VILNIUS UNIVERSITY
FACULTY OF MATHEMATICS AND INFORMATICS

DATA SCIENCE STUDY PROGRAMME

Master thesis

Nowcasting Lithuanian Gross Domestic Product
(GDP) Using Machine Learning Methods

Lietuvos bendrojo vidaus produkto (BVP) prognozavimas
realiuoju laiku naudojant masininio mokymosi metodus

Adomas Kulikauskas

Supervisor : Asist., Dr., Saulius Jokubaitis

Reviewer : Doc., Dr., Dmitrij Celov

Vilnius
2025



Abstract

Gross domestic product (GDP) is one of the main key indicators of a state’s economy.
Nowadays GDP rates are available only with weeks of delays, using nowcasting methods, GDP
predictions are accessible in the first month of the quarter. In this work, a Lithuanian GDP now-
casting system was developed with ten different machine learning models. Also, data provided
by the state data agency with appropriate data delays were considered. Practical implemen-
tations of nowcasting were introduced with a pseudo-real-time framework, where different
data vintages performed different time periods of predictions. The improvements in model

performance were introduced using maximal overlapping discrete wavelet transform.

Keywords: Gross domestic product (GDP), Nowcasting, Machine learning, Gradient Boosting
Regressor, ARIMA, Maximal overlapping discrete wavelet transform (MODWT).



Santrauka

Bendrasis vidaus produktas (BVP) yra vienas pagrindiniy valstybés ekonomikos rodik-
liy. Siais laikais BVP rodikliai suZinomi tik po keliy savai¢iy vélavimo, naudojant nowcasting
metodus BVP prognozés gali biti pasiekiamos jau pirmajj ketviréio ménesj. Siame darbe buvo
sukurta Lietuvos BVP realaus laiko prognoziy sistema su desimcia skirtingy masininio moky-
mosi modeliy. Taip pat buvo atsizvelgta j valstybinés duomeny agenturos pateiktus duomenis
su atitinkamais duomeny vélavimais. Praktiniai realaus laiko prognoziy metody taikymai buvo
pristatyti naudojant pseudo realaus laiko sistemg, kurioje skirtingos duomeny versijos buvo
naudojamos skirtingy laikotarpiy prognozéms. Sios versijos buvo prognozuojamos naudojant
kelis masininio mokymosi modelius. Modeliy veikimo patobulinimai buvo pasiekti naudojant

maksimaliai persidengiancia diskrecigjg bangeliy transformacijg.

Raktiniai ZodZiai: Bendrasis vidaus produktas (BVP), Nowcasting, Masininis mokymasis, Gradi-
ento didinimo regresorius, ARIMA, Maksimaliai persidengianciy diskrecigjy bangeliy transfor-
macija.



Contents

Abstract . . . . . . .. e e 2
Santrauka . . . . . .. L e 3
Listofnotations . . . . . . . . . . . ... 5
Introduction . . . . . . ... e e 6
1 Literaturereview . . . . . . . ... e e 7
2 Datapreparationand methodology . . . . . . ... ... ... ... . ... .. 12
2.1 Seasonal decomposition using X-13 ARIMASEATS . . . . . .. .. ... .... 12

2.2 Datastationarytests . . . . . . . . . . ... e 13
2.2.1 Augmented Dickey-Fullertest . . . . ... .. ... ... ....... 13

2.2.2 Breusch-Pagantest . . . . . . . . . . . . ... ... 14

2.2.3 Phillips-Perrontest . . . . . . .. ... o 14

2.3 Pseudo real-time nowcasting framework . . . . . . ... ... o L. 15
2.4 Machinelearningmodels . . . . . . . . . ... L e 16
241 XGBoost . . . . . ... e 16

2.4.2 LassoRegression . . . . . . . .. .o oot e e e e e e e 17

2.4.3 Ridgeregression . . . . . . . .. e e 19

2.4.4 K-Nearest Neighbors (KNN)Regressor . . . . . . . ... ... ..... 19

245 LinearRegression . . . . . . . . . i i i e e e e e e e e e e e 20

246 ElasticNet. . . . . . . . . . . .. e 21

2.4.7 DecisionTree . . . . . . . e e e e e e e 21

2.4.8 Support Vector Regression(SVR) . . . . . . . . ... oL 22

2.49 Gradient BoostingRegressor . . . . . . . . . . . . i 23

2.4.10 ARIMA . . . e e e 25

2.5 Diebold-Marianotest . . . . . . . . ... o 26
2.6 Maximal overlap discrete wavelet transform . . . . . . . ... ... ... ... 27

2.7 Final nowcasting algorithm . . . . . . . . . ... . o 28

3 ResultsandComparisons . . . . . . . . . . . . ... e e 30
4 Conclusion . . . . . .. e e 39
Appendixd. . . . . .. e e e e e e 44
Appendix2. . . . . .. e e e e e 45

Appendix3. . . . .. e e e e 46



List of notations

1 table. Notations

Notation Definition

X, A vector of observed variables at time .

I The lag operator and the lag polynomial matrices A(L) and
U(L).

fi A vector of unobserved common factors.

€t A vector of idiosyncratic components or noise.

Yiin The forecast of the low-frequency variable.

h Periods ahead.

py and qx The lag lengths for Y and X, respectively.

X, 0 A weighted aggregation of high-frequency data points with a
parameter vector ¢ controlling the weighting scheme.

Zy A vector of variables at time ¢.

Ao A vector of intercept terms.

Aj (fori = . . .

1.2 p) Matrices of coefficients for the lagged variables.

Yi The dependent variable.

Tij The independent variables.
The coefficients and the regularization parameter, controlling

Bjand A

the extent of shrinkage applied to the coefficients.

¢(B) and 0(B)

Polynomials in the back shift operator B.

(1 - B)? The differencing operator.

Y, A time series.

T, Trend component (captures long-term changes in the data).

S, Seasonal component (captures periodic fluctuations with fixed
periodicity).

I, Irregular component.

Ay, The first difference of the time series (y; — y;_1).

o' An intercept.

I513 A time trend.

YY1 A lagged level of the series.

Zle 5iAyt—i

A lagged difference of the series.

ﬁoaﬁlw"aﬂp

Coefficients.




Introduction

Intoday’s geopolitical situation, led by significant complexity, conflicts across the regions,
influence of different alliances and economic interests, it is crucial to understand the main
macroeconomic indicators of the state, which greatly influence the government’s fast decision-
making and understanding of the state’s opportunities to plan future strategies. Every day
economists examine a diverse collection of financial insights from statistical agencies and pri-
vate and public surveys to evaluate the economy’s performance [8]. The practice of gathering
expert forecasts has a long-established history. The oldest quarterly survey of macroeconomic
forecasts is the Survey of Professional Forecasters (SPF), which began in 1968 and is currently
conducted by the Federal Reserve Bank of Philadelphia [31].

Some macroeconomic indicators are calculated at the end of every quarter. The most
comprehensive indicator of economic activity is gross domestic product (GDP), which is re-
leased with a significant delay and provides valuable insights into a nation’s financial health
and growth potential [12]. GDP by production approach is the net value of all goods and ser-
vices produced within the country during the reporting period, i.e. the final result of produc-
tion activity. GDP at market prices is the sum of the value added of all industries or institu-
tional sectors at basic prices, plus taxes, less subsidies on products [3]. The national statistical
agency calculates this indicator in a country, compiling information from many sources. For
example, the Lithuanian Department of Statistics estimates GDP linearly, without using any
machine learning models, and provides accurate estimates with a delay of weeks. However,
this delay can be solved using the nowcasting method, which can help predict these indicators
faster. Nowcasting is the prediction of current or near-future values of low-frequency outcome
variables using high-frequency data with machine methods or other modelling approaches.

After reviewing the topic’s relevance, a natural motivation arises to help the Lithua-
nian Statistics Department develop a GDP modelling and estimation framework using machine

learning models.

Reasearch paper goal will be orientated specifically on nowcasting the Lithuanian gross do-

mestic product (GDP) using machine learning methods and its approaches.

The main tasks of this work will be:
e Review the theory of nowcasting with various of different applications.

e Based on the scientific literature, create a framework for nowcasting the Lithuanian gross

domestic product indicator and perform its analysis.

e Implement a maximal overlapping discrete transform (MODWT) into the nowcasting sys-

tem and improve model predictions.



1 Literature review

The purpose of this section is to review scientific papers regarding the thesis topic and
analyze and compare different approaches and techniques. This section will cover dynamic
factor models, mixed frequency vector autoregressions and mixed data sampling regressions,
sparse and dense techniques, and machine learning methods.

The significance of GDP in measuring the size and performance of the economy is enor-
mous. In the last decade, GDP predictions and forecasts have been considerably researched.
There are various nowcasting modelling approaches in the scientific literature. For example,
dynamic factor models (DFMs), originally were proposed as a time-series extension of previ-
ously developed factor models for cross-sectional data [14]. DFMs are statistical models that
assume that a small number of unobserved common factors and idiosyncratic components
can explain a large set of observed variables. The basis of a dynamic factor model is that a few
hidden dynamic factors, f;, influence the comovements of a high-dimensional vector of time-
series variables, X;, which is also impacted by a vector of mean-zero idiosyncratic disturbances,
e; [28]. These disturbances result from measurement errors and unique factors specific to in-
dividual series [28]. The latent factors follow a time series process, typically represented by a

vector autoregression (VAR) [28]. In equations, the dynamic factor model is:
Xe= ML) fi + & (1)

fe = Y(L) fi=1 + . (2)

The author highlights that this model has some conditions which must be satisfied like both
equations are stationary and the idiosyncratic disturbances are assumed to be uncorrelated
with the factor innovations at all leads and lags, he also emphasizes an important motivation
for considering DFMs is that, if one knew the factors f; and if (e;, 1;) are Gaussian, then one
can make efficient forecasts for an individual variable using the population regression of that
variable on the lagged factors and lags of that variable [28]. So, the problem of estimating
these factors and determining their exact number constitutes one of the challenges scientists
face in calculating them. This model has a lot of benefits like handling high-dimensional data
or incorporation of mixed-frequency data, but it also has challenges with the complexity of the
model structure and estimation [6, 8, 15]. For example, comparing DFM models with machine
learning methods, such as neural networks and random forests, they can automatically detect
complex, nonlinear relationships in data without requiring explicit model specification, they
can adapt more flexibly to new data patterns and have shown promising results in handling
high-dimensional data more efficiently than traditional DFMs [24].

Looking at more practical uses, nowcasting involves predicting the current state of an
economy using the most recent data available. Usually, this data has hundreds of variables,
which is hard to handle properly. DFMs reduce the dimensionality of the problem by sum-



marizing the information from a large number of variables into a few common factors. There
are some examples, where one of them formalized the process of updating the nowcast and
forecast on output, observing that survey variables from the Federal Reserve Bank of Philadel-
phia have a significant impact on nowcasting, this research was done using dynamic factor
models, which became one of the most commonly used approaches [23]. Also, this study has
shown that DFMs often outperform traditional models in nowcasting GDP and other economic
indicators, especially in real-time settings [23].

Overall, DFMs have become a popular approach in nowcasting due to their ability to ef-
ficiently handle and extract information from large and different datasets. However, like any
methodology, they face several challenges when compared to other approaches, such as Ml-
DAS (Mixed Data Sampling) models or mixed frequency vector autoregressions (MF-VAR) mod-
els, which can handle mixed-frequency data efficiently and are simpler to estimate compared
to DFMs or can be powerful for capturing the dynamics between variables at different frequen-
cies, such as monthly and quarterly data, in a coherent framework [20]. Most macroeconomic
data are not all sampled at the same frequency, they are sampled monthly or quarterly and
the challenge is how to best use available data [5]. MIDAS regressions allow estimating dy-
namic equations that explain a low-frequency variable by high-frequency variables and their
lags [26]. The main idea to handle those frequencies properly is a specific weighting function
that aggregates the high-frequency information efficiently. Some researchers released an ar-
ticle that raised the question, do macroeconomists have to use financial data?[4] Doing that
paper they provide a detailed explanation of the key fundamentals of MIDAS [4]. It started with
the conventional Augmented Distributed Lag (ADL) model used for forecasting low-frequency

variables, such as quarterly GDP growth [4]:

Yipn =a+ Z ;Y + Z BrXi—k + Ursn (3)

The MIDAS regression model extended this approach and is formulated as follows [4]:

Yieh =a+ Z ;Y + Z BreXi—1(0) + uryn (4)

Also, the author highlighted that the weighting scheme w(k;0) is often specified using the

exponential Almon lag polynomial [4]:

exp(01k + 02k?)

W(k70) = m—1 . o
> ico exp(Ori + 024?)

(5)

This scheme ensures that the weights are non-negative and sum to one [4]. This paper showed
the main ideas of the MIDAS approach, and how the weighting function handles different fre-
guencies of data points. Similar methods are also used in the MF VAR approach, also known
as MR VAR (Mixed-frequency Regression VAR). According to Foroni and Marcellino (2013), MF



VAR models provide a coherent framework for handling mixed-frequency data, leading to im-
proving the accuracy of forecasts and economic analyses [13]. The MIDAS and MR VAR models
deal with integrating data sampled at different frequencies, but their structure and methodol-
ogy differ. For example, MR VAR models extend traditional VAR (Vector Autoregressive) models
to handle mixed-frequency data, these models include mixed-frequency data into a VAR frame-
work, often using state-space models and Bayesian techniques to manage the complexities of
different sampling rates [13, 25]. The general form of an MR VAR model can be represented
as follows:

Zy=Ao+ A2+ A Z o+ ...+ AL, + €. (6)

So, the main difference comparing MIDAS and MF-VAR is mixed-frequency data point handling
— MIDAS uses polynomial weighting schemes to integrate high-frequency data, while MF-VAR
often applies state-space models and Bayesian techniques to handle mixed-frequency data [4,
25]. The comparison of those two similar models is done and the main conclusion is that there
seems to be no clear winner in terms of forecasting performance, but noticed that a combina-
tion of forecasts from MIDAS and MF-VAR models yields better results than using single mod-
els alone [20]. Over time, combined model compounds have become common applications in
research, several output combinations were used as a final product in different analyses [17].
For example, one of the applications is research which examines whether online search engine
data are useful for improving the accuracy of tourism demand nowcasting when official statis-
tical data are not available [16]. The study examined whether the LASSO-MIDAS model is effec-
tive for nowcasting tourism demand [16]. Authors compared different model approaches like
same-frequency OLS-type models and only MIDAS-type models with LASSO-MIDAS extension
gain the best outcomes possible [16]. The nowcasting accuracy of the LASSO-MIDAS model was
significantly higher than that of other competing models, which confirms the effectiveness of
applying the LASSO-MIDAS model to tourism demand nowcasting [16].

Over time, scientists began to be more interested not in the frequency of the received
data, but in the amount of variables, they kept trying to answer the question, what is better to
use, all the existing variables in the data array? Or to single out the most important ones and
examine only their effects. Some researchers reviewed both method’s pros and cons, they
claimed that on the one hand, sparse modelling, such as LASSO (Least Absolute Shrinkage
and Selection Operator), focuses on selecting key explanatory variables to create a predictive
model, offering simplicity and clarity, using fewer parameters [7]. However, this technique
might miss some intricate details present in the data. On the other hand, dense modelling,
like ridge estimator and factor-augmented regression, considers all possible variables, which
suggests a power for capturing complex patterns in the data and is often used when precision
is less of a concern [7]. To compare those techniques other researchers tried to show the
main differences and similarities between Ridge and LASSO approaches.[22] They described
key things about ridge regression, which is a method used to analyze multiple regression data



that suffer from multicollinearity and defined the ridge regression estimator [22]:

n

p p
e — argmin (Z(yi —Bo— > B Ay B?) . (7)
i=1 j=1 j=1
The authors highlighted the selection of ), they claimed that the "ridge” parameter reduces
variance and can result in a more reliable model and the main thing is that this approach shrinks
all coefficients by the same proportion and does not set any coefficient to zero, ensuring that
all variables are included in the model [22]. However, LASSO uses a quite different approach
to the objective function [22]:

n

p p
3= = arg mﬂin <Z<yz — Bo — Z zi0;) + A Z ‘ﬁj’) : (8)
i=1 j=1 j=1
which sets some coefficients to zero, effectively selecting a simpler model that includes only
the most significant predictors. Authors conclude that ridge regression is more useful when
all variables are believed to have an effect and multicollinearity needs to be managed, while
LASSO performs when variable selection and model simplicity are more important [22].

Finally, today’s most popular and trending machine learning (ML) methods include the
decision tree, gradient-boosted trees, random forest, XGBoost, and autoregressive integrated
moving average (ARIMA) models, which are common nowcasting approaches recently. One ex-
ample of this is a research estimation of New Zealand’s GDP using those particular models, the
researchers compared nowcasts, against a naive ARIMA benchmark, a dynamic factor model,
and the official forecasts by the Reserve Bank of New Zealand [24]. They found that the ML
models produced more accurate estimates than the ARIMA and dynamic factor models [24].
Additionally, the results suggest that the Reserve Bank of New Zealand could have improved
their forecast accuracy by utilizing ML models [24]. Also popular approach in ML is ensem-
ble methods, which work by combining the outputs of multiple models to enhance the accu-
racy of predictions.[27] This increased accuracy has made ensemble methods very popular in
machine learning. One of the examples showed practical applications of using tree-based en-
semble models of nowcasting US GDP growth rates [27]. Authors used bagged decision trees,
which aggregate multiple decision trees to reduce variance, random forests, which enhance
bagged trees by decorrelating them and stochastic gradient boosting, which builds trees se-
guentially, each new tree correcting errors made by the previous ones [27]. In this study, the
ensemble models approach was compared with DFMs in nowcasting US GDP, the results were
significantly better when ensemble methods were applied [27].

Nowcasting methods include a wide range of different approaches, primarily based on
statistical models such as factor models or MIDAS. All of them suggest various useful applica-
tions, factor models analyze latent structures to identify common drivers, and MIDAS models

effectively integrate data of different frequencies, enhancing forecast accuracy.[28][4] Com-

10



pared with ML models like XGBoost or Decision Trees, they do not have such statistical appli-
cations as model systems, latency space or data of different frequencies. However, ML models
have different strengths, for models based on decision trees their advantage is in capturing
non-linear dependencies even with large datasets, they allow for ensemble extensions, such as
Random Forest and XGBoost, which improve robustness and accuracy.[17] Also ML approaches
like decision trees provide automated variable selection and adaptability to high-dimensional
data structures.[11] Later on in this thesis, these ML models will be reviewed and used to fore-
cast Lithuania’s GDP.

11



2 Data preparation and methodology

This section will cover data preparation, the creation of the whole nowcasting algorithm,
and an explanation of all the modelling methods used in this research. Data was received from
the Lithuanian Department of Statistics. The dataset consists of several tables with various
data points. A table with monthly data was chosen for the nowcasting framework because
it is crucial to have the monthly frequency for better accuracy of nowcasting GDP during the
months. Most of the columns have all values, missing points are filled using column means.

2.1 Seasonal decomposition using X-13 ARIMA SEATS

For nowcasting time-series macroeconomic data, it is crucial to use data without season
impact and trends. There are several methods to decompose time series data and smooth
their seasonality. The most suitable method is X-13-ARIMA-SEATS, it is a sophisticated statisti-
cal tool developed by the U.S. Census Bureau and the Bank of Spain for seasonal adjustment
and time series analysis. Eurostat uses this method for seasonal adjustments [10]. Unfortu-
nately, Lithuanian Statistics did not have all the necessary data after seasonal decomposition,
therefore, this data seasonal smoothing was applied from my side, using R package seasonal.

X-13-ARIMA-SEATS method combines features of two earlier methods, X-11 and SEATS
(Signal Extraction in ARIMA Time Series), with enhancements for automation, diagnostics, and
flexibility. The main goal of this approach is to decompose a time series into trend, seasonal,
and irregular components, for more accurate forecasting and decision-making. Using ARIMA
(AutoRegressive Integrated Moving Average) model predicts the time series behaviour by ex-
pressing some features such as autoregressive terms, where the current value depends on
previous values, integration feature, which handle non-stationary by differencing and moving

average, which account for past forecast errors. The general ARIMA form is:

¢(B)(1 — B)'Y, = 6(B)e;. (9)

The whole process is to decompose a time series into three main components:
Y, =T, + 5+ I

The SEATS part of the decomposition is treated as a signal extraction problem, using the ARIMA
model, it separates the time series into three signals, respectively, as in seasonal decompo-
sition. The extraction minimizes the mean squared error (MSE), ensuring optimal signal re-
covery. X-13 part uses symmetric and asymmetric moving averages filters from X-11 to filter
and adjust short-term fluctuations and outliers. Also, this method has some diagnostic tools
to evaluate the diagnostic such as autocorrelation function (ACF) and partial autocorrelation

12



function (PACF) for residual analysis, quality measures for seasonal adjustment and outlier de-

tection for additive, level shift, and temporary change outliers.

2.2 Data stationary tests

After smoothing the seasonal effect of the data, stationary tests were checked. Station-
arity is essential for many time-series modelling techniques used in nowcasting, it improves
nowcasts accuracy. Removing non-stationarity helps isolate the true relationships between
variables, ensuring that forecasts reflect actual economic dynamics.

2.2.1 Augmented Dickey-Fuller test

The Augmented Dickey-Fuller (ADF) test is a statistical method which examines the sta-
tionarity of a time series. The ADF test evaluates the null hypothesis (Hj) that the time series
has a unit root, which implies nonstationarity. The alternative hypothesis (H;) states that the

series is stationary. Mathematically, the ADF test evaluates the following regression equation:

p
Ay, = a+ Bt +yy—1 + Z 0iAYe—i + €
i=1
The key parameter of interest is v, which measures the presence of a unit root. The null and
alternative hypotheses are expressed as:

Hy:v =0 (the series has a unit root and is non-stationary)

H,:~v <0 (theseries is stationary).

Using ordinary least squares (OLS), the parameter y is estimated. This parameter determines
the presence of a unit root. The test statistic is computed as:

~

8

ADF Statistic = —
SE(9)

here 4 is the estimated coefficient of y,_;, and SE(¥) is its standard error. Since the null hy-
pothesis assumes that there is a unit root, the p-value obtained from the test should be less
than the significance level to reject the null hypothesis. Thus, it can be concluded that the
series is stationary.

An important thing in the ADF test is the selection of the lag length (p) for the augmented
term, as it effects the test’s power and accuracy. Lags are typically chosen using information
criteria such as the Akaike Information Criterion (AIC) or the Bayesian Information Criterion
(BIC). The difference between these two methods is how they penalize model complexity, AIC
penalizes complexity less, leaning toward bigger models with more lags and BIC penalizes com-

plexity more heavily, favouring simpler models with fewer lags.

13



2.2.2 Breusch-Pagan test

The Breusch-Pagan test is a statistical test used to detect heteroscedasticity in a regres-
sion model. When the variance of the residuals varies across all levels of the independent
variables, this is known as heteroscedasticity, which can lead to wrong estimates and biased
standard errors, effecting hypothesis test outcomes. This violates one of the basic assump-
tions of ordinary least squares (OLS) regression, which is that the errors are assumed to be
homoscedastic. The main idea of the Breusch—Pagan test is to check any regression residuals

heteroscedasticity. For example, we have linear regression:

Yn = Bo + BT Xy + €, (10)

After that, express it variance of each reference point as a function of f(-), which does not

depend on n:

0?2 = flap+a’' X,). (11)

Here, o = [Oél...()[p]T is a P-vector of coefficients which are independent of the coefficients /.

We know that homoscedasticity can be written like the equivalence of a null hypothesis:
HolCYl:O!Q:...:CVP:O. (12)

Homoscedasticity conditional variance of each error term would not depend on n or X,,, for
example:
Vlen | X] = 07 = f(ao). (13)

Regarding equation (13) the o2 is a constant. So the main idea of this test is to fit a re-
gression (10), estimate the error terms variance using squared residuals, run another regres-

sion (11) to estimate « and check its limit to zero.

2.2.3 Phillips-Perron test

The Phillips-Perron test is similar to the ADF test, but it is a bit different, in how they
deal with correlation and heteroskedasticity in the errors. ADF tests rely on a parametric au-
toregressive model to approximate the ARMA structure of the errors in the test regression,
Phillips-Perron test ignores any serial correlation in the test regression. The regression of the
test is:

Ay = B'Dy + w1 + w, (14)

here u, is I(0) and may be heteroskedastic. The Phillips-Perron test makes a change in any
serial correlation and heteroskedasticity in the errors u; of the test regression changing the

14



test statistics t,—o and 1T’;. Appears two statistics Z; and Z:

52\ '/? 1[\2— 52 T - SE(7)
a=(5) -3 (57) () -

1 (T2 SER) ie s
Zﬂ:Tw—i(T)(A — 57 (16)

The variables 52 and \? are an outcomes of variance parameters

T
o= lim Ty E[ul] (17)
T—o0
t=1
T
2 _ —1Q2
A= lim » E[T7157], (18)

t=1

here Sr = Zthl ug. If m = 0 (null hypothesis), the Z; and Z statistics have the same asymp-
totic distributions as the ADF t-statistic and normalized bias statistics. The main difference
between the Phillips-Perron test and the ADF test is that the Phillips-Perron test is robust to
general forms of heteroskedasticity in the error term wu;, also it does not require any specific

lag length for the regression.

All these methods were applied and constructed a framework that evaluating the stationar-
ity of a time series involves multiple steps. Firstly, the ADF test was applied, which used a
regression model and calculated the t-statistic. Given that the outcome of the ADF test is de-
pendent on the t-statistic, its reliability is checked by verifying whether the errors from the
model meet the homoscedasticity assumption. To do this, the Breusch-Pagan test was applied
to the residuals of the ADF model. If homoscedasticity is satisfied, the ADF test results can be
trusted. However, if this assumption is rejected, stationarity was estimated using the Phillips-
Perron test. Differentiation was applied to non-stationary columns and the whole process was
applied again.

2.3 Pseudo real-time nowcasting framework

One of the main challenges of estimating GDP is data lag. Usually, economic data be-
comes available after several months or even quarters, this means that economists or govern-
ment institutions could make late data-driven decisions and be behind others compared with
global trends. To get around these problems, the nowcasting algorithm could be implemented
in pseudo-real-time prediction. Creating a pseudo-nowcasting framework can help estimate
data lags and evaluate prediction accuracy using different time vintages. For this, the data lag

gathering schedule and lag vintages for each calculation should be done. According to Lithua-

15



nian Statistics [1], all data variables from different areas come at various times, usually, it is the
estimation time. Lag vintages usually are 2 months before, 1 month before, current time (0
months), 1 month ahead and 2 months ahead. When all conditions are set, the main frame-
work logic can be explained. Below ( 1 figure.) is a short visualization and explanation of how

this framework works.

01/01/2021 01/02/2021 01/03/2021 01/04/2021 01/05/2021 01/06/2021 01/07/2021 01/08/2021 01/09/2021 01/10/2021 01/11/2021 01/12/2021 01/01/2022

I raining set

N/A  Pseudo lag period

N/A Data acquisition schedule lag
Nowcast

2 months before

1 month before Future nowcasts

0 months

1 month ahead

2 months ahead

1 figure. Pseudo real-time framework

Firstly, the target month is chosen as the reference point for the prediction at the start
of the nowcasting process. From this point, data acquisition schedules and pseudo lags are
subtracted to account for the timing of data availability. Missing values are imputed using
column means to ensure a complete dataset for modelling. With the prepared dataset, the
nowcast is predicted using different models.

2.4 Machine learning models

This chapter will cover all machine learning (ML) models used in practical work. Today
machine learning algorithms play a crucial role in data science and modeling, no exception in
macroeconomic metrics such as GDP. ML models become a common approach in nowcasting
GDP indicators, possibilities of handling huge amounts of data, finding difficult patterns there
and predicting impressive accuracy prediction ML models are receiving more and more positive
feedback. In the following sections, the ML models used in the research are described, and

their main ideas are also explained.

2.4.1 XGBoost

XGBoost is a gradient-boosting algorithm that builds models by sequentially adding trees
to minimize a specific loss function. The explanation of this model begins with the objective

function which combines the loss function and a regularization:

T

L(0) = Z Uyi, 9i) + Z Q(f),

t=1

here I(y;, y;) is the loss function measuring the error between the true value (y;) and the
predicted value (g;) and Q(f;) = 7T + i\ Zle w? is a regularization, 7' number of leaves



in the tree, w; is leaf weights and +, A are regularization parameters. This equation includes
functions as parameters and cannot be optimized using traditional optimization methods in

Euclidean space [9]. This equation is upgraded in an additive manner:

n T
LO =31 oY + flw) + Q)
=1 t=1
by adding the most improved model f; value. To optimize the objective function this model
uses a second-order Taylor expansion of the loss function:

n

£Ox Y [afte) + ghusia)] + 00

i=1

, L (t—1)
_ Oy, )
here g; = —agf*”

After optimization of an equation, the tree could be created using:

Ry )

is a first-order gradient and h; = T is a second-order derivative.
y.

r <Zie[j gi>2
Liree = Z —Zielj h + A

j=1

- 7T7

here [; is the set of instances in leaf j. Trees are added one at a time, and each tree is designed
to reduce the residual errors from the previous trees. This is achieved by learning from the
gradient of the loss function. The gradient measures how much the prediction needs to change
to reduce the error. The more trees XGBoost has, the better it can capture complex patterns

in the data. Regularization ensures that the model does not overfit by limiting tree depth.

2.4.2 Lasso Regression

Lasso regression (Least Absolute Shrinkage and Selection Operator) is a linear regres-
sion type that uses a penalty term to simplify the models.[29] It is useful for feature selection
and regularization when datasets have many features. Lasso regression aims to balance the
model’s simplicity and accuracy properly. This is accomplished by including a penalty term
in the linear regression model, which has sparse solutions by requiring some coefficients to
be zero. The model starts with the linear regression model, which has a linear relationship
between the independent and dependent variables.

y =P+ Prx1 + Baxa + -+ By, + €

Next, the Lasso model uses the penalty term for the linear regression model coefficients. The

L1 regularization term is a tuning parameter \ multiplied by the sum of the absolute values of

17



the coefficients.[29]
p
Ly =AY |5l
j=1

The whole Lasso objective function consists of two parts: L regularization and Least Square
Fit, which is the residual sum of squares (RSS).[29] It measures how well the model fits the

data. RSS can be expressed as:

n

1 2
RSS = — =% B),
5 ;:1 (i — %, B)
here y; is the observed value, xiT is the predicted value. By adding these two equations into

one we have the objective function in the Lasso regression:

n

TB) = 53 A8 A 15,
j=1

=1

This function ensures that the model fits the data well by minimizing prediction errors and
penalizes large coefficients to control model complexity and reduce overfitting.[29] After con-
structing the objective function it is crucial to minimize this function and apply a variant of gra-
dient descent because the L; norm ) _ | 3;| is non-differentiable at zero.[29] Instead of standard

gradient descent, the coordinate descent or subgradient methods should be used:

0 [ 1 <& 1 &
T@(%;(%_xjﬁf Z—Eizll‘ij(%—xjﬁ);

p

0 P
—~ E 1) =7 _ £
aﬂj ( j=1 ’BJ‘> A i 6] <0

| undefined if 3; = 0

For 8; = 0, the subgradient method finds an optimal value by balancing between shrinking
to zero and the effect of the RSS term.[29] Also coordinate descent method might be used,
fixing all coefficients except one [3; and updating it by solving a one-dimensional optimization

problem:
A
i ) | 0
B; = sign (z;) max <|z]| o )
here:
1 n
5= El Tij (yi —x; B+ 5;‘%]‘)

This formula uses the soft thresholding operator to shrink (3; to zero, this flow should be re-

peated for all coefficients until convergence. When the optimization is complete, some of the

18



coefficients are zero, they become irrelevant for future prediction, and non-zero coefficients

indicate important features that contribute to the model.

2.4.3 Ridge regression

Ridge regression is a linear regression technique that adds L, regularization to the or-
dinary least squares (OLS) regression. The goal of this method is to prevent overfitting by
shrinking the coefficients of the model. This approach is very similar to Lasso regression, but it
has one major difference, Ridge regression does not perform feature selection, predictors re-
main in the model. The first part of the objective function from Lasso is the same as in Ridge,

it differs only through the regularization function, Ridge uses L, which is represented as:

P
L=A3 0
j=1

The larger the value of \, the more the coefficients are penalized. For minimizing the objective
function, the Ridge model applies gradient descent, which is an iterative method for finding
the minimum of a function. The gradient of the RSS term is the same as the Lasso regression,

and the gradient of the L, regularization term is:

0
i (15 2

The total gradient for the objective function is the sum of the gradients of the two terms:

oJ
S = () 2

Using gradient descent, the coefficients 3; are updated iteratively as follows:

1 n
B = = (‘5 > i (v =/ 6) + w;“)
i=1

here n is the learning rate, - ZZ | Tij (yz xiTﬁ) is the gradient of the RSS term. The \ depen-
dent penalty term shrinks the coefficients 3;. As ) increases, the coefficients are shrunk more
toward zero, but unlike than Lasso regression, Ridge does not set any coefficients exactly to

zero, this means that this model does not perform feature selection.

2.4.4 K-Nearest Neighbors (KNN) Regressor

The K-Nearest Neighbors (KNN) Regressor is a simple, non-parametric machine learning

algorithm used for regression tasks. Unlike parametric models, KNN makes predictions based

19



on the k nearest data points in the feature space. The goal of the KNN model is to k& train-
ing examples that are nearest to the new data point =, and predict ¥, as the average of the

corresponding target values of those k nearest neighbours.

1€ Ny ()

here y, is the predicted target value for the new data point z,, Ni(z.) is the set of indices of
the k nearest neighbours to x,, y; is the target value and & is the number of nearest neighbours
considered for the prediction. Next, the closest z,. must be found, for this the distance metric
should be used, for example, Euclidean distance:

p
d(xi, %) = | D (255 — 3.5)?
j=1

after calculating each x distance the smallest one (k) should be picked and computed for pre-
dicted value y, by averaging the target value y; of the k nearest neighbors. The choice of k is
crucial, the small value leads to a model that is sensitive to noise and outliers, and the larger
value is less sensitive and smoother, but it may not capture important features. For better
selection, the cross-validation function is used. For time series data common cross-validation
function is time series split (from Scikit-learn), this method is similar to the expanding window
approach but is implemented efficiently to split the data into multiple training and test sets. It
creates k splits, and each split consists of a training set and a test set, where the training set

progressively grows.

2.4.5 Linear Regression

Linear Regression is a machine learning method used to model the relationship between
a dependent variable y and one or more independent variables x;,x2,...7,. This model is
widely used in statistical and machine learning modelling due to its simplicity and efficiency.

Multiple linear regression, with multiple independent variables:

y = Bo+ Prx1 + Baxa + -+ By, + €

The objective function of linear regression is to find values of the 3y,5,...3, coefficients that
minimize the error between the predicted values and observed values. The error is typically
measured using the Residual Sum of Squares (RSS):

n

RSS = Z (y; — QZ)Q = Z (yi — (Bo + Brxg + -+ + ﬁpxip»Q
i=1

=1

20



optimization is done using the function:

n

. .
min s
Bo,B1,-Pp ; (yz yz)

the solution of the optimization problem is solved using matrix notation:
y=XB+e€

herey is the n x 1 vector of observed values, X is the n x (p + 1) matrix of predictors and 3

is the (p 4+ 1) x 1 vector of coefficients. Coefficients are solved:
B=X"X""X"y

after fitting the model several accuracy metrics could be calculated, such as mean squared

error or R-squared, these metrics evaluate the model’s accuracy and performance.

2.4.6 Elastic Net

Elastic Net is a type of regularized regression that linearly combines the penalties of Lasso
Regression (L regularization) and Ridge Regression (L5 regularization). This combination al-

lows Elastic Net to handle a larger number of features with high correlation. The objective

¢ (1_04) . 2
S IIERLL) 3
j=1 j=1

here « is a mixing parameter, which balances the L (Lasso) and L, (Ridge) penalties, when

function is:
n

£8) = =3 (5 — ) + A

2n 4
i=1

a = 1itis a Lasso regression, when a = 0 it is Ridge regression, when 0 < a < litisa
combination of both. To solve 3 coefficients Elastic Net uses optimization functions such as:

. 1 n A N2 (1 — Oé) 2
i 5 3 a0 gl + S5l
here [|B]l: = >_%_, 18;|is Ly norm, [|B]|3 = >_!_, 7 is L1 = 2 norm. Optimize this using coor-

dinate descent or gradient-based optimization in the same way as in Lasso or Ridge regression.
Elastic Net is a combination of two powerful models, it allows to be a flexible method for better
accuracy and performance. Selection of either L; or L, penalties or using both at the same

time shows efficiency and strength.

2.4.7 Decision Tree

A decision tree is a non-parametric supervised learning algorithm used for classification

and regression tasks. This approach has a tree structure, where internal nodes correspond to

21



decision tests, branches represent outcomes of those tests, and leaf nodes indicate predic-

tions. A basic model structure is defined in 2 figure.

Root node

‘ Internal node Internal node

Leaf node ‘ Leaf node Leaf node Leaf node

2 figure. Decision tree structure

here the root node is the original choice or a feature from which the tree branches begin,
internal nodes stand for the nodes in the tree whose choices are determined by the values
of particular attributes, and leaf nodes are decided upon. The main idea of this method is to
predict a constant value for each region R,,, which is the mean of the target values in that

region:

. 1
g(x) = [Ronl Z Yi

2;€Rm,
here R,, is the region to which x belongs and |R,,| is the number of samples R,,,. Constructing
a decision tree it is important to find the appropriate variables from all attributes. Solving this
problem there are several approaches such as entropy, Gini index or variance reduction. For
regression task variance reduction is a common choice, and splits are evaluated based on the

reduction in variance:

n

1
Variance = — Xz(yZ —7)?

n <
i=1

here y is the mean of y; in the current node. This approach finds the best split of all nodes.
Another crucial problem for the decision tree model is overfitting, to avoid this kind of problem
regularization methods could be applied, such as restrictions of tree depth, the requirement
for a minimum number of samples in each leaf node or removing branches with low impor-
tance.[30]

2.4.8 Support Vector Regression (SVR)

Support Vector Regression (SVR) is an extension of Support Vector Machines (SVM) for
regression tasks. The main goal of this method is to find a function that approximates the

target values within a margin of tolerance and minimizes the model complexity. SVR model

22



aims to find a function at time ¢ such as:

G = f(x) =w'o(x,) +b

here ¢(x;) is a kernel-transformed feature vector (for non-linearity), w and b are model pa-

rameters learned during training. The objective function of SVR is to minimize a function:

1 - .
min Sflwl® +C Y (& + &)

t=p+1

here:
y— flo) <e+&

flz) =y < e+ &
§,6 >0

and &, &/ are slack variables for deviations beyond ¢, C'is a regularization parameter controlling
the trade-off between model complexity and tolerance to error, $ ||w||? is a regularization term.
SVR model is capable of finding non-linear patterns over time, for this reason, SVR could apply
a kernel trick to model these relationships effectively:

K(xi, x;) = ¢(%)T¢(%’)

common kernel methods are linear, polynomial or RBF kernels, it is useful to run all of them
and find the most suitable one. After finding a solution from the objective function, the perfor-
mance metrics like mean absolute error, root mean squared error or mean absolute percent-
age error could be calculated. This model is a powerful approach for its capability to handle

non-linear relationships and provide robust predictions.

2.4.9 Gradient Boosting Regressor

Gradient Boosting Regressor (GBR) is an ensemble learning technique that combines the
prediction of weaker decision trees sequentially. The GBR model is a powerful model for build-
ing predictive models for both classification and regression problems. The model explanation
begins from a naive prediction of F(z) on the target for a starting point when it iteratively

improves the model by adding a new base learner h,,(x) at each step:

Fm(x) = mel(m) + ’Ymhm(x)a

23



here v,,h, () is a new tree, which is trained to correct the errors made by F,,_;(z). At each

m stage, the loss function L is minimized using gradient descent:

0Ly F(z)
! OF (x;)

Y

F(z)=Fn_1(z)

(m

a new tree is fitted to the pseudo-residuals:

here 7™ is the pseudo-residual at stage m for the ¢-th sample. After optimization of the tree,

hn(z) = arg min i <r§m) — h(x2)>2 :
i=1

This tree attempts to approximate the gradient of the loss function. Next, the weighting of the
base learner should be applied for the new tree h,,(x) by calculating:

Yo = arg mJn Z L (v, Frn1(x3) + vhim () -
i=1

After finding the optimal weight ~,, for the new tree h,,(z), the model is updated:
Fo(x) = Frpo1(x) + Ymho ().

this flow repeats until the stopping criterion. For the Gradient Boosting Regressor model, it is
crucial to select a proper loss function. The different loss functions can vary depending on the
problem. The most common function is a mean squared error (MSE) for regression problems:
1< )
LwF@DZEEX%—FmD-

=1

for handling variable outliers common approach is Huber loss:

Ly—F(x)? ifly—F(z)] <3,
Ly, F(x)) =
e dly — F(z)| — &, otherwise.

also, this model has some regularization like learning rate, it scales the contribution of each
tree, or maximum depth of tress or minimum samples per leaf, these all things after m iter-

ations train and improve a final prediction for a sample x:

M
Y= FM("L‘) = Z '7mhm(x)'
m=1

The main difference between the XGBoost model is that the Gradient Boosting Regressor is

much slower, it builds trees sequentially instead of utilizing parallel processing, also this model

24



does not use any regularization techniques like L1 and L2 (Ridge and Lasso) for overfitting as
XGBoost does. However, the Gradient Boosting Regressor is much simpler and effective for

smaller datasets.

2.4.10 ARIMA

ARIMA is a widely used statistical model, and the variety of applications is huge. Starting
from financial market forecasting and ending healthcare, where ARIMA could be applied to
analyze disease outbreaks and predict future infection rates. The general form of ARIMA (9)
was previously described in X-13 ARIMA SEATS applications. Using this model data must be
stationary due to this the data stationary test was applied first. The whole modelling process

begins with a time series Y} fitting to the autoregressive model:
Yi=0Yia+ Y, o+ ...+, + &

here p is the previous values of time series Y;. Then the moving average component models

the current value of the series as a function of past forecast errors (¢;):
Yi=01Yi1 + @Yo+ ...+ 0Yip, + e
ARIMA combines these models into one framework and the final form is:
4(B)(1 — B)'Y, = 0(B)e,

here ¢(B) is an autoregressive polynomial of order p, (1—B)“ is a differencing operator applied
d times, §(B) is a moving average polynomial of order ¢. The crucial thing is to select good
values of p, d and q parameters. For this could be used Auto ARIMA function, which automates
the process of selecting the best ARIMA model by determining the optimal values of p, d and ¢
based on information criteria such as AIC (Akaike information criterion). Auto ARIMA performs
a grid search over combinations of p, d and ¢ to find the model that minimizes AIC. The AIC is
calculated as:
AIC = =2In(L) + 2k

here L is the maximum likelihood of the model and & is several parameters. Also, this function
automatically applies unit root tests for data stationary determines the order of d parameter
and can work with seasonal data (SARIMA). Finally, once the model fitting is done, the future
values could be predicted iteratively using the fitted autoregressive and moving average com-

ponents, for h-step ahead forecasts:

YA;H-h = ¢1Y/t+h—l + ¢2Yt+h—2 +.oo Ot

25



This model is a good statistical method to forecast time series data and the method is suitable

for use in conjunction with other mathematical applications.

2.5 Diebold-Mariano test

For evaluation and decision on which model is the best one and has the most significant
impact, the Diebold-Mariano (DM) test was selected. It is a statistical test used to compare
the predictive accuracy of two competing forecasting models. It estimates the significant dif-
ference between the forecast errors. This approach is popular for time series analysis to check
which one of the forecasts outperforms another in terms of prediction quality. For instance,
we have two forecast errors {e;,}/_; and {eq,}/_; at time t. Now let’s define the loss function

g(e;) where its equal to e? difference:

di = glers) — gleaq),

here d; measures the difference in accuracy between the two models at time ¢. For the null
hypothesis part of the test is defined that there is no difference in predictive accuracy between

the two models:
Hy : E[d;] =0,

the alternative hypothesis claims that:
H, :E[d] # 0,

a significant difference could be found in the accuracy perspective. To estimate the final test

statistic the mean and variance losses are missing. These metrics are defined respectively:
1
dz?%ﬁ“

) o h-1
Var(d) = o jz;k:l Pyk’

here ;. is the k-lag autocovariance of d;, capturing temporal dependence. Finally, test statistics

could be solved as: i
Var(d)

Under the null hypothesis, DM asymptotically follows a standard normal distribution:

DM ~ N(0,1).

26



Itis crucial to select critical values to estimate the final insights. Also, there are several choices
of loss function, such as absolute error which may be preferred for robustness against outliers

or mean absolute percentage error.

2.6 Maximal overlap discrete wavelet transform

In this study, it was chosen to conduct several experiments on how to improve the per-
formance of nowcasting models in ways that no one had tried before. After reviewing the
literature and discovering several effective uses of wavelets in time series data, it was decided
to try to investigate the integration of MODWT into an existing nowcasting system.[18][2] The
Maximal overlap discrete wavelet transform (MODWT) is a wavelet transform variant designed
to expand the time series into multiple resolutions while maintaining the original structure and
timing of the dataset. Unlike the traditional Discrete wavelet transform (DWT) MODWT is not
orthonormal and is defined for all sample sizes. The main idea of MODWT is to decompose
any signal X (n) of length N, in our case a time series, into detailed coefficients 1¥;(n) and

approximation coefficients V;(n), it could be expressed like this:

Win) =S P X(n—k) mod N

L-1
Vi(n) =Y g’ X(n—k) mod N
k=0

here h; is a wavelet filter coefficients, gy is a scaling filter coefficients, L is a length of the
filter, ( mod N) ensures periodic boundary conditions.[32] Also unlike DWT, MODWT does
not perform downsampling, which makes the length of the coefficient equal to the original

length NV at each scale.[32] For wavelet filters:
h]({;j) — h](j_l) T 2]'71
for scaling filters:
j i—1 i
g,(f) :glij )T?] 1

here 1 2/~! denotes upsampling by inserting zeros between coefficients. The reconstruction

of the original series can be done by summing contributions from all scales:

X(n) =2 Dj(n)+ As(n)
j=1
Also, it is crucial to mention, that there are various types of wavelets. Each of them has a
different application approach, such as Haar, Daubechies, Coiflet, Symlet and others.[19][21]
Practical implementation of MODWT (coif6) using GDP data is in 3 figure.

27



GDP decomposition of MODWT (coif6)

0.01
ﬂ\
=' o000
—0.01 4
0.025
& 0.000
H
~0.025
0.02
m 000
=
~0.02
0.0025
ﬁ’\
= 00000
~0.0025
0.002 4
m‘
>' 0.000
~0.002

3 figure. GDP decomposition of MODWT (coif6)

2.7 Final nowcasting algorithm

By summarizing all the methods used, we can create a scheme of the nowcasting sys-
tem. This might help better understand the structure of the work and smooth operation. The
aim of the research is to nowcast the Lithuanian GDP using machine learning methods, but
also implement a novelty that could somehow improve these research outcomes. For this the
implementation of MODWT was used in collaboration with the ARIMA model due to its ef-
fective applications observed in other areas, such as short-term wind speed forecasting [18]
or daily snow depth forecasting [2]. In addition, there is practically no research on nowcasting
GDP using MODWT-ARIMA. However, the entire system is designed to be easily used with both
simple nowcasting, integrated with MODWT-ARIMA, and MODWT transformations, and in con-
junction with all other available models. Firstly, the basic nowcasting framework is designed
to automatically calculate all desired models and provide nowcasting results and visualizations

in 4 figure.

28



| Getinglag valuestor
| intazes ond nowsaeting |

Model fitting
(ARIMA)

| Pseudo reat-time |
framework

S Training data (1:T)

Data (Sa)

Model fitting
(Lasso)

Pseudo real-time
framework

In addition to that, the implementation of MODWT is added to the current scheme and

1 Nowcast(T+) -

Nowcast (T+1) -

Medel fitting Mode! fitting Model fitting
(Ridge) (KNeighbors ) (Linear Regression) (Elastic Net)
Pseudo reak-time || Pseudo real-time | __| Pseudo real-time | __| Pseudo real-time
frameworl framework framework framework
Nowcast (T+1) ---| Nowcast(T+1) --- Nowcast(T+) ---

Nowcast (T+])  ---

Model fitting

Model fitting
(Decision Tree)

Pseudo real-time |
framework

Nowcast (T+1) -~

Model fitting Model fitting Model fitting
(SVR) (Gradient Boosting) (¥GBoost)
Pseudo reak-time | __| Pseudo real-time | __| Pseudo real-time
framework framework framework
Nowcast(T+1) ---| Nowcast(T+1) ---| Nowcast(T+])

e mevics and |
visualizations

4 figure. Basic nowcasting framework

now are expressed in 5 figure.

In the next chapter, the entire logic will be tested and the outcomes analyzed using Lithuanian

GDP data.

Xz A1)

Training data (1:T)

R ¢
MODWT MoDwT MoowT MoDWT MODWT |- MODWT ‘- MODWT - MODWT - MODWT - MODWT
w: W W Ve
e s
Modai fiting Modal ntting Modsi nttng Modei nting
= ) tasan) . [y TAriuA)
5 Samaflonwith | | Samefomnith | | Samefownith | | Samefowwith | | Samefowwth | | Samefowwth | | Somefowwith | | Somefowwtn | | Some fowsith
= Fidge Wisigniors | | Lineos Regression | | Blostic Net Deciion Tree £ Grodkent Bocsteg | | Naoom
ramewerk. romework ramemank tramemark.
B
w Noweast (T+1) -+ Nowcast (T+1) - Nowease (F+1) | Noweast (T+1)
e XL MODWT 1-MODWT HMODWT HMODWT FMODWT HFMODWT FMODWT FMODWT MODWT MODWT
Estimates T '

5 figure. Nowcasting framework using MODWT

Test data (T+1)

Test data (T+1)

29



3 Results and Comparisons

This chapter will close the research analysis with the results of nowcasting the Lithuanian
GDP using machine learning approaches and implementations of the MODWT.

Firstly, the main algorithm for nowcasting was executed. Here it was also interesting to
track the results through different data vintages, the vintages have a lag from variables sched-
ule and created pseudo lag framework. Lags were five types: 2 months before the real-time,
1 month before the real-time, 0-month stands for real-time (nowcast) and it is also interesting
to see the forecasts for the future, 1 month ahead of the real-time and 2 months ahead of the
real-time. The pseudo-real-time framework results using Lithuanian GDP data are in 2 table.

and practical visualizations are in 6 figure.

2 table. Performance metrics across models for different vintage values

Vintage | MAE RMSE | Model
-2 0.0025 | 0.0034 | ARIMA
-2 0.0026 | 0.0035 | Gradient Boosting Regressor
-2 0.0032 | 0.0040 | XG Boost
-2 0.0035 | 0.0047 | Decision Tree
-2 0.0051 | 0.0062 | KNeighbors Regressor
-2 0.0058 | 0.0071 | SVR
-2 0.0077 | 0.0101 | Elastic Net
-2 0.0082 | 0.0108 | Lasso Regression
-2 0.0089 | 0.0113 | Ridge
-2 0.0089 | 0.0113 | Linear Regression
-1 0.0028 | 0.0034 | ARIMA
-1 0.0028 | 0.0036 | Gradient Boosting Regressor
-1 0.0032 | 0.0047 | XG Boost
-1 0.0039 | 0.0049 | Decision Tree
-1 0.0045 | 0.0056 | KNeighbors Regressor
-1 0.0060 | 0.0073 | SVR
-1 0.0083 | 0.0101 | Lasso Regression
-1 0.0084 | 0.0108 | Ridge
-1 0.0084 | 0.0108 | Linear Regression
-1 0.0085 | 0.0110 | Elastic Net
0.0028 | 0.0035 | Gradient Boosting Regressor
0.0029 | 0.0037 | ARIMA
0.0035 | 0.0047 | Decision Tree
0.0042 | 0.0053 | XG Boost
0.0045 | 0.0056 | KNeighbors Regressor
0.0061 | 0.0073 | SVR
0.0081 | 0.0109 | Lasso Regression
0.0091 | 0.0120 | Elastic Net
0.0102 | 0.0129 | Ridge
0.0102 | 0.0129 | Linear Regression

O O OO0 O0OO0OO0OOoOOo

30



BVP

BVP

BVP

BVP

BVP

Vintage | MAE RMSE

Model

1 0.0027
0.0029
0.0035
0.0043
0.0045
0.0061
0.0086
0.0088
0.0104
0.0104

0.0035
0.0035
0.0047
0.0057
0.0056
0.0073
0.0103
0.0112
0.0132
0.0132

ARIMA

Gradient Boosting Regressor
Decision Tree

XG Boost

KNeighbors Regressor

SVR

Lasso Regression
Elastic Net

Ridge

Linear Regression

0.0028
0.0040
0.0043
0.0061
0.0068
0.0074
0.0098
0.0098
0.0161

0.0035
0.0051
0.0059
0.0073
0.0087
0.0099
0.0127
0.0127
0.0254

NNNNNNNNNRRRRRRPRPRR

Gradient Boosting Regressor
Decision Tree

XG Boost

ARIMA

Lasso Regression

Elastic Net

Ridge

Linear Regression

SVR

Actual vs Predicted Values (XG Boost)

Actual vs Predicted Values (Lasso Regression)

0.04 { — Actuals 0.04  — Actuals
== Vintage -2 lag === Vintage -2 lag
0024 " Vintage -1 lag 002] " Vintage -1 lag
g -~ Vintage 0 lag a -~ Vintage 0 lag
—~—- Vintage 1 lag 2 —=- Vintage 1 lag
0.00 1 __Vintage 2 lag % = 0001 _ _Vintage 2 lag
~0.02 —0.02 4
2017 2018 2019 2020 2021 2022 2023 2024 2017 2018 2019 2020 2021 2022 2023 2024
Date (Quarterly) Date (Quarterly)
Actual vs Predicted Values (Ridge) Actual vs Predicted Values (KNeighbors Regressor)
0.04  — Actuals 0.04 | — Actuals
== Vintage -2 lag ==+ Vintage -2 lag
-~ Vintage -1 lag -~ Vintage -1 lag
0029 __ Vintage 0 lag o 0027 __. Vintage 0 lag
~~-- Vintage 1 lag 3 —~-- Vintage 1 lag
0.00 1 _ _“Vintage 2 lag 0.00 __“Vintage 2 lag
—0.02 -0.02 4
2017 2018 2019 2020 2021 2022 2023 2024 2017 2018 2019 2020 2021 2022 2023 2024
Date (Quarterly) Date (Quarterly)
Actual vs Predicted Values (Linear Regression) Actual vs Predicted Values (Elastic Net)
0.04 4 — Actuals 0.04 ] — Actuals
== Vintage -2 lag == Vintage -2 lag
0024 " Vintage -1 lag 002] " Vintage -1 lag
g -~ Vintage 0 lag a -~ Vintage 0 lag
—~—- Vintage 1 lag 2 ——- Vintage 1 lag
0.00 1 __Vintage 2 lag 0.007 __Vintage 2 lag
~0.02 —0.02
2017 2018 2019 2020 2021 2022 2023 2024 2017 2018 2019 2020 2021 2022 2023 2024
Date (Quarterly) Date (Quarterly)
Actual vs Predicted Values (Decision Tree) Actual vs Predicted Values (SVR)
— Actuals 0057 __ Actuals
0.04
== Vintage -2 lag == Vintage -2 lag
0024~ Vintage -1 lag 0004~ Vintage -1 lag A 25
g —~. Vintage 0 lag e Y7 -=" vintage 0 lag TG 7
0,00 = Vintage 11ag ] ~~-- Vintage 1 lag
g ~~ Vintage 2 la; ~- Vintage 2 la
intage 2 lag —0.05 1 ge 2 lag
-0.02
2017 2018 2019 2020 2021 2022 2023 2024 2017 2018 2019 2020 2021 2022 2023 2024
Date (Quarterly) Date (Quarterly)
Actual vs Predicted Values (Gradient Boosting Regressor) Actual vs Predicted Values (ARIMA)
0.04 — Actuals 0.04 — Actuals
== Vintage -2 lag == Vintage -2 lag
0024 Vintage -1 lag 002] " Vintage -1 lag
g ~~ Vintage 0 lag g ~ - Vintage 0 lag
—— Vintage 1 lag o =+ Vintage 1 lag
0.00 1 _ _“Vintage 2 lag 0.001 __“Vintage 2 lag
—0.02 -0.02
2017 2018 2019 2020 2021 2022 2023 2024 2017 2018 2019 2020 2021 2022 2023 2024

Date (Quarterly)

Date (Quarterly)

6 figure. Visualization across models for different vintage values

31



The results highlighted some insights into performance via different models tested across var-
ious vintages. The hyperparameters were selected from various possible variants using Grid-
SearchC\V. For each model, a set of different parameters was suggested and the GridSearchCV
method selected the best ones, which had the lowest MAE metric. A TimeSeriesSplit was a
cross-validator for this approach. Below ( 3 table.) is a table of the best hyperparameters for

each model.

3 table. Model parameters for hyperparameter tuning

Model Parameters
learning_rate: 0.01
max_depth: 6

XG Boost n_estimators: 200
booster: gblinear

Lasso Regression alpha: 100

Ridge alpha: 100
n_neighbors: 3

KNeighbors Regressor weights: uniform
p:1

Linear Regression No parameters

. alpha: 100

Elastic Net I1_ratio: 0.5

max_depth: 3

min_samples_split: 3
min_samples_leaf: 3
max_features: log2
criterion: absolute_error
splitter: best

C1

epsilon: 0.01

kernel: linear

SVR gamma: scale

degree: 2

shrinking: True

tol: 1le-4

learning_rate: 0.01
n_estimators: 25
Gradient Boosting Regressor | max_depth: 3

alpha: 0.005

loss: squared_error
seasonal: False

ARIMA stepwise: True
suppress_warnings: True

Decision Tree

Gradient Boosting Regressor and ARIMA had the best performance, with the lowest errors
(MAE and RMSE) in nearly all cases. Gradient Boosting Regressor slightly outperformed ARIMA,
especially in vintage 0, which is most interesting in our case, making it the most reliable model



overall. Ensemble models like XG Boost, Decision Tree, and KNeighbors Regressor provide
moderate performance but fail to match the accuracy of Gradient Boosting and ARIMA. XG
Boost performs well for older vintages, while Decision Tree returned better outcomes and se-
lected the best ones in nowcast and future vintages. Linear models, including Lasso Regres-
sion, Ridge, and Elastic Net, fall behind ensemble methods, indicating limitations in capturing
non-linear patterns. From linear-based models, Elastic Net and Lasso performed better than
other linear models but underperformed with Gradient Boosting. SVR and linear regression
were the least effective models, particularly for newer vintages, the errors were significantly
high. So, Gradient Boosting Regressor and ARIMA models are the most reliable choices for pre-
dicting and nowcasting Lithuanian GDP. However, linear methods and SVR should be avoided
unless computational simplicity is a priority because ensemble approaches require longer cal-
culation time and higher computational costs. Focusing only on the nowcasting part, where
the novelty part about MODWT is implemented, we have quite different results. Firstly, the
MODWT-ARIMA integration has been observed and results are in 4 table., visualizations are

in 7 figure.

4 table. Performance metrics of MODWT-ARIMA through different wavelet types

Model MAE | RMSE
MODWT-ARIMA (db4) 0.0026 | 0.0039
Direct ARIMA 0.0029 | 0.0037

MODWT-ARIMA (haar) | 0.0027 | 0.0037
MODWT-ARIMA (coif6) | 0.0020 | 0.0028
MODWT-ARIMA (sym5) | 0.0028 | 0.0033
MODWT-ARIMA (dmey) | 0.0026 | 0.0031
MODWT-ARIMA (rbio1.3) | 0.0027 | 0.0037

Actual vs Predicted Values (ARIMA - MODWT (coif6)) Actual vs Predicted Values (ARIMA - MODWT (dmey))

— Actuals | — Actuals
-~ Predictions -2 lag

Predictions -1 lag

— = Predictions -2 lag
| Predictions -1 lag

~ . Predictions 0 lag
-~ Predictions 1 lag
1 ==Ppredictions 2 1ag

~=- Predictions 0 lag
-=- Predictions 1 lag
1 ==+ Predictions 2 lag

T T T T u T u T T T T T T T T T
2017 2018 2019 2020 2021 2022 2023 2024 2017 2018 2019 2020 2021 2022 2023 2024

Date (Quarterly) Date (Quarterly)
Actual vs Predicted Values (ARIMA - MODWT (db4)) Actual vs Predicted Values (ARIMA - MODWT (haar))

— Actuals
== Predictions -2 lag
Predictions -1 lag
1 -~ predictions 0 lag
——. Predictions 1 lag
7| -~ Predictions 2 lag

| = Actuals

== Predictions -2 lag
Predictions -1 lag

T -~ Ppredictions 0 lag

— - Predictions 1 lag

7| == Predictions 2 lag

2017 2018 2019 2020 2021 2022 2023 2024 2017 2018 2019 2020 2021 2022 2023 2024

Date (Quarterly) Date (Quarterly)
Actual vs Predicted Values (ARIMA - MODWT (sym5)) Actual vs Predicted Values (ARIMA - MODWT (rbiol.3))

— Actuals

~—. Predictions -2 lag
Predictions -1 lag

—~—: Predictions 0 lag

—— Predictions 1 lag

| — Actuals
-~ Predictions -2 lag
] Predictions -1 lag

— = Predictions 0 lag
~ - Predictions 1 lag

—— Predictions 2 lag 1 == Predictions 2 lag

2017 2018 2019 2020 2021 2022 2023 2024 2017 2018 2019 2020 2021 2022 2023 2024
Date (Quarterly) Date (Quarterly)

7 figure. Visualization of MODWT-ARIMA through different wavelet types

The output claims that MODWT-ARIMA (coif6) achieves the best results with the lowest MAE



and RMSE. This indicates that the implementation of MODWT improves ARIMA’s predictive
accuracy compared to the direct approach. The wavelet type coif6 (Coiflet) showed the best
results in contrast with other wavelet types (dmey, db4, hear, sym5, rbio1.3), demonstrating
the importance of selecting the appropriate wavelet transform. Of course, there are many
different types of wavelets, with different parameters and variables, that can further improve
the model errors, but these types were chosen based on a literature review.[18][2] Overall, all
different wavelets showed better results than the direct ARIMA model, but the coif6 transform
highlighted a much better positive impact. The MODWT decomposed the time series into dif-
ferent frequency components, so high-frequency noise and trends can be treated separately
and ARIMA can be applied to these individual components. This approach of multiple decom-
positions allowed for more accurate nowcasting of each series, rather than forcing the direct
ARIMA model to deal with the entire series at once.

On the other hand, the combinations of MODWT with other used models also had some

positive improvements in 5 table.

5 table. Performance metrics of different models and MODWT types.

Model MODWT type | MAE RMSE
Direct 0.0042 | 0.0053
coifé 0.0032 | 0.0040
dmey 0.0045 | 0.0059
XGBoost db4 0.0036 | 0.0040
haar 0.0045 | 0.0058
sym5 0.0030 | 0.0043
rbiol.3 0.0036 | 0.0044
Direct 0.0088 | 0.0105
coifé 0.0137 | 0.0159
dmey 0.0118 | 0.0143
Lasso Regression db4 0.0249 | 0.0286
haar 0.0140 | 0.0204
sym5 0.0164 | 0.0197
rbiol.3 0.0140 | 0.0191
Direct 0.0102 | 0.0125
coif6 0.0042 | 0.0054
dmey 0.0099 | 0.0124
Ridge db4 0.0187 | 0.0281
haar 0.0241 | 0.0319
sym5 0.0115 | 0.0144
rbiol.3 0.0173 | 0.0320
Direct 0.0045 | 0.0056
coif6 0.0027 | 0.0034
dmey 0.0026 | 0.0034
KNeighbors Regressor db4 0.0027 | 0.0034

34



Model MODWT type | MAE RMSE
haar 0.0026 | 0.0035
sym5 0.0026 | 0.0034
rbiol.3 0.0026 | 0.0034
Direct 0.0102 | 0.0125
coifé 0.0657 | 0.1626
dmey 0.0156 | 0.0215
Linear Regression db4 0.0204 | 0.0345
haar 0.0238 | 0.0314
sym5 0.0131 | 0.0159
rbiol.3 0.0140 | 0.0303
Direct 0.0091 | 0.0129
coif6 0.0157 | 0.0186
dmey 0.0208 | 0.0232
Elastic Net db4 0.0200 | 0.0225
haar 0.0208 | 0.0291
sym5 0.0139 | 0.0165
rbiol.3 0.0148 | 0.0200
Direct 0.0035 | 0.0047
coif6 0.0069 | 0.0084
dmey 0.0053 | 0.0069
Decision Tree db4 0.0034 | 0.0043
haar 0.0045 | 0.0060
sym5 0.0029 | 0.0037
rbiol.3 0.0037 | 0.0044
Direct 0.0073 | 0.0092
coifé 0.0051 | 0.0060
dmey 0.0049 | 0.0059
SVR db4 0.0095 | 0.0097
haar 0.0049 | 0.0058
sym5 0.0041 | 0.0046
rbiol.3 0.0077 | 0.0094
Direct 0.0028 | 0.0035
coifé 0.0024 | 0.0033
dmey 0.0028 | 0.0035
Gradient Boosting Regressor | db4 0.0025 | 0.0032
haar 0.0024 | 0.0033
sym5 0.0027 | 0.0034
rbiol.3 0.0026 | 0.0033

After this kind of testing MODWT integration showed more positive results for ensemble-based
models compared to linear methods. Huge improvements were especially accomplished with
the MODWT-XGBoost(coif6), MODWT-KNeighbors Regressor(haar), and MODWT-Gradient
Boosting Regressor(coif6) models. The MODWT-KNeighbors Regressor(haar) model almost
outperformed MODWT-Gradient Boosting Regressor(coif6) in terms of MAE and RMSE, but
compared MODWT-Gradient Boosting Regressor(coif6) with MODWT-ARIMA(coif6) it showed

35



poorer results, which means that overall best model in this such case is MODWT-ARIMA(coif6)
with 0.0020 MAE and 0,0028 RMSE discovered most accurate approach.

However, a natural question arises: Why are these errors of MODWT-ARIMA better
than using the model ARIMA directly? Firstly, the numeric side of the outputs was analyzed.
Diebold-Mariano test was used to determine the significance between the models and which

is better. Also, the visualization ( 8 figure.) of actuals and both predictions were observed.

Actuals vs Predicitons

0.004

0.002

-y
o

-0.002

-0.004

-0.006

-0.008

-0.01

e Actuals ~— e=———ARIMA predictions — e===NMODWT-ARIMA predictions

8 figure. Visualization of Actual values, ARIMA nowcast and MODWT-ARIMA nowcast

After comparing predictions using the Diebold-Mariano test, it returned a p-value of 0.0153,
indicating a significant difference between the predictions and the outputs of MODWT-ARIMA
are considerably better and the best overall of all models tested. The visualization ( 9 figure.)
of prediction residuals also confirmed the following.

Residuals comparison

0.004

0.002 K\ /\ /74
O A _
1 2 3 4 5 6 7 8 11
0,002

-0.004

.

-0.006
-0.008

-0.01

e=—=Residuals ARIMA === Residuals MODWT-ARIMA

9 figure. Visualization of ARIMA nowcast and MODWT-ARIMA nowcast residuals

36



During the over-time, nowcasts of the MODWT-ARIMA model cope better with actual value
fluctuations due to MODWT decompositions which reduce noise and improve model perfor-
mance.

Secondly, the better MODWT-ARIMA model performance is due to MODWT decompo-
sition. Coiflet wavelets were selected as the best wavelet type for this research. Due to this,
analysis of different Coiflet levels was done as well. Here, it was analyzed each Coiflet wavelet
through different levels (coifl, coif2, coif4, coif6, coif8, coif12). The main goal of this was to
find why the coif6 wavelet had the best nowcasting accuracy and to see any patterns of this.

Below ( 10 figure.) is the representation of Coiflet wavelets decompositions.

10 figure. Visualization of different Coiflet wavelets on GDP series

From the visualization coif6 wavelet (bottom left) has smoother and more consistent details
and approximation, this smoothness helps to perform better compared with other wavelets.
An approximation decomposition shows a clear and steady trend, it helps the ARIMA model to
capture more accurate forecasts. Another interesting insight is that every wavelet signal shifts
to the right as the decomposition level increases. From the performance metrics ( 6 table.),
the top three wavelet types (coif6, coifd4, and coif3) exhibit very similar distributions in their
first three components. In these wavelets, the signals are more concentrated toward the right
side, and the remaining components share a similar representation. In contrast, wavelets like
coifl, coif8, and coif10 show different signal distributions, which correlates with their poorer
performance. Also, additional modelling with different wavelet types was done as well, below
( 6 table.) is a results table

37



6 table. MODWT-ARIMA performance metrics using different Coiflet wavelet types

Model MAE RMSE
ARIMA-MODWT (coifl) | 0.0029 | 0.0035
ARIMA-MODWT (coif2) | 0.0033 | 0.0038
ARIMA-MODWT (coif4) | 0.0029 | 0.0039
ARIMA-MODWT (coif6) | 0.0020 | 0.0028
ARIMA-MODWT (coif8) | 2.25E+18 | 7.38E+13
ARIMA-MODWT (coif10) | 1.14E+58 | 3.80E+58

results showed that higher-level Coiflet wavelets led to massive errors. Coif6 had a good bal-
ance between capturing high and low frequencies, while coif8 and coif10 overfit with unnec-
essary details and coifl, coif2, and coif4 returned quite higher performance errors. All in all,
as in the research examined in the literature, in this study, the coif6 wavelet type was the most
effective method and had the best metrics, which allows for improvement in the accuracy of

the model by a significant difference.[18][2]



4 Conclusion

This thesis aimed to develop a model for nowcasting Lithuania’s GDP using machine
learning approaches to provide more accurate and newest estimates. The research explored
the potential of many machine learning methods to nowcast GDP growth and provide eco-
nomic indicators from various regressors. The theory analysis of nowcasting showed that there
are many great methods for calculating GDP under any circumstances. The DFMs have become
a popular approach in nowcasting due to their ability to efficiently handle and extract informa-
tion from large and different datasets, MIDAS can handle mixed-frequency data efficiently and
be more simpler and powerful than DFM or even a combination of two separate methods like
MIDAS-LASSO, which over time become more common applications due to its effective on a
final product. Looking at today’s trend, the machine learning approaches are the most popu-
lar and newest methods, many researchers of different countries have tried these methods on
nowcasting GDP values and saw that the outcomes are more promising compared with older
applications. These findings raised a motivation to create a nowcasting GDP framework using
machine learning methods. Also, inspired additional thoughts and ideas about potential fu-
ture research using combinations of statistical models such as DFM or MIDAS with various ML
models and wavelet implementations.

The framework of nowcasting Lithuanian GDP was created with the possibility to have
supported prediction vintages, which shows the GDP change during the time. The imple-
mented pseudo-real-time feature also helped to have a more realistic picture of real-time sce-
narios. These improvements were introduced to different machine learning models. The out-
comes analysis demonstrated that machine learning ensemble methods, particularly Gradient
Boosting Regressor outperformed traditional linear models like Linear Regression or Elastic Net
in terms of nowcast accuracy. The results revealed that this model was able to provide a more
realistic estimate of GDP growth with smaller errors. Also, the ARIMA model was one of the
best approaches in this case, the performance metrics were slightly better than the Gradient
Boosting Regressor model.

The novelty of this research was introduced as the implementation of maximal over-
lapping discrete wavelet transform to the ARIMA model, but it was extended to other ma-
chine learning models as well. This showed how effective and well-adapted this framework
is. The analysis of results after a combination of MODWT and any model highlighted that
MODWT has a huge influence on ensemble models, the performance metrics were better for
MODWT-XGBoost(coif6), MODWT-KNeighbors Regressor(haar), and MODWT-Gradient Boost-
ing Regressor(coif6) models. However, the best performance improvement was for MODWT-
ARIMA(coif6) application, this integration changed the MAE from direct ARIMA model MAE
0.0029 to an impressive -31 percent drop of 0.0020 MAE. The Diebold-Mariano test showed
a significant change among the existing MAEs, confirming that the MODWT implementation

made a significant change in the nowcast topic.

39



References and sources

[1]
[2]

3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

2024 m. statistinés informacijos skelbimo kalendoriai. Accessed: 2024-12-01.

A. Adib, A. Zaerpour, M. Lotfirad. “On the reliability of a novel MODWT-based hybrid
ARIMA-artificial intelligence approach to forecast daily Snow Depth (Case study: The
western part of the Rocky Mountains in the U.S.A).” In: Cold Regions Science and Tech-
nology 189 (2021), page 103342. 1sSN: 0165-232X. https://doi.org/https://doi.
org/10.1016/j.coldregions.2021.103342. URL: https://www.sciencedirect.
com/science/article/pii/S0165232X21001233.

V. duomeny agentura. Verslas Lietuvoje (2022 m. leidimas). 2022. URL: https://osp.
stat . gov . 1t / statistikos - terminu - zodynas 7 popup = true & termId=9012
(viewed 2024-05-30).

E. Andreou, E. Ghysels, A. Kourtellos. “Should Macroeconomic Forecasters Use Daily
Financial Data and How?” In: Journal of Business and Economic Statistics 31.2 (2013),
pages 240-251. ISSN: 07350015. URL: http://www. jstor . org/stable/43701607
(viewed 2024-06-04).

M. T. Armesto, K. Engemann, M. Owyang. “Forecasting with mixed frequencies.” In: Re-
view 92.Nov (2010), pages 521-536. URL: https://EconPapers.repec.org/RePEc:
fip:fedlrv:y:2010:i:nov:p:521-536:n:v.92no.6.

J. Bai, S. Ng. “Determining the Number of Factors in Approximate Factor Models.” In:
Econometrica 70.1 (2002), pages 191-221. https://doi.org/https://doi. org/
10.1111/1468-0262.00273. URL: https://onlinelibrary.wiley.com/doi/abs/
10.1111/1468-0262.00273.

J. Beyhum, J. Striaukas. Sparse plus dense MIDAS regressions and nowcasting during the
COVID pandemic. Papers 2306.13362. arXiv.org, 2023. URL: https://ideas . repec.
org/p/arx/papers/2306.13362.html.

B. Bok, D. Caratelli, D. Giannone, A. M. Sbordone, A. Tambalotti. Macroeconomic now-
casting and forecasting with big data. Staff Reports 830. Federal Reserve Bank of New
York, 2017. URL: https://ideas.repec.org/p/fip/fednsr/830.html.

T. Chen, C. Guestrin. “XGBoost: A Scalable Tree Boosting System.” In: Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing. KDD "16. ACM, 2016, pages 785-794. https://doi.org/10.1145/2939672.
2939785. URL: http://dx.doi.org/10.1145/2939672.2939785.

E. ( Commission). Handbook on seasonal adjustment. Publications Office of the Euro-

pean Union, 2018.

40


https://doi.org/https://doi.org/10.1016/j.coldregions.2021.103342
https://doi.org/https://doi.org/10.1016/j.coldregions.2021.103342
https://www.sciencedirect.com/science/article/pii/S0165232X21001233
https://www.sciencedirect.com/science/article/pii/S0165232X21001233
https://osp.stat.gov.lt/statistikos-terminu-zodynas?popup=true&termId=9012
https://osp.stat.gov.lt/statistikos-terminu-zodynas?popup=true&termId=9012
http://www.jstor.org/stable/43701607
https://EconPapers.repec.org/RePEc:fip:fedlrv:y:2010:i:nov:p:521-536:n:v.92no.6
https://EconPapers.repec.org/RePEc:fip:fedlrv:y:2010:i:nov:p:521-536:n:v.92no.6
https://doi.org/https://doi.org/10.1111/1468-0262.00273
https://doi.org/https://doi.org/10.1111/1468-0262.00273
https://onlinelibrary.wiley.com/doi/abs/10.1111/1468-0262.00273
https://onlinelibrary.wiley.com/doi/abs/10.1111/1468-0262.00273
https://ideas.repec.org/p/arx/papers/2306.13362.html
https://ideas.repec.org/p/arx/papers/2306.13362.html
https://ideas.repec.org/p/fip/fednsr/830.html
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
http://dx.doi.org/10.1145/2939672.2939785

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

A. Destrero, S. Mosci, C. Mol, A. Verri, F. Odone. “Feature selection for high-dimensional
data.” In: Computational Management Science 6 (2009), pages 25-40. https://doi.
org/10.1007/s10287-008-0070-7.

E. C. S. O. of the European Union. Euro area and European Union GDP flash estimates
at 30 days: 2016 edition. eng. LU: Publications Office, 2016. https://doi.org/10.
2785/30494. URL: https://data.europa.eu/doi/10.2785/30494.

C. Foroni, M. Marcellino. A survey of econometric methods for mixed-frequency data.
Economics Working Papers EC02013/02. European University Institute, 2013. URL:
https://EconPapers.repec.org/RePEc:eui:euiwps:eco2013/02.

J. Geweke. The dynamic factor analysis of economic timeseries models. Amsterdam,
1977. URL: https://www.econbiz.de/Record/the-dynamic-factor-analysis-

of-economic-timeseries-models-geweke-john/10002419858.

D. Giannone, L. Reichlin, M. Banbura. Nowcasting. Working Paper Series 1275. European
Central Bank, 2010. URL: https://ideas.repec.org/p/ecb/ecbuwps/20101275.
html.

L. Han, Y. Liu, G. Li, L. Wen. “Tourism demand nowcasting using a LASSO-MIDAS
model.” In: International Journal of Contemporary Hospitality Management 33 (2021),
pages 1922-1949. https://doi.org/10.1108/IJCHM-06-2020-0589.

D. Hopp. Benchmarking econometric and machine learning methodologies in nowcast-
ing GDP. en. 2023. https://doi.org/10.1007/s00181-023-02515-6. URL: http:
//dx.doi.org/10.1007/s00181-023-02515-6.

M. U. Yousuf, |. Al-Bahadly, E. Avci. “Short-Term Wind Speed Forecasting Based on Hybrid
MODWT-ARIMA-Markov Model.” In: JEEE Access 9 (2021), pages 79695-79711.

R. Islam. “Performance analysis of Coiflet-type wavelets for a fingerprint image com-
pression by using wavelet and wavelet packet transform.” In: International Journal of
Computer Science and Engineering Survey 3 (2012), pages 79—-87. https://doi.org/
10.5121/ijcses.2012.3209.

V. N. Kuzin, M. Marcellino, C. Schumacher. MIDAS versus mixed-frequency VAR: nowcast-
ing GDP in the euro area. Discussion Paper Series 1: Economic Studies 2009,07. Deutsche
Bundesbank, 2009. URL: https://ideas.repec.org/p/zbw/bubdpl/7576 .html.

MathWorks. Choose a Wavelet. Accessed: 2025-01-03. 2025. URL: https : / / uk .

mathworks.com/help/wavelet/gs/choose-a-wavelet.html.

41


https://doi.org/10.1007/s10287-008-0070-7
https://doi.org/10.1007/s10287-008-0070-7
https://doi.org/10.2785/30494
https://doi.org/10.2785/30494
https://data.europa.eu/doi/10.2785/30494
https://EconPapers.repec.org/RePEc:eui:euiwps:eco2013/02
https://www.econbiz.de/Record/the-dynamic-factor-analysis-of-economic-timeseries-models-geweke-john/10002419858
https://www.econbiz.de/Record/the-dynamic-factor-analysis-of-economic-timeseries-models-geweke-john/10002419858
https://ideas.repec.org/p/ecb/ecbwps/20101275.html
https://ideas.repec.org/p/ecb/ecbwps/20101275.html
https://doi.org/10.1108/IJCHM-06-2020-0589
https://doi.org/10.1007/s00181-023-02515-6
http://dx.doi.org/10.1007/s00181-023-02515-6
http://dx.doi.org/10.1007/s00181-023-02515-6
https://doi.org/10.5121/ijcses.2012.3209
https://doi.org/10.5121/ijcses.2012.3209
https://ideas.repec.org/p/zbw/bubdp1/7576.html
https://uk.mathworks.com/help/wavelet/gs/choose-a-wavelet.html
https://uk.mathworks.com/help/wavelet/gs/choose-a-wavelet.html

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

L. Melkumova, S. Shatskikh. “Comparing Ridge and LASSO estimators for data analysis.”
In: Procedia Engineering 201 (2017). 3rd International Conference “Information Tech-
nology and Nanotechnology”, ITNT-2017, 25-27 April 2017, Samara, Russia, pages 746—
755. 1SSN: 1877-7058. https://doi.org/https://doi.org/10.1016/j.proeng.
2017.09.615. URL: https://www.sciencedirect.com/science/article/pii/
S1877705817341474.

L. Reichlin, D. Giannone, D. Small. Nowcasting GDP and Inflation: The Real Time Informa-
tional Content of Macroeconomic Data Releases. CEPR Discussion Papers 5178. C.E.P.R.
Discussion Papers, 2005. URL: https://ideas.repec.org/p/cpr/ceprdp/5178.
html.

A. Richardson, T. van Florenstein Mulder, T. Vehbi. “Nowcasting GDP using machine-
learning algorithms: A real-time assessment.” In: International Journal of Forecasting
37.2 (2021), pages 941-948. 1ssN: 0169-2070. https://doi.org/https://doi.org/
10.1016/j.ijforecast.2020.10.005. URL: https://www.sciencedirect.com/
science/article/pii/S016920702030159X.

F. Schorfheide, D. Song. “Real-Time Forecasting With a Mixed-Frequency VAR.” In: Jour-
nal of Business and Economic Statistics 33.3 (2015), pages 366—380. https://doi.org/
10.1080/07350015.2014.954707. URL: https://doi.org/10.1080/07350015.
2014.954707.

C. Schumacher, M. Marcellino, C. Foroni. U-MIDAS: MIDAS regressions with unrestricted
lag polynomials. CEPR Discussion Papers 8828. C.E.P.R. Discussion Papers, 2012. URL:
https://ideas.repec.org/p/cpr/ceprdp/8828.html.

B. Soybilgen, E. Yazgan. “Nowcasting US GDP Using Tree-Based Ensemble Models and
Dynamic Factors.” In: Computational Economics 57.1 (2021), pages 387—417.1SSN: 1572-
9974. https://doi.org/10.1007/s10614-020-10083-5. URL: https://doi.org/
10.1007/s10614-020-10083-5.

J. Stock, M. Watson. “Dynamic Factor Models.” In: Oxford Handbook on Economic Fore-
casting. Edited by M. J. Clements, D. F. Hendry. Oxford: Oxford University Press, 2011.

R. Tibshirani. “Regression shrinkage and selection via the lasso: a retrospective.” In:
Journal of the Royal Statistical Society. Series B (Statistical Methodology) 73.3 (2011),
pages 273-282. I1SSN: 13697412, 14679868. URL: http://www. jstor.org/stable/
41262671 (viewed 2025-01-03).

K. H. Torsten Hothorn, A. Zeileis. “Unbiased Recursive Partitioning: A Conditional Infer-
ence Framework.” In: Journal of Computational and Graphical Statistics 15.3 (2006),
pages 651-674. https : //doi.org/10.1198/106186006X133933. URL: https :
//doi.org/10.1198/106186006X133933.

42


https://doi.org/https://doi.org/10.1016/j.proeng.2017.09.615
https://doi.org/https://doi.org/10.1016/j.proeng.2017.09.615
https://www.sciencedirect.com/science/article/pii/S1877705817341474
https://www.sciencedirect.com/science/article/pii/S1877705817341474
https://ideas.repec.org/p/cpr/ceprdp/5178.html
https://ideas.repec.org/p/cpr/ceprdp/5178.html
https://doi.org/https://doi.org/10.1016/j.ijforecast.2020.10.005
https://doi.org/https://doi.org/10.1016/j.ijforecast.2020.10.005
https://www.sciencedirect.com/science/article/pii/S016920702030159X
https://www.sciencedirect.com/science/article/pii/S016920702030159X
https://doi.org/10.1080/07350015.2014.954707
https://doi.org/10.1080/07350015.2014.954707
https://doi.org/10.1080/07350015.2014.954707
https://doi.org/10.1080/07350015.2014.954707
https://ideas.repec.org/p/cpr/ceprdp/8828.html
https://doi.org/10.1007/s10614-020-10083-5
https://doi.org/10.1007/s10614-020-10083-5
https://doi.org/10.1007/s10614-020-10083-5
http://www.jstor.org/stable/41262671
http://www.jstor.org/stable/41262671
https://doi.org/10.1198/106186006X133933
https://doi.org/10.1198/106186006X133933
https://doi.org/10.1198/106186006X133933

[31]

[32]

V. Zarnowitz. “The New ASA—-NBER Survey of Forecasts by Economic Statisticians.” In:
Supplement to NBER Report Four. NBER Chapters. National Bureau of Economic Re-
search, Inc, 1969, pages 1-8. URL: https: //ideas . repec . org/h/nbr/nberch/
9930.html.

L. Zhu, Y. Wang, Q. Fan. “MODWT-ARMA model for time series prediction.” In: Applied
Mathematical Modelling 38.5 (2014), pages 1859-1865. ISSN: 0307-904X. https: //
doi.org/https://doi.org/10.1016/j.apm.2013.10.002. URL: https :
//www.sciencedirect.com/science/article/pii/S0307904X13006148.

43


https://ideas.repec.org/h/nbr/nberch/9930.html
https://ideas.repec.org/h/nbr/nberch/9930.html
https://doi.org/https://doi.org/10.1016/j.apm.2013.10.002
https://doi.org/https://doi.org/10.1016/j.apm.2013.10.002
https://www.sciencedirect.com/science/article/pii/S0307904X13006148
https://www.sciencedirect.com/science/article/pii/S0307904X13006148

Appendix 1.
Here are all cited types of sources:
e web pages (@online) [1, 3, 21]
e articles (@article) [5, 6, 11, 16, 19, 22, 24, 27, 29, 30, 32]
e articles from conferences (@inproceedings) [9]
* books (@book) [10, 12, 28]
e electronic publications (@misc) [14, 17]
e technical reports (@techreport) [7, 8, 13, 15, 20, 23, 26]

e book chapters (@incollection) [31]

44



Appendix 2.

In the preparation of this thesis, several external tools were employed to enhance the
guality and readability of the text. These tools were utilized to assist in refining language,
improving vocabulary, and ensuring grammatical accuracy.

ChatGPT by OpenAl was used as a supportive tool for improving sentence structure and
suggesting alternative word choices to enhance clarity and coherence. Grammarly was em-
ployed for proofreading and grammar correction. This tool was instrumental in identifying
and addressing typographical errors, punctuation issues, and stylistic inconsistencies. It also
assisted in maintaining a formal and professional tone throughout the text.

While these tools significantly aided in the writing process, all intellectual contributions,
visualizations, research findings, and conclusions presented in this thesis are solely the result
of the author’s work.

45



Appendix 3.

Here is a Python code which was used in the practical experiment of the research.

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from statsmodels.tsa.stattools import adfuller

from statsmodels.tsa.seasonal import STL

from statsmodels.stats.diagnostic import het_breuschpagan

from arch.unitroot import PhillipsPerron

from statsmodels.api import OLS, add_constant

import statsmodels.api as sm

from itertools import combinations,permutations

from dm_test import dm_test

import warnings

from sklearn.preprocessing import StandardScaler, MinMaxScaler, RobustScaler
from modwt import modwt, modwtmra, imodwt

import matplotlib.pyplot as plt

from tabulate import tabulate

from sklearn.model_selection import GridSearchCV, TimeSeriesSplit
from sklearn.metrics import mean_squared_error, mean_absolute_error
from sklearn.linear_model import LinearRegression, Ridge, Lasso, ElasticNet
from sklearn.tree import DecisionTreeRegressor

from sklearn.neighbors import KNeighborsRegressor

from sklearn.ensemble import GradientBoostingRegressor

from sklearn.svm import SVR

from sklearn.impute import SimpleImputer

from xgboost import XGBRegressor

from statsmodels.tsa.arima.model import ARIMA

from pmdarima import auto_arima

import inspect

warnings.filterwarnings("ignore")

plt.rcParams['figure.figsize'] = [15, 10]

# Data loading and definitions of test/train sample strat/end

data = pd.read_excel('BVP_men_SA.xlsx', sheet_name='Regresoriai_men', parse_dates=[0])
schedule = pd.read_excel('variable_schedule.xlsx', sheet_name='schedule_SA')
training s = "2017-01-01"

testing_s = "2022-01-01"

testing_e = "2024-09-01"

46



lags = [-2, -1, 0, 1, 2]

# List of functions which were used in further calculations.
# It consists column fill with column mean function, stationary tests, modwt
# transformations and lag steps generator function for each column.
def mean(training, test, date_column):
training[date_column] = pd.to_datetime(training[date_column])
test[date_column] = pd.to_datetime(test[date_column])
date_last = training[date_column].max()
last_3_months = training[training[date_column] >= (date_last -
pd.DateOffset (months=3))]
mean_dict = {}
for ¢ in training.columns[1:]:
mean_dict[c] = np.nanmean(last_3_months[c])
filled = test.copy()
for ¢ in training.columns([1:]:
filled.loc[pd.isna(filled[c]), c] = mean_dict[c]

return filled

def stationary_tests(data):
def stationary_flow(data, columns):

stat_c = []

non_stat_c = []

for ¢ in columns:
x_series = datalc].dropna()
result_adf = adfuller(x_series, autolag='AIC')
adf_p_value = result_adf [1]
X = np.arange(len(x_series))
X = sm.add_constant (X)
y
model = sm.0LS(y, X).fit()

result_bp = het_breuschpagan(model.resid, model.model.exog)

X_series

bp_p_value = result_bp[1]
if bp_p_value < 0.05:
result_pp = PhillipsPerron(x_series)
pp_p_value = result_pp.pvalue
if pp_p_value >= 0.05:
non_stat_c.append(c)
else:
stat_c.append(c)

else:

47



if adf_p_value < 0.05:
stat_c.append(c)
else:
non_stat_c.append(c)
return stat_c, non_stat_c
columns_wo_date_BVP = [column for column in data.columns
if column !'="date" and column != 'BVP_SA']
stat_c_before, non_stat_c_before = stationary_flow(data, columns_wo_date_BVP)
for ¢ in non_stat_c_before:
if (datalc] <= 0).any(Q):
datalc] = datalc].diff()

else:
datalc] = np.log(datalc]).diff()

data.dropna(inplace=True)

stat_c_after, non_stat_c_after = stationary_flow(data, non_stat_c_before)
i=1
while non_stat_c_after:
for ¢ in non_stat_c_after:
if (datalc] <= 0).anyQ:
datalc] datalc].diff )

else:
datalc] = np.log(datalc]).diff()

data.dropna(inplace=True)

stat_c_after, non_stat_c_after = stationary_flow(data, non_stat_c_after)
i+=1

return data

def lag_data(schedule, data, date_last, lag):
lag_data = datal[data.date <= date_last].reset_index(drop=True)
for ¢ in lag_data.columns[1:]:

if ¢ in schedule['all_variables'].values:

lag_ = schedule.loc[schedule.all_variables == c, "month_lag"].values[0]
else:

lag_ =0
lag_data.loc[(len(lag_data) - lag_ + lag) :, c] = np.nan

return lag_data

def modwt_transform(data, wavelet, level, step):
data_wavelet = pd.DataFrame(index=data.index)
for ¢ in data.columns:

coeffs = modwt(datal[c].values, wavelet, level)

48



data_wavelet [f"{c}_wavelet_{step}"] = coeffs[step]

return data_wavelet

# Data preparation steps for remaining nowcasting framework

data = stationary_tests(data)

data.set_index('date')

predicted = "BVP_SA"

nowcasting_data = data.loc[(data.date >= training_s) & (data.date <= testing_e), :]
.reset_index(drop=True)

dates = pd.date_range(start=testing_s, end=testing e, freq="3MS").strftime("%Y-
Jm=-%d") .tolist )

true_values = [value for value in nowcasting_data.loc[nowcasting_datal['date']

.isin(dates), predicted].values]

# Nowcasting framework
# List of models with different parameters which were used in the nowcasting framework.

models = [

{
'name': 'XG Boost',
'model’': XGBRegressor(),
'parameters': {
'learning_rate': [0.01],
'max_depth': [6],
'n_estimators': [200],
'booster': ["gblinear"],
}
1,
{
'name': 'Lasso Regression',
'model': Lasso(),
'parameters': {
'alpha': [0.0001, 0.01, 1, 100]
}
1,
{
'name': 'Ridge'’,
'model': Ridge(),
'parameters': {
'alpha': [0.0001,0.1, 1, 100]
}
1,

49



'name': 'KNeighbors Regressor',
'model’': KNeighborsRegressor(),
'parameters': {

'n_neighbors': [3],

'weights': ['uniform'],
'p': [1]
}
+,
{
'name': 'Linear Regression',
'model': LinearRegression(),
'parameters': {
}
1,
{
'name’': 'Elastic Net',
'model': ElasticNet(),
'parameters': {
'alpha': [0.0001,0.1, 1, 100],
'11_ratio': [0.1, 0.5]
}
1,
{
'name': 'Decision Tree',
'model': DecisionTreeRegressor(),
'parameters': {
'max_depth': [3],
'min_samples_split': [3],
'min_samples_leaf': [3],
'max_features': ["log2"],
'criterion': ["absolute error"],
'splitter': ["best"]
}
1,
{

'name': 'SVR',

'model': SVRQ),
'parameters’ :{
'c': [1],
'epsilon': [0.01],

50



'kernel': ['linear'],
'gamma': ['scale'],
'degree': [2],
'shrinking': [True],

"tol': [1le-4]

'name': 'Gradient Boosting Regressor',
'model': GradientBoostingRegressor(),
'parameters' : {

'learning_rate': [0.01],

'n_estimators': [25],

'max_depth': [3],

'alpha': [0.005],

'loss': ['squared_error']

'name’': 'ARIMA',

'model’': "",

'parameters': {
'seasonal': [False],
'stepwise': [Truel,

'suppress_warnings': [True]

# Array for results

results = {

'"Model': [],
'RMSE': [],
'"MAE': [],

}
fig, axes = plt.subplots(5, 2, figsize=(15, 12))

axes = axes.flatten()

# Nowcasting framework for each model. Nowcasting each point from the tests sample

# start point, outputs

# are compared with true values.

51



for i, model info in enumerate(models):

model_name = model_info['name']

model

model_info['model']

param_grid = model_info['parameters']

# print(f£"Running framework for {model_namel}")
pred_dict = {k: [1 for k in lags}
if model_name != "ARIMA":

# Nowcasting for each point of the test sample. Each time model is created from

scratch with

# rolling variables respectively for loop iteration.

for date in dates:

training_data = nowcasting_data.loc[nowcasting_data.date <=

str(pd.to_datetime(date) - pd.tseries.offsets.DateOffset(months=3))[:10],:]

feature_engineering = mean(training_data, training_data, "date")
feature_engineering = feature_engineering.loc[feature_engineering.date.dt

.month.isin([1,4,7,10]),:].dropna(axis=0, how="any") .reset_index(drop=True)

X

y
tscv = TimeSeriesSplit(n_splits=5)

feature_engineering.drop(["date", predicted], axis=1)

feature_engineering[predicted]

# Best model parameters are selected using the GridSearch function with
time series split and scoring.

grid_search = GridSearchCV(model, param_grid, cv=tscv,
scoring='neg_mean_squared_error', error_score='raise')
grid_search.fit(x, y)

best_model = grid_search.best_estimator_

# Pseudo-real-time creation with lags

for lag in lags:

lag_calculations = lag_data(schedule, nowcasting_data, date, lag)

lag_calculations = mean(training_data, lag_calculations, "date")
x = lag_calculations.loc[lag_calculations.date ==

date, :].drop(["date", predicted], axis=1)

# Nowcast
prediction = best_model.predict(x) [0]
pred_dict[lag] .append(prediction)

# ARIMA model has quite a different model structure, due to this this model has a

# little bit different flow, but the main idea remains the same.

elif model_name == 'ARIMA':

for date in dates:

training_data = nowcasting_data.loc[nowcasting_data.date <=

str(pd.to_datetime(date) - pd.tseries.offsets.Date0ffset(months=3))[:10],

52

1]



feature_engineering = mean(training data, training data, "date")

feature_engineering = feature_engineering.loc[feature_engineering.date.dt
.month.isin([1,4,7,10]), :].dropna(axis=0, how="any").reset_index(drop=True)

for lag in lags:

lag_calculations = lag_data(schedule, nowcasting_data, date, lag)

lag_calculations = mean(training_data, lag_calculations, "date")
y = lag_calculations[predicted]
auto_model = auto_arima(
¥
seasonal=param_grid['seasonal'] [0],
stepwise=param_grid['stepwise'] [0],
suppress_warnings=param_grid['suppress_warnings'] [0]

)

best_order

auto_model.order

ARIMA(y, order=best_order).fit()

best_model

prediction = best_model.forecast(steps=1)
pred_dict[lag] .append(prediction)
performance = pd.DataFrame(columns=["Vintage", "RMSE","MAE"])
# Results and accuracy metrics are stored for each vintage
for lag in lags:
x = pd.DataFrame ({
"Vintage": lag,
"RMSE": np.sqrt(mean_squared_error(true_values, pred_dict[lagl)),
"MAE": mean_absolute_error(true_values, pred_dict[lag]l),
"Model": model_name
}, index=[0])
performance = pd.concat([performance, x]).reset_index(drop=True)
print (performance.round(4))
quarterly_dates = datal['date'][datal['date'].dt.month.isin([1, 4, 7, 10])]
test_dates = quarterly_dates[(quarterly_dates >= testing_s) &
(quarterly_dates <= testing_e)]

true_values_all = list(data.loc[data.date.isin(quarterly_dates), predicted].values)

# Data visualizations

axes[i] .plot(quarterly_dates, true_values_all, label='Actuals', color='black')

for lag, predictions in pred_dict.items():

if lag in lags:

axes[i] .plot(test_dates, predictions, label=f'Predictions {lag} lag',
linestyle='--")

axes[i] .set_title(f'Actual vs Predicted Values ({model_name} - MODWT ({waveletl}))')

axes[i] .set_xlabel("Date (Quarterly)")

53



axes[i] .set_ylabel ("BVP")

axes[i] .legend(loc='upper left', fontsize='small')
plt.tight_layout ()
plt.show()

# Nowcasting framework with MODWT

# This framework is implemented on the basic nowcasting framework.
# So the main ideas are the same as it was.

# The new things will be highlighted.

results = {

'Model': [J,
'RMSE': [],
'MAE': [],

fig, axes = plt.subplots(5, 2, figsize=(15, 12))
axes = axes.flatten()

# Wavelet steps

level = 4

wavelet_dict = {}

# Here the wavelet type must be selected.
List of the wavelets which were used in this work:
# db4, haar, symb, dmey, rbiol.3, coif6

wavelet="'coif6'

# Nowcasting framework is used to calculate any model interaction with MODWT features.

for i, model info in enumerate(models):
model name = model_info['name']
model = model_infol['model']
param_grid = model_info['parameters']
# print(f"Running algorithm for {model_namel}")
pred_dict = {k: [] for k in lags}
pred_dict_w = {k: [] for k in lags}
if model_name != "ARIMA":

# New for loop is used to calculate each level of wavelet
for j in range(0, level+l):

for date in dates:

training_data = nowcasting_data.loc[nowcasting_data.date <=

str(pd.to_datetime(date) - pd.tseries.offsets

54



.Date0ffset (months=3)) [:10], :]

feature_engineering = mean(training data, training data, "date")

feature_engineering = feature_engineering.loc[feature_engineering.date
.dt.month.isin([1,4,7,10]),:]
.dropna(axis=0, how="any").reset_index(drop=True)

x = feature_engineering.drop(["date", predicted], axis=1)

# Wavelet transformation for x and y

X

y
wavelet=wavelet, level=level, step=j)

modwt_transform(x, wavelet=wavelet, level=level, step=j)

modwt_transform(feature_engineering[predicted].to_frame(),

tscv = TimeSeriesSplit(n_splits=5)
grid_search = GridSearchCV(model, param_grid, cv=tscv,
scoring='neg_mean_squared_error', error_score='raise')
grid_search.fit(x, y)
best_model = grid_search.best_estimator_
# print(f'Running wavelet {j} for {datel}')
for lag in lags:
lag_calculations = lag_data(schedule, nowcasting_data, date, lag)
lag_calculations = mean(training data, lag_calculations, "date")
lag_calculations_wo_date = lag_calculations.drop(["date",
predicted], axis=1)
lag_calculations_modwt = modwt_transform(lag_calculations_wo_date,
wavelet=wavelet, level=level, step=j)
lag_calculations_new = pd.concat([lag_calculations_modwt,
lag_calculations["date"]], axis=1)
X = lag_calculations_new.loc

[lag_calculations_new.date == date, :].drop(["date"], axis=1)

# Nowcasting every wavelet level step, every vintage at
every test sample point.
prediction = best_model.predict(x) [0]
pred_dict[lag] .append(prediction)
wavelet_dict[j] = pred_dict.copy()
pred_dict = {k: [] for k in lags}

# This logic is very complicated because there are 3 different loops.
# Every loop step should be distributed according to their places.
lag_dicts = {lag: [l for lag in lags}

for sub_dict in wavelet_dict.values():

for lag, value in sub_dict.itemsQ):

55



if lag in lag_dicts:
lag_dicts[lag] .append(value)

for lag, lag_values in lag dicts.items():

# When distribution is done. The transformation from wavelet
signal prediction to the

# time series is done using imodwt.

# Inverse Maximal Overlap Discrete Wavelet Transform is used in
wavelet analysis to

# reconstruct a signal from its wavelet coefficients that were
generated using the MODWT.

pred_w = imodwt(lag_values, wavelet)

pred_dict_w[lag] .append(pred_w)

# The same flow is done using the ARIMA model.
elif model _name == 'ARIMA':
for j in range(0, level+1):
for date in dates:
training data = nowcasting_data.loc[nowcasting_data.date <=
str(pd.to_datetime(date) - pd.tseries.offsets
.Date0ffset (months=3))[:10], :]

feature_engineering = mean(training_data, training_data, "date")

feature_engineering = feature_engineering.loc[feature_engineering.date.dt
.month.isin([1,4,7,10]1), :]

.dropna(axis=0, how="any").reset_index(drop=True)

# print(f'Running wavelet {j} for {datel}')

for lag in lags:

lag_calculations = lag_data(schedule, nowcasting_data, date, lag)

lag_calculations = mean(training_data, lag_calculations, "date")
y = modwt_transform(lag_calculations[predicted].to_frame(),
wavelet=wavelet, level=level, step=j)
auto_model = auto_arima(
Vs
seasonal=param_grid['seasonal'] [0],
stepwise=param_grid['stepwise'] [0],
suppress_warnings=param_grid['suppress_warnings'] [0]
)

best_order = auto_model.order

ARIMA(y, order=best_order).fit()

best_model

prediction = best_model.forecast(steps=1)

pred_dict[lag] .append(prediction)

56



wavelet_dict[j] = pred_dict.copy()
pred_dict = {k: [] for k in lags}
lag _dicts = {lag: [] for lag in lags}
for sub_dict in wavelet_dict.values():
for lag, value in sub_dict.items():
if lag in lag_dicts:
lag_dicts[lag] .append(value)
for lag, lag_values in lag_dicts.items():
pred_w = imodwt(lag_values, wavelet)
pred_dict_w[lag] .append(pred_w)
performance = pd.DataFrame(columns=["Vintage", "RMSE","MAE"])

# Performance metrics for each vintage.
for lag in lags:
x = pd.DataFrame ({
"Vintage": lag,
"RMSE": np.sqrt(mean_squared_error(true_values, pred_dict_w([lag] [0])),
"MAE": mean_absolute_error (true_values, pred_dict_w([lag] [0]),
"Model": model_name
}, index=[0])
performance = pd.concat([performance, x]).reset_index(drop=True)
print (performance.round(4))
quarterly_dates = datal['date'] [data['date'].dt.month.isin([1, 4, 7, 10])]
test_dates = quarterly_dates[(quarterly_dates >= testing_s) &
(quarterly_dates <= testing_e)]

true_values_all = list(data.loc[data.date.isin(quarterly_dates), predicted].values)

# Data visualizations.
axes[i] .plot(quarterly_dates, true_values_all, label='Actuals', color='black')
for lag, predictions in pred_dict_w.items():
if lag in lags:
axes[i] .plot(test_dates, predictions[0],
label=f'Predictions {lag} lag', linestyle='--"')
axes[i] .set_title(f'Actual vs Predicted Values ({model name} - MODWT ({waveletl}))')
axes[i] .set_xlabel("Date (Quarterly)")
axes[i] .set_ylabel ("BVP")
axes[i] .legend(loc='upper left', fontsize='small')
plt.tight_layout ()
plt.show()

# The best model implementation of MODWT-ARIMA is compared with the direct

57



ARIMA approach to find

# if there is a significant change in the accuracy (MAE) metrics

true_values = np.array([0.000602368, -0.005682667, 0.001891908,
-0.007530638, 0.001485916, -0.001654852, -0.002894649, 0.002746955,
-0.002570982, 0.000951662, 0.000512185])

direct_arima_predictions = np.array([0.000311116, 0.000552692,
0.00045351, 0.000470809, 0.000246758, -0.004863303,

0.000741207, -0.00014329, -0.0001959, 0.001428993, -0.001551229])
modwt_arima_predictions = np.array([-0.000306175, -0.000949065,
0.001557645, -0.000543094, -0.000281345, -0.000404364, 0.000105832,
0.002637581, -0.002099504, -0.000373153, -0.0001])

db_mse = dm_test(actuals, direct_arima_predictions,
modwt_arima_predictions, h = 1, crit="MSE")

pvalue = db_mse[1]
# P-value is 0.015285942010315922, which indicates

a significant difference between the errors.

Here is an R code of seasonal adjustments using the X-13 ARIMA SEATS method:

library(readxl)
library(writexl)
library(dplyr)
library(seasonal)

library(x13binary)

file_path <- "C:/Users/admin/Desktop/Magistras/BVP.x1lsx"

sheet_name <- "Regresoriai_men"

data <- read_excel(file_path, sheet = sheet_name)

data <- data %>%

mutate(across (where(is.numeric), ~ ifelse(is.na(.), mean(., na.rm = TRUE),

data$date <- as.Date(data$date)

adjusted_data_list <- list()

for (col _name in names(data)[-1]) {

)

58



ts_data <- ts(datal[col_name]], frequency = 4, start = c(2010, 1))
seas_adjustment <- seas(ts_data)
adjusted_values <- final(seas_adjustment)

adjusted_data_list[[col_name]] <- adjusted_values

adjusted_data <- data.frame(date = data$date)
for (col_name in names(adjusted_data_list)) {

adjusted_datal[[pasteO(col_name, "_SA")]] <- adjusted_data_list[[col_name]]

output_file <- "C:/Users/admin/Desktop/Magistras/BVP_men_SA.x1lsx"
write_xlsx(adjusted_data, output_file)

59



	Abstract
	Santrauka
	List of notations
	Introduction
	1  Literature review
	2 Data preparation and methodology
	2.1 Seasonal decomposition using X-13 ARIMA SEATS
	2.2 Data stationary tests
	2.2.1 Augmented Dickey-Fuller test
	2.2.2 Breusch-Pagan test
	2.2.3 Phillips-Perron test

	2.3 Pseudo real-time nowcasting framework
	2.4 Machine learning models
	2.4.1 XGBoost
	2.4.2 Lasso Regression
	2.4.3 Ridge regression
	2.4.4 K-Nearest Neighbors (KNN) Regressor
	2.4.5 Linear Regression
	2.4.6 Elastic Net
	2.4.7 Decision Tree
	2.4.8 Support Vector Regression (SVR)
	2.4.9 Gradient Boosting Regressor
	2.4.10 ARIMA

	2.5 Diebold-Mariano test
	2.6 Maximal overlap discrete wavelet transform
	2.7 Final nowcasting algorithm

	3 Results and Comparisons
	4 Conclusion
	Appendix 1.  
	Appendix 2.  
	Appendix 3.  

