides the model to allocate a

high probability for the correct category and is used for multiclass classification issues [41].

2.4.9 AdamW optimizer

Optimizers are algorithms that would update network parameters according to the gradients

calculated and reduce the loss function chosen. Stochastic gradient descent (SGD) has been a de­

fault, but more advanced optimizers can vary the learning rate or update of parameters to accelerate

convergence or generalization. One of those optimizers is AdamWwhich is popular due to its stability

21

and performance. It is an Adam optimizer version with a decoupled weight decay term which keeps

weight decay free from gradient updates. Formally, let ~θ denote parameters, α the learning rate, and

λ the weight decay factor. AdamW updates parameters as:

~θt+1 = ~θt − αt ĝt(~θt) − αt λ ~θt,

where ĝ(~θ) is gradient update (adapted by the Adam algorithmwith per­parameter adaptive learning

rate) and (alpha lambda theta) direct L2 regularization. AdamW abstracts the weight decay from

gradient update parameter synthesis for better generalization, and is typically used in large training

data [41].

2.4.10 Multi­task Learning

Multi­task learning (MTL) is the strategy to generalize a model through co­training on different

task pairs. Rather than tuning model parameters for one purpose, MTL is learning shared represen­

tations to support several purposes at once. Formally, let T = {T1, T2, . . . , Tk} represent a set of k
tasks, eachwith its own loss functionLi. The overall objective in amulti­task setting can be expressed

as a weighted sum of individual task losses:

Lmulti­task(θ) =
k∑

i=1

λi Li

(
yi, ŷi(θ)

)
,

where λi areweights that balance the importance of each task, and θ denotes themodel parameters.

If tasks are shared across model components (e.g., early layer feature extractors), then the network

can draw upon relationships and shared hierarchies found in the data. This will usually be a more

effective, data­efficient and less overfitting model training method than training separate models for

each task separately. Multitask learning has also been used in computer vision, natural language

processing, and healthcare, where many related predictions (e.g., classification, segmentation, re­

gression) can be processed together to gain benefits from the synergies and boost predictive power

[41].

2.4.11 Imbalance handling

To compensate for an imbalanced dataset, a popular deep learning approach is to use class­

dependent weights to correct for the over­representation of some classes. Cost­sensitive learning

translates this to updating the loss function and adding higher weights to underrepresented classes

so their associated errors exert a more significant impact on parameter changes. For instance, in a

weighted cross­entropy loss:

LWCE = −
N∑
i=1

wyi log(ŷi),

where yi denotes the true class label for sample i, ŷi is the predicted probability for the correct class,

andwyi is theweight assigned to class yi. By increasingwyi for underrepresented classes, the network

22

can learn more about them and less often make majority­class predictions. This weighting algorithm

can be useful in medical imaging, anomaly detection or anywhere where minority class examples are

important. Researchers have found that class­weighted training can greatly increase the classifier’s

performance on minority classes without significantly diminishing its accuracy [16].

2.5 Data splitting

The usual method in deep learning is to divide the dataset into three subsets: a training set,

a validation set, and a test set. In medical contexts, each data point (i.e., each row or record) typ­

ically represents a single patient. The model is trained on the training set to learn the patterns in

the data by fine­tuning its parameters. A validation set, shaved off from the training set, is used to

tune hyperparameters and apply early stopping, ensuring that improvements are not merely due to

overfitting on the training examples. Finally, the test set—completely unseen during training and val­

idation—serves to provide a clear, unbiased evaluation of the model’s generalization performance.

This three­way split is particularly valuable in high­complexity domains like medical imaging or image

classification, where overfitting is a major concern and rigorous generalization assessment is critical.

Additional techniques such as balanced splits, class­proportion stratification, or domain­specific vari­

ables can further enhance the credibility of the analysis. Many deep learning studies regard these

splitting protocols as foundational to experimental design, ensuring reproducibility and sound data

management [2].

2.6 Min­max feature scaling

Min­Max scaling is a normalization method that transforms tabular features into a specified

range, most often [0, 1]. For a given feature X with minimum Xmin and maximum Xmax, the trans­

formed valueX ′ is given by:

X ′ =
X −Xmin

Xmax −Xmin

.

It is useful in pipelines for deep learning to deal with tabular input that span large disparate scales

or containing huge values. By smoothing out all features into a fixed range, Min­Max scaling allows

for better numerical stability, faster convergence, and may also make gradient optimizers more ef­

ficient. It is commonly found in open­source packages such as scikit­learn that have a simple and

documented Min­Max scaling implementation to fit it into pre­processing functions for deep neural

network training [26].

2.7 Cosine dissimilarity

Cosine dissimilarity (or cosine distance) comes from cosine similarity, which is often used to

determine how much 2 vectors are aligned in a high dimension space. If we are given two vectors u

and v, then the cosine similarity is:

CosineSimilarity(u, v) =
u · v
‖u‖‖v‖

.

23

Cosine dissimilarity then can be expressed as:

CosineDissimilarity(u, v) = 1− CosineSimilarity(u, v).

This is a function that takes into account the vectors’ orientation rather than their size, which is why

it is resistant to scale difference. Cosine dissimilarity is typically used in deep learning to compare

representation vectors or embeddings because it highlights directionality in feature space [34].

2.8 Bayesian hyperparameter optimization

Bayesian hyperparameter optimization is a model­based search algorithm for finding optimal

hyperparameter settings for machine learning models. In contrast to manual tuning or grid searches,

Bayesian approaches build a probabilistic substitute model over the objective function based on ob­

servations. Formally:

p(f | D),

whereD = {(θi, f(θi))} denotes the set of previously evaluated hyperparameter configurations and

their outcomes. A common choice is to assume a Gaussian Process prior over f , enabling the model

to represent uncertainty about unexplored regions of the hyperparameter spaceΘ. At each iteration,

an acquisition function α(θ | p) is employed to select the next hyperparameter configuration to

evaluate:

θnext = argmax
θ∈Θ

α(θ | p).

Through iterative refinement of the surrogate model, and by conflating exploration with exploitation

in the acquisition function, Bayesian optimization operates more fluidly in large and heterogeneous

hyperparameter environments than simplemethods do. Such a strategy is demonstrated to enhance

the performance of machine learning models, while cutting the computational costs of running large

hyperparameter searches [32].

2.9 Principal component analysis

Principal component analysis (PCA) is a dimension reductionmethod popular for identifying the

structure in large data sets by transforming it to a smaller subspace. The algorithm converts a vector

of possibly related variables into a vector of linearly unrelated components, or principal components.

Formally, given a zero­mean data matrix X ∈ Rn×d, PCA computes the covariance matrix:

C =
1

n− 1
X>X,

where C ∈ Rd×d.

Next, an eigen­decomposition of C is performed:

CV = VΛ,

24

where:

• V ∈ Rd×d is the matrix whose i­th column, vi, is an eigenvector (principal direction) of C.

• Λ ∈ Rd×d is the diagonal matrix of corresponding eigenvalues λi, often sorted in descending

order λ1 ≥ λ2 ≥ · · · ≥ λd ≥ 0.

The first few principal components explain most of the variance of the data. These can be combined

to get awaywith dimensional reductionwithout losing important information. PCA is generally better

at generating trainingmachines with fewer failures as it helps reduce the curse of dimensionality and

generalize when data dimensions are large (small compared to sample size) [21].

2.10 Regression metrics

Regression metrics are statistical tools to measure predictive and generalization accuracy of

regressionmodels. Commonmetrics are themean squared error (MSE), mean absolute error (MAE),

and the coefficient of determination (R2). Given true targets {yi}Ni=1 and predictions {ŷi}Ni=1, theMSE

is defined as:

MSE =
1

N

N∑
i=1

(yi − ŷi)
2,

while the MAE measures the average magnitude of errors without considering their direction:

MAE =
1

N

N∑
i=1

|yi − ŷi|.

The coefficient of determination R2 compares the explained variance of the model to the total vari­

ance in the data:

R2 = 1−
∑N

i=1(yi − ŷi)
2∑N

i=1(yi − ȳ)2
,

where ȳ is the mean of the actual targets. The higher the R2 score, the better the fit, the lower

the MSE and MAE value indicates closer predictions to the true value. These metrics are known and

popular, appearing in textbooks on statistical learning and freely available in open­source libraries to

evaluate models [15].

25

3 Experiments

3.1 Dataset

The dataset includes WSIs (whole­slide histopathological images) and tabular information

based on clinical and morphological measurements. There are 252 records and 58 columns that in­

corporate categorical and numerical variables. Every entry is associated with a patient and includes

demographic details (age, age cohort), tumor­specific data (stage, grade, subtype), and biomarker

metrics (ER, PR, HER2, Ki67). It contains extracted texture features and clinical results to allow prog­

nosis for the patients survival analysis. Key attributes include:

• Clinical Information: Age, tumor stage (T), nodal status (N), tumor grade (G).

• Biomarkers: Hormone receptor expressions (ER, PR), Ki67 proliferation index, and HER2 status

(HER2_IHC and HER2_01).

• Texture Features: parameters such as contrast, homogeneity, entropy, dissimilarity, and en­

ergy, especially relevant for Ki67 entropy and AshD for assessing heterogeneity.

• Outcome Variables: Disease­specific survival (DSS, DSS_10) and overall survival (KV_2023).

The tabular features were analyzed to summarize central tendencies and variability. The de­

scriptive statistics are provided in Table 1.

Table 1. Descriptive Statistics for Numerical Features

Feature Count Mean Std Dev Min 25% 50% Max

Age 252 60.72 12.52 36.0 50.0 62.0 88.0

DSS 252 0.15 0.35 0.0 0.0 0.0 1.0

Ki67_pat 252 21.89 15.27 3.0 10.0 19.5 95.0

ER_pat 252 90.63 16.91 10.0 90.0 100.0 100.0

PR_pat 252 60.98 37.92 0.0 25.0 80.0 100.0

HER2_IHC 252 0.94 0.49 0.0 1.0 1.0 2.0

T 252 1.42 0.50 1.0 1.0 1.0 2.0

N 252 0.54 0.74 0.0 0.0 0.0 3.0

G 252 2.10 0.65 1.0 2.0 2.0 3.0

There are nomissing values in the main clinical features, but a few secondary biomarker scores

(e.g., HER2 FISH) are sparse. The variables also have diverse distributions — some are binary or

ordinal [43].

The tabular data are very heavily censored (87%) and many of the entries do not include full

survival data, so the validity of some of these analyses is compromised. Also, since the dataset con­

tains only 252 samples, the dataset will probably not be big enough to train a deep learning model

without overfitting.

26

Dataset also holds 252 svs format files. Each patient could be matched to a single slide by a

unique identifier appearing in the file name. The image dimensions at the base resolution vary, with

the largest being (31872, 30252) pixels. The pyramid representations of the dataset are multi­

resolution and at their lowest resolution, can be downsampled to (1992, 1890) pixels.

There are aspect ratios ranging from 0.47 to 1.86, and themajority of slides are near 1 in aspect

ratio meaning near­square. The pixel size in microns (MPP) is consistent across the slides with a

median of 0.5034microns for horizontal (MPP X) and vertical (MPP Y) axes. This homogeneity means

the physical scaling of features is constant in images. Pyramid plots of the dataset is derived from

standard downsampling ratios 1.0, 4.0, and 16.0 that allow to analyze the data at various levels of

detail. Key insights:

• The dataset contains base­resolution images with size like (31872, 30252) pixels.

• Average aspect ratio 0.9757: themajority of slides are nearly square, but there are even longer

slides with aspect ratios up to 1.86.

• The MPP variation is very small (0.2501 to 0.5038 microns) which makes the spatial scaling

fairly consistent most of the time.

To provide an example of the dataset, Figure 4. showcases five random whole­slide images

from the dataset.

Figure 4. Five randomly selected whole­slide images from the dataset.

Some of the feature information has already been extracted from the images and mapped to

the tabular data, such as texture parameters (contrast, entropy, energy) and biomarker expressions

(ER, PR, Ki67, HER2). Such features quantitatively distill complicated patterns of image, offering clues

about heterogeneity and other morphological properties.

3.2 Data Splitting

Data splitting should be performed properly to make the experimental outcomes stable and

reliable. The data is split into 3 partitions: 151 being assigned to training (60%), 51 validation (20%),

and 50 testing (20%). Data is stratified during split in order to represent the DSS_10 feature equally

in all subsets. This will make sure the censoring is stable across different partitions. The data splitting

is done using train_test_split function from scikit­learn package in Python.

27

Only the final model will be tested against the test data for non­biased performance measure­

ment. By contrast, train and validation datasets will be used in all the experiments – comparison of

feature extractors, segmentation algorithms, how to choose the most discriminating tiles, training

the neural network, and adjusting its hyperparameters. It allows a consistent, reproducible process

for model creation and test.

3.3 Feature Extractor Comparison

Four pre­trained neural networks models as features extractors are evaluated in this experi­

ment step: three TIA Toolbox ResNet architecture­based models and MahmoodLab’s UNI model.

Pretrained ResNet models (varying in depth) are available from the TIA Toolbox Python library.

These models are trained on histopathology datasets such as Kather100K, PCam and others. They

are used for patch classification in computational pathology, to recognise tissues and pathological

features on histological images [3].

The UNI model from MahmoodLab is a general purpose self­supervised vision encoder for

pathology based on ViT architecture. It was pretrained on more than 100 million images from more

than 100,000 WSIs. UNI showed state­of­the­art performance on 34 clinical tasks such as ROI classi­

fication, slide classification and feature extraction from histopathology images [6].

Evaluating feature extractors for histopathological images uses training and validation datasets.

For each WSI, 100 random tiles are selected excluding those with a high proportion of white color

to eliminate non­informative regions. Tile loading is accomplished using WSIReader from tiatoolbox

Python package. Features are extracted and aggregated into WSI feature vectors with max operation

across feature dimensions. All feature extractors are loaded using timm library in Python and chang­

ing their final layer into Identity layer from PyTorch. PCA (scikit­learn implementation) reduces

feature dimensionality. These reduced features, along with survival times and censoring statuses,

train a RSF (class RandomSurvivalForest from sksurv Python package) with default hyperparame­

ters. The validation WSIs undergo the same processing, and the trained model is evaluated on the

validation set using the c­index. The following pseudocode outlines this evaluation process:

28

2 algorithm Feature Extractor Comparison

1: # Inputs:
2: M: Feature extractor models

3: Wtrain,Wval: Training and validation WSIs

4: Strain, Sval: Survival times

5: Ctrain, Cval: Censoring statuses
6: # Procedure:
7: for each modelm inM do

8: Extract and aggregate features fromWtrain

9: Apply PCA to obtain Ftrain_reduced

10: Train survival model onDtrain = (Ftrain_reduced,Strain, Ctrain)
11: Extract and aggregate features fromWval

12: Apply PCA to obtain Fval_reduced

13: FormDval = (Fval_reduced,Sval, Cval)
14: Evaluate model onDval using C­index

15: Store performance metric form

16: end for

17: # Output:
18: Performance metrics for all models

The performance of feature extractors was evaluated using the c­index on the validation

dataset. Table 2. presents the results, highlighting the best­performing model.

Table 2. Performance Comparison of Feature Extractors

Model c­index

TiaToolbox ResNet18 0.721

TiaToolbox ResNet34 0.711

TiaToolbox ResNet50 0.690

MahmoodLab UNI 0.715

From Table 2., it is evident that TiaToolbox ResNet18 achieved the highest Concordance In­

dex of 0.721, indicating higher generalization in predicting survival outcomes compared to the other

models. Also, it produces significantly smaller features’ vector v ∈ R512 in comparison toMahmood­

Lab UNI where v ∈ R1024.

3.4 Segmentation Comparison

This section compares four WSI background segmentation algorithms: Otsu thresholding

(based on global intensity histograms), Adaptive thresholding (based on local intensity statistics), Re­

gion growing (coupling local pixels with similar appearance), andWatershed segmentation (discussed

in detail in methodology section). All the algorithms were employed using skimage Python library.

After segmentation, the masks were created on tile level information and the patches with mostly

29

background parts are removed. Using max pooling operation the remaining patches are aggregated

into single vector v ∈ R512 per WSI, PCA truncates features dimensions and a RSF is being trained

to predict survival of the patient (once tiles have been segmented logic follows the same pattern

as in feature extractor comparison part). c­index of a validation dataset is used as the performance

parameter.

Table 3. displays the c­index scores of each segmentation algorithm. The highest c­index was

for Watershed segmentation, demonstrating that if tissue boundaries are better defined, feature

extraction will be more appropriate, and survival metrics will be more accurately predicted.

Table 3. Performance Comparison of Segmentation Techniques

Segmentation technique c­index

Otsu thresholding 0.715

Adaptive thresholding 0.717

Region growing 0.703

Watershed segmentation 0.729

Because of its high performance, watershed segmentation was further optimized by setting its

connectivity parameter to 5, 10, 15, 20 and 25. Each configuration was tested in the same training

and validation steps, the c­index is displayed as Table 4. Moderate connectivity of 20 provided some

performance increase, indicating that carefulmanagement of regionmerging can lead to higher qual­

ity segmentation and thus survival modeling.

Table 4. Watershed Connectivity Tuning Results

Connectivity value c­index

5 0.722

10 0.729

15 0.736

20 0.741

25 0.727

3.5 Selecting Tiles

The choice of most informative regions from WSIs is crucial to performing the proper survival

analysis modelling. Previous steps that included simple aggregations from all the tiles can generate

a lot of computational overhead and non­informative or redundant information.

One approach for dealing with high dimensions is to project WSI­level embeddings on to a

low­dimensional subspace via PCA of pooled tile­level features. There are two aggregation settings

explored for the final feature vector of the patient: maximum pooling and average pooling. Addition­

ally, it’s worth exploring if tabular features are adding any information that isn’t already coming from

the image itself. Figure 5. illustrates that most differentiating principal components do not have

predictive power and in order to achieve best performing results, the principal components number

30

should be in range [60;80]. Another important notice is that tabular data in both aggregations con­

tribute towards higher results whichmay be the limitation of RSF in obtaining themutual information

that is already extracted in the tabular data. Overall, max pooling could be seen as more appropriate

method. These graphs suggest that some tiles are probably disproportionately predictively impor­

tant, so not all tiles are equally important in delineating survival. Focusing on thesemore informative

areas could also offer additional performance improvements over aggregations.

Figure 5. WSI­level feature extraction comparison in predictive performance

In comparison to aggregating across numerous tiles, this paper explores the technique of para­

metrically selecting the tiles. The first step in this process is evaluating cosine distance between each

tiles’ feature vector and a feature vector obtained from completelywhite tile (which intuitively should

not hold any meaningful information). When visually evaluating the results, they are extremely sim­

ilar to the deep­learning based WSI segmentation (red indicates tumour, green tissue, blue back­

ground) as presented in Figure 6. All the regions (tissue, tumour and background) are being similarly

captured by the cosine distance which showcase, that there might be specific ranking percentiles

that hold differentiating factors.

(a) Deep­learning segmented (b) Cosine dissimilarity

Figure 6. Comparison of segmented WSI with cosine dissimilarity ranking

When comparing the RSF model’s performance which is being trained on specific ranked per­

centiles ranging from 0 to 100, results are in favor of the previous assumptions that indeed there are

more important tiles and those tiles could be examined via their cosine dissimilarity ranking as pre­

31

sented in Figure 7. Despite the noisy origin, there are ranking percentiles that would achieve c­index

higher than previous experiments with aggregations.

0 20 40 60 80 100
Ranking percentile

0.3

0.4

0.5

0.6

0.7

c-
in

de
x

Figure 7. Ranking percentile RSF inference results

3.6 Multi layer perceptron setup

3.6.1 Data loading

The data integrates patient­level tabular parameters with tile­level embeddings from WSIs for

survival metrics inference. The patient’s tabular data that is loaded from pandas dataframe df gets

normalized using MinMaxScaler so that all the tabular features are on the same number range and

no bias due to different feature scales occur.

The tile­level information is obtained from pre­calculated embeddings and dissimilarity scores.

EachWSI is divided into tiles and dissimilarity measure shows how similar each tile is to a pure white

tile. When tiles with dissimilarity scores within dynamically configurable percentiles are chosen, the

most informative bits of tissue are taken for analysis. These feature vectors of ranked tiles are then

pooled using average or max pooling. At last, the aggregated tile features are combined with the

normalized tabular data to get a single vector for each entity. Dataset and DataLoader classes

from PyTorch are being used for efficiency.

3.6.2 Loss functions and optimization

Classification for survivability task will be penalized using the customized NLL loss which also

account for class weights in order to balance the censoring ratios.

L =
1

N

N∑
i=1

[−Ci · ln(1− Si)− α · (1− Ci) · ln(Si)] (1)

where:

• N is the total number of samples in the dataset.

• Si = survival_probsi represents the predicted survival probability for the ith sample.

32

• Ci is the censoring indicator for the i
th sample, defined as:

Ci =

1 if the event is observed (uncensored),

0 if the data is censored.

• α = pos_weight is a hyperparameter that scales the loss contribution from censored samples.

Similarly as with the classification, regression for predicting time to event will be penalized

based on customized MSE loss.

L =
1

N

N∑
i=1

[
Ci · α · (T̂i − Ti)

2 + (1− Ci) ·max(Ti − T̂i, 0)
2
]

(2)

where:

• N is the total number of samples in the dataset.

• T̂i =
time_predictioni

D
represents the predicted time­to­event for the ith sample, scaled by the

divisorD.

• Ti =
time_to_eventi

D
is the actual observed time­to­event for the ith sample, scaled by the same

divisorD.

• Ci is the censoring indicator for the i
th sample, defined as:

Ci =

1 if the event is observed (uncensored),

0 if the data is censored.

• α = pos_weight is a hyperparameter that scales the loss contribution from uncensored sam­

ples.

• D = tte_divisor is a scaling factor applied to both predictions and actual times to ensure

similar loss ranges as for classification task.

Later, these two losses are encompasses into SurvivalMultitaskLoss which outputs the

mean value ensuring the proper loss balance between classification and regression tasks. Such hy­

perparameters as pos_weight and tte_divisor will be determined in the hyperparameter opti­

mization step.

From optimization side, PyTorch AdamW optimizer will be employed with some hyperparame­

ters being constant: betaswill be set to (0.9, 0.999), eps set to 10−8 and weight_decay being 10−2.

Best performing learning rate will be determined in the later stages.

33

3.6.3 Architecture

Due to the small corpus, MLP architecture is intentionally shallow and uses extensive regular­

ization to reduce overfitting. ReLU is the main activation function across the network. Regularization

is implemented through dropout layers applied after activation functions. MLP takes a fixed input

size of 563 dimensional vector (512 features from WSI feature vector and 51 features from tabular

data). The classification head applies sigmoid activation function for constraining the output range

to [0,1]. The common layer dimensions, linear transformation of the classifier and regression heads

will be determined as part of hyperparameter optimization and in Figure 8. are being represented

by placeholders by placeholdersX , Y and Z.

Input Layer
563 Features

(512 WSI + 51 Tabular)

Common Layer
ReLU → Dropout → Linear

(563 → X)

Classifier Head
ReLU → Dropout → Linear

(X → Y)
ReLU → Dropout → Linear

(Y → 1)

Event Prediction

Regression Head
ReLU → Dropout → Linear

(X → Z)
ReLU → Dropout → Linear

(Z → 1)

Time Prediction

Figure 8. Architecture of the MLP Model

3.6.4 Callbacks

Pytorch Lightning package in Python suggests out­of­the­box callbacks that might improve the

model training.

• EarlyStopping callback tracks validation loss and ends training if there is no significant im­

34

provement over given number of epochs. This prevents overfitting as the model does not start

to memorize training data, and helps generalize better to unseen data.

• ModelCheckpoint callback will recurentially store the model state based on the performance

metrics, and the best performing model will be stored for future evaluation and deployment.

• CometLogger callback logs and visualizes all trainingmetrics to letmonitormodel performance

real­time, compare training runs, and catch problems early.

3.7 Hyperparameter optimization

Bayesian optimizationwas being donewith 500 iterationswhile searching for the best perform­

ing hyperparameters and the model was evaluated against validation dataset. Tunable hyperparam­

eters are explained in the Table 5..

Table 5. Tunable Hyperparameters

Parameter Explanation Range

Pooling Methods Determines the type of pooling operation used

to aggregate features

[max,
average]

Hidden Sizes Specifies the number of neurons in the com­

mon hidden layers

[64,2048]

Classifier Head

Dimensions

Defines the number of neurons in classifier

head’s linear layer

[8, 128]

Regression Head

Dimensions

Defines the number of neurons in regression

head’s linear layer

[8, 128]

Batch Sizes Indicates the number of samples processed be­

fore updating the model’s parameters

[2, 18]

Learning Rates Sets the step size for updating model parame­

ters

[0.0001,
0.01]

Positive Class Weights Assigns weights to the positive class in the loss

function to address high censoring issues.

[4, 10]

Dropout Rates Specifies the probability of dropping neurons

during training

[0.1, 0.5]

TTE Divisors Applies scaling factors to the time­to­event

data to balance losses

[15, 60]

Percentile

Combinations

Explores all combinations of best ranked per­

centiles {23, 71, 62, 16, 96}
{23}, {71},
{62}, {16},
{96}, {23,71}, ...
,{23, 71, 62, 16, 96}

35

3.8 Evaluating Model

Best performing model on validation dataset achieved c­index of 0.829 and MSE / MAE (calcu­

lating only for uncensored data) of 521 / 22 (in months) respectively. On the test dataset the model

performed slightly worse achieving c­index of 0.823 and MSE/MAE scores of 558 / 24 (in months).

Finalized pipeline is presented in the Figure 9. where intentionally aggregation is left as an extension

that was not playing any role in the best performing pipeline.

Figure 9. Finalized pipeline

During hyperparameter tuning, it was discovered that common layer should have hidden size

of 128, both classifier and regression heads hidden size of 16. Pooling method made no difference

as the best performing model was only using single tile representing 62th dissimilarity percentile.

Training related hyperparameters presented in the Table 6.

Table 6. Best training related hyperparameters

Parameter Value

Learning rate 0.001

Batch size 4

Positive class weight 8.5

Dropout rate 0.2

TTE divisor 35

36

3.9 Other experiments

The scope of this thesis limits discussion of the experiments that did not contribute to the final

pipeline or did not yield any significant improvements. However, they were essential in order to

better understand the data and limitations that it holds.

In tile selection there were several options considered to achieve the best representation of

the image information. Randomized selection is one method, and it tries to find the variance in the

image as a whole by randomly picking tiles. A third approach looked at was non­deterministic tile

selection in which tiles exceeding certain threshold were aggregated to identify zones of interest. It

also considered clustering­based selection where tiles were selected from predefined clusters and

the tiles chosen had to correspond to separate sections of the image data.

In the realm of model inference, an initial attempt was made to construct a model capable

of predicting Weibull distribution parameters. This approach was motivated by the desire to model

time­to­event data more accurately and the idea that survival probability is not necessarily linear,

using the adaptability of the Weibull distribution for different hazard functions. Additionally, custom

loss functions concordance index and hazard functions based loss functions were implemented and

tested.

In contrast, there was attempt to use graphical neural networks (GNNs) to use the relational

model of the WSIs. The benefit of GNNs is that it reveals granular dependencies between the data

points by using a graph. But GNN training was constrained by the size of the dataset. The lack of

data made training attention mechanisms in the network, the steps that determine which features

are most important, not sufficient.

37

4 Results and Conclusions

4.1 Results

The experiments conducted demonstrated significant improvements in survival analysis using

the proposed multi­task learning framework in comparison to the original paper with Cox regression

[43]. The model’s performance metrics are summarized in Table Table 7.

Table 7. Model Performance Metrics

Metric Validation Set Test Set Previous research [43]

c­index 0.829 0.823 0.709

Mean Squared Error (MSE) 521 months2 558 months2 ­

Mean Absolute Error (MAE) 22 months 24 months ­

Key highlights about the final framework:

• Feature Extraction: TiaToolbox ResNet18 achieved the highest c­index (0.721), demonstrating

better generalization for survivability prediction compared to other feature extractors (Table

2.).

• Segmentation: Watershed segmentation provided the highest performance with a c­index of

0.729 in comparison to other segmentation algorithms, showcasing its ability to enhance pre­

dictive accuracy by defining the region of interest (Table 3.).

• Tile Selection: Ranking tiles by cosine dissimilarity identified the most differentiating regions,

leading to a c­index improvement using specific ranking percentiles (Figure 7.).

• Model Performance: The multi­task learning model demonstrated significantly better perfor­

mance with a validation c­index of 0.829 and test c­index of 0.823 in comparison to baseline

methods (Table 7.).

• Framework: Combining tabular patient data with histopathological image features, ensuring

parametric tile selection and building the final MLP, significantly enhanced survival prediction

accuracy, validating the pipeline presented in Figure 9..

4.2 Limitations

Despite its success, the study faced limitations that offer opportunities for future exploration:

• Dataset Size: Due to the limited data of 252 entities, the model generalization and frame­

work behaviourmight not be robust and fully transferable. However, the suggested framework

should be relatevily easy to reproduce given the larger datasets in the future work.

• High Censoring Rate: With 87% of data being censored, the results (especially relatedwith TTE

predictions) should be reviewed in order to verify the regression head robustness.

• Tile­Level Analysis: While selecting tiles by cosine dissimilarity was producing best results,

exploring additionalmethods, such as attentionmodels or clustering, could propose evenmore

robust tile techniques.

38

• Advanced Architectures: Using advanced architectures such as transformer­based models or

graph neural networks might be a way to bring features closer to the semantics.

• Survival Loss Functions: The study incorporated customized NLL andMSE loss functions which

worked better than some existing solutions. Exploring survival­specific loss functions even fur­

ther may yield additional improvements.

4.3 Conclusions

• Research identified most suitable methods among analysed for breast cancer image prepro­

cessing, which are watershed segmentation followed by feature extraction with ResNet model

which eventually gives ability to select specific tiles for assessment.

• Thesis proposed new usage of cosine dissimilarity ranking for tile selection, which could be

succesfully applied in practice.

• Research proposed practical and useful framework, for survival prediction based on image and

tabular data fusing.

• Thesis expanded the survival analysis scope in comparison to the original paper for this dataset,

showcasing that other survivability­related metrics could be successfully infered with multi­

task approach.

39

References and sources

[1] A. Alabdallah, M. Ohlsson, S. Pashami, T. Rögnvaldsson. “The Concordance Index Decomposi­

tion: A Measure for a Deeper Understanding of Survival Prediction Models.” In: arXiv preprint

arXiv:2203.00144 (2022).

[2] L. B. de Amorim, G. D. Cavalcanti, R. M. Cruz. “The choice of scaling technique matters for

classification performance.” In: Applied Soft Computing (2023).

[3] M. Bilal, S. E. A. Raza, A. Azam, S. Graham, M. K. Niazi, M. Ilyas, F. Minhas, N. M. Rajpoot.

“TIAToolbox as an end­to­end library for advanced tissue image analytics.” In: Communications

Medicine (2022).

[4] F. Bray,M. Laversanne, H. Sung, J. Ferlay, R. L. Siegel, I. Soerjomataram, A. Jemal. “Global cancer

statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in

185 countries.” In: CA: A Cancer Journal for Clinicians (2024).

[5] R. J. Chen, M. Y. Lu, J. Wang, D. F. K. Williamson, S. J. Rodig, N. I. Lindeman, F. Mahmood.

“Pathomic Fusion: An Integrated Framework for Fusing Histopathology and Genomic Features

for Cancer Diagnosis and Prognosis.” In: IEEE Transactions on Medical Imaging (2022).

[6] R. Chen, M. Lu, Y. Weng, S. Wang, D. Williamson, F. Mahmood. “A General­Purpose Self­

Supervised Model for Computational Pathology.” In: arXiv preprint arXiv:2308.15474 (2023).

[7] N. Coudray, P. S. Ocampo, T. Sakellaropoulos, R. Narayan,M. Snuderl, D. Fenyo, A. L.Moreira, N.

Razavian, A. Tsirigos. “Classification and mutation prediction from non–small cell lung cancer

histopathology images using deep learning.” In: Nature Medicine (2018).

[8] D. R. Cox. “RegressionModels and Life­Tables.” In: Journal of the Royal Statistical Society. Series

B (Methodological) (1972).

[9] D. Di, S. Li, J. Zhang, Y. Gao. “Ranking­Based Survival Prediction on Histopathological Whole­

Slide Images.” In: Medical Image Computing and Computer­Assisted Intervention (MICCAI).

2020.

[10] A. Fisher. Cloud and Cloud­Shadow Detection in SPOT5 HRG Imagery with AutomatedMorpho­

logical Feature Extraction. Accessed: 2024­12­29. 2014. url: https://www.researchgate.
net / figure / Two - examples - of - the - watershed - transform - applied - to - a - 1 -
dimensional-signal-A-When_fig2_262985072.

[11] S. Fotso. “Deep Neural Networks for Survival Analysis Based on a Multi­Task Framework.” In:

arXiv preprint arXiv:1801.05512 (2018).

[12] R. C. Gonzalez, R. E. Woods. Digital Image Processing. Prentice Hall, 2008.

[13] E. Graf, C. Schmoor, W. Sauerbrei, M. Schumacher. “Assessment and comparison of prognostic

classification schemes for survival data.” In: Statistics in Medicine (1999).

40

https://www.researchgate.net/figure/Two-examples-of-the-watershed-transform-applied-to-a-1-dimensional-signal-A-When_fig2_262985072
https://www.researchgate.net/figure/Two-examples-of-the-watershed-transform-applied-to-a-1-dimensional-signal-A-When_fig2_262985072
https://www.researchgate.net/figure/Two-examples-of-the-watershed-transform-applied-to-a-1-dimensional-signal-A-When_fig2_262985072

[14] F. E. Harrell Jr, K. L. Lee, D. B. Mark. “Multivariable prognostic models: issues in developing

models, evaluating assumptions and adequacy, andmeasuring and reducing errors.” In: Statis­

tics in Medicine (1996).

[15] T. Hastie, R. Tibshirani, J. Friedman. The Elements of Statistical Learning: Data Mining, Infer­

ence, and Prediction. 2nd Edition. Springer, 2009.

[16] H. He, E. A. Garcia. “Learning from Imbalanced Data.” In: IEEE Transactions on Knowledge and

Data Engineering (2009).

[17] K. He, X. Zhang, S. Ren, J. Sun. “Deep residual learning for image recognition.” In: Proceedings

of the IEEE conference on computer vision and pattern recognition. 2016, pages 770–778.

[18] G. Huang, Z. Liu, L. van der Maaten, K. Q. Weinberger. “Densely Connected Convolutional Net­

works.” In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR). 2017, pages 4700–4708. https://doi.org/10.1109/CVPR.2017.243.

[19] K. Huang, L. Liu, Z. Miao. “DeepConvSurv: A deep convolutional neural network for survival

analysis with whole slide images.” In:Medical Image Analysis (2019).

[20] H. Ishwaran, U. B. Kogalur, E. H. Blackstone, M. S. Lauer. “Random survival forests.” In: The

Annals of Applied Statistics (2008).

[21] I. Jolliffe. Principal Component Analysis 2nd Edition. Springer, 2002.

[22] K. J. Kaplan, L. Pantanowitz, editors.Digital Pathology. 2nd. Cham, Switzerland: Springer, 2021.

[23] J. P. Klein, M. L. Moeschberger. Survival Analysis: Techniques for Censored and Truncated Data.

2nd. New York, NY: Springer, 2003.

[24] N. Kumar, R. Verma, S. Sharma, S. Bhargava, G. Breen, S. Rane, N. Rajpoot. “A dataset and a

technique for generalized nuclear segmentation for computational pathology.” In: IEEE Trans­

actions on Medical Imaging (2017).

[25] V. Kumar, A. K. Abbas, J. C. Aster. Robbins and Cotran Pathologic Basis of Disease. 9th. Philadel­

phia, PA: Elsevier, 2015.

[26] S. Learn. MinMaxScaler. https://scikit-learn.org/stable/modules/generated/
sklearn.preprocessing.MinMaxScaler.html. Accessed: 2024­12­08.

[27] P. Mobadersany, S. Yousefi, M. Amgad, et al. “Predicting cancer outcomes from histology and

genomics using convolutional networks.” In: Proceedings of the National Academy of Sciences

115.13 (2018), E2970–E2979. https://doi.org/10.1073/pnas.1717139115.

[28] M. M. F. Mohammad Abuzar ShaikhMuhammad Usama. “Deep Learning on Histopathological

Images for Colorectal Cancer Diagnosis: A Comprehensive Review.” In: Diagnostics (2022).

[29] L. Pantanowitz, J. H. Sinard,W. H. Henricks, L. A. Fatheree, et al. “Validatingwhole slide imaging

for diagnostic purposes in pathology: guidelines from the College of American Pathologists

Pathology and Laboratory Quality Center.” In: Archives of Pathology & Laboratory Medicine

137.12 (2013), pages 1710–1722.

41

https://doi.org/10.1109/CVPR.2017.243
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://doi.org/10.1073/pnas.1717139115

[30] O. Ronneberger, P. Fischer, T. Brox. “U­Net: Convolutional networks for biomedical image seg­

mentation.” In: International Conference onMedical Image Computing and Computer­Assisted

Intervention (MICCAI). Springer, 2015, pages 234–241.

[31] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, D. Batra. “Grad­CAM: Visual Ex­

planations from Deep Networks via Gradient­based Localization.” In: Proceedings of the IEEE

International Conference on Computer Vision (ICCV). 2017.

[32] J. Snoek, H. Larochelle, R. P. Adams. “Practical Bayesian Optimization of Machine Learning Al­

gorithms.” In: arXiv preprint arXiv:1206.2944 (2012).

[33] A. Spooner, E. Chen, A. Sowmya, P. Sachdev, N. A. Kochan, J. Trollor, H. Brodaty. “A compar­

ison of machine learning methods for survival analysis of high­dimensional clinical data for

dementia prediction.” In: Scientific Reports (2020).

[34] N. institute of standards, technology.Cosine distance, cosine similarity, angular cosine distance,

angular cosine similarity. https://www.itl.nist.gov/div898/software/dataplot/
refman2/auxillar/cosdist.htm. Accessed: 2024­12­08.

[35] M. Tan, Q. Le. “EfficientNet: Rethinking model scaling for convolutional neural networks.” In:

International Conference on Machine Learning (2019).

[36] T. M. Therneau, P. M. Grambsch.Modeling Survival Data: Extending the Cox Model. New York,

NY: Springer, 2000.

[37] “Understanding Survival Analysis in Clinical Trials.” In: Clinical Oncology (2020).

[38] S. Vignesh. The world through the eyes of CNN. Accessed: 2024­12­29. 2020. url: https :
/ / medium . com / analytics - vidhya / the - world - through - the - eyes - of - cnn -
5a52c034dbeb.

[39] S. Wiegrebe, P. Kopper, R. Sonabend, B. Bischl, A. Bender. “Deep Learning for Survival Analysis:

A Review.” In: Artificial Intelligence Review (2024).

[40] Y. Wu, M. Cheng, S. Huang, Z. Pei, et al. “Recent Advances of Deep Learning for Computational

Histopathology: Principles and Applications.” In: Cancers (Basel) (2022).

[41] A. Zhang, Z. C. Lipton, M. Li, A. J. Smola. Dive into Deep Learning. d2l.ai, 2020.

[42] D. Zhu, J. Li, P. Li, Y. Fu. “Robust Deep Multi­task Learning Framework for Cancer Survival Anal­

ysis.” In: IEEE Transactions on Medical Imaging (2021).

[43] D. Zilenaite­Petrulaitiene, A. Rasmusson, J. Besusparis, R. B. Valkiuniene, R. Augulis, A. Lauri­

naviciene, B. Plancoulaine, L. Petkevicius, A. Laurinavicius. “Intratumoral heterogeneity of Ki67

proliferation index outperforms conventional immunohistochemistry prognostic factors in es­

trogen receptor­positive HER2­negative breast cancer.” In: Virchows Archiv (2024).

42

https://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/cosdist.htm
https://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/cosdist.htm
https://medium.com/analytics-vidhya/the-world-through-the-eyes-of-cnn-5a52c034dbeb
https://medium.com/analytics-vidhya/the-world-through-the-eyes-of-cnn-5a52c034dbeb
https://medium.com/analytics-vidhya/the-world-through-the-eyes-of-cnn-5a52c034dbeb

Appendix 1. Code samples

data_splitting.py
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler

TARGET_FIELD = "DSS_10"
COLUMN_TO_DROP = "HER2_FISH" # > 200 NA

def clean_tabular_data(df: pd.DataFrame) -> pd.DataFrame:
df = df.copy()
for col in df.columns[1:]:

if df[col].dtype == 'object':
df[col] = df[col].str.replace(',','.').str.replace('−','').astype(float)

df.drop(columns=[COLUMN_TO_DROP], inplace=True)
return df

def preprocess_tabular_data(fname: str) -> tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]:
df = pd.read_csv(fname)
df = clean_tabular_data(df)
train_df, temp_df = train_test_split(df, test_size=0.4, random_state=42, stratify=df[TARGET_FIELD])
test_df, val_df = train_test_split(temp_df, test_size=0.5, random_state=42, stratify=df[TARGET_FIELD])

relevant_fields = df.columns[6:].tolist()
for field in relevant_fields:

scaler = MinMaxScaler()
train_df[field] = scaler.fit_transform(train_df[field].to_numpy().reshape(-1, 1))
val_df[field] = scaler.transform(val_df[field].to_numpy().reshape(-1, 1))
test_df[field] = scaler.transform(test_df[field].to_numpy().reshape(-1, 1))

return train_df, val_df, test_df

image_preprocessing.py
import itertools
import random
import os

import numpy as np
from tiatoolbox.wsicore.wsireader import WSIReader

TILE_SIZE = (224, 224)
OUTPUT_FOLDER = "processed_arrays"
MAGNIFICATION = 20
IMAGE_DIR = "images"

def preprocessing_pipe(
path: str,

) -> np.array:
random.seed(42)
reader = WSIReader.open(path)
info_dict = reader.info.as_dict()
full_dimensions = info_dict["slide_dimensions"]
actual_tile_size = np.dot(TILE_SIZE, MAGNIFICATION)
x_coordinates = [x for x in range(0, full_dimensions[0], actual_tile_size[0])]
y_coordinates = [y for y in range(0, full_dimensions[1], actual_tile_size[1])]
location_permutations = list(itertools.product(x_coordinates, y_coordinates))

processed_image_arrays = []
for location in location_permutations:

img = reader.read_rect(

43

location,
TILE_SIZE,
resolution=info_dict["mpp"][0] * MAGNIFICATION,
units="mpp",

)
processed_image_arrays.append(img)

processed_image_arrays = np.stack(processed_image_arrays, axis=0)

return processed_image_arrays

if __name__ == "__main__":
files = [f"{IMAGE_DIR}/{file}" for file in os.listdir(IMAGE_DIR) if file.endswith(".svs")]
for file in files:

filename = file.replace("IMAGE_DIR/", "").split(".")[0]
filename += ".npy"
if os.path.exists(f"{OUTPUT_FOLDER}/{filename}"):

continue
arr = preprocessing_pipe(file)
np.save(f"{OUTPUT_FOLDER}/{filename}", arr)

feature_extractors.py
import os
from typing import Callable

import timm
import torch
import numpy as np
from torch import nn
from PIL import Image

PROCESSED_ARRAYS_DIR = "processed_arrays"
TILE_SIZE = (224, 224)
MODELS = [

"hf-hub:1aurent/resnet18.tiatoolbox-kather100k",
"hf-hub:1aurent/resnet34.tiatoolbox-kather100k",
"hf-hub:1aurent/resnet50.tiatoolbox-kather100k",
"hf-hub:MahmoodLab/uni"
]

DEVICE = "mps"
WHITE_INTENSITY_THRESHOLD = 230
WHITE_MAXIMUM_PORTION = 0.5

def extract_low_level_features(image_arr_path: str,
features_dir: str,
feature_extractor: nn.Module,

transforms: Callable, thresholding: bool = True,
partial_tiles: bool = True) -> None:

np.random.seed(42)
filename = image_arr_path.replace("{PROCESSED_ARRAYS_DIR}/", "").split(".")[0] + ".pt"
if os.path.exists(f"{features_dir}/{filename}"):

return
img_arr = np.load(image_arr_path)

features = []
relevant_tiles = 100 if partial_tiles else img_arr.shape[0]
if partial_tiles:

np.random.shuffle(img_arr)

for idx in range(img_arr.shape[0]):
if thresholding:

44

white_portion = (np.sum(np.mean(img_arr[idx], axis=-1) > WHITE_INTENSITY_THRESHOLD)) / (
img_arr[idx].shape[0] * img_arr[idx].shape[1]

)
if white_portion > WHITE_MAXIMUM_PORTION:

continue

with torch.no_grad():
arr = Image.fromarray(img_arr[idx])
data = transforms(arr).unsqueeze(dim=0).to(DEVICE)
output = feature_extractor(data).squeeze(dim=0)
features.append(output.detach().cpu())

if len(features) > relevant_tiles:
break

features = torch.stack(features, dim=0)
torch.save(features, f"{features_dir}/{filename}")

if __name__ == "__main__":
files = [f"{PROCESSED_ARRAYS_DIR}/{file}" for file in os.listdir(PROCESSED_ARRAYS_DIR) if

file.endswith(".npy")]↪→

for model_name in MODELS:
model = timm.create_model(

model_name=model_name,
pretrained=True,
)

feature_extractor = nn.Sequential(
*list(model.children())[:-1]

)
feature_extractor.to(DEVICE)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
model_features_directory = f"features_{model_name.split("/")[-1].split(".")[0]}"
for file in files:

extract_low_level_features(file, model_features_directory, feature_extractor, transforms)

feature_extractor_comparison.py
import os

import numpy as np
from sklearn.decomposition import PCA
from sksurv.ensemble import RandomSurvivalForest
from sksurv.metrics import concordance_index_censored
import torch

from data_splitting import preprocess_tabular_data

CSV_FILE = "full_data.csv"
MODEL_FEATURE_DIRS = [

"features_resnet18",
"features_resnet34",
"features_resnet50",
"features_uni",

]
COLUMN_TO_DROP = "HER2_01" # does not converge
ID_COLUMN = "Hashed Accession #"

if __name__ == "__main__":
for feature_dir in MODEL_FEATURE_DIRS:

train_df, val_df, _ = preprocess_tabular_data(CSV_FILE)
paths = [

f"{feature_dir}/{file}"
for file in os.listdir(feature_dir)
if file.endswith(".pt")

45

]
array_size = torch.load(paths[0]).shape[0]
for df in (train_df, val_df):

df.drop(columns=[COLUMN_TO_DROP], inplace=True)
for idx in range(array_size):

df[f"feature_{idx}"] = 0

for path in paths:
identifier = path.split("/")[-1].replace(".pt", "")
feature_values = torch.load(path).numpy()
if identifier in train_df[ID_COLUMN]:

idx = train_df[ID_COLUMN].tolist().index(identifier)
for feature_idx, value in enumerate(feature_values):

train_df.at[idx, f"feature_{idx}"] = value
elif identifier in train_df[ID_COLUMN]:

idx = val_df[ID_COLUMN].tolist().index(identifier)
for feature_idx, value in enumerate(feature_values):

val_df.at[idx, f"feature_{idx}"] = value
else:

raise ValueError

feature_columns = [
col for col in train_df.columns.tolist() if col.startswith("feature_")

]
pca = PCA(n_components=100)
train_reduced = pca.fit_transform(train_df[feature_columns])
val_reduced = pca.transform(val_df[feature_columns])

train_y = np.array(
[

(event, time)
for event, time in zip(train_df["DSS_10"], train_df["trukme_10"])

],
dtype=[("event", "?"), ("time", "<f8")],

)

rsf = RandomSurvivalForest(random_state=42)
rsf.fit(train_reduced, train_y)
risk_scores = rsf.predict(val_df[feature_columns])
censoring = val_df["DSS_10"]
ci = concordance_index_censored(censoring, val_df["trukme_10"], risk_scores)[0]
print("-" * 30)
print(f"Analyzing extracted features from {feature_dir}")
print(f"Concordance index {ci}")

segmentation_comparison.py
import os

import cv2
import torch
import numpy as np
from sklearn.decomposition import PCA
from sksurv.ensemble import RandomSurvivalForest
from sksurv.metrics import concordance_index_censored
from skimage import filters, morphology, measure, segmentation
from skimage.color import rgb2gray
from tiatoolbox.wsicore.wsireader import WSIReader

from data_splitting import preprocess_tabular_data

CSV_FILE = "full_data.csv"

46

SEGMENTATION_METHODS = [
"otsu",
"adaptive",
"region_growing",
"watershed",

]
TILE_SIZE = (224, 224)
ID_COLUMN = "Hashed Accession #"
COLUMN_TO_DROP = "HER2_01" # does not converge
WATERSHED_CONNECTIVITY = 20
FEATURES_DIR = "features_resnet18"
IMAGE_DIR = "images"

def segment_image(image: np.ndarray, method: str, size: tuple) -> np.ndarray:
grayscale_image = rgb2gray(image)
if method == "otsu":

threshold = filters.threshold_otsu(grayscale_image)
mask = grayscale_image < threshold

elif method == "adaptive":
mask = filters.threshold_local(grayscale_image, block_size=35) < grayscale_image

elif method == "region_growing":
mask = morphology.remove_small_objects(

morphology.label(grayscale_image < 0.5), 50
)

elif method == "watershed":
elevation_map = filters.sobel(grayscale_image)
markers = measure.label(

grayscale_image < filters.threshold_otsu(grayscale_image)
)
mask = (

segmentation.watershed(
elevation_map, markers, connectivity=WATERSHED_CONNECTIVITY

)
> 0

)
else:

raise ValueError("Unsupported segmentation method.")
return mask

def apply_mask_to_features(features: torch.Tensor, mask: np.ndarray) -> torch.Tensor:
mask_flat = mask.flatten()
valid_features = features[:, mask_flat]
return valid_features

if __name__ == "__main__":
train_df, val_df, _ = preprocess_tabular_data(CSV_FILE)
for method in SEGMENTATION_METHODS:

train_df, val_df, _ = preprocess_tabular_data(CSV_FILE)
paths = [

f"{FEATURES_DIR}/{file}"
for file in os.listdir(FEATURES_DIR)
if file.endswith(".pt")

]
array_size = torch.load(paths[0]).shape[0]
for df in (train_df, val_df):

df.drop(columns=[COLUMN_TO_DROP], inplace=True)
for idx in range(array_size):

df[f"feature_{idx}"] = 0

47

for path in paths:
identifier = path.split("/")[-1].replace(".pt", "")
feature_values = torch.load(path)

image_path = f"{IMAGE_DIR}/{identifier}.svs"
reader = WSIReader.open(image_path)
image = reader.slide_thumbnail(resolution=1, units="power")
mask = segment_image(image, method)
mask = cv2.resize(

mask, feature_values.shape[:-1], interpolation=cv2.INTER_NEAREST
)
valid_indices = np.where(mask > 0)
feature_values = feature_values[valid_indices].mean(dim=0).numpy()
if identifier in train_df[ID_COLUMN]:

idx = train_df[ID_COLUMN].tolist().index(identifier)
for feature_idx, value in enumerate(feature_values):

train_df.at[idx, f"feature_{idx}"] = value
elif identifier in train_df[ID_COLUMN]:

idx = val_df[ID_COLUMN].tolist().index(identifier)
for feature_idx, value in enumerate(feature_values):

val_df.at[idx, f"feature_{idx}"] = value
else:

raise ValueError

feature_columns = [
col for col in train_df.columns.tolist() if col.startswith("feature_")

]

pca = PCA(n_components=100)
train_reduced = pca.fit_transform(train_df[feature_columns])
val_reduced = pca.transform(val_df[feature_columns])

train_y = np.array(
[

(event, time)
for event, time in zip(train_df["DSS_10"], train_df["trukme_10"])

],
dtype=[("event", "?"), ("time", "<f8")],

)

rsf = RandomSurvivalForest(random_state=42)
rsf.fit(train_reduced, train_y)

risk_scores = rsf.predict(val_reduced)
censoring = val_df["DSS_10"].to_numpy()
ci = concordance_index_censored(

censoring, val_df["trukme_10"].to_numpy(), risk_scores
)[0]
print(f"Segmentation method: {method}, Concordance index: {ci}")

dissimilarity_score_extraction.py
import os

import timm
import numpy as np
from tiatoolbox.wsicore.wsireader import WSIReader
import torch
from torch import nn
from PIL import Image
from scipy.spatial.distance import cosine

MODEL_NAME = "hf-hub:1aurent/resnet18.tiatoolbox-kather100k"

48

IMAGE_DIR = "images"
FEATURES_DIR = "features"
DEVICE = "mps"

files = [
f"{IMAGE_DIR}/{file}" for file in os.listdir(IMAGE_DIR) if file.endswith(".svs")

]
tile_size = (224, 224)

model = timm.create_model(
model_name=MODEL_NAME,
pretrained=True,

)
device = torch.device(DEVICE)
feature_extractor = nn.Sequential(*list(model.children())[:-1])
feature_extractor.to(device)
feature_extractor.eval()

data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

def extract_low_level_features(img_arr: np.array) -> None:
with torch.no_grad():

arr = Image.fromarray(img_arr)
data = transforms(arr).unsqueeze(dim=0).to(device)
output = feature_extractor(data).squeeze(dim=0).detach().cpu().numpy()

return output

blank_arr = np.ones((224, 224, 3), dtype=np.uint8) * 255
blank_features = extract_low_level_features(blank_arr)

if __name__ == "__main__":
for file in files:

filename = file.replace(f"{IMAGE_DIR}/", "").replace(".svs", "")
if os.path.exists(f"{FEATURES_DIR}/{filename}_dis.npy") and os.path.exists(

f"{FEATURES_DIR}/{filename}_feat.npy"
):

continue

reader = WSIReader.open(file)
info_dict = reader.info.as_dict()
full_dimensions = info_dict["slide_dimensions"]
x_coordinates = [x for x in range(0, full_dimensions[1], tile_size[0])]
y_coordinates = [y for y in range(0, full_dimensions[0], tile_size[1])]

dissimilarity_arr = np.zeros((len(y_coordinates), len(x_coordinates)))
feature_arr = np.zeros((len(y_coordinates), len(x_coordinates), 512))

for idx, y in enumerate(y_coordinates):
for jdx, x in enumerate(x_coordinates):

img = reader.read_rect((x, y), tile_size, resolution=0, units="level")
features = extract_low_level_features(img)
dissimilarity = cosine(blank_features, features)

dissimilarity_arr[idx][jdx] = dissimilarity
feature_arr[idx][jdx] = features

np.save(f"{FEATURES_DIR}/{filename}_dis.npy", dissimilarity_arr)
np.save(f"{FEATURES_DIR}/{filename}_feat.npy", feature_arr)

49

tile_selection.py
import cv2
import torch
import numpy as np
import pandas as pd
from sksurv.ensemble import RandomSurvivalForest
from sksurv.metrics import concordance_index_censored
import matplotlib.pyplot as plt

from data_splitting import preprocess_tabular_data

CSV_FILE = "full_data.csv"
COLUMN_TO_DROP = "HER2_01" # does not converge
ID_COLUMN = "Hashed Accession #"
IMAGE_FEATURES = [f"img_{i}" for i in range(512)]

if __name__ == "__main__":
for percentile in range(101):

train_df, val_df, _ = preprocess_tabular_data(CSV_FILE)
train_df.drop(columns=[COLUMN_TO_DROP], inplace=True)
val_df.drop(columns=[COLUMN_TO_DROP], inplace=True)
for col in IMAGE_FEATURES:

train_df[col] = 0
val_df[col] = 0

percentiles = [percentile]
for identifier, df in zip(

(train_df[ID_COLUMN], val_df[ID_COLUMN]), (train_df, val_df)
):

dissimilarity_scores = np.load(f"features/{identifier}_dis.npy")
shape_0, shape_1 = dissimilarity_scores.shape
background_mask = np.load(f"background_masks_20/{identifier}.npy")
mask_resized = cv2.resize(

background_mask, (shape_1, shape_0), interpolation=cv2.INTER_NEAREST
)
dissimilarity_scores_flat = dissimilarity_scores.reshape(shape_0 * shape_1)
mask_flat = mask_resized.flatten()

valid_indices = np.where(mask_flat > 0)
dissimilarity_scores_filtered = dissimilarity_scores_flat[valid_indices]
percentile_values = np.percentile(

dissimilarity_scores_filtered, percentiles
)
indices = [

np.argmin(np.abs(dissimilarity_scores_filtered - pv))
for pv in percentile_values

]

features = np.load(f"features/{identifier}_feat.npy")
features = features.reshape(shape_0 * shape_1, 512)
image_features = torch.tensor(features[indices, :], dtype=torch.float32)
image_features = torch.max(image_features, dim=0).values

idx = df[df[ID_COLUMN] == identifier].index.values[0]
for feature_idx, img_feature in enumerate(image_features.numpy()):

train_df.at[idx, f"img_{feature_idx}"] = img_feature

minority_class = train_df[train_df["DSS_10"] == 1]
majority_class = train_df[train_df["DSS_10"] == 0]
minority_class_oversampled = minority_class.sample(

len(majority_class), replace=True, random_state=42
)
train_df = pd.concat([majority_class, minority_class_oversampled])

50

train_df = train_df.sample(frac=1, random_state=42)
train_df.reset_index(inplace=True, drop=True)

y = np.array(
[

(event, time)
for event, time in zip(train_df["DSS_10"], train_df["trukme_10"])

],
dtype=[("event", "?"), ("time", "<f8")],

)
censoring = val_df["DSS_10"] == 1
rsf = RandomSurvivalForest(random_state=42)
rsf.fit(train_df[IMAGE_FEATURES], y)
risk_scores = rsf.predict(val_df[IMAGE_FEATURES])
ci = concordance_index_censored(censoring, val_df["trukme_10"], risk_scores)[0]
print(f"Percentile {percentile}, result {ci}")

multi_layer_perceptron.py
from typing import Callable
from functools import partial

import torch
import pandas as pd
import cv2
import numpy as np
from torch.utils.data import Dataset
from torch import nn
import pytorch_lightning as pl

CSV_PATH = "full_data.csv"
df = pd.read_csv(CSV_PATH)
RELEVANT_FIELDS = df.columns[6:].tolist()
ID_COLUMN = "Hashed Accession #"
FEATURES_DIR = "features"
BACKGROUND_MASKS_DIR = "background_masks_20"
CENSORING_COLUMN = "DSS_10"
TIME_TO_EVENT_COLUMN = "trukme_10"

class HistopathologyDataset(Dataset):
def __init__(self, df: pd.DataFrame, pooling: str, percentiles: list[int]) -> None:

self.data = df
self.pooling = pooling
self.percentiles = percentiles

def __len__(self) -> int:
return len(self.data)

def __getitem__(self, index: int) -> tuple[torch.Tensor, torch.Tensor]:
tabular_features = torch.tensor(

self.data.loc[index, RELEVANT_FIELDS], dtype=torch.float32
)
name = self.data[ID_COLUMN][index]

dissimilarity_scores = np.load(f"{FEATURES_DIR}/{name}_dis.npy")
shape_0, shape_1 = dissimilarity_scores.shape
background_mask = np.load(f"{BACKGROUND_MASKS_DIR}/{name}.npy")
mask_resized = cv2.resize(

background_mask, (shape_1, shape_0), interpolation=cv2.INTER_NEAREST
)

dissimilarity_scores_flat = dissimilarity_scores.reshape(shape_0 * shape_1)

51

mask_flat = mask_resized.flatten()

valid_indices = np.where(mask_flat > 0)
dissimilarity_scores_filtered = dissimilarity_scores_flat[valid_indices]
percentile_values = np.percentile(

dissimilarity_scores_filtered, self.percentiles
)
indices = [

np.argmin(np.abs(dissimilarity_scores_filtered - pv))
for pv in percentile_values

]

features = np.load(f"{FEATURES_DIR}/{name}_feat.npy")
features = features.reshape(shape_0 * shape_1, 512)
image_features = torch.tensor(features[indices, :], dtype=torch.float32)

if self.pooling == "average":
image_features = torch.mean(image_features, dim=0)

elif self.pooling == "max":
image_features = torch.max(image_features, dim=0).values

else:
raise NotImplementedError

features = torch.cat([tabular_features, image_features])
event_indicator = torch.tensor(

[self.data.loc[index, CENSORING_COLUMN] == 1], dtype=torch.bool
)
time_to_event = torch.tensor(

[self.data.loc[index, TIME_TO_EVENT_COLUMN]], dtype=torch.float32
)

return features, event_indicator, time_to_event

class SurvivalMSELoss(nn.Module):
def __init__(self, pos_weight: float, tte_divisor: float) -> None:

super(SurvivalMSELoss, self).__init__()
self.pos_weight = pos_weight
self.tte_divisor = tte_divisor

def forward(
self,
time_prediction: torch.Tensor,
time_to_event: torch.Tensor,
event_indicator: torch.Tensor,

) -> torch.Tensor:
time_prediction /= self.tte_divisor
time_to_event /= self.tte_divisor

mse_uncensored = (time_prediction - time_to_event) ** 2 * self.pos_weight
censored_penalty = torch.clamp(time_to_event - time_prediction, min=0) ** 2
loss = torch.where(event_indicator == 0, mse_uncensored, censored_penalty)
return loss.mean()

class SurvivalNLLLoss(nn.Module):
def __init__(self, pos_weight: float = 1) -> None:

super(SurvivalNLLLoss, self).__init__()
self.pos_weight = pos_weight

def forward(
self, survival_probs: torch.Tensor, censoring: torch.Tensor

52

) -> torch.Tensor:
survival_probs = torch.clamp(survival_probs, min=1e-8, max=1 - 1e-8)
event_loss = -torch.log(1 - survival_probs) * censoring
censored_loss = -self.pos_weight * torch.log(survival_probs) * (~censoring)
loss = (event_loss + censored_loss).mean()
return loss

class SurvivalMultitaskLoss(nn.Module):
def __init__(self, pos_weight: float = 1, tte_divisor: float = 40) -> None:

super(SurvivalMultitaskLoss, self).__init__()
self.mse_loss = SurvivalMSELoss(pos_weight=pos_weight, tte_divisor=tte_divisor)
self.nll_loss = SurvivalNLLLoss(pos_weight=pos_weight)

def forward(
self,
event_prediction: torch.Tensor,
time_prediction: torch.Tensor,
time_to_event: torch.Tensor,
event_indicator: torch.Tensor,
log_func: Callable,
cycle: str = "train",

) -> torch.Tensor:
reg_loss = self.mse_loss(

time_prediction=time_prediction,
time_to_event=time_to_event,
event_indicator=event_indicator,

)
log_func(cycle + "_reg_loss", reg_loss)
clf_loss = self.nll_loss(

survival_probs=event_prediction, censoring=event_indicator
)
log_func(cycle + "_clf_loss", clf_loss)

return (reg_loss + clf_loss) / 2

class MLP(pl.LightningModule):
def __init__(

self,
lr: float,
input_size: int = 512,
hidden_size: int = 128,
classification_size: int = 16,
regression_size: int = 16,
pos_class_weight: float = 8.5,
dropout: float = 0.2,
batch_size: int = 4,
percentiles: list = [],
pooling: str = "max",
tte_divisor: int = 30,

):
super().__init__()
self.batch_size = batch_size

self.params = {
"lr": lr,
"hidden_size": hidden_size,
"pooling": pooling,
"batch_size": batch_size,
"pos_class_weight": pos_class_weight,
"dropout": dropout,

53

"batch_size": batch_size,
"percentiles": percentiles,
"regression_size": regression_size,
"classification_size": classification_size,
"tte_divisor": tte_divisor,

}
self.save_hyperparameters(self.params)
self.common_layer = nn.Sequential(

nn.ReLU(), nn.Dropout(dropout), nn.Linear(input_size, hidden_size)
)

self.classifier_head = nn.Sequential(
nn.ReLU(),
nn.Dropout(dropout),
nn.Linear(hidden_size, classification_size),
nn.ReLU(),
nn.Dropout(dropout),
nn.Linear(classification_size, 1),
nn.Sigmoid(),

)

self.regression_head = nn.Sequential(
nn.ReLU(),
nn.Dropout(dropout),
nn.Linear(hidden_size, regression_size),
nn.ReLU(),
nn.Dropout(dropout),
nn.Linear(regression_size, 1),

)

self.lr = lr
self.loss = SurvivalMultitaskLoss(

pos_weight=pos_class_weight, tte_divisor=tte_divisor
)
self.log_function = partial(

self.log, on_step=False, on_epoch=True, batch_size=self.batch_size
)

def forward(self, x: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
x = self.common_layer(x)
event_pred = self.classifier_head(x)
time_pred = self.regression_head(x)
return event_pred, time_pred

def training_step(
self, batch: tuple[torch.Tensor, torch.Tensor], batch_idx: int

) -> torch.Tensor:
x, censoring, time_to_event = batch
x = x.view(x.size(0), -1)

event_pred, time_pred = self(x)
loss = self.loss(

event_prediction=event_pred,
time_prediction=time_pred,
time_to_event=time_to_event,
event_indicator=censoring,
log_func=self.log_function,
cycle="train",

)

self.log(
"train_loss", loss, on_step=False, on_epoch=True, batch_size=self.batch_size

54

)
return loss

def validation_step(
self, batch: tuple[torch.Tensor, torch.Tensor], batch_idx: int

) -> torch.Tensor:
x, censoring, time_to_event = batch
x = x.view(x.size(0), -1)

event_pred, time_pred = self(x)
loss = self.loss(

event_prediction=event_pred,
time_prediction=time_pred,
time_to_event=time_to_event,
event_indicator=censoring,
log_func=self.log_function,
cycle="val",

)

self.log(
"val_loss", loss, on_step=False, on_epoch=True, batch_size=self.batch_size

)
return loss

def configure_optimizers(self):
optimizer = torch.optim.AdamW(self.parameters(), lr=self.lr)
return optimizer

hyperparameter_optimization.py
import optuna
from sksurv.metrics import concordance_index_censored
from torch.utils.data import DataLoader
import pytorch_lightning as pl
from itertools import combinations
from pytorch_lightning.callbacks import ModelCheckpoint, EarlyStopping
from pytorch_lightning.loggers import CometLogger
import torch
import numpy as np
from sklearn.metrics import mean_absolute_error, r2_score, mean_squared_error

from data_splitting import preprocess_tabular_data
from multi_layer_perceptron import HistopathologyDataset, MLP

CSV_PATH = "full_data.csv"

def objective(trial: optuna.Trial) -> float:
best_ranks = [23, 71, 62, 16, 96]

lr = trial.suggest_float("lr", 1e-4, 1e-2, log=True)
hidden_size = trial.suggest_int("hidden_size", 64, 2048, step=32)
classification_size = trial.suggest_int("classification_size", 8, 128, step=8)
regression_size = trial.suggest_int("regression_size", 8, 128, step=8)
pos_class_weight = trial.suggest_float(pos_class_weight, 4, 10, step=0.5)
dropout = trial.suggest_float("dropout", 0.1, 0.5, step=0.05)
batch_size = trial.suggest_int("batch_size", 2, 18)
percentiles = trial.suggest_categorical(

"percentiles",
[

combo
for r in range(1, len(best_ranks) + 1)

55

for combo in combinations(best_ranks, r)
],

)
pooling = trial.suggest_categorical("pooling", ["max", "average"])
tte_divisor = trial.suggest_int("tte_divisor", 15, 60)
pl.seed_everything(42)

train_df, val_df, _ = preprocess_tabular_data(CSV_PATH)

train_ds = HistopathologyDataset(train_df, pooling=pooling, percentiles=percentiles)
val_ds = HistopathologyDataset(val_df, pooling=pooling, percentiles=percentiles)
train_dl = DataLoader(train_ds, batch_size, shuffle=True)
val_dl = DataLoader(val_ds, batch_size, shuffle=False)

relevant_fields = train_df.columns[6:].tolist()

model = MLP(
lr=lr,
input_size=512 + len(relevant_fields),
hidden_size=hidden_size,
classification_size=classification_size,
regression_size=regression_size,
pos_class_weight=pos_class_weight,
dropout=dropout,
batch_size=batch_size,
percentiles=percentiles,
pooling=pooling,
tte_divisor=tte_divisor,

)

checkpoint_callback = ModelCheckpoint(
dirpath="models",
filename="model_v5_{epoch}-{val_loss:.2f}",
save_top_k=1,
monitor="val_loss",
mode="min",

)
early_stop_callback = EarlyStopping(monitor="val_loss", mode="min", patience=20)
comet_logger = CometLogger(

api_key="...",
project_name="...",
workspace="...",

)
trainer = pl.Trainer(

max_epochs=200,
accelerator="mps",
callbacks=[checkpoint_callback, early_stop_callback],
logger=comet_logger,

)
trainer.fit(model, train_dataloaders=train_dl, val_dataloaders=val_dl)

best_model = MLP.load_from_checkpoint(
trainer.checkpoint_callback.best_model_path,
lr=lr,
input_size=512 + len(relevant_fields),
hidden_size=hidden_size,

)

event_preds = []
event_indicators = []
tte_preds = []
tte_real = []

56

best_model.to("cpu")
best_model.eval()
with torch.no_grad():

try:
for item in val_ds:

x, c, tte = item
event_indicators.append(c.numpy()[0])
event_pred, time_pred = best_model(x)
event_preds.append(event_pred.numpy()[0])
tte_preds.append(time_pred.numpy()[0])
tte_real.append(tte.numpy()[0])

except (ValueError, KeyError):
pass

ci = concordance_index_censored(event_indicators, tte_real, event_preds)[0]
comet_logger.log_metrics({"val c-index": ci})
actual_events_mask = np.array(event_indicators) == 1
filtered_tte_real = np.array(tte_real)[actual_events_mask]
filtered_tte_preds = np.array(tte_preds)[actual_events_mask]
mse = mean_squared_error(filtered_tte_real, filtered_tte_preds)
r2 = r2_score(filtered_tte_real, filtered_tte_preds)
mae = mean_absolute_error(filtered_tte_real, filtered_tte_preds)
comet_logger.log_metrics({"val mse": mse})
comet_logger.log_metrics({"val r2": r2})
comet_logger.log_metrics({"val mae": mae})

return ci

if __name__ == "__main__":
study = optuna.create_study(direction="maximize")
study.optimize(objective, n_trials=500)

evaluation.py
import torch
from sklearn.metrics import mean_absolute_error, r2_score, mean_squared_error
from sksurv.metrics import concordance_index_censored
import numpy as np

from data_splitting import preprocess_tabular_data
from multi_layer_perceptron import HistopathologyDataset, MLP

BEST_PERCENTILES = [62]
BEST_POOLING = "max"
REGRESSION_HEAD_SIZE = 16
CLASSIFIER_HEAD_SIZE = 16
HIDDEN_SIZE = 128
CHECKPOINT_PATH = "models/model_v5_155-0.68"
CSV_PATH = "full_data.csv"

def evaluate_best_model() -> None:
_, _, test_df = preprocess_tabular_data(CSV_PATH)

test_ds = HistopathologyDataset(
test_df, pooling=BEST_POOLING, percentiles=BEST_PERCENTILES

)

relevant_fields = test_df.columns[6:].tolist()

model = MLP.load_from_checkpoint(
CHECKPOINT_PATH,
lr=0.01,

57

input_size=512 + len(relevant_fields),
hidden_size=HIDDEN_SIZE,
classification_size=CLASSIFIER_HEAD_SIZE,
regression_size=REGRESSION_HEAD_SIZE,

)

event_preds = []
event_indicators = []
tte_preds = []
tte_real = []
model.to("cpu")
model.eval()
with torch.no_grad():

try:
for item in test_ds:

x, c, tte = item
event_indicators.append(c.numpy()[0])
event_pred, time_pred = model(x)
event_preds.append(event_pred.numpy()[0])
tte_preds.append(time_pred.numpy()[0])
tte_real.append(tte.numpy()[0])

except (ValueError, KeyError):
pass

ci = concordance_index_censored(event_indicators, tte_real, event_preds)[0]
print({"test c-index": ci})
actual_events_mask = np.array(event_indicators) == 1
filtered_tte_real = np.array(tte_real)[actual_events_mask]
filtered_tte_preds = np.array(tte_preds)[actual_events_mask]
mse = mean_squared_error(filtered_tte_real, filtered_tte_preds)
r2 = r2_score(filtered_tte_real, filtered_tte_preds)
mae = mean_absolute_error(filtered_tte_real, filtered_tte_preds)
print({"test mse": mse})
print({"test r2": r2})
print({"test mae": mae})

58

	Acknowledgements
	Summary
	Santrauka
	List of Figures
	List of Tables
	List of abbreviations
	Introduction
	1 Related work
	1.1 CNNs for Survival Analysis with Histopathological Images
	1.2 Tile Selection and Preprocessing in Histopathology
	1.3 Multi-Task Learning for Survival Analysis
	1.4 Feature Extraction with Pre-Trained CNNs
	1.5 Combining Imaging and Tabular Data for Prognostic Modeling
	1.6 Custom Loss Functions for Survival Analysis

	2 Methodology
	2.1 Histopathology and Its Digital Transformation
	2.2 Survival analysis
	2.2.1 Censoring
	2.2.2 Cox Regression
	2.2.3 Random Survival Forest
	2.2.4 Hazard Functions
	2.2.5 Concordance Index
	2.2.6 Brier Score

	2.3 Watershed segmentation
	2.4 Deep Learning
	2.4.1 Activation Functions
	2.4.2 Multi-layer Perceptron
	2.4.3 Dropout
	2.4.4 Convolutional Neural Networks
	2.4.5 Transfer Learning
	2.4.6 Residual networks Architecture
	2.4.7 ViT Architecture
	2.4.8 Loss Functions
	2.4.9 AdamW optimizer
	2.4.10 Multi-task Learning
	2.4.11 Imbalance handling

	2.5 Data splitting
	2.6 Min-max feature scaling
	2.7 Cosine dissimilarity
	2.8 Bayesian hyperparameter optimization
	2.9 Principal component analysis
	2.10 Regression metrics

	3 Experiments
	3.1 Dataset
	3.2 Data Splitting
	3.3 Feature Extractor Comparison
	3.4 Segmentation Comparison
	3.5 Selecting Tiles
	3.6 Multi layer perceptron setup
	3.6.1 Data loading
	3.6.2 Loss functions and optimization
	3.6.3 Architecture
	3.6.4 Callbacks

	3.7 Hyperparameter optimization
	3.8 Evaluating Model
	3.9 Other experiments

	4 Results and Conclusions
	4.1 Results
	4.2 Limitations
	4.3 Conclusions

	Appendix 1. Code samples

