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Summary

This thesis examines modern time series forecasting methods using the complex M5 com-
petition dataset, which includes over 30,000 hierarchical time series of daily Walmart product
demand. Lightweight models like DLinear and FITS are compared with traditional methods
such as ARIMAX and machine learning models like LightGBM. The results demonstrate that
simple, linear models can produce forecasts comparable to resource-intensive methods while
maintaining efficiency. It was also found, that the most prominent traditional time series
models proposed for the M5 competition as benchmarks were outperformed by DLinear and
FITS with wide margins. The study supports the proposition of DLinear as a new baseline for
time series forecasting due to its low complexity and competitive accuracy, offering practical
recommendations for practitioners to advance forecasting methods effectively.

Keywords: DLinear, FITS, time series, M5 competition, MOFC, demand forecasting,
linear regression, frequency domain.
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Santrauka

Šiame darbe nagrinėjami modernūs laiko eilučių prognozavimo metodai M5 konkurso
duomenų rinkinio, turinčio daugiau nei 30000 Walmart prekių paklausą apibūdinančių hierar-
chinių laiko eilučių, kontekste. Itin nesudėtingi ir modernūs modeliai DLinear ir FITS lyginami
su tradiciniais, statistiniais laiko eilučių modeliais, kaip ARIMAX ir Eksponentinis glodin-
imas, taip pat su M5 konkurse žibėjusiu LigthGBM. Rezultatai rodo, kad net ir paprasti,
linijine regresija ir nedideliais parametrų kiekiais remti modeliai gali sąlyginai tiksliai prog-
nozuoti pardavimus lyginant su kompleksiškais mašininiu mokymusi remtais modeliais. Taip
pat, tradiciniai laiko eilučių modeliai, parinkti M5 konkurse kaip lyginimo pagrindas, buvo
gerokai pranokti DLinear ir FITS modelių. Šio darbo išvados pritaria DLinear autorių siūly-
mui, ateityje laikyti DLinear modelį atskaitos tašku analizuojant dar naujesnius laiko eilučių
metodus, dėl modelio puikaus kompleksiškumo ir tikslumo santykio.

Tyrimo rezultatai
Raktiniai žodžiai: laiko eilučių prognozavimas, DLinear, FITS, M5 konkursas, MOFC,

linijinė regresija, paklausos prognozavimas.
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Introduction

The amount of data storage is entering the period of exponential growth. From 2025,
global data storage will double every two to three years (Kez et al. (2022)). This data comes in
many formats, including posts on Facebook, YouTube videos, Twitter surveys, and more. By
extracting useful information out of this data, patterns can be identified, which can help make
forecasts or classify the data in some way. Temporal data is a type of data that represents
an event or a state at a specific point in time Mahalakshmi et al. 2016. A large collection of
temporal data recorded over a period of time is known as time series data, which will be the
primary focus of this thesis.

Time series forecasting is applied in various fields such as finance, healthcare, meteorol-
ogy (Sidiq (2018)) and energy (Cabreira et al. (2024)). Accurate forecasting methods allow
organizations to make informed decisions and predict future trends. Professionals can use
these methods to anticipate the amount of product stock they need, plan marketing promo-
tions, make investment decisions and forecast energy consumption. Data-driven decisions help
organizations achieve better operational efficiency, and higher efficiency requires a higher stan-
dard of accuracy from forecasting models (Makridakis, Spiliotis, et al. (2022)). Forecasting
competitions contribute to the advancement of time series forecasting methods by allowing
forecasting practitioners to showcase and compare new, state-of-the-art models and methods
to solve various problems.

The Makridakis Open Forecasting Center (MOFC) provides a platform for researchers and
professionals to compete for prizes, while, more importantly, advancing the state-of-the-art in
time series forecasting. MOFC hosts M competitions, where thousands of specialists attempt to
identify ways to improve the forecasting methods. The findings obtained in these competitions
played an important role in advancing our knowledge of forecasting methods R. K. Hyndman
2020. These competitions also challenge the methods that are considered common practice.
Older competitions demonstrated that statistically sophisticated methods like ARIMA and
ARARMA can be outperformed by simpler ones, like Gardner’s Dampen Trend Exponential
Smoothing Makridakis, Hibon 2000. Attention is also brought to less popular or even new,
unutilized forecasting methods that are often overlooked. The M competitions try to provide
as much reproducibility as possible - the data and forecasts of M3, M4 and M5 competitions are
publicly available, allowing researchers to apply and compare newer methods against (arguably)
the more accurate forecasting methods of past time.

This thesis explores modern time series forecasting methods on the data provided in
the M5 competition (2021). The M5 dataset is complex, hierarchical, exhibits seasonality,
intermittency that spans over 30,000 individual time series, proving to be a truly challenging
task for time series forecasting specialists. Upon the conclusion of the M5 competition, it was
evident that the forecasting community has moved on to Machine Learning based methods to
achieve accurate predictions. According to Makridakis, Spiliotis, et al. (2022) it was the first
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M competition, where all of the best performing methods relied on Gradient Boosted Decision
Tree models and their ensembles.

The aim of this thesis is to conduct a case study of modern, efficient, and interpretable
time series forecasting models using data from the M competitions. To achieve this, the follow-
ing objectives were formed:

• Extensive scientific literature review on state-of-the-art time series forecasting models and
methodology,

• Investigate and prepare the data of multiple M competitions for experimental benchmarks,

• Do comparative analysis of current-day and winning solutions of M competitions,

• Provide generic results and recommendations for time series forecasting practictitioners.

Time series analysis is an important data mining and analysis field. It is applied for
trading, inventory management and planning energy consumption. M competitions take a big
part in the advancement of time series forecasting methods. Makridakis Open Forecasting
Center periodically hosts competitions, in which time series forecasting specialists compete for
prizes by submitting modern solutions to a given problem. At the end of the competition,
organizers aggregate the results and draw conclusions about the used methods, highlight new
and most effective methods. The aim of this thesis is to revisit the solutions of previous M
competitions and apply comparative analysis between them and methods we have today.
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1 Literature review

The time series forecasting problem is a widely researched data science field. However,
due to the complexity of the time series domain, even old methods have not been completely
deprecated. AutoRegressive Integrated Moving Average (ARIMA) is still considered a stan-
dard financial time series forecasting model (Paul 2024), proposed over 50 years ago by Box
et al. (1970). ARIMA is still considered to be a valuable short-term forecasting model due to
its efficiency and interpretability, thus being considered for powerful hybrid, machine learning-
empowered models, as proposed by Y. Zhang et al. (2023). Measuring the influence of external
factors and what influence they could have on particular trends in time series is particularly
important for understanding business behaviors and making decisions (Wang et al. 2021). Au-
toRegressive Integrated Moving Average with eXogenous variables (ARIMAX) is an extended
version of ARIMA that enriches forecasts with external covariates. This model tends to outper-
form ARIMA in datasets where external factors have a relationship with short and long-term
trends, helping to account for the variance not explained by historical data. The importance
of external factors in time series forecasting was demonstrated by Umair Mehmood et al.
(2024), where significant error loss was recorded with the systematic introduction of variables.
ARIMAX and ARIMA preform very well on datasets that exhibit linearity and stationarity
characteristics, such as when dealing with more complex, non-linear time series, developing
hybrid solutions can increase forecasting accuracy, as found by Yucesan et al. (2018).

As concluded after one of M3 competitions by Makridakis, Hibon (2000), sophisticated
statistical models like ARIMA can be outperformed by simpler methods, such as Exponen-
tial Smoothing (ES), originally proposed by R. Hyndman, Khandakar (2008). Rabbani et al.
(2021) compared the performance of a Seasonal ARIMA (SARIMA) model against a simple ES
model. Even when the analyzed time series are seasonal, level and stationary, which are ideal
conditions for ARIMA models, they are outperformed by a simple seasonal model. However
such simple models that only rely on historical data are very limited, they do not account for
an exceptionally wet or cold season, lower infrastructure investments, amount of traffic, day-to-
day weather conditions and many other factors. According to findings by Makridakis, Spiliotis,
et al. (2022), Exponential Smoothing forecasts were improved by 5.7% on average when using
exogenous variables, starting with 25.5% at the top level, but regressing to loss of accuracy on
levels 10, 11 and 12.

LSTF is such an in-demand problem, that even models like Random Forest (Breiman
2001), which are known more for their efficiency in classification and regression problems, can
be applied in the time series domain, as highlighted by Kane et al. (2014) where it’s concluded,
that ARIMA model’s inability to incorporate non-linear relationships could be reason enough
to use an alternative such as Random Forest. In fact, with enough knowledge and resources,
methods based on decision trees outperform models that are specifically created for time series
forecasting. XGBoost and LightGBM are two popular and modern, robust decision tree algo-
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rithms, the latter being the model used by all 50 best performing teams in the M5 competition.
These models are considered to be types of Gradient Boosted Decision Trees (GBDT).

GBDTs are powerful, ensemble learning based models that combine multiple weak learners
into a strong learner. GBDTs are highly effective for regression tasks like credit scoring (Liu
et al. 2022) and classification tasks such as fraud detection (Hancock et al. 2021) due to their
ability to model complex, non-linear relationships and handle feature interactions naturally. By
iteratively reducing errors through boosting, they achieve high predictive accuracy while being
robust to outliers and adaptable to different loss functions. LightGBM was proposed by Ke et
al. (2017) to address scalability and efficiency issues when working with large datasets and high
feature dimensions. The reason for the scalability issues, is that the data is scanned for each
feature to estimate the information gain of all possible split points, which is time and resource
consuming. Authors proposed two techniques: Gradient-based One-side Sampling (GOSS) and
Exclusive Feature Bundling (EFB). In short, GOSS prioritizes instances (data points) with large
gradients (high errors) and may randomly drop instances that have low gradients, to optimize
speed, without significantly compromising the accuracy. Despite the undeniably high time series
forecasting efficiency, LightGBM has its limitations too, as illustrated by <empty citation>
LightGBM, much like other time series forecasting methods, struggles to extrapolate beyond
observed data, as financial markets undergo structural shifts that weren’t observed in the
historical data.

The most eye-catching findings of the M4 competition by Makridakis, Spiliotis, et al.
(2018) was the dominance of deep learning-based methods. Recurrent Neural Networks (RNNs),
such as Long Short-Term Memory (LSTM) or Transformer (Vaswani et al. 2017) models, such
as Informer or Temporal Fusion Transformer (TFT), have received much academic attention
over the last few years (e.g.). One of the weaknesses hindering traditional time series fore-
casting models, is the fact that the model can only work with individual time series. This
makes optimization methods such as cross-learning, a critical strategy for winners of M5 com-
petition, difficult to apply. LSTMs, first proposed by Hochreiter et al. (1997), have been a
reliable solution for the long-term demand forecasting. The key advantage of LSTM is being
able to adaptively decide which past information to retain, capturing both short- and long-term
dependencies, as opposed to the sliding window models of the traditional statistical methods.
LSTMs, while slightly outshined on their own by more robust machine learning or decision tree
models, stay relevant in the time series domain, shown by continued progress and inclusion
in new hybrid models, such as Hybrid Attention-based Long Short-Term Memory (HA-LSTM)
network, proposed by X. Zhang et al. (2023), where HA-LSTM outperformed the vanilla LSTM,
as well as traditional statistical models. Such results reinforce the findings of Makridakis, Spili-
otis, et al. (2018), that hybrid models generate exceptionally accurate forecasts, by leveraging
the strengths of different statistical and machine learning models.

Transformers are deep learning architectures that rely on self-attention mechanisms to
model dependencies across sequences, making them highly effective for time series tasks. One
advantage Transformers offer is scalability, which is due to their parallel sequence process-
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ing, which is sequential in LSTMs. Among their variants, Informers (Haoyi Zhou et al. 2021)
optimize transformers by introducing a sparse self-attention mechanism and generative style
decoder, collectively responsible for reducing computational complexity and memory consump-
tion, and improving the inference speed of long-sequence predictions by predicting long time-
series sequences at one forward operation. As per Haoyi Zhou et al. (2021) findings, Informer
models outperform LSTM on common benchmarking datasets, recording a significant decrease
in MSE/MAE on all forecasting horizons. The model outperformed other selected baselines
as well, such as ARIMA, Reformer (known for struggling with time series forecasting) and
DeepAR, generally outperforming them all, however, on the ECL dataset, DeepAR recorded
better scores when forecasting shorter horizons (<336). Temporal Fusion Transformers (TFTs)
(Lim et al. 2021) focus on interpretable forecasting by combining a self-attention decoder with
specialized components such as variable selection networks and sequence-to-sequence layer for
locally processing known and observed inputs. The performance of TFTs was found superior
to LSTM, interpretable LSTM and TCN models when forecasting energy consumption demand
(Nazir et al. 2023).

Due to their efficiency, Transformers have garnered much attention when solving the LSTF
problem. However, as pointed out by Zeng et al. (2022), who claim that the way transformers
solve their problems is inherently wrong when working in the time domain. Truchan et al. (2024)
support this claim, repeating that the temporal information loss due to permutation-invariant
nature of self-attention mechanisms is inevitable. According to results provided by Zeng et
al. (2022), DLinear and NLinear outperform all Transformer-based models on all forecasting
horizons (96, 192, 336 and 720). Transformers were primarily intended for problems in the
natural language processing (NLP) domain, therefore these methods are not very interpretable
when operating in the time series domain.
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2 Data

Sales and demand data are among the most critical yet challenging (Özalp et al. 2021)
types of data used by businesses for organizational planning. Unlike evenly distributed datasets,
demand data often exhibit a variety of complexities that can make forecasting difficult, such as
intermittency, long-tailed distributions, seasonality, trends, external influences, etc. (Ma 2024).

2.1 M5 Dataset

The data set used in this thesis serves as the foundation for the forecasting models and
comparative analysis. The data set is provided by the organizers of the M5 competition. The
data shows the day-to-day demand of 30490 Walmart items over 5 years. The data spans over:

• 1941 days;

• 3 states;

• 10 stores;

• 3 product categories;

• 7 departments.

The M5 dataset is known for its hierarchical nature, with forecasts required at multiple
levels of aggregation. The data set is organized as a multi-dimensional time series, where each
item-store combination forms a distinct time series. The core variables of the data set are as
follows:

• Item ID - unique identifier of each product;

• Store ID - unique identifier for each store, e.g. CA_1 ;

• Category - the category a product belongs to, e.g. HOBBIES ;

• Department ID - a department in a given store, e.g. HOBBIES_1 ;

• Day - day of the observation, between 1 and 1969;

• Sales - the number of units sold on a given day;

• Event indicators - categorical variable indicating the presence of a holiday or a big special
event that may influence demand, e.g. NBA finals or Christmas Eve;

• Calendar features - variables that help capture the effect of weekends, months or days of
the week/month.
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2.2 Exploratory data analysis

Exploratory data analysis is a fundamental step in the data-driven research process al-
lowing us to understand the dataset’s characteristics, patterns, anomalies, and complexity.
Understanding the potential challenges such as data sparsity (discontinuation of products),
and outliers (very low-demand products or departments).

Figure 1a displays all daily sales of a specific food item from store CA_4. The single
graph encapsulates many characteristics that increase the difficulty of forecasting. The sales
data appears to be unpredictable or at least irregular and quite noisy, however it’s difficult to
capture the real noisiness using such a zoomed-out graph. There are minimal sales periods that
can indicate stock-outs while also exhibiting high sales peaks. Figure 1b plots the sales of the
same product, but in the last 56 days. The daily demand is also highly irregular, varying from
60 up to 220 daily sales.

(a) Food item sales over 5 years (b) Food item sales over last 56 days

Figure 1 Zoomed in vs out item sales

The higher the demand, the more impactful the forecasts are when evaluating the model.
Therefore, highly volatile sales data that exhibits so many irregularities can pose difficulties for
less sophisticated forecasting models. Figure 2 captures the complexity of this dataset. Three
products have relatively regular, but low sales. One product reported only 3 sales in the whole
year, while two others have been reporting consistent sales ranging in a wide amplitude. What
is also sometimes the case, as seen in the upper right corner, is that sometimes the product
may be discontinued and the sales flatline at 0.

The share of total sales for categories or departments is not uniform. The FOODS cate-
gory, and more specifically, FOODS_3 department consistently report the highest amount of
sales across all observed stores. Figure 3 shows how the FOODS_3 department accounts for
the majority of the variability in the example store. The seasonal sales of the store are nearly
perfectly mirrored by the seasonality of the department, while the rest of the departments
stay relatively stagnant. The only other department to record more than 1000 daily sales is
HOUSEHOLD_1. It is consistently trending upwards while exhibiting some seasonality as well,
while the second HOUSEHOLD department stays flat across all 5 years. Figure 4 confirms that
FOODS_3 accounts for the most sales across all stores. HOUSEHOLD_1 comes in second,
though it does have competition in WI_1, WI_2 and CA_4.

Seasonal decomposition was applied to the sales data of the largest departments in the
CA_3 store - FOODS_3 and HOUSEHOLD_1, using the seasonal_decompose function from
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Figure 2 Six random examples of product sales over the last 365 days

Figure 3 Category and Department total sales comparison

the statsmodels.tsa Python package. This function separates a time series into three distinct
components: trend, seasonality, and residuals (noise), enabling a clearer visualiztion of the
overall trajectory of the data by isolating the impact of seasonality and noise. For this analysis,
the seasonal periodicity was set to 1 year. The decomposed components are displayed in Figure
5 The amplitude of the seasonal component is approximately 600 for FOODS_3 and 400 for
HOUSEHOLD_1, indicating a significant seasonal effect. Similarly, the residual component
amplitudes, approximately 500 and 200 respectively, highlight a substantial contribution of
unexplained noise as well. These findings suggest that both departments are heavily influenced
by seasonal patterns and random fluctuations.
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Figure 4 Percentage share of total sales for all departments across stores

Figure 5 Seasonal decomposition of FOODS_3 and HOUSEHOLD_1
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3 Analyzed methods

The theoretical overview of forecasting methods provides the foundation of understanding
the strengths and limitations of the models under evaluation. This section focuses on two state-
of-the-art approaches: DLinear and FITS.

3.1 DLinear

During a surge of Transformer-based solutions for the long-term time series forecasting
(LTSF), a much simpler, lightweight solution was proposed by Zeng et al. (2022) to not only
improve the forecasting accuracy, but to act as a lightweight, modern benchmark in LTSF.

Decomposition-based Linear (DLinear) forecasting model was proposed to address the
limitations of deep learning-based methods for time series forecasting. The mechanism behind
Transformer models is permutation-invariant, which heavily conflicts with the nature of time
series domain. While positional encoding preserves some ordering information, the model being
inherently uninterested in data ordering inevitably leads to temporal information loss.

Unlike traditional black-box models, DLinear explicitly decomposes a time series into
trend and noise components. This decomposition enables the model to isolate systematic pat-
terns and simplify the forecasting process. The model operates on the principle that time series
data consists of predictable patterns and noise. By modeling these components separately using
linear methods, DLinear achieves competitive performance while being very computationally
efficient.

The core idea in DLinear is to decompose Time series xt into a trend Tt and residual
(seasonal) Rt components and model them individually in single-layer linear networks.

The decomposition process is quite simple. First, the input data is padded at the begin-
ning and end to ensure that the moving average computation does not shrink the output size.
The padding replicates the first and last values of the time series for half the kernel size on
each side. Then the trend component is derived by traversing a moving average kernel over the
padded input data. Then, the remainder (seasonal) component is created by subtracting the
trend component from the raw input data. First look at the trend estimation method. With se-
lected kernel size k, the time series will be expanded by adding repetitive beginning and ending
values y0 and yN respectively (y1,−⌊k/2⌋, y1,−⌊k/2⌋+1, .., y1,−1, y1, .., yN , yN,1, yN,2, .., yN,⌊k/2⌋). Then
the trend and residuals are calculated:

Tt = 1
k

⌊k/2⌋∑
i=−⌊k/2⌋

yt+i,

Rt = yt − Tt, ∀t ∈ {1, .., N}

where w is the lookback window, k is the kernel size, s is the stride, t is the current time
step and ŷt is the padded input data and yt is the original input data.
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The whole structure is captured within Figure 6. Once decomposition is achieved, DLinear
models Tt and Rt using simple vector like linear models of trend and residuals:


T̂t+1
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HR = WRR

where final predictions:

T̂ = HT + HR

where WT and WR are weight matrices, bT and bR are biases and h is the forecasting
horizon. The modeled components are then combined:

x̂t+h = T̂t+h + R̂t+h
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(a) DLinear architecture (b) A single layer neural network

Figure 6 The whole structure of DLinear (Zeng et al. 2022)

3.2 FITS

Unlike existing models that process raw data in the time domain, the Frequency Interpo-
lation Time Series Analysis Baseline (FITS) proposed by Zhijian et al. (2024) operates on the
principle that time series can be manipulated through interpolation in the complex frequency
domain. Using FITS, forecasting results are obtained by simply extending the given look-back
window with frequency interpolation.

The idea of FITS is to treat the time series data as a signal. The raw data can be broken
down into a combination of sinusoidal waves (sine and cosine functions). Each wave has its
own frequency, amplitude and phase. Such breakdown captures all of the information in
the original time series without any informational loss. Instead of predicting the future values
of the raw time series, FITS focuses on forecasting each individual wave. Forecasting these
waves is simpler because, in order to do so, only the phase needs to be adjusted to project
them forward. After the shifted sinusoidal waves are forecasted, they are combined to recreate
the full time series forecast. This process ensures that the periodic behaviors in the past data
remain consistent in the forecast and the results align with the observed trends. time series
data representation in the frequency domain is visualized in Figure 71. Higher amplitude and
lower frequency waves represent significant patterns in the original data, while others might
represent local noise-like residuals.

A signal existing in the time domain is described by how it changes over time. In the
frequency domain, a signal is described by the amplitude and phase of the frequency com-
ponent, it being represented as a complex number. Mathematically, the complex number
associated with a frequency component can be represented as:

X(f) = |X(f)|ejθ(f)

Here:

• X(f) - The complex number associated with the frequency component at frequency f ,
1Image take from an article
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Figure 7 Data representation in the frequency domain

• |X(f)| - The amplitude of the frequency component (how strong it is in the signal),

• θ(f) - The phase of the component (how delayed or shifted it is in time),

Figure 82 shows a frequency component represented as a vector on a complex plane. The
length of the vector is the amplitude and the angle with the x (Real) axis is the phase.

Figure 8 Complex number on the complex plan

Forecasting is performed by shifting the phase of the frequency components. If a signal
x(t) is shifted forward in time by a constant amount , resulting in the signal x(t − τ), the
Fourier transform is given by:

Xτ (f) = e−j2πfτ X(f) = |X(f)j(θ(f)−2πfτ = [cos(−2πfτ) + jsin(−2πfτ ]X(f)

The shifted signal still has the same amplitude |X(f)|, while the phase θτ (f) − 2πfτ

shows a shift which is linear to the time shift.
2Image taken from Zhijian et al. (2024)
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Figure 93 illustrates the FITS pipeline. The FITS algorithm steps, when input time series
segment: xt ∈ RN×Li , where N is the batch size and Li is the input length and interpolation
rate: η = Lo

Li
, where Lo is the desired output length of extended time series (original + predicted

window).

1. Apply time series normalization:

ȳ = 1
T

T∑
t=1

yt, vary = 1
T

T∑
t=1

(yt − ȳ)2 + ϵ,

where T is the time series windon length and ϵ = 10−5 is a small constant for numerical
stability. The normalized time series is:

ỹt = yt − ȳ
√vary

, ỹt ∈ RN×Li .

2. Apply Fast Fourier Transform (rFFT) to the normalized time series to get the complex
frequency domain:

Yf = rFFT(ỹt), Yf ∈ CN×Li/2, f ∈ [0,
1

2T
].

3. Apply a low-pass filter to remove high-frequency components:

Ŷf =

Ŷf , f ≤ fcut

0, f > fcut

,

where fcut is the cutoff frequency. Retain only the components up to fcut:

Ŷlow,f = Ŷf , f ∈ [0, fcut], Yinterp,f ∈ CN×(Li/2)

4. Apply upsample the low-frequency components to match the extended length ηT , where
η = Toutput

Tinput
:

Ŷinterp,f = W · Ŷlow,f , Ŷinterp,f ∈ CN×η(Li/2)

where W is the weight matrix of the complex-valued linear layer.

5. Apply zero padding to extend the interpolated frequency representation to the original
frequency length Toutput/2 by zero-padding:

Ŷoutput,f =

Ŷinterp,f , f ≤ finterp

0, f > finterp

, Youtput,f ∈ CN×(Lo/2).

3Image taken from Zhijian et al. (2024)

20



6. Apply transform the frequency representation back to the time domain using the inverse
FFT:

ypred,t = iFFT(Ŷoutput,f ), ypred,t ∈ RN×Lo

7. Apply reconstructed signal to compensation for the change in sequence length:

ypred,t = ypred,t · η, ypred,t ∈ RN×Lo

8. Apply original scale and mean of the time series:

yreconstructed,t = ypred,t · √vary + ȳ, , yreconstructed,t ∈ RN×Lo .

Figure 9 Pipeline of FITS

The FITS model offers a unique solution for solving the forecasting task by operating in
the frequency domain. It achieves this by utilizing complex number multiplication within a
single complex-valued linear layer to interpolate the input (lookback) data. This makes FITS
well-suited for generating long-term time series forecasts, as it effectively captures and analyzes
both local and long-term patterns.

21



4 Research

The research presented in this thesis consists of exploratory and comparative analysis of
well-established, historically significant time series forecasting models against selected state-
of-the-art models. The comparative analysis was conducted within an evaluation framework
provided by the organizers of the M5 competition. Each experiment generates a 28-day demand
forecast for all 30,490 items. The forecast accuracy is assessed at 12 aggregation levels and the
final score is drawn by calculating the mean of all aggregate scores. Detailed analysis of
benchmarks and selected comparative models and an overview of the evaluation methodology
will be discussed in the following subsections. EDA, data preprocessing, submission evaluation
was done using Python and R4.

4.1 Benchmarks

Well-established benchmarks serve the purpose of evaluating modern solutions very well.
Benchmarks provide a reference point for how accurately and efficiently the model performs.
The organizers of the M5 competition have provided a long list of benchmarks that were used
in their comparative analysis. The focus will be on these models:

• Random Forest (right and left) - particularly effective in capturing complex nonlinear
relationships. Although primarily used for classification, random forests can also be
adapted for regression tasks, thus serving as a robust benchmark (Breiman 2001).

• ARIMA (Autoregressive Integrated Moving Average) - a fundamental benchmark for time-
dependent datasets due to its historical significance and flexibility through handling non-
stationary data (Box et al. 1970).

• ARIMAX - more comprehensive view of the predictors’ impact on the forecasted variable
(Box et al. 1970).

• ADIDA (Aggregate-Disaggregate Intermittent Demand Approach) - specifically designed
to handle intermittent demand time series by forecasting on different levels of aggregation.
Made more relevant by the use of the top-down forecasting strategy during this research
(Nikolopoulos et al. 2011).

• Exponential Smoothing, simple and effective in capturing trends, levels, and seasonality
of time series data (R. Hyndman, Koehler, et al. 2008).

• Croston’s method - tailored for intermittent demand forecasting, where demand occurs
at irregular intervals. Separating the forecasting of demand size and demand intervals,
enables the method to better handle zero-demand periods, making it a good benchmark
for slow-moving products (Croston 1972).

4All Python and R code related to research can be found in this repository
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• SBA (Syntetos-Boylan Approximation) - a refinement in Croston’s method, aimed to cor-
recting the known bias in Croston’s forecasts. Adjusts the demand interval component
to provide more accurate forecasts for intermittent demand series. Offers improved fore-
casting accuracy in contexts where inventory control and stock optimization are critical
(Syntetos et al. 2001).

Using these benchmarks allows for a more comprehensive comparative analysis of reviewed
models due to differences in approach and capabilities. By comparing the results across a diverse
list of models, it becomes possible to demonstrate the relative advantage of the chosen models
and justify their use in practical applications.
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Figure 10 Benchmark models aggregated forecasts of FOODS_3 department
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Figure 11 Benchmark models aggregated forecasts of FOODS_3_226

Figure 10 shows benchmark model aggregated forecasts plotted against the sales of a
specific food department. Models such as ARIMAX or ESX attempt to model noisy day-to-
day changes in product sales, while others either expect the sales to continue in a predictable
pattern. The disadvantages of SBA, ADIDA and Croston models are made quite apparent, due
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to their inability to capture time-dependent patterns. Forecasts these models generate are static
and generally estimate an "average" demand rate over a given horizon. Figure 11 illustrates
similar patterns. ARIMA_td, ARIMAX, ES_td and ESX models were generated using the
top-down strategy, which is why the department forecasts are just a scaled version of the
item-level forecast.

4.2 Methodology

The goal of this thesis is to analyze two state-of-the-art models that aim to provide mod-
ern, simple, less resource intensive benchmark models for the LTSF problem. The models will
be evaluated under the framework provided by the M5 competition, that computes WRMSSE
scores on twelve forecast aggregation levels. The analyzed models will be compared against
selected benchmark models, as well as the M5 competition submissions.

4.3 Evaluation

The product-store unit sales can be mapped across either product categories or geograph-
ical regions, as shown in Table 1.

ID Aggregation level Number of series
1 Unit sales of all products, aggregated for all stores/states 1
2 Unit sales of all products, aggregated for each State 3
3 Unit sales of all products, aggregated for each store 10
4 Unit sales of all products, aggregated for each category 3
5 Unit sales of all products, aggregated for each department 7
6 Unit sales of all products, aggregated for each State and category 9
7 Unit sales of all products, aggregated for each State and department 21
8 Unit sales of all products, aggregated for each store and category 30
9 Unit sales of all products, aggregated for each store and department 70
10 Unit sales of product x, aggregated for all stores/states 3,049
11 Unit sales of product x, aggregated for each State 9,147
12 Unit sales of product x, aggregated for each store 30,490

Total 42,840

Table 1 M5 sales aggregation levels

The accuracy score will be computed by separately averaging their scores across the
forecasting horizon. Then, the error will be averaged again across the series according to
weights assigned to each product.

The accuracy of the point forecasts is evaluated using the Root Mean Squared Scaled
Error (RMSSE). This measure is calculated as follows:
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RMSSE =

√√√√ 1
h

∑n+h
t=n+1(Yt − Ŷ 2

t )
1

n−1
∑n

t=2(Yt − Yt−1)2

where Yt is the actual future value of the examined series at point t, and T̂t is the generated
forecast, n the size of the look-back window, and h - the forecasting horizon. Once RMSSE is
estimated for all time series, the weighted RMSSE (WRMSSE) is calculated:

WRMSSE =
42,840∑

i=1
wi × RMSSEi,

where wi is the weight and RMSSEi is the score of the ith series in the competition. The
weights are based on the amount of dollar sales over the last 28 observations of the final training
sample - the sum of sales multiplied by their price. This approach ensures that slow-moving
products aren’t contributing as much to the overall score of the model. Such model evaluation
measure ensures that the forecast accuracy is estimated by focusing most on the series with
high importance, i.e., series that are significant in monetary terms (Makridakis, Spiliotis, et al.
2022). Therefore, the best models are expected to perform forecasting with lower errors for the
series with more value to the business.

4.4 Top-down forecasting

When working with large time series datasets, such as the M5 Walmart sales dataset,
fitting and forecasting tens of thousands of time series separately becomes a very time consuming
task. Top-down forecasting approach solves this problem in part, by reducing the amount of
time series to model. The M5 Walmart daily sales dataset has 30,490 bottom-level time series to
forecast, however, aggregating the sales data by store and department, the amount of time series
is reduced to just 70. After forecasting these aggregated time series, forecasts are disaggregated
using weights, estimated for each bottom-level time series.

Weights for bottom-level time series are assigned by calculating the share of units sold
for each subset.

Wi =
∑T

t=T −h Xi,t∑N
j=1

∑T
t=T −h Xj,t

where Wi is the weight of the i-th item, N is the number of time series in the subset,
T is the observed time period and Xi,t is units sold on the i-th time series on day t. The
bottom-level forecast is calculated by multiplying the top-level forecast on a given day t by the
corresponding bottom-level weight:

Fi,t = Wi × At

where Fi,t is the forecast for the i-th bottom level time series for the day t (0 < t <= 28)
and At is the top-level forecast for the selected aggregation level.

The main drawback of the top-down forecasting approach is that the resulting forecasts
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heavily depend on the assumption that unit sales will continue on the same constant trajectory.
As discussed in 2, the M5 data set exhibits the characteristics of intermittency, and seasonality.
The top-down approach forces the resulting bottom-level forecast to follow a group trend,
even though there are cases where an item’s sales crashed to 0 right before the forecasting
horizon, or when an item simply exhibits different weekly demand patterns than other items
in the department. However, fitting the model on aggregated data should yield more accurate
forecasts on the higher aggregation levels. Since the overall score of the model depends on all
12 aggregation levels equally, an expected lower accuracy in bottom-level forecasts is acceptable
if it results in higher scores in higher aggregation levels.

4.5 DLinear

DLinear model was adopted by the darts Python package, which provides a configurable
interface that acts as a model training black box. The interface to tune certain hyperparameters,
such as kernel size, lookback window, optimizer, loss function, learning rate, number of epochs
to train the model for. The darts implementation5 of DLinear is a slight improvement of the
original model proposed by Zeng et al. 2022. darts version includes the ability to use shared
weights for the components, supports the use of covariates.

Forecasts were performed using different combinations of hyper-parameters. Additionally,
forecast accuracies were evaluated using both parametric and non-parametric versions of the
model.

Table 2 shows WRMSSE metrics for forecasts produced using different-sized lookback
windows - 112, 56, 28 and 14. DLinear generated the most accurate forecasts using the 56-day
lookback window, however, other window sizes tend to produce comparable results. Other
hyperparameters, such as learning rate, epoch number did not have any significant effect on
the models performance. Without taking into account exogenous covariates, DLinear model
tends to generate marginally less accurate results (ass seen in Table 2 LB56-NP column.

Different groups of exogenous covariates were experimented with, preprocessed, and the
following were selected for the parametric version:

• Event count - derived from variables event_name_1 and event_name_2 by counting
the number of ongoing events on a given day.

• SNAP count - Supplemental nutrition assistance program, derived by counting snap_CA,
snap_TX and snap_WI.

• Weekend - boolean variable that signifies that a given is on the weekend.

• Day of week - Day of week, 1 through 7.

Different kernel sizes influence the balance between the reduction of noise in the trend
component and the accuracy of the residual component. A larger kernel effectively smooths

5Repository: ¸
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out short-term fluctuations, providing a clearer representation of the overall trend. However,
this can lead to the residual component capturing less meaningful variation, as some relevant
short-term patterns may be absorbed into the trend. Experiments with different kernel sizes
were conducted to evaluate their effect on the overall accuracy of the model. Kernel sizes of 7,
14, 21 and 28 were evaluated. Table 3 shows the results of the forecast evaluation by selected
kernel size. The models were trained using a lookback window of 56 days according to the best
performing run of the previous experiments.

Level LB112 LB56 LB28 LB14 LB7 LB56-NP

1 0.33536 0.25771 0.27604 0.36395 0.42510 0.27975
2 0.41378 0.35975 0.38257 0.44736 0.53038 0.39386
3 0.48810 0.43347 0.45174 0.50710 0.5774899 0.46404
4 0.38193 0.31914 0.33486 0.43703 0.48290 0.34223
5 0.46598 0.42457 0.41919 0.50555 0.54208 0.43534
6 0.48686 0.45617 0.47734 0.55706 0.60876 0.48442
7 0.57351 0.55362 0.55723 0.62554 0.66606 0.56957
8 0.56374 0.52714 0.54461 0.61082 0.65859 0.55233
9 0.67312 0.64163 0.64712 0.70006 0.74707 0.65689
10 1.00855 1.00336 1.00253 1.01038 1.01376 1.00373
11 0.96078 0.95848 0.95863 0.96379 0.96550 0.95970
12 0.90884 0.90672 0.90759 0.91067 0.91073 0.90820
6.5 0.60505 0.57015 0.57995 0.63661 0.67737 0.58751

Table 2 DLinear forecast WRMSSE score comparison by lookback window. With default kernel
size

kernel_size=7 kernel_size=14 kernel_size=21 kernel_size=28

WRMSSE 0.56843 0.56929 0.568815 0.57026

Table 3 DLinear model WRMSSE scores with different kernel sizes

4.6 FITS

The FITS forecasting accuracy experiments were performed using the official implemen-
tation repository by Zhijian et al. (2024). Quite a few experiments were run with different
hyper-parameters to identify the optimal combination. Table 4 shows the best results written
in italic. 28-day is the minimum required lookback window and is close to being the most per-
formant too. However, a 40-day lookback window gives the model a slight increase in forecast
accuracy. After that, the 44-day lookback window and up tend to produce worse performance.
Feeding the model with more data per epoch improved the performance quite a bit, while also
using a learning rate of at least 0.05.
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FITS still lacks the ability to use covariates in forecasting, therefore, the following exper-
iments were nonparametric. Model training and forecast generation was executed as follows:

1. Time series were aggregated on store-department level;

2. Dataset split into train and validation groups. Selected split was 85/15;

3. Dataset was batched into lookback window sized batches. Selected batch size was 32;

4. Random batches were selected over up-to 100 epochs.

5. If validation loss doesn’t increase over 3 epochs, the model with the best validation loss
is selected as the final model. MSELoss function is used for calculating loss.

Level 28LB 32LB 36LB 40LB 44LB 56LB 84LB

1.0 0.31473 0.30884 0.34838 0.29267 0.39653 0.40978 0.40494
2.0 0.40819 0.40740 0.43499 0.39884 0.47409 0.47780 0.47855
3.0 0.47844 0.47418 0.49890 0.47324 0.52526 0.53568 0.54154
4.0 0.37340 0.37107 0.40268 0.35611 0.44586 0.46632 0.46084
5.0 0.45271 0.45162 0.48177 0.44344 0.52028 0.54956 0.54290
6.0 0.50733 0.50772 0.53096 0.49231 0.55566 0.56107 0.56447
7.0 0.58181 0.58099 0.60495 0.57100 0.62771 0.63851 0.63707
8.0 0.57090 0.57024 0.58889 0.56433 0.60400 0.61460 0.62089
9.0 0.66665 0.66481 0.68293 0.66174 0.69345 0.70590 0.70366
10.0 1.00561 1.00502 1.01026 1.00297 1.01384 1.01083 1.01134
11.0 0.95973 0.95936 0.96298 0.95787 0.96499 0.96201 0.96268
12.0 0.90771 0.90737 0.90970 0.90637 0.91094 0.90829 0.90915
6.5 0.60227 0.60072 0.62145 0.59341 0.64439 0.65336 0.65317

Table 4 Forecasting accuracy of FITS given different-sized lookback windows

4.7 Results

DLinear and FITS models were evaluated against historical benchmarks and against the
top M5 kaggle competition submissions. The DLinear submission would rank 38th out of
7,022 and FITS - 86th (Table 5). Overall, forecasts generated by FITS and DLinear models
outperformed traditional benchmarks. Furthermore, the forecasts are comparable to the ones
submitted by top competitors, who relied on ensembles of robust machine learning models.
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Placement Submission WRMSSE Score
1 YeonJun IN_STU 0.52043
2 Matthias 0.52816
3 mf 0.53571
... ... ...
38 DLinear 56LB 0.56843
... ... ...
86 FITS 40LB 0.59341
... ... ...
471 ESX 0.67906
... ... ...
520 ARIMAX 0.69061

Table 5 Submission placements in the M5 competition

According to Zhijian et al. 2024, FITS model relies on almost 50 times less parameters
than even lightweight models such as DLinear. Figure 12 shows a linear relationship between the
selected lookback window and the trainable parameter size, parameter count reaching 22012
for the 56 lookback window model. Figure 13 visualizes the complexity graphs for FITS.
Here, the model with the 56 lookback window only has 408 trainable parameters, which is
~53.95 times smaller than its’ DLinear counterpart. Graphs also display WRMSSE loss over an
increasing lookback window. Figure 12 shows that as lookback window increases, the WRMSSE
loss becomes smaller, reaching 0 above the 56 lookback and starting to produce less accurate
forecasts. Figure 13 shows a more complicated relationship between WRMSSE loss and window
size increase.
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Figure 12 DLinear complexity and WRMSSE loss vs lookback window increase
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Figure 13 FITS complexity and WRMSSE loss vs lookback window increase
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Figure 14 Final forecasts on an outlier item

The M5 dataset had 812 instances of bottom-level items that had 0 or close to 0 sales
the last 28 days before the forecasting horizon, but started recording sales somewhere during
the future 28 days. Figure 14 illustrates the drawback of the top-down forecasting approach
and simple item-weight disaggregation. If a certain product doesn’t record a high demand over
the selected period of time, it is assigned a weight close to zero. Leading to a very low sales
forecast, as shown in Figure 14.

Figure 15 and Figure 16 show the aggregated forecasts for specific FOODS and HOBBIES
departments. These graphics show how a good top-level forecast may not result in an accurate
bottom-level forecast.
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Figure 15 Final forecasts on an outlier item
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Figure 16 Final forecasts on an outlier item
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5 Conclusion

Models evaluated in this case study prove to have the ability to generate forecasts with
accuracy comparable to robust machine learning models. More specifically, per Makridakis,
Spiliotis, et al. 2022 findings, all 50 most accurate forecatsts used LightGBM, a decision tree-
based machine learning algorithm. According to the findings of the M5 competition, very
few teams tried to build a single model that would generate all 30,490 forecasts. Instead,
alternate models were created and results averaged - the winning team developed 220 different
models for different aggregation levels, and finally calculated the average forecasts between 6
resulting partial submissions. The M5 dataset is a collection of closely related time series,
that’s why winning teams were able to leverage cross-learning into training the most flexible
models. This strategy is much more complex to implement using DLinear and FITS, as such
linear models treat each series independently. Having to rely on high-level forecasting and then
making assumptions about item-level demand results in information loss and inaccurate outlier
forecasts, as illustrated in Figure 14.

FITS was found to outperform the original DLinear implementation (Zhijian et al. 2024)
on various benchmark datasets, however, the darts implementation of DLinear shows some
improvement and actually generates more accurate forecasts than FITS.

The goal of this thesis was to evaluate two state-of-the-art linear models as they are,
therefore micro-optimizations like cross-learning, hybrid or machine-learning based forecast
disaggregation and methods were not used to improve final scores. Using the final scores of
the selected models and having compared them to traditional benchmark models, following
conclusions can be drawn:

• Traditional methods, such as ARIMAX and ESX, were outperformed by a wide margin
by both FITS and DLinear, as demonstrated in Table 5;

• Simple and lightweight linear regression-based models produce forecasts comparable to
those of robust, resource-demanding, ensemble machine learning models;

• The findings of this thesis support the proposition of Zeng et al. (2022) to consider
DLinear a baseline in future research due to comparably accurate forecasts and very low
complexity.
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