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Abstract

Gross domestic product (GDP) is one of the main key indicators of a state’s economy.

Nowadays GDP rates are available only with weeks of delays, using nowcasting methods, GDP

predictions are accessible in the firstmonth of the quarter. In this work, a Lithuanian GDP now­

casting systemwas developedwith ten differentmachine learningmodels. Also, data provided

by the state data agency with appropriate data delays were considered. Practical implemen­

tations of nowcasting were introduced with a pseudo­real­time framework, where different

data vintages performed different time periods of predictions. The improvements in model

performance were introduced using maximal overlapping discrete wavelet transform.

Keywords: Gross domestic product (GDP), Nowcasting, Machine learning, Gradient Boosting

Regressor, ARIMA, Maximal overlapping discrete wavelet transform (MODWT).
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Santrauka

Bendrasis vidaus produktas (BVP) yra vienas pagrindinių valstybės ekonomikos rodik­

lių. Šiais laikais BVP rodikliai sužinomi tik po kelių savaičių vėlavimo, naudojant nowcasting

metodus BVP prognozės gali būti pasiekiamos jau pirmąjį ketvirčio mėnesį. Šiame darbe buvo

sukurta Lietuvos BVP realaus laiko prognozių sistema su dešimčia skirtingų mašininio moky­

mosi modelių. Taip pat buvo atsižvelgta į valstybinės duomenų agentūros pateiktus duomenis

su atitinkamais duomenų vėlavimais. Praktiniai realaus laiko prognozių metodų taikymai buvo

pristatyti naudojant pseudo realaus laiko sistemą, kurioje skirtingos duomenų versijos buvo

naudojamos skirtingų laikotarpių prognozėms. Šios versijos buvo prognozuojamos naudojant

kelis mašininio mokymosi modelius. Modelių veikimo patobulinimai buvo pasiekti naudojant

maksimaliai persidengiančią diskrečiąją bangelių transformaciją.

Raktiniai žodžiai: Bendrasis vidaus produktas (BVP), Nowcasting, Mašininis mokymasis, Gradi­

ento didinimo regresorius, ARIMA, Maksimaliai persidengiančių diskrečiąjų bangelių transfor­

macija.
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List of notations

1 table. Notations

Notation Definition

Xt A vector of observed variables at time t.

L
The lag operator and the lag polynomial matrices λ(L) and

Ψ(L).

ft A vector of unobserved common factors.

εt A vector of idiosyncratic components or noise.

Yt+h The forecast of the low­frequency variable.

h Periods ahead.

pY and qX The lag lengths for Y andX , respectively.

Xt−kθ
A weighted aggregation of high­frequency data points with a

parameter vector θ controlling the weighting scheme.

Zt A vector of variables at time t.

A0 A vector of intercept terms.

Ai (for i =

1, 2, . . . , p)
Matrices of coefficients for the lagged variables.

yi The dependent variable.

xij The independent variables.

βj and λ
The coefficients and the regularization parameter, controlling

the extent of shrinkage applied to the coefficients.

φ(B) and θ(B) Polynomials in the back shift operator B.

(1−B)d The differencing operator.

Yt A time series.

Tt Trend component (captures long­term changes in the data).

St

Seasonal component (captures periodic fluctuations with fixed

periodicity).

It Irregular component.

∆yt The first difference of the time series (yt − yt−1).

α An intercept.

βt A time trend.

γyt−1 A lagged level of the series.∑p
i=1 δi∆yt−i A lagged difference of the series.

β0, β1, . . . , βp Coefficients.

5



Introduction

In today’s geopolitical situation, led by significant complexity, conflicts across the regions,

influence of different alliances and economic interests, it is crucial to understand the main

macroeconomic indicators of the state, which greatly influence the government’s fast decision­

making and understanding of the state’s opportunities to plan future strategies. Every day

economists examine a diverse collection of financial insights from statistical agencies and pri­

vate and public surveys to evaluate the economy’s performance [8]. The practice of gathering

expert forecasts has a long­established history. The oldest quarterly survey of macroeconomic

forecasts is the Survey of Professional Forecasters (SPF), which began in 1968 and is currently

conducted by the Federal Reserve Bank of Philadelphia [31].

Some macroeconomic indicators are calculated at the end of every quarter. The most

comprehensive indicator of economic activity is gross domestic product (GDP), which is re­

leased with a significant delay and provides valuable insights into a nation’s financial health

and growth potential [12]. GDP by production approach is the net value of all goods and ser­

vices produced within the country during the reporting period, i.e. the final result of produc­

tion activity. GDP at market prices is the sum of the value added of all industries or institu­

tional sectors at basic prices, plus taxes, less subsidies on products [3]. The national statistical

agency calculates this indicator in a country, compiling information from many sources. For

example, the Lithuanian Department of Statistics estimates GDP linearly, without using any

machine learning models, and provides accurate estimates with a delay of weeks. However,

this delay can be solved using the nowcasting method, which can help predict these indicators

faster. Nowcasting is the prediction of current or near­future values of low­frequency outcome

variables using high­frequency data with machine methods or other modelling approaches.

After reviewing the topic’s relevance, a natural motivation arises to help the Lithua­

nian Statistics Department develop a GDPmodelling and estimation framework usingmachine

learning models.

Reasearch paper goal will be orientated specifically on nowcasting the Lithuanian gross do­

mestic product (GDP) using machine learning methods and its approaches.

The main tasks of this work will be:

• Review the theory of nowcasting with various of different applications.

• Basedon the scientific literature, create a framework for nowcasting the Lithuanian gross

domestic product indicator and perform its analysis.

• Implement amaximal overlapping discrete transform (MODWT) into the nowcasting sys­

tem and improve model predictions.
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1 Literature review

The purpose of this section is to review scientific papers regarding the thesis topic and

analyze and compare different approaches and techniques. This section will cover dynamic

factor models, mixed frequency vector autoregressions and mixed data sampling regressions,

sparse and dense techniques, and machine learning methods.

The significance of GDP in measuring the size and performance of the economy is enor­

mous. In the last decade, GDP predictions and forecasts have been considerably researched.

There are various nowcasting modelling approaches in the scientific literature. For example,

dynamic factor models (DFMs), originally were proposed as a time­series extension of previ­

ously developed factor models for cross­sectional data [14]. DFMs are statistical models that

assume that a small number of unobserved common factors and idiosyncratic components

can explain a large set of observed variables. The basis of a dynamic factor model is that a few

hidden dynamic factors, ft, influence the comovements of a high­dimensional vector of time­

series variables,Xt, which is also impacted by a vector ofmean­zero idiosyncratic disturbances,

et [28]. These disturbances result from measurement errors and unique factors specific to in­

dividual series [28]. The latent factors follow a time series process, typically represented by a

vector autoregression (VAR) [28]. In equations, the dynamic factor model is:

Xt = λ(L)ft + et (1)

ft = Ψ(L)ft−1 + ηt. (2)

The author highlights that this model has some conditions which must be satisfied like both

equations are stationary and the idiosyncratic disturbances are assumed to be uncorrelated

with the factor innovations at all leads and lags, he also emphasizes an important motivation

for considering DFMs is that, if one knew the factors ft and if (et, ηt) are Gaussian, then one

can make efficient forecasts for an individual variable using the population regression of that

variable on the lagged factors and lags of that variable [28]. So, the problem of estimating

these factors and determining their exact number constitutes one of the challenges scientists

face in calculating them. This model has a lot of benefits like handling high­dimensional data

or incorporation of mixed­frequency data, but it also has challenges with the complexity of the

model structure and estimation [6, 8, 15]. For example, comparing DFMmodels with machine

learning methods, such as neural networks and random forests, they can automatically detect

complex, nonlinear relationships in data without requiring explicit model specification, they

can adapt more flexibly to new data patterns and have shown promising results in handling

high­dimensional data more efficiently than traditional DFMs [24].

Looking at more practical uses, nowcasting involves predicting the current state of an

economy using the most recent data available. Usually, this data has hundreds of variables,

which is hard to handle properly. DFMs reduce the dimensionality of the problem by sum­
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marizing the information from a large number of variables into a few common factors. There

are some examples, where one of them formalized the process of updating the nowcast and

forecast on output, observing that survey variables from the Federal Reserve Bank of Philadel­

phia have a significant impact on nowcasting, this research was done using dynamic factor

models, which became one of the most commonly used approaches [23]. Also, this study has

shown that DFMs often outperform traditional models in nowcasting GDP and other economic

indicators, especially in real­time settings [23].

Overall, DFMs have become a popular approach in nowcasting due to their ability to ef­

ficiently handle and extract information from large and different datasets. However, like any

methodology, they face several challenges when compared to other approaches, such as MI­

DAS (Mixed Data Sampling) models ormixed frequency vector autoregressions (MF­VAR)mod­

els, which can handle mixed­frequency data efficiently and are simpler to estimate compared

to DFMs or can be powerful for capturing the dynamics between variables at different frequen­

cies, such as monthly and quarterly data, in a coherent framework [20]. Most macroeconomic

data are not all sampled at the same frequency, they are sampled monthly or quarterly and

the challenge is how to best use available data [5]. MIDAS regressions allow estimating dy­

namic equations that explain a low­frequency variable by high­frequency variables and their

lags [26]. The main idea to handle those frequencies properly is a specific weighting function

that aggregates the high­frequency information efficiently. Some researchers released an ar­

ticle that raised the question, do macroeconomists have to use financial data?[4] Doing that

paper they provide a detailed explanation of the key fundamentals ofMIDAS [4]. It startedwith

the conventional Augmented Distributed Lag (ADL) model used for forecasting low­frequency

variables, such as quarterly GDP growth [4]:

Yt+h = α +
∑

φjYt−j +
∑

βkXt−k + ut+h (3)

The MIDAS regression model extended this approach and is formulated as follows [4]:

Yt+h = α +
∑

φjYt−j +
∑

βkXt−k(θ) + ut+h. (4)

Also, the author highlighted that the weighting scheme ω(k; θ) is often specified using the

exponential Almon lag polynomial [4]:

ω(k; θ) =
exp(θ1k + θ2k

2)∑m−1
i=0 exp(θ1i+ θ2i2)

. (5)

This scheme ensures that the weights are non­negative and sum to one [4]. This paper showed

the main ideas of the MIDAS approach, and how the weighting function handles different fre­

quencies of data points. Similar methods are also used in the MF VAR approach, also known

as MR VAR (Mixed­frequency Regression VAR). According to Foroni and Marcellino (2013), MF
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VAR models provide a coherent framework for handling mixed­frequency data, leading to im­

proving the accuracy of forecasts and economic analyses [13]. TheMIDAS andMR VARmodels

deal with integrating data sampled at different frequencies, but their structure and methodol­

ogy differ. For example,MRVARmodels extend traditional VAR (Vector Autoregressive)models

to handlemixed­frequency data, thesemodels includemixed­frequency data into a VAR frame­

work, often using state­space models and Bayesian techniques to manage the complexities of

different sampling rates [13, 25]. The general form of an MR VAR model can be represented

as follows:

Zt = A0 + A1Zt−1 + A2Zt−2 + . . .+ ApZt−p + εt. (6)

So, the main difference comparingMIDAS andMF­VAR is mixed­frequency data point handling

– MIDAS uses polynomial weighting schemes to integrate high­frequency data, while MF­VAR

often applies state­space models and Bayesian techniques to handle mixed­frequency data [4,

25]. The comparison of those two similar models is done and themain conclusion is that there

seems to be no clear winner in terms of forecasting performance, but noticed that a combina­

tion of forecasts from MIDAS and MF­VAR models yields better results than using single mod­

els alone [20]. Over time, combined model compounds have become common applications in

research, several output combinations were used as a final product in different analyses [17].

For example, one of the applications is research which examines whether online search engine

data are useful for improving the accuracy of tourism demand nowcasting when official statis­

tical data are not available [16]. The study examinedwhether the LASSO­MIDASmodel is effec­

tive for nowcasting tourism demand [16]. Authors compared different model approaches like

same­frequency OLS­type models and only MIDAS­type models with LASSO­MIDAS extension

gain the best outcomes possible [16]. The nowcasting accuracy of the LASSO­MIDASmodelwas

significantly higher than that of other competing models, which confirms the effectiveness of

applying the LASSO­MIDAS model to tourism demand nowcasting [16].

Over time, scientists began to be more interested not in the frequency of the received

data, but in the amount of variables, they kept trying to answer the question, what is better to

use, all the existing variables in the data array? Or to single out the most important ones and

examine only their effects. Some researchers reviewed both method’s pros and cons, they

claimed that on the one hand, sparse modelling, such as LASSO (Least Absolute Shrinkage

and Selection Operator), focuses on selecting key explanatory variables to create a predictive

model, offering simplicity and clarity, using fewer parameters [7]. However, this technique

might miss some intricate details present in the data. On the other hand, dense modelling,

like ridge estimator and factor­augmented regression, considers all possible variables, which

suggests a power for capturing complex patterns in the data and is often used when precision

is less of a concern [7]. To compare those techniques other researchers tried to show the

main differences and similarities between Ridge and LASSO approaches.[22] They described

key things about ridge regression, which is a method used to analyze multiple regression data
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that suffer from multicollinearity and defined the ridge regression estimator [22]:

β̂ridge = argmin
β

(
n∑

i=1

(yi − β0 −
p∑

j=1

xijβj)
2 + λ

p∑
j=1

β2
j

)
. (7)

The authors highlighted the selection of λ, they claimed that the ”ridge” parameter reduces

variance and can result in amore reliablemodel and themain thing is that this approach shrinks

all coefficients by the same proportion and does not set any coefficient to zero, ensuring that

all variables are included in the model [22]. However, LASSO uses a quite different approach

to the objective function [22]:

β̂ lasso = argmin
β

(
n∑

i=1

(yi − β0 −
p∑

j=1

xijβj)
2 + λ

p∑
j=1

|βj|

)
. (8)

which sets some coefficients to zero, effectively selecting a simpler model that includes only

the most significant predictors. Authors conclude that ridge regression is more useful when

all variables are believed to have an effect and multicollinearity needs to be managed, while

LASSO performs when variable selection and model simplicity are more important [22].

Finally, today’s most popular and trending machine learning (ML) methods include the

decision tree, gradient­boosted trees, random forest, XGBoost, and autoregressive integrated

moving average (ARIMA)models, which are common nowcasting approaches recently. One ex­

ample of this is a research estimation of New Zealand’s GDP using those particular models, the

researchers compared nowcasts, against a naive ARIMA benchmark, a dynamic factor model,

and the official forecasts by the Reserve Bank of New Zealand [24]. They found that the ML

models produced more accurate estimates than the ARIMA and dynamic factor models [24].

Additionally, the results suggest that the Reserve Bank of New Zealand could have improved

their forecast accuracy by utilizing ML models [24]. Also popular approach in ML is ensem­

ble methods, which work by combining the outputs of multiple models to enhance the accu­

racy of predictions.[27] This increased accuracy has made ensemble methods very popular in

machine learning. One of the examples showed practical applications of using tree­based en­

semble models of nowcasting US GDP growth rates [27]. Authors used bagged decision trees,

which aggregate multiple decision trees to reduce variance, random forests, which enhance

bagged trees by decorrelating them and stochastic gradient boosting, which builds trees se­

quentially, each new tree correcting errors made by the previous ones [27]. In this study, the

ensemble models approach was compared with DFMs in nowcasting US GDP, the results were

significantly better when ensemble methods were applied [27].

Nowcasting methods include a wide range of different approaches, primarily based on

statistical models such as factor models or MIDAS. All of them suggest various useful applica­

tions, factor models analyze latent structures to identify common drivers, and MIDAS models

effectively integrate data of different frequencies, enhancing forecast accuracy.[28][4] Com­
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pared with ML models like XGBoost or Decision Trees, they do not have such statistical appli­

cations as model systems, latency space or data of different frequencies. However, ML models

have different strengths, for models based on decision trees their advantage is in capturing

non­linear dependencies evenwith large datasets, they allow for ensemble extensions, such as

RandomForest and XGBoost, which improve robustness and accuracy.[17] AlsoML approaches

like decision trees provide automated variable selection and adaptability to high­dimensional

data structures.[11] Later on in this thesis, theseMLmodels will be reviewed and used to fore­

cast Lithuania’s GDP.
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2 Data preparation and methodology

This section will cover data preparation, the creation of the whole nowcasting algorithm,

and an explanation of all themodelling methods used in this research. Data was received from

the Lithuanian Department of Statistics. The dataset consists of several tables with various

data points. A table with monthly data was chosen for the nowcasting framework because

it is crucial to have the monthly frequency for better accuracy of nowcasting GDP during the

months. Most of the columns have all values, missing points are filled using column means.

2.1 Seasonal decomposition using X­13 ARIMA SEATS

For nowcasting time­series macroeconomic data, it is crucial to use data without season

impact and trends. There are several methods to decompose time series data and smooth

their seasonality. The most suitable method is X­13­ARIMA­SEATS, it is a sophisticated statisti­

cal tool developed by the U.S. Census Bureau and the Bank of Spain for seasonal adjustment

and time series analysis. Eurostat uses this method for seasonal adjustments [10]. Unfortu­

nately, Lithuanian Statistics did not have all the necessary data after seasonal decomposition,

therefore, this data seasonal smoothing was applied from my side, using R package seasonal.

X­13­ARIMA­SEATS method combines features of two earlier methods, X­11 and SEATS

(Signal Extraction in ARIMA Time Series), with enhancements for automation, diagnostics, and

flexibility. The main goal of this approach is to decompose a time series into trend, seasonal,

and irregular components, for more accurate forecasting and decision­making. Using ARIMA

(AutoRegressive Integrated Moving Average) model predicts the time series behaviour by ex­

pressing some features such as autoregressive terms, where the current value depends on

previous values, integration feature, which handle non­stationary by differencing and moving

average, which account for past forecast errors. The general ARIMA form is:

φ(B)(1−B)dYt = θ(B)εt. (9)

The whole process is to decompose a time series into three main components:

Yt = Tt + St + It

The SEATS part of the decomposition is treated as a signal extraction problem, using the ARIMA

model, it separates the time series into three signals, respectively, as in seasonal decompo­

sition. The extraction minimizes the mean squared error (MSE), ensuring optimal signal re­

covery. X­13 part uses symmetric and asymmetric moving averages filters from X­11 to filter

and adjust short­term fluctuations and outliers. Also, this method has some diagnostic tools

to evaluate the diagnostic such as autocorrelation function (ACF) and partial autocorrelation
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function (PACF) for residual analysis, quality measures for seasonal adjustment and outlier de­

tection for additive, level shift, and temporary change outliers.

2.2 Data stationary tests

After smoothing the seasonal effect of the data, stationary tests were checked. Station­

arity is essential for many time­series modelling techniques used in nowcasting, it improves

nowcasts accuracy. Removing non­stationarity helps isolate the true relationships between

variables, ensuring that forecasts reflect actual economic dynamics.

2.2.1 Augmented Dickey­Fuller test

The Augmented Dickey­Fuller (ADF) test is a statistical method which examines the sta­

tionarity of a time series. The ADF test evaluates the null hypothesis (H0) that the time series

has a unit root, which implies nonstationarity. The alternative hypothesis (H1) states that the

series is stationary. Mathematically, the ADF test evaluates the following regression equation:

∆yt = α + βt+ γyt−1 +

p∑
i=1

δi∆yt−i + εt

The key parameter of interest is γ, which measures the presence of a unit root. The null and

alternative hypotheses are expressed as:

H0 : γ = 0 (the series has a unit root and is non­stationary)

H1 : γ < 0 (the series is stationary).

Using ordinary least squares (OLS), the parameter γ is estimated. This parameter determines

the presence of a unit root. The test statistic is computed as:

ADF Statistic =
γ̂

SE(γ̂)

here γ̂ is the estimated coefficient of yt−1, and SE(γ̂) is its standard error. Since the null hy­

pothesis assumes that there is a unit root, the p­value obtained from the test should be less

than the significance level to reject the null hypothesis. Thus, it can be concluded that the

series is stationary.

An important thing in the ADF test is the selection of the lag length (p) for the augmented

term, as it effects the test’s power and accuracy. Lags are typically chosen using information

criteria such as the Akaike Information Criterion (AIC) or the Bayesian Information Criterion

(BIC). The difference between these two methods is how they penalize model complexity, AIC

penalizes complexity less, leaning toward biggermodels withmore lags and BIC penalizes com­

plexity more heavily, favouring simpler models with fewer lags.
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2.2.2 Breusch­Pagan test

The Breusch­Pagan test is a statistical test used to detect heteroscedasticity in a regres­

sion model. When the variance of the residuals varies across all levels of the independent

variables, this is known as heteroscedasticity, which can lead to wrong estimates and biased

standard errors, effecting hypothesis test outcomes. This violates one of the basic assump­

tions of ordinary least squares (OLS) regression, which is that the errors are assumed to be

homoscedastic. The main idea of the Breusch–Pagan test is to check any regression residuals

heteroscedasticity. For example, we have linear regression:

yn = β0 + βTXn + εn, (10)

After that, express it variance of each reference point as a function of f(·), which does not

depend on n:

σ2
n = f(α0 + αTXn). (11)

Here, α = [α1...αP ]
T is a P ­vector of coefficients which are independent of the coefficients β.

We know that homoscedasticity can be written like the equivalence of a null hypothesis:

H0 : α1 = α2 = ... = αP = 0. (12)

Homoscedasticity conditional variance of each error term would not depend on n or Xn, for

example:

V[εn | X] = σ2
n = f(α0). (13)

Regarding equation (13) the σ2
n is a constant. So the main idea of this test is to fit a re­

gression (10), estimate the error terms variance using squared residuals, run another regres­

sion (11) to estimate α and check its limit to zero.

2.2.3 Phillips­Perron test

The Phillips­Perron test is similar to the ADF test, but it is a bit different, in how they

deal with correlation and heteroskedasticity in the errors. ADF tests rely on a parametric au­

toregressive model to approximate the ARMA structure of the errors in the test regression,

Phillips­Perron test ignores any serial correlation in the test regression. The regression of the

test is:

∆yt = β′Dt + πyt−1 + ut, (14)

here ut is I(0) and may be heteroskedastic. The Phillips­Perron test makes a change in any

serial correlation and heteroskedasticity in the errors ut of the test regression changing the
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test statistics tπ=0 and Tπ. Appears two statistics Zt and Zπ:

Zt =

(
σ̂2

λ̂2

)1/2

· tπ=0 −
1

2

(
λ̂2 − σ̂2

λ̂2

)
·
(
T · SE(π̂)

σ̂2

)
(15)

Zπ = T π̂ − 1

2

(
T 2 · SE(π̂)

σ̂2

)
(λ̂2 − σ̂2) (16)

The variables σ̂2 and λ̂2 are an outcomes of variance parameters

σ2 = lim
T→∞

T−1

T∑
t=1

E[u2
t ] (17)

λ2 = lim
T→∞

T∑
t=1

E
[
T−1S2

T

]
, (18)

here ST =
∑T

t=1 ut. If π = 0 (null hypothesis), the Zt and Zπ statistics have the same asymp­

totic distributions as the ADF t­statistic and normalized bias statistics. The main difference

between the Phillips­Perron test and the ADF test is that the Phillips­Perron test is robust to

general forms of heteroskedasticity in the error term ut, also it does not require any specific

lag length for the regression.

All these methods were applied and constructed a framework that evaluating the stationar­

ity of a time series involves multiple steps. Firstly, the ADF test was applied, which used a

regression model and calculated the t­statistic. Given that the outcome of the ADF test is de­

pendent on the t­statistic, its reliability is checked by verifying whether the errors from the

model meet the homoscedasticity assumption. To do this, the Breusch­Pagan test was applied

to the residuals of the ADF model. If homoscedasticity is satisfied, the ADF test results can be

trusted. However, if this assumption is rejected, stationarity was estimated using the Phillips­

Perron test. Differentiation was applied to non­stationary columns and the whole process was

applied again.

2.3 Pseudo real­time nowcasting framework

One of the main challenges of estimating GDP is data lag. Usually, economic data be­

comes available after several months or even quarters, this means that economists or govern­

ment institutions could make late data­driven decisions and be behind others compared with

global trends. To get around these problems, the nowcasting algorithm could be implemented

in pseudo­real­time prediction. Creating a pseudo­nowcasting framework can help estimate

data lags and evaluate prediction accuracy using different time vintages. For this, the data lag

gathering schedule and lag vintages for each calculation should be done. According to Lithua­
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nian Statistics [1], all data variables from different areas come at various times, usually, it is the

estimation time. Lag vintages usually are 2 months before, 1 month before, current time (0

months), 1 month ahead and 2 months ahead. When all conditions are set, the main frame­

work logic can be explained. Below ( 1 figure.) is a short visualization and explanation of how

this framework works.

1 figure. Pseudo real­time framework

Firstly, the target month is chosen as the reference point for the prediction at the start

of the nowcasting process. From this point, data acquisition schedules and pseudo lags are

subtracted to account for the timing of data availability. Missing values are imputed using

column means to ensure a complete dataset for modelling. With the prepared dataset, the

nowcast is predicted using different models.

2.4 Machine learning models

This chapter will cover all machine learning (ML) models used in practical work. Today

machine learning algorithms play a crucial role in data science and modeling, no exception in

macroeconomic metrics such as GDP. ML models become a common approach in nowcasting

GDP indicators, possibilities of handling huge amounts of data, finding difficult patterns there

and predicting impressive accuracy predictionMLmodels are receivingmore andmore positive

feedback. In the following sections, the ML models used in the research are described, and

their main ideas are also explained.

2.4.1 XGBoost

XGBoost is a gradient­boosting algorithm that builds models by sequentially adding trees

to minimize a specific loss function. The explanation of this model begins with the objective

function which combines the loss function and a regularization:

L(θ) =
n∑

i=1

l(yi, ŷi) +
T∑
t=1

Ω(ft),

here l(yi, ŷi) is the loss function measuring the error between the true value (yi) and the

predicted value (ŷi) and Ω(ft) = γT + 1
2
λ
∑T

j=1 w
2
j is a regularization, T number of leaves
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in the tree, wj is leaf weights and γ, λ are regularization parameters. This equation includes

functions as parameters and cannot be optimized using traditional optimization methods in

Euclidean space [9]. This equation is upgraded in an additive manner:

L(t) =
n∑

i=1

l(yi, ŷ
(t−1)
i + ft(xi)) +

T∑
t=1

Ω(ft),

by adding the most improved model ft value. To optimize the objective function this model

uses a second­order Taylor expansion of the loss function:

L(t) ≈
n∑

i=1

[
gift(xi) +

1

2
hif

2
t (xi)

]
+ Ω(ft),

here gi =
∂l(yi,ŷ

(t−1)
i )

∂ŷ
(t−1)
i

is a first­order gradient and hi =
∂2l(yi,ŷ

(t−1)
i )

∂ŷ
(t−1)2

i

is a second­order derivative.

After optimization of an equation, the tree could be created using:

Ltree =
T∑

j=1


(∑

i∈Ij gi

)2∑
i∈Ij hi + λ

− γT,

here Ij is the set of instances in leaf j. Trees are added one at a time, and each tree is designed

to reduce the residual errors from the previous trees. This is achieved by learning from the

gradient of the loss function. The gradientmeasures howmuch the prediction needs to change

to reduce the error. The more trees XGBoost has, the better it can capture complex patterns

in the data. Regularization ensures that the model does not overfit by limiting tree depth.

2.4.2 Lasso Regression

Lasso regression (Least Absolute Shrinkage and Selection Operator) is a linear regres­

sion type that uses a penalty term to simplify the models.[29] It is useful for feature selection

and regularization when datasets have many features. Lasso regression aims to balance the

model’s simplicity and accuracy properly. This is accomplished by including a penalty term

in the linear regression model, which has sparse solutions by requiring some coefficients to

be zero. The model starts with the linear regression model, which has a linear relationship

between the independent and dependent variables.

y = β0 + β1x1 + β2x2 + · · ·+ βpxp + ε

Next, the Lasso model uses the penalty term for the linear regression model coefficients. The

L1 regularization term is a tuning parameter λmultiplied by the sum of the absolute values of
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the coefficients.[29]

L1 = λ

p∑
j=1

|βj|

The whole Lasso objective function consists of two parts: L1 regularization and Least Square

Fit, which is the residual sum of squares (RSS).[29] It measures how well the model fits the

data. RSS can be expressed as:

RSS =
1

2n

n∑
i=1

(
yi − x>i β

)2
,

here yi is the observed value, x>i β is the predicted value. By adding these two equations into

one we have the objective function in the Lasso regression:

J(β) =
1

2n

n∑
i=1

(
yi − x>i β

)2
+ λ

p∑
j=1

|βj|

This function ensures that the model fits the data well by minimizing prediction errors and

penalizes large coefficients to control model complexity and reduce overfitting.[29] After con­

structing the objective function it is crucial to minimize this function and apply a variant of gra­

dient descent because theL1 norm
∑

|βj| is non­differentiable at zero.[29] Instead of standard
gradient descent, the coordinate descent or subgradient methods should be used:

∂

∂βj

(
1

2n

n∑
i=1

(
yi − x>i β

)2)
= − 1

n

n∑
i=1

xij

(
yi − x>i β

)
,

∂

∂βj

(
λ

p∑
j=1

|βj|

)
=


λ if βj > 0

−λ if βj < 0

undefined if βj = 0

For βj = 0, the subgradient method finds an optimal value by balancing between shrinking

to zero and the effect of the RSS term.[29] Also coordinate descent method might be used,

fixing all coefficients except one βj and updating it by solving a one­dimensional optimization

problem:

βj = sign (zj)max

(
|zj| −

λ

2n
, 0

)
here:

zj =
1

n

n∑
i=1

xij

(
yi − x>i β + βjxij

)
This formula uses the soft thresholding operator to shrink βj to zero, this flow should be re­

peated for all coefficients until convergence. When the optimization is complete, some of the
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coefficients are zero, they become irrelevant for future prediction, and non­zero coefficients

indicate important features that contribute to the model.

2.4.3 Ridge regression

Ridge regression is a linear regression technique that adds L2 regularization to the or­

dinary least squares (OLS) regression. The goal of this method is to prevent overfitting by

shrinking the coefficients of the model. This approach is very similar to Lasso regression, but it

has one major difference, Ridge regression does not perform feature selection, predictors re­

main in the model. The first part of the objective function from Lasso is the same as in Ridge,

it differs only through the regularization function, Ridge uses L2 which is represented as:

L2 = λ

p∑
j=1

β2
j

The larger the value of λ, the more the coefficients are penalized. For minimizing the objective

function, the Ridge model applies gradient descent, which is an iterative method for finding

the minimum of a function. The gradient of the RSS term is the same as the Lasso regression,

and the gradient of the L2 regularization term is:

∂

∂βj

(
λ

p∑
j=1

β2
j

)
= 2λβj

The total gradient for the objective function is the sum of the gradients of the two terms:

∂J(β)

∂βj

= − 1

n

n∑
i=1

xij

(
yi − x>i β

)
+ 2λβj

Using gradient descent, the coefficients βj are updated iteratively as follows:

β
(t+1)
j = β

(t)
j − η

(
− 1

n

n∑
i=1

xij

(
yi − x>i β

)
+ 2λβ

(t)
j

)

here η is the learning rate, 1
n

∑n
i=1 xij

(
yi − x>i β

)
is the gradient of the RSS term. The λ depen­

dent penalty term shrinks the coefficients βj . As λ increases, the coefficients are shrunk more

toward zero, but unlike than Lasso regression, Ridge does not set any coefficients exactly to

zero, this means that this model does not perform feature selection.

2.4.4 K­Nearest Neighbors (KNN) Regressor

The K­Nearest Neighbors (KNN) Regressor is a simple, non­parametric machine learning

algorithm used for regression tasks. Unlike parametric models, KNN makes predictions based
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on the k nearest data points in the feature space. The goal of the KNN model is to k train­

ing examples that are nearest to the new data point x∗ and predict y∗ as the average of the

corresponding target values of those k nearest neighbours.

y∗ =
1

k

∑
i∈Nk(x∗)

yi

here y∗ is the predicted target value for the new data point x∗, Nk(x∗) is the set of indices of

the k nearest neighbours to x∗, yi is the target value and k is the number of nearest neighbours

considered for the prediction. Next, the closest x∗ must be found, for this the distance metric

should be used, for example, Euclidean distance:

d(xi, x∗) =

√√√√ p∑
j=1

(xij − x∗j)2

after calculating each x distance the smallest one (k) should be picked and computed for pre­

dicted value y∗ by averaging the target value yi of the k nearest neighbors. The choice of k is

crucial, the small value leads to a model that is sensitive to noise and outliers, and the larger

value is less sensitive and smoother, but it may not capture important features. For better

selection, the cross­validation function is used. For time series data common cross­validation

function is time series split (from Scikit­learn), this method is similar to the expanding window

approach but is implemented efficiently to split the data into multiple training and test sets. It

creates k splits, and each split consists of a training set and a test set, where the training set

progressively grows.

2.4.5 Linear Regression

Linear Regression is a machine learning method used tomodel the relationship between

a dependent variable y and one or more independent variables x1,x2,...xp. This model is

widely used in statistical and machine learning modelling due to its simplicity and efficiency.

Multiple linear regression, with multiple independent variables:

y = β0 + β1x1 + β2x2 + · · ·+ βpxp + ε

The objective function of linear regression is to find values of the β0,β1,...βp coefficients that

minimize the error between the predicted values and observed values. The error is typically

measured using the Residual Sum of Squares (RSS):

RSS =
n∑

i=1

(yi − ŷi)
2 =

n∑
i=1

(yi − (β0 + β1xi1 + · · ·+ βpxip))
2
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optimization is done using the function:

min
β0,β1,...,βp

n∑
i=1

(yi − ŷi)
2

the solution of the optimization problem is solved using matrix notation:

y = Xβ + ε

here y is the n × 1 vector of observed values, X is the n × (p + 1)matrix of predictors and β

is the (p+ 1)× 1 vector of coefficients. Coefficients are solved:

β = (X>X)−1X>y

after fitting the model several accuracy metrics could be calculated, such as mean squared

error or R­squared, these metrics evaluate the model’s accuracy and performance.

2.4.6 Elastic Net

ElasticNet is a type of regularized regression that linearly combines the penalties of Lasso

Regression (L1 regularization) and Ridge Regression (L2 regularization). This combination al­

lows Elastic Net to handle a larger number of features with high correlation. The objective

function is:

L(β) = 1

2n

n∑
i=1

(yi − ŷi)
2 + λ

[
α

p∑
j=1

|βj|+
(1− α)

2

p∑
j=1

β2
j

]
here α is a mixing parameter, which balances the L1 (Lasso) and L2 (Ridge) penalties, when

α = 1 it is a Lasso regression, when α = 0 it is Ridge regression, when 0 < α < 1 it is a

combination of both. To solve β coefficients Elastic Net uses optimization functions such as:

min
β

1

2n

n∑
i=1

(yi − ŷi)
2 + λ

[
α‖β‖1 +

(1− α)

2
‖β‖22

]

here ‖β‖1 =
∑p

j=1 |βj| isL1 norm, ‖β‖22 =
∑p

j=1 β
2
j isL1 = 2 norm. Optimize this using coor­

dinate descent or gradient­based optimization in the sameway as in Lasso or Ridge regression.

Elastic Net is a combination of two powerful models, it allows to be a flexiblemethod for better

accuracy and performance. Selection of either L1 or L2 penalties or using both at the same

time shows efficiency and strength.

2.4.7 Decision Tree

A decision tree is a non­parametric supervised learning algorithm used for classification

and regression tasks. This approach has a tree structure, where internal nodes correspond to
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decision tests, branches represent outcomes of those tests, and leaf nodes indicate predic­

tions. A basic model structure is defined in 2 figure.

2 figure. Decision tree structure

here the root node is the original choice or a feature from which the tree branches begin,

internal nodes stand for the nodes in the tree whose choices are determined by the values

of particular attributes, and leaf nodes are decided upon. The main idea of this method is to

predict a constant value for each region Rm, which is the mean of the target values in that

region:

ŷ(x) =
1

|Rm|
∑

xi∈Rm

yi

hereRm is the region to which x belongs and |Rm| is the number of samplesRm. Constructing

a decision tree it is important to find the appropriate variables from all attributes. Solving this

problem there are several approaches such as entropy, Gini index or variance reduction. For

regression task variance reduction is a common choice, and splits are evaluated based on the

reduction in variance:

Variance =
1

n

n∑
i=1

(yi − ȳ)2

here ȳ is the mean of yi in the current node. This approach finds the best split of all nodes.

Another crucial problem for the decision treemodel is overfitting, to avoid this kind of problem

regularization methods could be applied, such as restrictions of tree depth, the requirement

for a minimum number of samples in each leaf node or removing branches with low impor­

tance.[30]

2.4.8 Support Vector Regression (SVR)

Support Vector Regression (SVR) is an extension of Support Vector Machines (SVM) for

regression tasks. The main goal of this method is to find a function that approximates the

target values within a margin of tolerance and minimizes the model complexity. SVR model
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aims to find a function at time t such as:

ŷt = f(xt) = w>φ(xt) + b

here φ(xt) is a kernel­transformed feature vector (for non­linearity), w and b are model pa­

rameters learned during training. The objective function of SVR is to minimize a function:

min
w,b

1

2
‖w‖2 + C

n∑
t=p+1

(ξt + ξ∗t )

here:

yt − f(xt) ≤ ε+ ξt

f(xt)− yt ≤ ε+ ξ∗t

ξt, ξ
∗
t ≥ 0

and ξt, ξ
∗
t are slack variables for deviations beyond ε,C is a regularizationparameter controlling

the trade­off betweenmodel complexity and tolerance to error, 1
2
‖w‖2 is a regularization term.

SVR model is capable of finding non­linear patterns over time, for this reason, SVR could apply

a kernel trick to model these relationships effectively:

K(xi, xj) = φ(xi)
>φ(xj)

common kernel methods are linear, polynomial or RBF kernels, it is useful to run all of them

and find themost suitable one. After finding a solution from the objective function, the perfor­

mance metrics like mean absolute error, root mean squared error or mean absolute percent­

age error could be calculated. This model is a powerful approach for its capability to handle

non­linear relationships and provide robust predictions.

2.4.9 Gradient Boosting Regressor

Gradient Boosting Regressor (GBR) is an ensemble learning technique that combines the

prediction of weaker decision trees sequentially. The GBRmodel is a powerful model for build­

ing predictive models for both classification and regression problems. The model explanation

begins from a naive prediction of F0(x) on the target for a starting point when it iteratively

improves the model by adding a new base learner hm(x) at each step:

Fm(x) = Fm−1(x) + γmhm(x),
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here γmhm(x) is a new tree, which is trained to correct the errors made by Fm−1(x). At each

m stage, the loss function L is minimized using gradient descent:

r
(m)
i = −∂L(yi, F (xi))

∂F (xi)

∣∣∣∣
F (x)=Fm−1(x)

,

here r
(m)
i is the pseudo­residual at stagem for the i­th sample. After optimization of the tree,

a new tree is fitted to the pseudo­residuals:

hm(x) = argmin
h

n∑
i=1

(
r
(m)
i − h(xi)

)2
.

This tree attempts to approximate the gradient of the loss function. Next, the weighting of the

base learner should be applied for the new tree hm(x) by calculating:

γm = argmin
γ

n∑
i=1

L (yi, Fm−1(xi) + γhm(xi)) .

After finding the optimal weight γm for the new tree hm(x), the model is updated:

Fm(x) = Fm−1(x) + γmhm(x).

this flow repeats until the stopping criterion. For the Gradient Boosting Regressor model, it is

crucial to select a proper loss function. The different loss functions can vary depending on the

problem. The most common function is a mean squared error (MSE) for regression problems:

L(y, F (x)) =
1

n

n∑
i=1

(yi − F (xi))
2 .

for handling variable outliers common approach is Huber loss:

L(y, F (x)) =

1
2
(y − F (x))2 , if |y − F (x)| ≤ δ,

δ|y − F (x)| − δ2

2
, otherwise.

also, this model has some regularization like learning rate, it scales the contribution of each

tree, or maximum depth of tress or minimum samples per leaf, these all things after m iter­

ations train and improve a final prediction for a sample x:

ŷ = FM(x) =
M∑

m=1

γmhm(x).

The main difference between the XGBoost model is that the Gradient Boosting Regressor is

much slower, it builds trees sequentially instead of utilizing parallel processing, also this model
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does not use any regularization techniques like L1 and L2 (Ridge and Lasso) for overfitting as

XGBoost does. However, the Gradient Boosting Regressor is much simpler and effective for

smaller datasets.

2.4.10 ARIMA

ARIMA is a widely used statistical model, and the variety of applications is huge. Starting

from financial market forecasting and ending healthcare, where ARIMA could be applied to

analyze disease outbreaks and predict future infection rates. The general form of ARIMA (9)

was previously described in X­13 ARIMA SEATS applications. Using this model data must be

stationary due to this the data stationary test was applied first. The whole modelling process

begins with a time series Yt fitting to the autoregressive model:

Yt = φ1Yt−1 + φ2Yt−2 + . . .+ φpYt−p + εt

here p is the previous values of time series Yt. Then the moving average component models

the current value of the series as a function of past forecast errors (εt):

Yt = φ1Yt−1 + φ2Yt−2 + . . .+ φpYt−p + εt.

ARIMA combines these models into one framework and the final form is:

φ(B)(1−B)dYt = θ(B)εt

hereφ(B) is an autoregressive polynomial of order p, (1−B)d is a differencing operator applied

d times, θ(B) is a moving average polynomial of order q. The crucial thing is to select good

values of p, d and q parameters. For this could be used Auto ARIMA function, which automates

the process of selecting the best ARIMAmodel by determining the optimal values of p, d and q

based on information criteria such as AIC (Akaike information criterion). Auto ARIMA performs

a grid search over combinations of p, d and q to find the model that minimizes AIC. The AIC is

calculated as:

AIC = −2 ln(L) + 2k

hereL is the maximum likelihood of the model and k is several parameters. Also, this function

automatically applies unit root tests for data stationary determines the order of d parameter

and can work with seasonal data (SARIMA). Finally, once the model fitting is done, the future

values could be predicted iteratively using the fitted autoregressive and moving average com­

ponents, for h­step ahead forecasts:

Ŷt+h = φ1Ŷt+h−1 + φ2Ŷt+h−2 + . . .+ θ1εt+h−1 + . . .
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This model is a good statistical method to forecast time series data and the method is suitable

for use in conjunction with other mathematical applications.

2.5 Diebold­Mariano test

For evaluation and decision on which model is the best one and has the most significant

impact, the Diebold­Mariano (DM) test was selected. It is a statistical test used to compare

the predictive accuracy of two competing forecasting models. It estimates the significant dif­

ference between the forecast errors. This approach is popular for time series analysis to check

which one of the forecasts outperforms another in terms of prediction quality. For instance,

we have two forecast errors {e1,t}Tt=1 and {e2,t}Tt=1 at time t. Now let’s define the loss function

g(et) where its equal to e2t difference:

dt = g(e1,t)− g(e2,t),

here dt measures the difference in accuracy between the two models at time t. For the null

hypothesis part of the test is defined that there is no difference in predictive accuracy between

the two models:

H0 : E[dt] = 0,

the alternative hypothesis claims that:

Ha : E[dt] 6= 0,

a significant difference could be found in the accuracy perspective. To estimate the final test

statistic the mean and variance losses are missing. These metrics are defined respectively:

d̄ =
1

T

T∑
t=1

dt.

Var(d̄) =
γ0 + 2

∑h−1
k=1 γk

T
,

here γk is the k­lag autocovariance of dt, capturing temporal dependence. Finally, test statistics

could be solved as:

DM =
d̄√

Var(d̄)
.

Under the null hypothesis,DM asymptotically follows a standard normal distribution:

DM ∼ N(0, 1).
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It is crucial to select critical values to estimate the final insights. Also, there are several choices

of loss function, such as absolute error which may be preferred for robustness against outliers

or mean absolute percentage error.

2.6 Maximal overlap discrete wavelet transform

In this study, it was chosen to conduct several experiments on how to improve the per­

formance of nowcasting models in ways that no one had tried before. After reviewing the

literature and discovering several effective uses of wavelets in time series data, it was decided

to try to investigate the integration of MODWT into an existing nowcasting system.[18][2] The

Maximal overlap discrete wavelet transform (MODWT) is a wavelet transform variant designed

to expand the time series intomultiple resolutionswhilemaintaining the original structure and

timing of the dataset. Unlike the traditional Discrete wavelet transform (DWT) MODWT is not

orthonormal and is defined for all sample sizes. The main idea of MODWT is to decompose

any signal X(n) of length N , in our case a time series, into detailed coefficients Wj(n) and

approximation coefficients Vj(n), it could be expressed like this:

Wj(n) =
L−1∑
k=0

h
(j)
k X(n− k) mod N

Vj(n) =
L−1∑
k=0

g
(j)
k X(n− k) mod N

here hk is a wavelet filter coefficients, gk is a scaling filter coefficients, L is a length of the

filter, ( mod N) ensures periodic boundary conditions.[32] Also unlike DWT, MODWT does

not perform downsampling, which makes the length of the coefficient equal to the original

lengthN at each scale.[32] For wavelet filters:

h
(j)
k = h

(j−1)
k ↑ 2j−1

for scaling filters:

g
(j)
k = g

(j−1)
k ↑ 2j−1

here ↑ 2j−1 denotes upsampling by inserting zeros between coefficients. The reconstruction

of the original series can be done by summing contributions from all scales:

X(n) =
J∑

j=1

Dj(n) + AJ(n)

Also, it is crucial to mention, that there are various types of wavelets. Each of them has a

different application approach, such as Haar, Daubechies, Coiflet, Symlet and others.[19][21]

Practical implementation of MODWT (coif6) using GDP data is in 3 figure.
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3 figure. GDP decomposition of MODWT (coif6)

2.7 Final nowcasting algorithm

By summarizing all the methods used, we can create a scheme of the nowcasting sys­

tem. This might help better understand the structure of the work and smooth operation. The

aim of the research is to nowcast the Lithuanian GDP using machine learning methods, but

also implement a novelty that could somehow improve these research outcomes. For this the

implementation of MODWT was used in collaboration with the ARIMA model due to its ef­

fective applications observed in other areas, such as short­term wind speed forecasting [18]

or daily snow depth forecasting [2]. In addition, there is practically no research on nowcasting

GDP usingMODWT­ARIMA. However, the entire system is designed to be easily used with both

simple nowcasting, integratedwithMODWT­ARIMA, andMODWT transformations, and in con­

junction with all other available models. Firstly, the basic nowcasting framework is designed

to automatically calculate all desiredmodels and provide nowcasting results and visualizations

in 4 figure.
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4 figure. Basic nowcasting framework

In addition to that, the implementation of MODWT is added to the current scheme and

now are expressed in 5 figure.

5 figure. Nowcasting framework using MODWT

In the next chapter, the entire logic will be tested and the outcomes analyzed using Lithuanian

GDP data.
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3 Results and Comparisons

This chapter will close the research analysis with the results of nowcasting the Lithuanian

GDP using machine learning approaches and implementations of the MODWT.

Firstly, the main algorithm for nowcasting was executed. Here it was also interesting to

track the results through different data vintages, the vintages have a lag from variables sched­

ule and created pseudo lag framework. Lags were five types: 2 months before the real­time,

1 month before the real­time, 0­month stands for real­time (nowcast) and it is also interesting

to see the forecasts for the future, 1 month ahead of the real­time and 2 months ahead of the

real­time. The pseudo­real­time framework results using Lithuanian GDP data are in 2 table.

and practical visualizations are in 6 figure.

2 table. Performance metrics across models for different vintage values

Vintage MAE RMSE Model

­2 0.0025 0.0034 ARIMA

­2 0.0026 0.0035 Gradient Boosting Regressor

­2 0.0032 0.0040 XG Boost

­2 0.0035 0.0047 Decision Tree

­2 0.0051 0.0062 KNeighbors Regressor

­2 0.0058 0.0071 SVR

­2 0.0077 0.0101 Elastic Net

­2 0.0082 0.0108 Lasso Regression

­2 0.0089 0.0113 Ridge

­2 0.0089 0.0113 Linear Regression

­1 0.0028 0.0034 ARIMA

­1 0.0028 0.0036 Gradient Boosting Regressor

­1 0.0032 0.0047 XG Boost

­1 0.0039 0.0049 Decision Tree

­1 0.0045 0.0056 KNeighbors Regressor

­1 0.0060 0.0073 SVR

­1 0.0083 0.0101 Lasso Regression

­1 0.0084 0.0108 Ridge

­1 0.0084 0.0108 Linear Regression

­1 0.0085 0.0110 Elastic Net

0 0.0028 0.0035 Gradient Boosting Regressor

0 0.0029 0.0037 ARIMA

0 0.0035 0.0047 Decision Tree

0 0.0042 0.0053 XG Boost

0 0.0045 0.0056 KNeighbors Regressor

0 0.0061 0.0073 SVR

0 0.0081 0.0109 Lasso Regression

0 0.0091 0.0120 Elastic Net

0 0.0102 0.0129 Ridge

0 0.0102 0.0129 Linear Regression
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Vintage MAE RMSE Model

1 0.0027 0.0035 ARIMA

1 0.0029 0.0035 Gradient Boosting Regressor

1 0.0035 0.0047 Decision Tree

1 0.0043 0.0057 XG Boost

1 0.0045 0.0056 KNeighbors Regressor

1 0.0061 0.0073 SVR

1 0.0086 0.0103 Lasso Regression

1 0.0088 0.0112 Elastic Net

1 0.0104 0.0132 Ridge

1 0.0104 0.0132 Linear Regression

2 0.0028 0.0035 Gradient Boosting Regressor

2 0.0040 0.0051 Decision Tree

2 0.0043 0.0059 XG Boost

2 0.0061 0.0073 ARIMA

2 0.0068 0.0087 Lasso Regression

2 0.0074 0.0099 Elastic Net

2 0.0098 0.0127 Ridge

2 0.0098 0.0127 Linear Regression

2 0.0161 0.0254 SVR

6 figure. Visualization across models for different vintage values
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The results highlighted some insights into performance via different models tested across var­

ious vintages. The hyperparameters were selected from various possible variants using Grid­

SearchCV. For each model, a set of different parameters was suggested and the GridSearchCV

method selected the best ones, which had the lowest MAE metric. A TimeSeriesSplit was a

cross­validator for this approach. Below ( 3 table.) is a table of the best hyperparameters for

each model.

3 table. Model parameters for hyperparameter tuning

Model Parameters

XG Boost

learning_rate: 0.01

max_depth: 6

n_estimators: 200

booster: gblinear

Lasso Regression alpha: 100

Ridge alpha: 100

KNeighbors Regressor

n_neighbors: 3

weights: uniform

p: 1

Linear Regression No parameters

Elastic Net
alpha: 100

l1_ratio: 0.5

Decision Tree

max_depth: 3

min_samples_split: 3

min_samples_leaf: 3

max_features: log2

criterion: absolute_error

splitter: best

SVR

C: 1

epsilon: 0.01

kernel: linear

gamma: scale

degree: 2

shrinking: True

tol: 1e­4

Gradient Boosting Regressor

learning_rate: 0.01

n_estimators: 25

max_depth: 3

alpha: 0.005

loss: squared_error

ARIMA

seasonal: False

stepwise: True

suppress_warnings: True

Gradient Boosting Regressor and ARIMA had the best performance, with the lowest errors

(MAE andRMSE) in nearly all cases. Gradient BoostingRegressor slightly outperformedARIMA,

especially in vintage 0, which is most interesting in our case, making it the most reliable model
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overall. Ensemble models like XG Boost, Decision Tree, and KNeighbors Regressor provide

moderate performance but fail to match the accuracy of Gradient Boosting and ARIMA. XG

Boost performs well for older vintages, while Decision Tree returned better outcomes and se­

lected the best ones in nowcast and future vintages. Linear models, including Lasso Regres­

sion, Ridge, and Elastic Net, fall behind ensemble methods, indicating limitations in capturing

non­linear patterns. From linear­based models, Elastic Net and Lasso performed better than

other linear models but underperformed with Gradient Boosting. SVR and linear regression

were the least effective models, particularly for newer vintages, the errors were significantly

high. So, Gradient Boosting Regressor and ARIMAmodels are themost reliable choices for pre­

dicting and nowcasting Lithuanian GDP. However, linear methods and SVR should be avoided

unless computational simplicity is a priority because ensemble approaches require longer cal­

culation time and higher computational costs. Focusing only on the nowcasting part, where

the novelty part about MODWT is implemented, we have quite different results. Firstly, the

MODWT­ARIMA integration has been observed and results are in 4 table., visualizations are

in 7 figure.

4 table. Performance metrics of MODWT­ARIMA through different wavelet types

Model MAE RMSE
MODWT­ARIMA (db4) 0.0026 0.0039
Direct ARIMA 0.0029 0.0037
MODWT­ARIMA (haar) 0.0027 0.0037
MODWT­ARIMA (coif6) 0.0020 0.0028
MODWT­ARIMA (sym5) 0.0028 0.0033
MODWT­ARIMA (dmey) 0.0026 0.0031
MODWT­ARIMA (rbio1.3) 0.0027 0.0037

7 figure. Visualization of MODWT­ARIMA through different wavelet types

The output claims that MODWT­ARIMA (coif6) achieves the best results with the lowest MAE
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and RMSE. This indicates that the implementation of MODWT improves ARIMA’s predictive

accuracy compared to the direct approach. The wavelet type coif6 (Coiflet) showed the best

results in contrast with other wavelet types (dmey, db4, hear, sym5, rbio1.3), demonstrating

the importance of selecting the appropriate wavelet transform. Of course, there are many

different types of wavelets, with different parameters and variables, that can further improve

the model errors, but these types were chosen based on a literature review.[18][2] Overall, all

different wavelets showed better results than the direct ARIMAmodel, but the coif6 transform

highlighted a much better positive impact. The MODWT decomposed the time series into dif­

ferent frequency components, so high­frequency noise and trends can be treated separately

and ARIMA can be applied to these individual components. This approach of multiple decom­

positions allowed for more accurate nowcasting of each series, rather than forcing the direct

ARIMA model to deal with the entire series at once.

On the other hand, the combinations of MODWTwith other used models also had some

positive improvements in 5 table.

5 table. Performance metrics of different models and MODWT types.

Model MODWT type MAE RMSE

XGBoost

Direct 0.0042 0.0053

coif6 0.0032 0.0040

dmey 0.0045 0.0059

db4 0.0036 0.0040

haar 0.0045 0.0058

sym5 0.0030 0.0043

rbio1.3 0.0036 0.0044

Lasso Regression

Direct 0.0088 0.0105

coif6 0.0137 0.0159

dmey 0.0118 0.0143

db4 0.0249 0.0286

haar 0.0140 0.0204

sym5 0.0164 0.0197

rbio1.3 0.0140 0.0191

Ridge

Direct 0.0102 0.0125

coif6 0.0042 0.0054

dmey 0.0099 0.0124

db4 0.0187 0.0281

haar 0.0241 0.0319

sym5 0.0115 0.0144

rbio1.3 0.0173 0.0320

KNeighbors Regressor

Direct 0.0045 0.0056

coif6 0.0027 0.0034

dmey 0.0026 0.0034

db4 0.0027 0.0034
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Model MODWT type MAE RMSE

haar 0.0026 0.0035

sym5 0.0026 0.0034

rbio1.3 0.0026 0.0034

Linear Regression

Direct 0.0102 0.0125

coif6 0.0657 0.1626

dmey 0.0156 0.0215

db4 0.0204 0.0345

haar 0.0238 0.0314

sym5 0.0131 0.0159

rbio1.3 0.0140 0.0303

Elastic Net

Direct 0.0091 0.0129

coif6 0.0157 0.0186

dmey 0.0208 0.0232

db4 0.0200 0.0225

haar 0.0208 0.0291

sym5 0.0139 0.0165

rbio1.3 0.0148 0.0200

Decision Tree

Direct 0.0035 0.0047

coif6 0.0069 0.0084

dmey 0.0053 0.0069

db4 0.0034 0.0043

haar 0.0045 0.0060

sym5 0.0029 0.0037

rbio1.3 0.0037 0.0044

SVR

Direct 0.0073 0.0092

coif6 0.0051 0.0060

dmey 0.0049 0.0059

db4 0.0095 0.0097

haar 0.0049 0.0058

sym5 0.0041 0.0046

rbio1.3 0.0077 0.0094

Gradient Boosting Regressor

Direct 0.0028 0.0035

coif6 0.0024 0.0033

dmey 0.0028 0.0035

db4 0.0025 0.0032

haar 0.0024 0.0033

sym5 0.0027 0.0034

rbio1.3 0.0026 0.0033

After this kind of testingMODWT integration showedmore positive results for ensemble­based

models compared to linear methods. Huge improvements were especially accomplished with

the MODWT­XGBoost(coif6), MODWT­KNeighbors Regressor(haar), and MODWT­Gradient

Boosting Regressor(coif6) models. The MODWT­KNeighbors Regressor(haar) model almost

outperformed MODWT­Gradient Boosting Regressor(coif6) in terms of MAE and RMSE, but

compared MODWT­Gradient Boosting Regressor(coif6) with MODWT­ARIMA(coif6) it showed
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poorer results, which means that overall best model in this such case is MODWT­ARIMA(coif6)

with 0.0020 MAE and 0,0028 RMSE discovered most accurate approach.

However, a natural question arises: Why are these errors of MODWT­ARIMA better

than using the model ARIMA directly? Firstly, the numeric side of the outputs was analyzed.

Diebold­Mariano test was used to determine the significance between the models and which

is better. Also, the visualization ( 8 figure.) of actuals and both predictions were observed.

8 figure. Visualization of Actual values, ARIMA nowcast and MODWT­ARIMA nowcast

After comparing predictions using the Diebold­Mariano test, it returned a p­value of 0.0153,

indicating a significant difference between the predictions and the outputs of MODWT­ARIMA

are considerably better and the best overall of all models tested. The visualization ( 9 figure.)

of prediction residuals also confirmed the following.

9 figure. Visualization of ARIMA nowcast and MODWT­ARIMA nowcast residuals
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During the over­time, nowcasts of the MODWT­ARIMA model cope better with actual value

fluctuations due to MODWT decompositions which reduce noise and improve model perfor­

mance.

Secondly, the better MODWT­ARIMA model performance is due to MODWT decompo­

sition. Coiflet wavelets were selected as the best wavelet type for this research. Due to this,

analysis of different Coiflet levels was done as well. Here, it was analyzed each Coiflet wavelet

through different levels (coif1, coif2, coif4, coif6, coif8, coif12). The main goal of this was to

find why the coif6 wavelet had the best nowcasting accuracy and to see any patterns of this.

Below ( 10 figure.) is the representation of Coiflet wavelets decompositions.

10 figure. Visualization of different Coiflet wavelets on GDP series

From the visualization coif6 wavelet (bottom left) has smoother and more consistent details

and approximation, this smoothness helps to perform better compared with other wavelets.

An approximation decomposition shows a clear and steady trend, it helps the ARIMAmodel to

capture more accurate forecasts. Another interesting insight is that every wavelet signal shifts

to the right as the decomposition level increases. From the performance metrics ( 6 table.),

the top three wavelet types (coif6, coif4, and coif3) exhibit very similar distributions in their

first three components. In these wavelets, the signals are more concentrated toward the right

side, and the remaining components share a similar representation. In contrast, wavelets like

coif1, coif8, and coif10 show different signal distributions, which correlates with their poorer

performance. Also, additional modelling with different wavelet types was done as well, below

( 6 table.) is a results table
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6 table. MODWT­ARIMA performance metrics using different Coiflet wavelet types

Model MAE RMSE

ARIMA­MODWT (coif1) 0.0029 0.0035

ARIMA­MODWT (coif2) 0.0033 0.0038

ARIMA­MODWT (coif4) 0.0029 0.0039

ARIMA­MODWT (coif6) 0.0020 0.0028

ARIMA­MODWT (coif8) 2.25E+18 7.38E+13

ARIMA­MODWT (coif10) 1.14E+58 3.80E+58

results showed that higher­level Coiflet wavelets led to massive errors. Coif6 had a good bal­

ance between capturing high and low frequencies, while coif8 and coif10 overfit with unnec­

essary details and coif1, coif2, and coif4 returned quite higher performance errors. All in all,

as in the research examined in the literature, in this study, the coif6 wavelet type was the most

effective method and had the best metrics, which allows for improvement in the accuracy of

the model by a significant difference.[18][2]
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4 Conclusion

This thesis aimed to develop a model for nowcasting Lithuania’s GDP using machine

learning approaches to provide more accurate and newest estimates. The research explored

the potential of many machine learning methods to nowcast GDP growth and provide eco­

nomic indicators from various regressors. The theory analysis of nowcasting showed that there

aremany greatmethods for calculating GDP under any circumstances. The DFMs have become

a popular approach in nowcasting due to their ability to efficiently handle and extract informa­

tion from large and different datasets, MIDAS can handle mixed­frequency data efficiently and

be more simpler and powerful than DFM or even a combination of two separate methods like

MIDAS­LASSO, which over time become more common applications due to its effective on a

final product. Looking at today’s trend, the machine learning approaches are the most popu­

lar and newest methods, many researchers of different countries have tried these methods on

nowcasting GDP values and saw that the outcomes are more promising compared with older

applications. These findings raised a motivation to create a nowcasting GDP framework using

machine learning methods. Also, inspired additional thoughts and ideas about potential fu­

ture research using combinations of statistical models such as DFM or MIDAS with various ML

models and wavelet implementations.

The framework of nowcasting Lithuanian GDP was created with the possibility to have

supported prediction vintages, which shows the GDP change during the time. The imple­

mented pseudo­real­time feature also helped to have a more realistic picture of real­time sce­

narios. These improvements were introduced to different machine learning models. The out­

comes analysis demonstrated that machine learning ensemble methods, particularly Gradient

Boosting Regressor outperformed traditional linearmodels like Linear Regression or ElasticNet

in terms of nowcast accuracy. The results revealed that this model was able to provide a more

realistic estimate of GDP growth with smaller errors. Also, the ARIMA model was one of the

best approaches in this case, the performance metrics were slightly better than the Gradient

Boosting Regressor model.

The novelty of this research was introduced as the implementation of maximal over­

lapping discrete wavelet transform to the ARIMA model, but it was extended to other ma­

chine learning models as well. This showed how effective and well­adapted this framework

is. The analysis of results after a combination of MODWT and any model highlighted that

MODWT has a huge influence on ensemble models, the performance metrics were better for

MODWT­XGBoost(coif6), MODWT­KNeighbors Regressor(haar), and MODWT­Gradient Boost­

ing Regressor(coif6) models. However, the best performance improvement was for MODWT­

ARIMA(coif6) application, this integration changed the MAE from direct ARIMA model MAE

0.0029 to an impressive ­31 percent drop of 0.0020 MAE. The Diebold­Mariano test showed

a significant change among the existing MAEs, confirming that the MODWT implementation

made a significant change in the nowcast topic.
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Appendix 1.

Here are all cited types of sources:

• web pages (@online) [1, 3, 21]

• articles (@article) [5, 6, 11, 16, 19, 22, 24, 27, 29, 30, 32]

• articles from conferences (@inproceedings) [9]

• books (@book) [10, 12, 28]

• electronic publications (@misc) [14, 17]

• technical reports (@techreport) [7, 8, 13, 15, 20, 23, 26]

• book chapters (@incollection) [31]
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Appendix 2.

In the preparation of this thesis, several external tools were employed to enhance the

quality and readability of the text. These tools were utilized to assist in refining language,

improving vocabulary, and ensuring grammatical accuracy.

ChatGPT by OpenAI was used as a supportive tool for improving sentence structure and

suggesting alternative word choices to enhance clarity and coherence. Grammarly was em­

ployed for proofreading and grammar correction. This tool was instrumental in identifying

and addressing typographical errors, punctuation issues, and stylistic inconsistencies. It also

assisted in maintaining a formal and professional tone throughout the text.

While these tools significantly aided in the writing process, all intellectual contributions,

visualizations, research findings, and conclusions presented in this thesis are solely the result

of the author’s work.
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Appendix 3.

Here is a Python code which was used in the practical experiment of the research.

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from statsmodels.tsa.stattools import adfuller

from statsmodels.tsa.seasonal import STL

from statsmodels.stats.diagnostic import het_breuschpagan

from arch.unitroot import PhillipsPerron

from statsmodels.api import OLS, add_constant

import statsmodels.api as sm

from itertools import combinations,permutations

from dm_test import dm_test

import warnings

from sklearn.preprocessing import StandardScaler, MinMaxScaler, RobustScaler

from modwt import modwt, modwtmra, imodwt

import matplotlib.pyplot as plt

from tabulate import tabulate

from sklearn.model_selection import GridSearchCV, TimeSeriesSplit

from sklearn.metrics import mean_squared_error, mean_absolute_error

from sklearn.linear_model import LinearRegression, Ridge, Lasso, ElasticNet

from sklearn.tree import DecisionTreeRegressor

from sklearn.neighbors import KNeighborsRegressor

from sklearn.ensemble import GradientBoostingRegressor

from sklearn.svm import SVR

from sklearn.impute import SimpleImputer

from xgboost import XGBRegressor

from statsmodels.tsa.arima.model import ARIMA

from pmdarima import auto_arima

import inspect

warnings.filterwarnings("ignore")

plt.rcParams['figure.figsize'] = [15, 10]

# Data loading and definitions of test/train sample strat/end

data = pd.read_excel('BVP_men_SA.xlsx', sheet_name='Regresoriai_men', parse_dates=[0])

schedule = pd.read_excel('variable_schedule.xlsx', sheet_name='schedule_SA')

training_s = "2017-01-01"

testing_s = "2022-01-01"

testing_e = "2024-09-01"
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lags = [-2, -1, 0, 1, 2]

# List of functions which were used in further calculations.

# It consists column fill with column mean function, stationary tests, modwt

# transformations and lag steps generator function for each column.

def mean(training, test, date_column):

training[date_column] = pd.to_datetime(training[date_column])

test[date_column] = pd.to_datetime(test[date_column])

date_last = training[date_column].max()

last_3_months = training[training[date_column] >= (date_last -

pd.DateOffset(months=3))]

mean_dict = {}

for c in training.columns[1:]:

mean_dict[c] = np.nanmean(last_3_months[c])

filled = test.copy()

for c in training.columns[1:]:

filled.loc[pd.isna(filled[c]), c] = mean_dict[c]

return filled

def stationary_tests(data):

def stationary_flow(data, columns):

stat_c = []

non_stat_c = []

for c in columns:

x_series = data[c].dropna()

result_adf = adfuller(x_series, autolag='AIC')

adf_p_value = result_adf[1]

X = np.arange(len(x_series))

X = sm.add_constant(X)

y = x_series

model = sm.OLS(y, X).fit()

result_bp = het_breuschpagan(model.resid, model.model.exog)

bp_p_value = result_bp[1]

if bp_p_value < 0.05:

result_pp = PhillipsPerron(x_series)

pp_p_value = result_pp.pvalue

if pp_p_value >= 0.05:

non_stat_c.append(c)

else:

stat_c.append(c)

else:
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if adf_p_value < 0.05:

stat_c.append(c)

else:

non_stat_c.append(c)

return stat_c, non_stat_c

columns_wo_date_BVP = [column for column in data.columns

if column !="date" and column != 'BVP_SA']

stat_c_before, non_stat_c_before = stationary_flow(data, columns_wo_date_BVP)

for c in non_stat_c_before:

if (data[c] <= 0).any():

data[c] = data[c].diff()

else:

data[c] = np.log(data[c]).diff()

data.dropna(inplace=True)

stat_c_after, non_stat_c_after = stationary_flow(data, non_stat_c_before)

i = 1

while non_stat_c_after:

for c in non_stat_c_after:

if (data[c] <= 0).any():

data[c] = data[c].diff()

else:

data[c] = np.log(data[c]).diff()

data.dropna(inplace=True)

stat_c_after, non_stat_c_after = stationary_flow(data, non_stat_c_after)

i += 1

return data

def lag_data(schedule, data, date_last, lag):

lag_data = data[data.date <= date_last].reset_index(drop=True)

for c in lag_data.columns[1:]:

if c in schedule['all_variables'].values:

lag_ = schedule.loc[schedule.all_variables == c, "month_lag"].values[0]

else:

lag_ = 0

lag_data.loc[(len(lag_data) - lag_ + lag) :, c] = np.nan

return lag_data

def modwt_transform(data, wavelet, level, step):

data_wavelet = pd.DataFrame(index=data.index)

for c in data.columns:

coeffs = modwt(data[c].values, wavelet, level)
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data_wavelet[f"{c}_wavelet_{step}"] = coeffs[step]

return data_wavelet

# Data preparation steps for remaining nowcasting framework

data = stationary_tests(data)

data.set_index('date')

predicted = "BVP_SA"

nowcasting_data = data.loc[(data.date >= training_s) & (data.date <= testing_e), :]

.reset_index(drop=True)

dates = pd.date_range(start=testing_s, end=testing_e, freq="3MS").strftime("%Y-

%m-%d").tolist()

true_values = [value for value in nowcasting_data.loc[nowcasting_data['date']

.isin(dates), predicted].values]

# Nowcasting framework

# List of models with different parameters which were used in the nowcasting framework.

models = [

{

'name': 'XG Boost',

'model': XGBRegressor(),

'parameters': {

'learning_rate': [0.01],

'max_depth': [6],

'n_estimators': [200],

'booster': ["gblinear"],

}

},

{

'name': 'Lasso Regression',

'model': Lasso(),

'parameters': {

'alpha': [0.0001, 0.01, 1, 100]

}

},

{

'name': 'Ridge',

'model': Ridge(),

'parameters': {

'alpha': [0.0001,0.1, 1, 100]

}

},
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{

'name': 'KNeighbors Regressor',

'model': KNeighborsRegressor(),

'parameters': {

'n_neighbors': [3],

'weights': ['uniform'],

'p': [1]

}

},

{

'name': 'Linear Regression',

'model': LinearRegression(),

'parameters': {

}

},

{

'name': 'Elastic Net',

'model': ElasticNet(),

'parameters': {

'alpha': [0.0001,0.1, 1, 100],

'l1_ratio': [0.1, 0.5]

}

},

{

'name': 'Decision Tree',

'model': DecisionTreeRegressor(),

'parameters': {

'max_depth': [3],

'min_samples_split': [3],

'min_samples_leaf': [3],

'max_features': ["log2"],

'criterion': ["absolute_error"],

'splitter': ["best"]

}

},

{

'name': 'SVR',

'model': SVR(),

'parameters':{

'C': [1],

'epsilon': [0.01],
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'kernel': ['linear'],

'gamma': ['scale'],

'degree': [2],

'shrinking': [True],

'tol': [1e-4]

}

},

{

'name': 'Gradient Boosting Regressor',

'model': GradientBoostingRegressor(),

'parameters' : {

'learning_rate': [0.01],

'n_estimators': [25],

'max_depth': [3],

'alpha': [0.005],

'loss': ['squared_error']

}

},

{

'name': 'ARIMA',

'model': "",

'parameters': {

'seasonal': [False],

'stepwise': [True],

'suppress_warnings': [True]

}

}

]

# Array for results

results = {

'Model': [],

'RMSE': [],

'MAE': [],

}

fig, axes = plt.subplots(5, 2, figsize=(15, 12))

axes = axes.flatten()

# Nowcasting framework for each model. Nowcasting each point from the tests sample

# start point, outputs

# are compared with true values.
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for i, model_info in enumerate(models):

model_name = model_info['name']

model = model_info['model']

param_grid = model_info['parameters']

# print(f"Running framework for {model_name}")

pred_dict = {k: [] for k in lags}

if model_name != "ARIMA":

# Nowcasting for each point of the test sample. Each time model is created from

scratch with

# rolling variables respectively for loop iteration.

for date in dates:

training_data = nowcasting_data.loc[nowcasting_data.date <=

str(pd.to_datetime(date) - pd.tseries.offsets.DateOffset(months=3))[:10],:]

feature_engineering = mean(training_data, training_data, "date")

feature_engineering = feature_engineering.loc[feature_engineering.date.dt

.month.isin([1,4,7,10]),:].dropna(axis=0, how="any").reset_index(drop=True)

x = feature_engineering.drop(["date", predicted], axis=1)

y = feature_engineering[predicted]

tscv = TimeSeriesSplit(n_splits=5)

# Best model parameters are selected using the GridSearch function with

time series split and scoring.

grid_search = GridSearchCV(model, param_grid, cv=tscv,

scoring='neg_mean_squared_error', error_score='raise')

grid_search.fit(x, y)

best_model = grid_search.best_estimator_

# Pseudo-real-time creation with lags

for lag in lags:

lag_calculations = lag_data(schedule, nowcasting_data, date, lag)

lag_calculations = mean(training_data, lag_calculations, "date")

x = lag_calculations.loc[lag_calculations.date ==

date, :].drop(["date", predicted], axis=1)

# Nowcast

prediction = best_model.predict(x)[0]

pred_dict[lag].append(prediction)

# ARIMA model has quite a different model structure, due to this this model has a

# little bit different flow, but the main idea remains the same.

elif model_name == 'ARIMA':

for date in dates:

training_data = nowcasting_data.loc[nowcasting_data.date <=

str(pd.to_datetime(date) - pd.tseries.offsets.DateOffset(months=3))[:10], :]
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feature_engineering = mean(training_data, training_data, "date")

feature_engineering = feature_engineering.loc[feature_engineering.date.dt

.month.isin([1,4,7,10]), :].dropna(axis=0, how="any").reset_index(drop=True)

for lag in lags:

lag_calculations = lag_data(schedule, nowcasting_data, date, lag)

lag_calculations = mean(training_data, lag_calculations, "date")

y = lag_calculations[predicted]

auto_model = auto_arima(

y,

seasonal=param_grid['seasonal'][0],

stepwise=param_grid['stepwise'][0],

suppress_warnings=param_grid['suppress_warnings'][0]

)

best_order = auto_model.order

best_model = ARIMA(y, order=best_order).fit()

prediction = best_model.forecast(steps=1)

pred_dict[lag].append(prediction)

performance = pd.DataFrame(columns=["Vintage", "RMSE","MAE"])

# Results and accuracy metrics are stored for each vintage

for lag in lags:

x = pd.DataFrame({

"Vintage": lag,

"RMSE": np.sqrt(mean_squared_error(true_values, pred_dict[lag])),

"MAE": mean_absolute_error(true_values, pred_dict[lag]),

"Model": model_name

}, index=[0])

performance = pd.concat([performance, x]).reset_index(drop=True)

print(performance.round(4))

quarterly_dates = data['date'][data['date'].dt.month.isin([1, 4, 7, 10])]

test_dates = quarterly_dates[(quarterly_dates >= testing_s) &

(quarterly_dates <= testing_e)]

true_values_all = list(data.loc[data.date.isin(quarterly_dates), predicted].values)

# Data visualizations

axes[i].plot(quarterly_dates, true_values_all, label='Actuals', color='black')

for lag, predictions in pred_dict.items():

if lag in lags:

axes[i].plot(test_dates, predictions, label=f'Predictions {lag} lag',

linestyle='--')

axes[i].set_title(f'Actual vs Predicted Values ({model_name} - MODWT ({wavelet}))')

axes[i].set_xlabel("Date (Quarterly)")
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axes[i].set_ylabel("BVP")

axes[i].legend(loc='upper left', fontsize='small')

plt.tight_layout()

plt.show()

# Nowcasting framework with MODWT

# This framework is implemented on the basic nowcasting framework.

# So the main ideas are the same as it was.

# The new things will be highlighted.

results = {

'Model': [],

'RMSE': [],

'MAE': [],

}

fig, axes = plt.subplots(5, 2, figsize=(15, 12))

axes = axes.flatten()

# Wavelet steps

level = 4

wavelet_dict = {}

# Here the wavelet type must be selected.

List of the wavelets which were used in this work:

# db4, haar, sym5, dmey, rbio1.3, coif6

wavelet='coif6'

# Nowcasting framework is used to calculate any model interaction with MODWT features.

for i, model_info in enumerate(models):

model_name = model_info['name']

model = model_info['model']

param_grid = model_info['parameters']

# print(f"Running algorithm for {model_name}")

pred_dict = {k: [] for k in lags}

pred_dict_w = {k: [] for k in lags}

if model_name != "ARIMA":

# New for loop is used to calculate each level of wavelet

for j in range(0, level+1):

for date in dates:

training_data = nowcasting_data.loc[nowcasting_data.date <=

str(pd.to_datetime(date) - pd.tseries.offsets
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.DateOffset(months=3))[:10],:]

feature_engineering = mean(training_data, training_data, "date")

feature_engineering = feature_engineering.loc[feature_engineering.date

.dt.month.isin([1,4,7,10]),:]

.dropna(axis=0, how="any").reset_index(drop=True)

x = feature_engineering.drop(["date", predicted], axis=1)

# Wavelet transformation for x and y

x = modwt_transform(x, wavelet=wavelet, level=level, step=j)

y = modwt_transform(feature_engineering[predicted].to_frame(),

wavelet=wavelet, level=level, step=j)

tscv = TimeSeriesSplit(n_splits=5)

grid_search = GridSearchCV(model, param_grid, cv=tscv,

scoring='neg_mean_squared_error', error_score='raise')

grid_search.fit(x, y)

best_model = grid_search.best_estimator_

# print(f'Running wavelet {j} for {date}')

for lag in lags:

lag_calculations = lag_data(schedule, nowcasting_data, date, lag)

lag_calculations = mean(training_data, lag_calculations, "date")

lag_calculations_wo_date = lag_calculations.drop(["date",

predicted], axis=1)

lag_calculations_modwt = modwt_transform(lag_calculations_wo_date,

wavelet=wavelet, level=level, step=j)

lag_calculations_new = pd.concat([lag_calculations_modwt,

lag_calculations["date"]], axis=1)

x = lag_calculations_new.loc

[lag_calculations_new.date == date, :].drop(["date"], axis=1)

# Nowcasting every wavelet level step, every vintage at

every test sample point.

prediction = best_model.predict(x)[0]

pred_dict[lag].append(prediction)

wavelet_dict[j] = pred_dict.copy()

pred_dict = {k: [] for k in lags}

# This logic is very complicated because there are 3 different loops.

# Every loop step should be distributed according to their places.

lag_dicts = {lag: [] for lag in lags}

for sub_dict in wavelet_dict.values():

for lag, value in sub_dict.items():
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if lag in lag_dicts:

lag_dicts[lag].append(value)

for lag, lag_values in lag_dicts.items():

# When distribution is done. The transformation from wavelet

signal prediction to the

# time series is done using imodwt.

# Inverse Maximal Overlap Discrete Wavelet Transform is used in

wavelet analysis to

# reconstruct a signal from its wavelet coefficients that were

generated using the MODWT.

pred_w = imodwt(lag_values, wavelet)

pred_dict_w[lag].append(pred_w)

# The same flow is done using the ARIMA model.

elif model_name == 'ARIMA':

for j in range(0, level+1):

for date in dates:

training_data = nowcasting_data.loc[nowcasting_data.date <=

str(pd.to_datetime(date) - pd.tseries.offsets

.DateOffset(months=3))[:10], :]

feature_engineering = mean(training_data, training_data, "date")

feature_engineering = feature_engineering.loc[feature_engineering.date.dt

.month.isin([1,4,7,10]), :]

.dropna(axis=0, how="any").reset_index(drop=True)

# print(f'Running wavelet {j} for {date}')

for lag in lags:

lag_calculations = lag_data(schedule, nowcasting_data, date, lag)

lag_calculations = mean(training_data, lag_calculations, "date")

y = modwt_transform(lag_calculations[predicted].to_frame(),

wavelet=wavelet, level=level, step=j)

auto_model = auto_arima(

y,

seasonal=param_grid['seasonal'][0],

stepwise=param_grid['stepwise'][0],

suppress_warnings=param_grid['suppress_warnings'][0]

)

best_order = auto_model.order

best_model = ARIMA(y, order=best_order).fit()

prediction = best_model.forecast(steps=1)

pred_dict[lag].append(prediction)
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wavelet_dict[j] = pred_dict.copy()

pred_dict = {k: [] for k in lags}

lag_dicts = {lag: [] for lag in lags}

for sub_dict in wavelet_dict.values():

for lag, value in sub_dict.items():

if lag in lag_dicts:

lag_dicts[lag].append(value)

for lag, lag_values in lag_dicts.items():

pred_w = imodwt(lag_values, wavelet)

pred_dict_w[lag].append(pred_w)

performance = pd.DataFrame(columns=["Vintage", "RMSE","MAE"])

# Performance metrics for each vintage.

for lag in lags:

x = pd.DataFrame({

"Vintage": lag,

"RMSE": np.sqrt(mean_squared_error(true_values, pred_dict_w[lag][0])),

"MAE": mean_absolute_error(true_values, pred_dict_w[lag][0]),

"Model": model_name

}, index=[0])

performance = pd.concat([performance, x]).reset_index(drop=True)

print(performance.round(4))

quarterly_dates = data['date'][data['date'].dt.month.isin([1, 4, 7, 10])]

test_dates = quarterly_dates[(quarterly_dates >= testing_s) &

(quarterly_dates <= testing_e)]

true_values_all = list(data.loc[data.date.isin(quarterly_dates), predicted].values)

# Data visualizations.

axes[i].plot(quarterly_dates, true_values_all, label='Actuals', color='black')

for lag, predictions in pred_dict_w.items():

if lag in lags:

axes[i].plot(test_dates, predictions[0],

label=f'Predictions {lag} lag', linestyle='--')

axes[i].set_title(f'Actual vs Predicted Values ({model_name} - MODWT ({wavelet}))')

axes[i].set_xlabel("Date (Quarterly)")

axes[i].set_ylabel("BVP")

axes[i].legend(loc='upper left', fontsize='small')

plt.tight_layout()

plt.show()

# The best model implementation of MODWT-ARIMA is compared with the direct

57



ARIMA approach to find

# if there is a significant change in the accuracy (MAE) metrics

true_values = np.array([0.000602368, -0.005682667, 0.001891908,

-0.007530638, 0.001485916, -0.001654852, -0.002894649, 0.002746955,

-0.002570982, 0.000951662, 0.000512185])

direct_arima_predictions = np.array([0.000311116, 0.000552692,

0.00045351, 0.000470809, 0.000246758, -0.004863303,

0.000741207, -0.00014329, -0.0001959, 0.001428993, -0.001551229])

modwt_arima_predictions = np.array([-0.000306175, -0.000949065,

0.001557645, -0.000543094, -0.000281345, -0.000404364, 0.000105832,

0.002637581, -0.002099504, -0.000373153, -0.0001])

db_mse = dm_test(actuals, direct_arima_predictions,

modwt_arima_predictions, h = 1, crit="MSE")

pvalue = db_mse[1]

# P-value is 0.015285942010315922, which indicates

a significant difference between the errors.

Here is an R code of seasonal adjustments using the X­13 ARIMA SEATS method:

library(readxl)

library(writexl)

library(dplyr)

library(seasonal)

library(x13binary)

file_path <- "C:/Users/admin/Desktop/Magistras/BVP.xlsx"

sheet_name <- "Regresoriai_men"

data <- read_excel(file_path, sheet = sheet_name)

data <- data %>%

mutate(across(where(is.numeric), ~ ifelse(is.na(.), mean(., na.rm = TRUE), .)))

data$date <- as.Date(data$date)

adjusted_data_list <- list()

for (col_name in names(data)[-1]) {
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ts_data <- ts(data[[col_name]], frequency = 4, start = c(2010, 1))

seas_adjustment <- seas(ts_data)

adjusted_values <- final(seas_adjustment)

adjusted_data_list[[col_name]] <- adjusted_values

}

adjusted_data <- data.frame(date = data$date)

for (col_name in names(adjusted_data_list)) {

adjusted_data[[paste0(col_name, "_SA")]] <- adjusted_data_list[[col_name]]

}

output_file <- "C:/Users/admin/Desktop/Magistras/BVP_men_SA.xlsx"

write_xlsx(adjusted_data, output_file)
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