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Summary

Biometric authentication has emerged as a crucial technology for enhancing digital security,

with keystroke dynamics providing a cost­effective and accessible behavioral biometric solution. This

thesis evaluates and compares various machine learning approaches for keystroke dynamics­based

user authentication, and proposes solutions to improve the accuracy of existing authentication tech­

niques. Using datasets such as CMU and KeyRecs, various classifiers, including decision trees, ran­

dom forests, k­nearest neighbors, support vector machines, gradient boosting, XGBoost, and convo­

lutional neural networks, are implemented.

In addition, user classification based on time series images is introduced. The transformation

of time series data into gramian angular summation field and gramian angular difference field images

further enhances the analysis.

The results demonstrated significant variations in classifier performance between datasets. For

the CMU dataset, the voting ensemble model achieves the highest accuracy of 96.48%, whereas for

the KeyRecs dataset, the convolutional neural network achieves up to 90.45% accuracy with an equal

error rate as low as 0.1006. The obtained results indicate that it is meaningful to analyze keystroke

dynamics on both numeric features and time series images.

Keywords: Keystroke dynamics, biometric authentication, machine learning, convolutional

neural networks, binary classification, equal error rate
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Santrauka

Biometrinis autentifikavimas yra svarbi technologija, siekiant sustiprinti skaitmeninį saugumą,

o klavišų paspaudimų dinamika yra ekonomiškas ir prieinamas elgsenos biometrikos autentifikavimo

būdas. Šiame darbe vertinami ir lyginami įvairūs mašininio mokymosi metodai, skirti biometriniam

autentifikavimui naudojant klavišų paspaudimo dinamikos duomenis bei siūlomi sprendimai, kaip

pagerinti esamų autentifikavimo metodų tikslumą. Naudojant tokias duomenų bazes kaip CMU ir

KeyRecs, buvo įgyvendint įvairūs klasifikatoriai, įskaitant sprendimų medžius, atsitiktinius miškus, k

artimiausius kaimynus, atraminių vektorių klasifikatorių, gradientinį auginimą, ekstremalų gradientinį

auginimą ir konvoliucinius neuroninius tinklus.

Be to, buvo analizuojama vartotojų klasifikacija pagal laiko eilučių vaizdus. Laiko eilučių

duomenų transformavimas į paveikslėlius dar labiau sustiprino analizės galimybes. Rezultatai parodė

reikšmingus skirtumus tarp klasifikatorių ir tarp duomenų bazių. Naudojant CMU duomenų bazę,

balsavimo ansamblio modelis pasiekė didžiausią 96,48% tikslumą, o KeyRecs duomenų bazėje kon­

voliucinis neuroninis tinklas pasiekė 90,45% tikslumą, su lygių klaidų verte siekiančia 0,1006. Gauti

rezultatai rodo, kad klavišų paspaudimų dinamiką verta analizuoti tiek naudojant skaitinius kintamu­

osius, tiek pagal laiko eilučių vaizdus.

Raktiniai žodžiai: Klavišų paspaudimų dinamika, biometrinis autentifikavimas, mašininis moky­

masis, konvoliuciniai neuroniniai tinklai, dviejų kintamųjų klasifikacija, lygių klaidų vertė
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Introduction

As technology advances and digital systems become integral in daily life, the need to protect

sensitive information has increased. Therefore, user authentication, ­i.e, the process of verifying a

claimed identity [57], has emerged. Ensuring that only authorized users have access to systems and

data is essential to prevent unauthorized access and potential security breaches.

Historically, many people have used easily guessable passwords, such as password, 123456 or

qwerty. Common passwords are particularly vulnerable to brute­force attacks, as they are among the

first combinations tested when hash algorithms are employed to systematically attempt all possible

inputs in search of a match to a specific hash value.

For such reasons, the industry had to improve hash functions to include extra randomization

components against brute­force hash algorithms. For example, salting ensures that even if two users

have the same password, their hashes differ because of the unique salt. Salting prevents attackers

from using precomputed hash tables to identify passwords.

As digital systems have increasingly relied on passwords for security, both researchers and cy­

bercriminals have developed new methods to exploit them. Consequently, the industry is always

seeking to incorporate new ways to safeguard the authentication process. For example, to defend

against automated authentication attacks, in the late 1990s, researchers developed strategies to dif­

ferentiate between humans and computers. These techniques are known as the Completely Auto­

mated Public Turing test to tell Computers and Humans Apart (CAPTCHA). A CAPTCHA cannot be used

to authenticate a user, but it can be used to protect against some automated authentication assaults

[44].

Following security guidelines and recommended practices is important when new passwords

are created. Unfortunately, when people and companies do not adhere to these recommendations,

it can result in password database leaks, demonstrating that passwords alone cannot protect online

identities. Since the 2010s, as smartphones became more widely available, alternatives to pass­

words—such as biometric technologies, two­factor authentication (2FA), and multi­factor authenti­

cation (MFA)—have been introduced and become increasingly accessible to the general population,

despite often being costly and challenging to implement. Thus, biometric technologies have gained

popularity, especially when used together with traditional authentication methods, providing an ex­

tra level of security [57].

Biometric authentication can be divided into physiological biometrics and behavioral biomet­

rics. Physiological biometrics refer to a person’s physical attributes, whereas behavioral biometrics

refers to a person’s behavioral attributes. Due to the variability of the humanbody,mind, and changes

over time, behavioral biometrics tend to exhibit greater variability and lower authentication accuracy

than physiological biometrics. However, collecting behavioral biometric data does not require spe­

cialized equipment, making the process more cost­effective and less complex [58].

In recent years, more focus has been placed on analyzing behavioral authentication, specifically

keystroke dynamics, which allows an individual to be recognized in a way that he or she types on a

computer keyboard [10]. This paper’smain goal is to evaluate and compare variousmachine learning
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approaches for keystroke dynamics­based user authentication, and propose solutions to improve the

accuracy of existing authentication techniques.

Considering the methods chosen by other authors, the following objectives were formulated

to achieve the goal:

1. Conduct a comprehensive literature review on keystroke dynamics for biometric user authen­

tication.

2. Identify relevant keystroke dynamics datasets for further analysis.

3. Conduct data preprocessing and exploratory data analysis.

4. Perform analysis of identified machine learning models for classifying genuine and impostors

and propose possible solutions to improve the quality of authentication.

5. Evaluate and compare the performance of the models.

6. Draw conclusions and suggest future research directions.

The following research description consists of several sections: ”Literature Review” which pro­

vides a detailed overview of previous studies by other authors on user authentication and keystroke

dynamics. This section outlines the key methods and strategies commonly used in this field. The

”Methodology” section presents comprehensive theoretical information on the methods, analysis

techniques, and other research details employed in the study. The ”Experiments and Results” elab­

orates on the data sources used, initial data analysis and preprocessing sequence, the steps taken to

classify users, including algorithms, models, and their parameters. Additionally, the results obtained

from the research are presented. Finally, the ”Conclusion” section summarizes the key findings de­

rived from the experiments and analysis, offering suggestions and recommendations for future work

in this area.
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1 Literature review

Technological advancements have driven the need to analyze biometric­based user authenti­

cation methods, such as keystroke dynamics. Two main types of keystroke dynamics consist of fixed

and free text.

1.1 Fixed­text keystroke dynamics

In 2009, an article [57] presented a comprehensive survey of existing keystroke dynamicsmeth­

ods, metrics, and various approaches. The focus was primarily on two main approaches for identity

verification: statistical techniques and neural network techniques, or a combination of the two.

Statistical methods for keystroke dynamic analysis involve comparing a reference (the user’s

typical typing behavior collected during enrollment) and test sets (the typing data collected during

authentication) of a user’s typing characteristics. The distance between these two sets is then cal­

culated, and a threshold is established. If the distance falls below the threshold, the individual is

identified as the legitimate user; if it exceeds the threshold, the individual is recognized as an in­

truder.

The second approach, which uses neural networks, involves building a predictive model from

historical data and then using this model to predict or classify new observations. One of the key ad­

vantages of neural networks over statistical methods is their ability to capture nonlinear relationships

between typing patterns.

Research from 2012, [12] explored various approaches for analyzing keystroke dynamics data,

including data acquisitionmethods and the performance of different techniques used by researchers

on standard computer keyboards. Beyond the previously mentioned statistical and neural network

methods, the authors discussed pattern recognition and learning­based algorithms. These include

both simple machine learning techniques, such as nearest neighbor algorithms and clustering, and

more complex approaches, such as data mining, Bayes classifiers, Fisher’s linear discriminant (FLD),

SVM, and graph theory. One of the significant advantages of using probabilistic learning algorithms,

as highlighted by the authors, is their ability to provide a confidence value associated with the de­

cisions made. These algorithms can also mitigate the problem of error propagation by disregarding

outputs with low confidence values.

Another approach discussed in the article involves the use of search heuristics and the com­

bination of algorithms. For example, search heuristics such as genetic algorithms, which are part of

evolutionary algorithms, are employed to find optimal solutions. Ant colony optimization (ACO) is an

example of a method that incorporates genetic algorithms.

Several key factors affecting the performance of the mentioned models were identified in the

article. Shorter and simpler passwords aremore vulnerable to impersonation, and keystroke patterns

can vary significantly between structured and unstructured text. Passwords with special characters

are more distinct than those with regular text, and non­English words are generally identified more

accurately than English words are. Longer passwords with mixed alphanumeric characters also im­

prove identification accuracy. The cost of enrollment and authentication can vary, but advanced
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resampling techniques can drastically reduce computational costs. Research has also discussed the

impact of emotional state on typing speed, with negative emotions reducing speed significantly and

positive emotions increasing it. Health, the typing environment, and device type also affect accuracy.

The author [20] proposed a method that focuses exclusively on latency and hold time for

keystroke dynamics analysis for fixed text. The extracted features are arranged in both sequential

and batch modes. The sequential mode extracts features after each keystroke, whereas the batch

mode processes them after the entire string is typed, which results in better performance for longer

input strings. The authors utilized classification techniques, specifically Gaussian mixture models

(GMMs) and NNs, to analyze these timing features. The GMM is trained using only positive (genuine

subjects) data, while NN uses both positive and negative (impostors) data for training. TheGMMclas­

sifier achieves up to 90% accuracy, while the NN classifier achieves up to 99% accuracy. The results

show that batchmode is more effective than sequential mode and that using both the username and

password as input strings yields better authentication performance than using only one.

The study [11] evaluated the performance of fixed ­ text short inputs in a recently developed

keystroke biometric classification system. A key component of this system is the Pace University

classification procedure. The Pace classifier employs a vector­difference authentication model that

converts a multiclass problem into a two­class problem. The system was tested on password data

from 51 subjects in the CMUdataset. The experiments analyzed two scenarios using different feature

sets: one based on the 31 original CMU features and another new set of 75 features designed for

this study. The EER in both cases was 8.7%.

In [18], authors explored a wide range of machine learning and deep learning techniques. This

study uses the CMU dataset often used in studies involving fixed­text keystroke dynamics analysis.

The authors implement a range of models, including traditional machine learning methods such as

KNN, RF, SVM, XGB and advanced deep learning techniques like long short­term memory (LSTM),

CNN, and multilayer perceptron (MLP), which focus on optimizing the models. The XGB model with

data augmentation achieves the highest accuracy of 96.39%, although the exact EER values are not

explicitly stated. Without augmentation, XGB achieved an accuracy of 95.42%. MLP ­ 95.96% accu­

racy, CNN ­ 92.57%, and SVM with an accuracy of 88.02%.

In the article [35], the authors present a novel approach to user authentication by focusing on

partial passwords. This study aims to increase security by developing a system capable of recognizing

users on the basis of their typing patterns, evenwhen only part of the password is entered. To achieve

this goal, a unique dataset was created by simulating a bank login scenario with 39 participants, cap­

turing both full and partial password entries. The authors employed a Siamese neural network (SNN)

architecture to compare users’ typing dynamics and identify them based on the similarity of their

keystroke patterns. The SNN­based approach was evaluated against traditional methods, including

the scaled Manhattan distance and Mahalanobis distance. The results showed that the SNN outper­

formed these classical techniques, particularly in scenarios with limited enrollment samples. For full

password authentication, the SNN classifier achieved an EER of 0.27, while for partial password au­

thentication, it achieved an EER of 0.3. Additionally, after 12 previous logins, the system reached an

accuracy of 89% for full passwords and 73% for partial passwords.
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The analysis in [46] utilized the KNN algorithm with Manhattan distance, combined with T­SNE

for dimensionality reduction, to visualize distinct data groups. The keystroke dynamics authentica­

tion (KDA) algorithm was employed to classify password entries as belonging to a genuine user or

an impostor by correlating the entry with both defense and attack datasets and comparing these

correlations to a predefined threshold. The study revealed that typing speed was positively corre­

lated with authentication accuracy. Additionally, the password length enhanced the performance of

the KNN method but had a negative effect on the distance threshold method. However, increased

password complexity adversely affects both approaches.

The research paper [17] presents a novel approach to user authentication by leveraging deep

learning techniques, specifically transforming keystroke dynamics (numerical data) into images. This

transformation enables CNNs to extract features effectively and recognize patterns. The method­

ology employs an SNN architecture to compare features of newly entered passwords with those of

previously stored passwords, facilitating accurate user authentication. The study achieved competi­

tive results, with an EER as low as 4.545% and accuracy rates reaching up to 98.9%. These findings

underscore the potential of visual representations of keystroke data in strengthening user authenti­

cation systems, especially in the context of evolving cyber threats.

Alternative approaches for analyzing keystroke dynamic data using images have also been ex­

plored. Article [6] introduced the concept of keystroke barcodes, which involve converting habitual

biometric data into compact, storable barcode representations. One­class SVMs were employed as

the primary classifiers for training and testing these barcodes. This method achieved promising re­

sults, with a low EER of 1.83%, demonstrating its effectiveness for keystroke dynamics­based authen­

tication.

1.2 Free­text keystroke dynamics

[3] presented a free­text keystroke biometric system called TypeNet, which is based on a re­

current neural network (RNN) architecture trained with different learning strategies and evaluated

on four public databases. The model achieves state­of­the­art performance with an EER of 2.2% on

desktop keyboards and 9.2% on mobile keyboards. TypeNet is scalable, maintaining low error rates

even when tested on up to 100,000 users.

Keystroke dynamics can be utilized not only for user authentication but also for detecting de­

pressive tendencies. In [24], a binary classification task was proposed to identify these tendencies

through keystroke dynamics collected during routine smartphone interactions. The participantswere

categorized into two groups: individuals with depressive tendencies and healthy controls. By ana­

lyzing typing patterns such as hold time and flight time, along with other engineered features, the

study employed machine learning techniques to extract insights from these digital biomarkers. The

objective of this study was to develop a tool for the early detection of depression.

Multiple classifiers, including GB, RF and Neural Network (NN), were trained and evaluated

via metrics such as the AUC, sensitivity, specificity, and accuracy. Among these classifiers, the GB

classifier with mutual information feature selection achieved the best performance, with an AUC of

14



0.98 and an accuracy of 95.83%. These results underscore the potential of keystroke dynamics as a

real­time diagnostic tool for mental health monitoring.

Keystroke dynamics can also be utilized to determine whether a user is above or below the

age of 18. In [16], the authors proposed leveraging typing patterns, such as key hold durations and

latency between keystrokes, to analyze these features for continuous authentication and identifica­

tion. Using a dataset collected from 116 participants—70 adults and 46 children—during online chat

sessions, this study explores the possibility of keystroke­based age prediction for applications such

as access control in age­restricted environments.

A trust model was implemented to dynamically evaluate classification confidence as more

keystrokes were recorded, allowing for real­time user age assessment. The study achieved promising

results, with approximately 80% accuracy in authentication after analyzing 180 keystrokes and a 75%

true positive rate for identification within just 20 keystrokes. However, the research identified sev­

eral challenges. A significant device usage discrepancy was noted, as children predominantly used

mobile devices while adults utilized physical keyboards, introducing potential bias into the results.

Furthermore, the dataset’s limited representation of children, all aged approximately 14, restricted

the generalization of the findings. The authors recommend that future research address these lim­

itations by incorporating a broader range of age groups and developing methods to mitigate the

influence of device variability.

[4] research focused on the detection of free­text keystroke dynamics. The authors proposed

an approach that involves approximatingmissing values by integrating a keymapping technique with

neural network analysis. This method not only examines the timing and sequence of each charac­

ter pressed by the user but also considers pairs of consecutive characters or digraphs. By analyz­

ing the timing between two consecutive keystrokes, the approach gains additional insights into the

user’s typing pattern, enhancing the detection and authentication process. Unlike fixed­text meth­

ods, which require users to type predefined text, the free­text method analyzes typing in a natural

setting without requiring specific input. This makes it ideal for continuous, unobtrusive monitoring.

The system introduced in the article achieves strong performance, with a FAR of 1.52% and an FRR of

4.82%, with an EER of 2.46% in a heterogeneous environment (53 users). In amore controlled setting

(17 users), an FAR of 0% and an FRR of 5.01% were achieved, with an EER of 2.13%.

The study by [40] employed a comprehensive approach to analyze typing patterns and develop

an effective user authentication system using keystroke dynamics. Data were collected from 42 par­

ticipants, who captured a diverse range of typing behaviors through both structured tasks, such as

predetermined phrases, and unstructured tasks, including free­form text, to ensure that natural typ­

ing patterns were recorded. The data collection occurred in a natural environment, with participants

using their own devices, providing authenticity to the dataset.

The authors focusedonextracting key features from the typing data, including keystroke latency

(the interval between pressing consecutive keys) and keystroke duration (the length of time each

key is pressed). These features were instrumental in creating unique typing profiles for each user,

capturing their habitual typing rhythms. Statistical analysis played a crucial role in the methodology,

with tests like the t­test employed to identify significant differences in keystroke latencies across
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sessions for the same user. Probabilistic models were also used to assess the likelihood of a given

typing pattern belonging to a specific user, assuming a normal distribution of features in the pattern

vector.

To increase user recognition rates, various classification techniques have been explored. The

Euclidean distance classifier calculated the distance between an unknown profile and reference pro­

files in the database, identifying the closest match. Additionally, the weighted probabilistic classifier

incorporated weighted scores based on the frequency distributions of individual features, emphasiz­

ing the most reliable features for classification. This classifier achieved a correct identification rate

of approximately 90%, highlighting its effectiveness compared with other methods.

The reviewed literature on keystroke dynamics offers significant insights into its application

for user authentication and behavioral biometrics. Various studies have explored different algo­

rithms, feature extraction techniques, and data collection methods, highlighting the effectiveness

of keystroke dynamics in distinguishing between individual users based on their typing patterns.
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2 Methodology

This study employs a systematicmethodology to explore the application of traditional machine

learning classifiers and CNNs for keystroke dynamics­based authentication. The following section

outlines the theoretical foundations, data preprocessing strategies, model architectures, and evalu­

ation metrics adopted in this research. By integrating numerical and image­based approaches, this

methodology aims to uncover insights that contribute to the advancement of secure and reliable

authentication systems.

2.1 Types of user authentication

User authentication methods can be categorized into three types: knowledge­based, object­

based or token­based, biometric­based (see Fig. 1).
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Figure 1: Classification of user authentication

2.1.1 Knowledge­based user authentication

The most common type of knowledge­based authentication is personal identification number

(PIN) codes or passwords. The knowledge aspect is represented by a secret (known only to the user)

[44], which can be an alphanumeric password, PIN or a graphical secret [30].

The main drawback of this type of authentication is its reliance on memorability, as it requires

users to remember specific sequences. This often leads to the use of simple passwords, writing pass­

words down, or reusing the same passwords for different services. Despite these issues, knowledge­

based authentication remains widely used because it does not require high development and ad­
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ministrative costs associated with tokens or biometric systems. To authenticate a user, only an input

device is needed. Additionally, PIN codes are globally accepted due to their extensive adoption in

ATMs and the widespread use of mobile phones.

2.1.2 Object­ or token­based user authentication

Object­based authentication relies on something one has and is characterized by possession.

Traditional keys to doors can be assigned to this category, along with examples such as smart cards,

smartphones, and wearable smart devices.

Token­based authentication offers several advantages over knowledge­based methods. While

passwords are static, often reused across multiple applications, and remain unchanged unless man­

ually updated, tokens typically generate dynamic passwords valid for a single operation or a limited

time, creating an additional layer of security and reducing the risk of unauthorized access.

However, token­based authentication has notable usability limitations. Tokens must be car­

ried, making them prone to being forgotten, lost, or stolen. When smart devices are used, they can

be broken or run out of battery, leaving users unable to authenticate them. These devices and their

application software are also vulnerable to malware infection, phishing attacks, and reverse engi­

neering. Another example of a token is a smart card, which employs near field communication (NFC)

and radio frequency identification (RFID) techniques. While convenient, smart cards are suscepti­

ble to various security threats, including impersonation attacks, stolen card attacks, offline password

guessing attacks, and server masquerading attacks. Moreover, smart cards face practical limitations,

as some computers and devices may not support smart card software.

However, it is very common to combine token­based and knowledge­based authentication

methods. For instance, the combination of a bank card with PIN code. Owing to the use of two types

of authentication factors, namely, what the user knows (a password) and what the user possesses

(e.g., a mobile device or a card), this type of authentication is commonly referred to as two­factor

authentication (2FA) [7].

2.1.3 Biometric­based user authentication

Biometric technologies are defined as automatedmethods of verifying or recognizing the iden­

tity of a living person based on physiological or behavioral characteristics.

Physiological characteristicsmeasure the physical parameters of a certain part of the body, such

as [7], [60]:

• fingerprints ­ examining the ridges and valleys of the finger;

• hand geometry ­ examining the shape and size of a person’s hand, length, width, and thickness

of the fingers;

• vein checking ­ looking for distinctive vein patterns under the skin, usually in the hand or finger;

• iris scanning ­ examining the unique patterns in the colored ring surrounding a person’s pupil;
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• retinal scanning ­ analyzing the distinctive pattern of blood vessels in the retina;

• facial recognition ­measuring the distance between the person’s eyes, the breadth of the nose,

the distance of the cheekbones, and other unique features of the subject;

• facial thermogram ­ measuring the heat patterns emitted by a person’s face, which are unique

to each individual.

Behavioral characteristics explain how a person uses the body:

• voiceprint ­ analyzing the unique characteristics of a person’s voice;

• gait recognition ­ analyzing person’s walking patterns;

• signature recognition ­ examining a person’s handwritten signature;

• mouse dynamics ­ identifying how a person uses a computer mouse, focusing on their unique

interaction patterns;

• keystroke dynamics ­ analyzing a person’s unique typing patterns.

Physical biometric authentication is referred to as standard biometrics, while non­physical bio­

metric authentication is referred to as cognitive biometrics.

Biometric authentication has several advantages, such as better quality and security, and using

a unique feature of the human body for authentication creates an obstacle for an attacker that cannot

be predicted. Moreover, it eliminates many of the difficulties of the identification methods that are

associated with what a user knows or what a user possesses.

Nevertheless, biometric authentication also has disadvantages. For instance, it is costly—a bio­

metric authentication system typically requires a substantial investment to set up. These costs could

be due to both software and hardware requirements and may increase due to ongoing maintenance

expenses. A significant drawback of biometric authentication is that once a biometric signature is

compromised, it cannot be “reset” or changed, as it is inherently tied to the user’s body.

Cognitive biometrics, such as keystroke dynamics, present a more affordable alternative. They

do not require additional hardware or specialized user interfaces. This method is also convenient, as

it allows seamless authentication without requiring extra steps from the user. Additionally, keystroke

dynamics are inherently reliable, and are tied to a user’s unique typing behavior, which cannot be

lost or deleted.

However, keystroke dynamics have limitations. They generally suffer from low accuracy, as

typing patterns can change due to factors such as injury, fatigue, or distraction. Furthermore, a user’s

typing behavior may evolve over time due to increased proficiency, adaptation to different input

devices, or familiarity with typing a particular password.
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2.1.4 Keystroke dynamics

Keystroke dynamics is a behavioral biometric trait that aims to recognize individuals based on

their unique typing habits. Features such as the velocity of pressing and releasing keys, hand posture

during typing, and pressure exerted on keys are often consideredwhen distinguishing between users.

Keystroke authentication operates by creating a template for each user based on their typing

patterns during an enrollment period. Once a user is enrolled, their test samples are compared with

their stored template, and a matching score is calculated. This matching score is determined using

the timing features of keystrokes, allowing the system to identify or verify the user based on their

typing behavior.

Researchers use three kinds of keystroke data for authentication [56, 61]:

1. Free­text or dynamic text ­ permits the user to type freely without any restrictions.

2. Fixed­text, or static text, remains consistent throughout the authentication process, including

both template creation and testing.

3. Semi fixed­text, shares some characteristics with free and fixed­text. An example of semi fixed­

text ­ linux commands.

Keystroke dynamics systems can operate in two modes: identification and verification. Identi­

fication involves analyzing a person’s biometric pattern based on their typing features to determine

their identity. The system identifies the user by comparing their keystroke dynamics data to previ­

ously collected templates. During the training stage, a biometric template is created for each user.

The system matches the test pattern to all available templates, calculating a score or distance that

indicates similarity. The user is identified as the individual with the most similar template. To de­

tect impostor patterns (those belonging to unknown individuals), a similarity threshold is applied. If

the threshold is not met, the pattern is rejected. This mode allows users to be recognized without

providing additional information, relying solely on their typing patterns.

Verification involves confirming a person’s claimed identity by comparing their keystroke pat­

tern to their specific template. The system checks whether the test pattern matches the stored tem­

plate for the claimed identity, ensuring that the user is who they claim to be.

There are several different ways of collecting data and measuring typing patterns for keystroke

analysis [9, 57]:

• Static at login ­ authenticates a typing pattern based on a known keyword, phrase, or prede­

termined text. The captured typing pattern is compared against a previously recorded pattern

stored during system enrollment. This approach checks not only what is being typed, such as

a username or password but also, how it is being typed, by measuring features such as the

timing between key presses.

• Periodic dynamic ­ authenticates a user based on typing patterns recorded during a logged

session. The captured data in the logged session is then compared to an archived typing pattern

to determine the deviations. Periodic authentication occurs either at regular intervals or in
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response to suspicious events or triggers. Unlike the static approach, the periodic dynamic

does not depend on the entry of a specific text but instead monitors any typing activity.

• Continuous dynamic ­ authenticates by capturing and analyzing typing patterns throughout the

entire duration of a logged session. This approach can detect impostors earlier in the session

than can periodic checks, providing continuous monitoring of user behavior.

• Keyword­specific ­ monitoring extends continuous or periodic monitoring by focusing on met­

rics related to specific keywords. Additional analysis is applied to sensitive commands or key­

words, enabling static analysis for a higher confidence judgment in critical scenarios.

• Application­specific authentication enhances continuous or periodic monitoring by tailoring

keystroke pattern analysis to specific applications, enabling context­aware authentication.

• Digraph latency – is a metric that measures the delay between key­up events and subsequent

key­down events during typing, such as the sequence of pressing the letters ’T­H.’ As illustrated

in Fig. 2, latency measurements include the following: the time interval between the press of

one key and the press of the next key (DD or down­down), the interval between the release

of one key and the press of the next key (UD or up­down) also known as the flight time, and

the interval between the release of one key and the release of the next key (UU or up­up).

The dwell/hold time is the interval between the press and the release of a single key (DU or

down­up).

• Trigraph latency extends the digraph latency metric to consider the timing for three successive

keystrokes, such as typing the sequence ”T­H­E”.

• Keyword latency ­ evaluates the overall latency for an entire word or analyzes unique combina­

tions of digraphs and trigraphs within a specific word context, providing detailed insights into

word­specific typing dynamics.
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Figure 2: Features of keystroke dynamics
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2.2 Similarity and difference metrics

This subsection provides a brief overview of the similarities and differences in measurements

between the classes analyzed in this research.

2.2.1 Cosine similarity

A

B

Figure 3: Cosine similarity

Cosine similarity is one of the most com­

monly used similaritymeasures. Itmeasures the

similarity between two vectors in an inner prod­

uct space by calculating the cosine of the angle

between them [26]. The cosine similarity mea­

sure for two data points (see Fig. 3) is given by:

Cosine similarity(|A,B|) = cos(θ) =
A ·B

||A|| ||B||
,

where A · B is the dot product of the A and B

vectors, with A · B =
∑n

i=1 AiBi and ||A|| =√
A · A [33].

A perfect correlation will have a score of 1

(0◦ angle) and no correlation will have a score of 0 (90◦ angle) [42].

2.2.2 Euclidean distance

Figure 4: Euclidean distance

The Euclidean distance is the square root

of the sum of the squared differences between

the corresponding elements of two vectors. The

distance between vectors X and Y is defined as

follows:

d(x,y) =

√√√√ n∑
i

(xi − yi)2.

The Euclidean distance is only appropriate

for data measured on the same scale. It is often

used to compare profiles of respondents across

variables [42]. The generalized concept of the Euclidean distance [45] is shown in Fig. 4. The image

and formula indicate that when the distance equals 0, the two vectors are identical.
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2.3 Dimensionality reduction methods

Dimensionality reduction and data visualization techniques are important in machine learning,

particularly when working with complex datasets. These methods are especially valuable in explana­

tory analysis, as they provide insights into similarity relationships within multidimensional data [34].

2.3.1 Kernel principal component analysis

PCA reduces the dimensionality of the data by identifying orthogonal linear combinations of

the original features that have maximum variance.

Mathematically, PCA finds a way to project the data onto a new subspace. If the data are

represented as xi, the goal is to project them onto a new space yi = Axi, where A is a matrix

containing the principal components. These principal components are directions in the data where

the variance is largest.

To find these principal components, the data is calculated using the covariance matrix Sx. The

directions uk of maximum variance are obtained by solving the equation Sxuk = λkuk, where uk

are the eigenvectors of Sx and where λk are the eigenvalues. The eigenvectors corresponding to the

largest eigenvalues represent the directions with the highest variance, and these are selected as the

principal components.

However, the linear PCA approachmay not fully capture the complexity of nonlinear structures

presented in the data, which may lead to the usage of kernel PCA. By using a kernel function to map

data into higher dimensional space, kernel PCA can uncover complex structures within the data that

traditional PCA might miss.

A kernel function denoted κ(xi, xj) calculates the similarity between two data points xi and

xj in the high­dimensional space. For example the radial basis function kernel [53]:

κ(xi, xj) = exp
(
− d(xi, xj)

2

2l2

)
,

where l is the length scale of the kernel and d(., .) is the Euclidean distance. The kernelmatrix K,which

stores the similarities between all pairs of data points, is then computed. PCA is then performed on

this kernelmatrix instead of the original datamatrix. The principal components are derived by solving

the eigenvalue equation: Kak = λkNak where ak are the eigenvectors of the kernel matrix and N

is the number of data points. Once these eigenvectors are obtained, the new features in the kernel

space are calculated as:

yk(x) =
N∑
i=1

akiκ(xi, xj).

2.3.2 Uniform manifold approximation and projection

The UMAP technique operates in two main phases: graph construction and low­dimensional

embedding optimization [63].

In the graph construction phase, UMAP begins by representing the high­dimensional data as a
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graph. Each data point is treated as a node, and edges between nodes indicate the similarity between

points. To achieve this, UMAP first identifies the k nearest neighbors for each data point using a

chosen distance metric, such as the Euclidean distance. To adjust for how spread out the data are,

UMAP calculates two values for each point: one to measure how close its nearest neighbor is, the

second value adjusts the distances, ensuring that they are meaningful within the local density of the

dataset so that points in sparser regions are not unfairly treated as dissimilar and that points in denser

regions are not overly connected. Using these distances, UMAP assigns weights to the connections

between points, with closer points receiving higher weights. This step creates a graph where the

points are connected on the basis of their similarity.

In the optimization phase, UMAP takes this graph and tries to place the points in a new, low­

dimensional space. It uses two opposing forces, attraction and repulsion, to decide where each point

will be placed. Points that are close in the original data are pulled closer together in the new space,

while points that are far apart are pushed away. This helps preserve the overall structure of the data.

These forces are calculated and adjusted repeatedly until the points settle into a position that best

represents the original data.

By combining an efficient graph­based representation with a force­directed layout optimiza­

tion, UMAP achieves a computationally efficient and versatile method for dimensionality reduction.

This method is particularly useful for visualizing complex datasets and uncovering meaningful pat­

terns in high­dimensional data.

2.3.3 Metric multidimensional scaling

MDS is a powerful method for analyzing and visualizing dissimilarity data by placing objects in

a low­dimensional space [65]. Unlike classical scaling, which assumes direct proportionality between

dissimilarities and distances, metric MDS allows for a more flexible relationship. It models the dis­

tances between points in the low­dimensional space as a function of the dissimilarities, f(δij), which

can be linear or nonlinear depending on the application.

The main goal of metric MDS is to minimize the discrepancy between the given dissimilarities

and the distances in the reduced space. This is achieved by defining an error function, commonly

referred to as ”stress”, which quantifies the difference between these values:

Stress =
∑
i,j

wij(dij − f(δij))
2,

where dij represents the distance between points i and j in the low­dimensional space, andwij rep­

resents weights that can emphasize or de­emphasize certain pairs of points. Byminimizing this stress

function, metric MDS ensures that the low­dimensional representation preserves the relationships

in the original data as accurately as possible.

The optimization process in metric MDS involves iteratively adjusting the coordinates of the

points to reduce the stress function. This iterative approach makes metric MDS more computation­

ally intensive than classical scaling but also more versatile. It is particularly valuable when the rela­
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tionship between the dissimilarities and distances is complex or when additional flexibility is required

to model the data [65].

2.3.4 T­distributed stochastic neighbor embedding

T­SNE is a technique for reducing high­dimensional data into two or three dimensions, primarily

for visualization. It aims to preserve the local structure of the data, meaning that points that are

close together in the original space remain close in the lower­dimensional space. The method works

by defining probabilities in both high­dimensional and low­dimensional spaces and minimizing the

difference between them.

In high­dimensional space, t­SNE computes the similarity between points using a Gaussian dis­

tribution. For each data point xi, the probability pj|i of xj being a neighbor is calculated based on

the distance between the two points and a parameter σi, which controls the spread of the Gaussian

around xi. The value of σi is adjusted to ensure that the distribution has a fixed perplexity, a user­

defined parameter that determines the number of effective neighbors. The perplexity is calculated as

2−
∑

j pj|i log2 pj|i , ensuring that the Gaussian adapts to the local density of the data. The probabilities

are then symmetrized as pij =
pj|i+pi|j

2N
, whereN is the total number of points.

In the low­dimensional space, t­SNE represents each point xi as a lower­dimensional point

yi. To compute similarities in this space, t­SNE replaces the Gaussian distribution with a Student’s

t­distribution with one degree of freedom, which is calculated as qij =
(1+‖yi−yj‖2)−1∑
k 6=l(1+‖yk−yl‖2)−1 . This distri­

bution has heavier tails than a Gaussian distribution, which helps alleviate the ”crowding problem”,

wheremany points are compressed into a small area in the low­dimensional space. This allows better

separation of clusters.

To align the high­dimensional and low­dimensional relationships, t­SNE minimizes the differ­

ence between the two distributions using the Kullback­Leibler (KL) divergence. The loss function,

L =
∑

i

∑
j pij log

pij
qij

, ensures that points close in the high­dimensional space remain close in the

low­dimensional space, while points far apart are also separated. Optimization is achieved through

gradient descent, where the gradient of the loss function determines how the positions of points in

the low­dimensional space are updated. If the similarity between two points is greater in the high­

dimensional space than in the low­dimensional space, they are pulled closer together. Conversely, if

they are overly close in the low­dimensional space, they are pushed apart.

T­SNE typically initializes the low­dimensional points yi randomly or uses a technique such as

PCA. Gradient descent is then performed with momentum to stabilize and accelerate convergence.

Hyperparameters such as the learning rate and momentum are dynamically adjusted during the op­

timization process.

Overall, t­SNE excels at preserving the local structure of data and iswidely used for creating visu­

ally distinct clusters, making it an effective tool for understanding complex datasets. However, it has

limitations in preserving global relationships, meaning that the relative distances between far­apart

clusters may not accurately reflect the original data. Despite this, its ability to produce meaningful

and interpretable visualizations has made it a favorite choice for exploratory data analysis [63].
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2.4 Machine learning models

2.4.1 K­nearest neighbors

The KNN algorithm is an instance­based learning method designed for solving both classifica­

tion and regression tasks. The algorithm analyzes data objects and identifies the k­nearest neighbors

of an unknown feature vector to identify the class [8]. By selecting an appropriate distance func­

tion, KNN algorithm assigns a class to the analyzed data point using majority voting. The number of

neighbors k is determined by the researcher.

If there are multiple neighbors, the algorithm calculates how many of the nearest neighbors

belong to class 0 and how many belong to class 1. Based on this information, the class to which the

majority of the nearest neighbors belong is assigned to the analyzed data point [39, 41].

Hyperparameters [51] used in the research can be found in Table 1.

Table 1: KNN hyperparameters

Parameter Model Default

Value

Possible Values Description

n neighbors KNN 5 Integer
Number of neighbors to

use

Weights KNN
uni­

form

Uniform ­ all points in each

neighborhood are weighted

equally. Distance ­ closer

neighbors of a query point

will have greater influence

than neighbors which are

further away.

Used in prediction

p KNN 2 Float

When p = 1, this is equiv­

alent to using manhattan

distance (l1), and Eu­

clidean distance (l2) for

p = 2. For arbitrary p,

Minkowski distance (lp) is

used.

2.4.2 Support vector machine

In the case of a linear classifier, the support hyperplane is constructed to separate two distinct classes:

positive and negative. The hyperplane is described by the following formula:

ωTX + b = 0,

where ω is the weight vector of the inputs,X is the input vector, and b is the bias.

During classification, input vector values satisfyingωTX+b > 0 are assigned to the positive class, while
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values satisfying ωTX + b < 0 are assigned to the negative class. This distinction determines the separation

of positive and negative classes by the hyperplane.

The classification rule that determines which class a new input vectorX belongs to is defined using the

sign function:

f(X) = sgn(ωTX + b),

where sgn(x) is the sign function, which returns:

sgn(x) =


−1 if x < 0,

0 if x = 0,

1 if x > 0.

At a pointXi, if ω
TXi + b = 1, then the value:

ωTXi + b

||ω||
=

1

||ω||

represents the distance from the hyperplane ωT (X −Xi) = 0 to the origin. The value:

2

||ω||
=

2√
ωTω

is the distance between the support vectors ωTX + b = ±1 [13, 39]. The hyperparameters [54] of SVM are

described in Table 2.

Table 2: SVM hyperparameters

Parameter Model Default

Value

Possible Values Description

C SVM 1 Positive float

Regularization parameter.

The strenght of the regu­

larization is inversely pro­

portional to C.

Kernel SVM rbf

Linear

K(a,b) = aT b;

poly

K(a,b) = (γaT b+ r)d;

radial basis function, rbf )

K(a,b) = exp(−γ || a −
b ||2).

Specifies the kernel type

to be used in the algo­

rithm.

2.4.3 Decision tree

DT is a hierarchical structure consisting of nodes, branches, and leaves. Each node represents an event

or condition aimed at classifying or predicting an outcome. A node has branches, which represent classification
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rules. This means that each branch reflects a possible choice or decision, splitting into further nodes. Finally,

the tree ends with leaves, where the final decision or prediction is made (see Fig. 5) [37, 39].

The classification and regression tree (CART) algorithm is one of many algorithms used to construct DT

models. This algorithm initially splits the dataset into two subsets using a feature k and a threshold tk. The

values of k and tk are chosen to yield the purest subset, thereby minimizing the loss (cost) function:

J(k, tk) =
mleft

m
Gleft +

mright

m
Gright,

whereGleft/right measures the impurity of the left/right subset and wheremleft/right represents the number of

events in the left/right subset.

Condition

Condition

Yes

No

Decision

Decision

No

Decision

Yes

Figure 5: Decision tree diagram

Once the algorithm successfully splits the dataset into two subsets, it recursively applies the same logic

to each of these subsets, continuing the process until the tree reaches a fixed depth [25, 39].

To improve model performance, hyperparameters are often selected and specified. The hyperparame­

ters [49] applied to DT models in this research are described in Table 3.

Table 3: DT, RF, GB and XGB hyperparameters

Parameter Model Default

value

Possible values Description

n estimators
XGB,

RF, GB
100 Integer

Number of trees in the

model

Max depth
XGB,

RF, DT
6 Interger Maximum depth of a tree.

Lambda XGB 1 [0;∞]
L2 regularization term on

weights.

Min Sample Split DT 2 Integer or float

The minimum number of

samples required to split

an internal node.

Learning Rate GB 0.1 [0;∞]
Shrinks the contribution of

each tree.

28



2.4.4 Random forest

The RF algorithm belongs to the group of supervised learning algorithms. It utilizes the bootstrap ag­

gregating (bagging) method (see Fig. 6), which creates an ensemble of DTs using random subsets of the data.

The results from all DTs are then combined, and the final outcome is determined based on majority voting. As

the number of trees increases, the prediction accuracy improves up to a certain point [8, 25, 39].

Bagging method

Parallel

Figure 6: Principle of the bagging method

Similar to DT models, adjusting default parameter values is often used to achieve more accurate results.

Several hyperparameters [52] of the RF model are described in Table 3.

2.4.5 Gradient boosting

GB is a supervised machine learning algorithm, similar to the RF, that is based on an ensemble of DT,

but it operates using the boosting method (see Fig. 7) by sequentially adding predictors to an ensemble, each

one correcting its predecessor. The algorithm is based on the idea that the next best model is constructed by

learning from the residual errors made by the previous predictor, thereby reducing the prediction error [25,

39].

Boosting method

Sequential

Figure 7: Principle of the boosting method
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Hyperparameters [50] used in the tuning process described in Table 3.

2.4.6 XGBoost

XGB is a GBmethod, known for its fast learning speed and high prediction accuracy comparedwith those

of tree­based algorithms.

XGB is an extension of gradient boosting trees. It employs the gradient descent method to update the

model with new predictions, aiming to minimize the loss of the added predictions. Additionally, XGB incorpo­

rates regularization into its optimization function to reduce overfitting [15, 39, 62]. Several hyperparameters

[55] of the model are presented in Table 3.

2.5 Ensemble models

2.5.1 Voting ensembles

Ensemble methods are learning algorithms that combine a group of different classifiers and work as a

single classifier. There are two types of voting ensemble methods: hard and soft. The difference between

them is that hard voting method is a more straightforward approach based on a majority rule, whereas soft

voting involves collecting the predicted probabilities for each class label and predicting the class label with the

largest probability: y∗ = argmaxi
∑i

j=1 ωjPij (see the left graph in Fig. 8).

Training dataset

SVM RF

Soft Voting

Predicted Class

Training dataset

SVM RF

Predicted
Class

Predicted
Class

Meta Classifier
Logistic Regression

Predicted
Class

Figure 8: Ensemble models

Soft voting needs to store and use all the distribution values, making it more computationally costly for

storage. However, in soft voting various methods can be used to calculate the prediction, such as calculating

maximum or average probability values [38].
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2.5.2 Stacking

The stacking method, also known as stacked generalization, is a model ensembling technique used to

combine information from multiple predictive models to generate a new model (meta­model). The architec­

ture of a stacking model involves two or more base models, referred to as a level­0 model, and a meta­model

that combines the predictions of the base models, referred to as a level­1 model. In level 0 models (base

models), models fit on the training data and their predictions are compiled. However, in the level 1 model

(meta­model), the model learns how to combine the base models’ predictions best. The outputs from the

base models used as inputs to the meta­model may be probability values or class labels in the case of classifi­

cation [38] (see the right graph in Fig. 8).

2.6 Data transformation

2.6.1 Quantile transformation

Quantile transformation is a non­linear feature scaling technique that maps data to a uniform or normal

distribution using the cumulative distribution function (CDF). This transformation mitigates the effects of out­

liers and enhances model robustness by spreading tightly clustered data and bringing extreme values closer to

the rest of the distribution. It is particularly useful in preprocessing for tasks such as classification, as it ensures

better feature separability.

Mathematically, the transformation is expressed as:

xtransformed = F−1(φ(x)),

where φ(x) is the empirical CDF of the original feature x, computed as φ(x) = rank(x)
N , withN being the total

number of observations. F−1 is the quantile function (inverse CDF) of the target distribution, such as a uniform

or Gaussian distribution.

This transformation standardizes features to match the desired distribution, spreading out tightly clus­

tered values and compressing outliers [2, 48].

2.6.2 Gaussian noise

Gaussian noise is a statistical noise commonly modeled with a normal distribution. It is described by the

probability density function (PDF) as:

P (z) =
1√
2πσ2

e−
(z−µ)2

2σ2 ,

where z represents the intensity value, µ is the mean (average) value of z and σ2 is the variance, and σ is the

standard deviation of the noise [1].

Gaussian noise can be applied in digital image processing to enhance dataset generalization by intro­

ducing variability and simulating real­world conditions.
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2.7 Imaging time series data

For some numeric data, the ordering of features can be reversed in a two­dimensional space to explicitly

represent the relationships among these features. This approach allows tabular data to be transformed into

images, enabling CNNs to extract meaningful patterns from the visual representation [17].

GASF is a method used to convert a time series into an image that captures temporal dependencies in

the data. The key idea is to represent the time series in a polar coordinate system, where the value of each

time step is transformed into an angle, and the time itself is treated as the radius.

The transformations begin by rescaling the time seriesX = {x1, x2, . . . , xn} into a normalized range,

such as [−1, 1] using the following formula:

x̃i−1 =
(xi −max(X) + (xi −min(X))

max(X)−min(X)

or [0, 1] using the following formula:

x̃i0 =
xi −min(X)

max(X)−min(X)
.

Next, the rescaled time series is converted into a polar coordinate system by encoding the value as the

angular cosine and the time stamp as the radius. The angular representation is given by:

φi = arccos(x̃i), −1 ≤ x̃i ≤ 1

and the radius as r = ti
N .

Using these angular values, the GASF matrix is constructed by calculating the cosine of the summation

of angles between each pair of time points:

GASF[i, j] = cos(φi + φj).

In contrast, the GADF matrix captures the sine of the difference of angles between pairs of time points,

highlighting dynamic changes:

GADF[i, j] = sin(φi − φj).

Both GASF and GADF preserve the temporal order of the original time series, with time increasing along

the diagonal from the top­left to the bottom­right of the resulting matrix. Additionally, GASF with rescaled

data in the range [0, 1] provides a bijective mapping, allowing reconstruction of the original time series from

the diagonal elements:

x̃i = cos

(
φi

2

)
, φi ∈ [0, π].

These methods effectively transform temporal data into structured images, enabling the application of

CNNs and other computer vision techniques for time series analysis [64].
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2.8 Convolutional neural network

CNNs are deep learning algorithms designed to process input images and to identify key features in the

images. They excel in tasks such as image processing and speech recognition due to their ability to effectively

leverage local information through weight sharing.

CNNs are composed primarily of several layers. The input layer accepts the raw image data [56]. The

convolutional layer is composed of multiple convolutional kernels whose parameters are optimized through

backpropagation. Each kernel is designed to extract specific features, such as horizontal or vertical edges, based

on its learned parameters. While individual convolutional layers capture basic low­level features, deeper net­

works with additional convolutional layers can progressively extract higher­level, more complex features. After

the convolutional layer, the pooling layer reduces the spatial dimensions of the feature maps. This is achieved

by dividing the feature maps into regions and applying operations such as maximum pooling or average pool­

ing, which generate a more compact representation. This step not only decreases computational complexity

but also helps prevent overfitting. The fully connected (dense) layer integrates all the local features extracted

by previous layers into global features by flattening them into a one­dimensional vector. It then passes these

features through an activation function to calculate the final scores for each class, enabling the model to pro­

duce the final classification result.

Overfitting is a common challenge in deep learning, often resulting in models that performwell on train­

ing data but poorly on unseen data. Techniques to address overfitting include early stopping, L1 and L2 reg­

ularization, and dropout. In this work, dropout is utilized as a preventive measure. During training, dropout

randomly disables a proportion of neurons based on a predefined probability, compelling the network to learn

more robust and generalized features.

A neural network without nonlinearity behaves as a linear system, which severely limits its ability to

solve complex problems. To overcome this limitation, activation functions are used to introduce nonlinearity

into the network. The rectified linear unit (ReLU) is one of themostwidely used activation functions. It not only

introduces nonlinearity but also contributes to mitigating overfitting by enabling sparse activations, thereby

improving the efficiency and generalizability of the model [36].

2.9 Evaluation metrics

The effectiveness of a biometric authentication method, specifically its ability to distinguish between

legitimate and illegitimate users, is evaluated using various metrics. The following sections explain the key

evaluation criteria [22].

2.9.1 False acceptance rate and false rejection rate

FAR represents the probability of an impostor successfully posing as a genuine user and gaining access

to a secured system. In statistical terms, this corresponds to a type II error. In contrast, the FRR measures the

percentage of valid users who are mistakenly rejected as impostors by the keystroke dynamics­based authen­

tication system, which is referred to as a type I error in statistics [22].

Ideally, both the FAR and FRR should be 0%, as this would ensure a perfect balance between security and

convenience. From a security perspective, minimizing type II errors (FAR) is critical to prevent unauthorized

access. However, minimizing type I errors (FRR) is equally important to avoid frustrating genuine subjects with

incorrect rejections.
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A system with 0% FAR is considered to provide maximum security, while a system with 0% FRR offers

optimal convenience. In practice, there is often a trade­off between these two metrics. Highly secure systems

may inconvenience users by rejecting genuine attempts, whereas overly convenient systems may compromise

security. Notably, FAR is also referred to as the false positive rate (FPR), and FRR is equivalent to 1 ­ true positive

rate (TPR) [56].

FAR =
Number of false acceptances

Total number of impostor attempts
;

FAR =
Number of false rejections

Total number of genuine attempts
.

2.9.2 Receiver operating characteristic (ROC) curve

The performance of a biometric verification system is typically represented by its ROC curve. The ROC

curve illustrates the tradeoff between the FAR and the FRR.

As shown in Fig. 9, the ideal classifier is represented by a point at the top­left corner of the ROC plot,

with coordinates (0.0, 1.0), indicating that there are no false accepts or false rejects. While achieving this level

of performance is impractical for large­scale systems, a classifier closer to the (0.0, 1.0) coordinate is highly

desirable. The diagonal line from the top­right corner to the bottom­left corner represents the performance

of a random classifier, equivalent to random guessing, which is undesirable. A classifier whose ROC curve falls

below this diagonal is often assumed to have incorrect labeling and may be flipped for correction [56].

Figure 9: ROC and AUC for different classifiers [56]
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2.9.3 Equal error rate

EER or the cross­over error rate (CER), is the point where the rates of false acceptance and false rejection

are equal. This value indicates the overall accuracy of a biometric system, with lower EER values corresponding

to higher accuracy.

Threshold values (on the x­axis) play a critical role in balancing security and convenience. A threshold

closer to 0 prioritizes convenience byminimizing FRR but increases FAR, while a threshold closer to 1 enhances

security by lowering FAR but raises FRR. The EER represents the threshold that balances these two factors [56].

To compute the EER, genuine users are labeled 0 and impostors are labeled 1. The prediction scores for

both classes are combined, and the ROC curve is used to calculate the FAR and TPR across different threshold

levels.

Crossover Point
False Reject
Rate (FRR)

Crossover Error Rate (CER) /
Equal Error Rate (EER)

False Accept
Rate (FAR)

R
at

e 
(%

)
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Figure 10: Relationships between FAR, FRR and ERR

The EER is identified at the point where FAR and FRR are closest to each other. Since these rates may not

intersect exactly, linear interpolation can be used between the two closest points where FRR transitions from

being greater than FAR to being smaller. This method provides an accurate estimate of the threshold at which

the two rates converge. The resulting EER value offers a single metric that reflects the system’s performance

by balancing the likelihood of incorrectly accepting impostors and rejecting genuine users [32].

Fig. 10 shows the relationships between FAR, FRR, and EER. A lower EER indicates better performance

[5].

2.9.4 Accuracy

Classification metrics are measures used to evaluate the performance of classification algorithms or

models [28, 39].
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A confusion matrix is an N × N table used to assess the performance of a classification model. It

compares the actual values with the predicted values (see Table 4).

Table 4: Confusion matrix

Positive Negative

Positive TP FN

Negative FP TN

TP (True Positive): The model correctly predicts the positive class. TN (True Negative): The model cor­

rectly predicts the negative class. FP (False Positive): The model predicts the positive class incorrectly—the

true value is negative. FN (False Negative): The model predicts the negative class incorrectly—the true value

is positive.

Accuracy represents the ratio of correct predictions to the total number of input values. It is calculated

using the following formula:

Accuracy =
TP + TN

TP + FP + TN + FN
.

2.10 Methodology section conclusions

This section describes the theories related to data processing, machine learning methods, and convo­

lutional neural networks used in biometric authentication based on keystroke dynamics. The topics discussed

include types of user authentication, similarity and distance metrics, dimension reduction methods, machine

learning models, ensemble models, data transformations, time series data transformation into images, CNNs

and evaluation metrics. Data preparation is a crucial step in building effective machine learning models for

keystroke dynamics classification. Based on these methods, the study classifies the genuine and imposter

subjects.
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3 Experiments and results

The text processing, data analysis, and machine learning model codes were written in the Python pro­

gramming language (see Appendix D: Code), using the Pycharm application.

Keystroke
dynamics datasets Data cleaning

Calculation of new
features: UU, DD,

trigraphs

Time series
images

Machine 
learning models

Convolutional
neural network

Evaluation 
metrics

Evaluation 
metrics

Datasplit

Numeric features

DatasplitQuantile
Transformation

Ensemble 
models

Figure 11: Data analysis diagram

The data processing sequence is illustrated in Fig. 11. Red rectangles represent raw data or intermediate

datasets, orange rectangles represent variable transformations or added new variables, and green hexagons

represent the methods used for data classification and model evaluation.

The CMU dataset used for machine learning models and the convolutional neural network were split

separately for each subject, following the logic outlined in Table 5 [59].

Table 5: Data split for the CMU dataset

Dataset Subject X (Genuine) Other Subjects (Impostor)

Training Sessions 1­4 Session 5 (First 5 repetitions)

Testing Sessions 5­8 Session 1 (First 5 repetitions)

The dataset split for both the CMU and KeyRecs datasets is designed to evaluate the model’s ability

to distinguish between genuine and impostor samples while avoiding data leakage between the training and

testing phases. For the CMU dataset, the training data for a selected subject (genuine user) consists of all

repetitions from sessions 1 to 4, labeled as ”genuine” and the first 5 repetitions from session 5 of all other

subjects, labeled as ”impostor”. The test data include all repetitions from sessions 5 to 8 of the genuine user

and the first 5 repetitions from session 1 of all other subjects as impostors.

Table 6: Data split for the KeyRecs dataset

Dataset Subject X (Genuine) Other Subjects (Imposter)

Training Session 1 Session 2 (First repetition)

Testing Session 2 Session 1 (First repetition)
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In the KeyRecs dataset, the split follows a similar structure but with fewer sessions and repetitions (see

Table 6). The training data comprises all repetitions from session 1 of the genuine user and the first repe­

tition from session 2 of all other subjects as impostors. In contrast, the testing data include all repetitions

from session 2 for the genuine user and the first repetition from session 1 for all other subjects as impostors.

Each subject is treated as a genuine user in their dataset, with all other subjects acting as impostors, enabling

independent analysis for every user.

3.1 Carnegie Mellon University Dataset

The CMU dataset [31] was collected by Computer Science Department professors and is described in

the article [32]. As explained by the researchers, the data is arranged as a table with 34 columns. Each row of

data corresponds to the timing information for a single repetition of the password by a single subject.

The passwordwas chosen to pass a password­strength checker, which determineswhether the password

is strong or weak. This means that the password had to contain letters, numbers, and punctuation. Addition­

ally, a length of 10 was chosen based on the reviewed articles on this topic, which revealed that 10­character

passwords are typical and that longer passwords usually contain names and English phrases. The following

password was generated: .tie5Roanl

The researchers recruited 51 participants for the data collection. In total there were 8 sessions during

which participants were asked to type the password 50 times if the participants input the password incorrectly,

and the system asked to retype the sequence. All sessions were conducted with at least one day between

them. All the data was collected with the same keyboard and system, which captured the times of keyboard

key presses and released with±200microseconds precision.

After each input of the password, the subjects had to press the ENTER key, which became the 11 charac­

ters of the password. Based on these characters and information collected from the system about participants

typing patterns the following features were presented in the data frame. The first column, subject, is a unique

identifier for each subject (e.g., s002 or s057). The second column, sessionIndex, is the session in which the

password was typed (ranging from 1 to 8). The third column, rep, represents the repetition of the password

within the session (ranging from 1 to 50). The remaining 31 columns in the dataset contain timing informa­

tion for the password. The column names encode the type of timing information being represented. Columns

with names in the form H.key represent hold time, which is the time interval between pressing and releasing

the same key. Columns named in the form DD.key1.key2 indicate the keydown­keydown time interval, mea­

sured from when key1 was pressed to when key2 was pressed. Similarly, columns with names in the form

UD.key1.key2 denote the keyup­keydown time interval, which is the duration from releasing key1 to pressing

key2. The timing for each feature is stored as a floating­point number in seconds.

Additionally, several features were derived and added to the dataset based on the original data [47]. The

UU.key1.key2 feature represents the keyup­keyup time, which is calculated as the sum of the UD.key1.key2

time and the H.key2 time. Trigraphs were computed as the sum of two DD.key1.key2 features, representing

the timing of three consecutive key presses. The DU.key1.key2 feature represents the keydown­keyup time,

measured as the duration from when key1 was pressed to when key2 was released, calculated as the sum of

the UD.key1.key2 time and the H.key2 time. In total, the final dataset comprises 60 features.

The descriptive analysis of the CMU dataset, presented in Table C1, shows that the average H keystroke

times typically range between 0.07 and 0.1 seconds. This indicates that keys are generally released quickly
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and consistently, with a standard deviation of hold times of approximately 0.02 to 0.03 seconds, reflecting low

variability across users.

Similarly, the mean values for UD keystroke times range from 0.07 to 0.28 seconds, highlighting quick

transitions between key presses. Unlike hold times, the minimumUD values can sometimes be negative, rang­

ing from ­0.23 to 0.1 seconds, due to overlaps between key releases and subsequent presses. While the max­

imum UD values can reach up to 12.5 seconds, the maximum hold time remains significantly lower at 2.035

seconds.

Figure 12: Subjects normalized timing comparison

Other keystroke types, such as DD, DU, UU, and tri, which are combinations of H and UD, present higher

values and greater variability. This increased variability arises because these metrics capture more complex

interactions involving multiple key presses and releases. The timing of these interactions naturally varies de­

pending on the user’s typing rhythm and coordination, resulting in broader ranges and more diverse patterns.

Fig. 12 illustrates the differences between the four typing attempts for various users. The x­axis repre­

sents cumulative normalized timing values in seconds, while the y­axis is labeled ”Subject, Session, and Repe­

tition” displaying unique identifiers for each combination of subject (e.g., s002, s003), session (e.g., Session 1,

Session 2), and repetition (e.g., Repetition 1, Repetition 2).

The plot features multiple lines with circular markers at distinct points, representing the normalized

timing of keystroke events. Each line corresponds to a specific combination of subject, session, and repetition,

with each marker indicating a key press or release event. This visualization highlights the variations in typing

patterns across different users and attempts.

After observing the figure, certain patterns in the typing behavior become apparent. For example, the

first and second characters of the password are often typed consecutively, followed by a noticeable pause

between the press and release of the second character. Similarly, the fourth character tends to have a longer

hold time.

Notably, the timing patterns of subjects 29 and 18 share similarities, particularly at the start of typing,

where both exhibit a pattern of presses and releases interspersed with occasional longer hold times. In con­

trast, subjects 51 and 7 demonstrate a steadier typing rhythm across all keys, indicating a more consistent

typing style.
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These patterns are also evident in Fig. 13, which displays the raw timing data. It is clear from the figure

that subject 18’s overall timing is approximately twice as long as that of subjects 7 and 51. subjects 7 and 51

maintain a steady typing rhythm throughout, whereas subjects 29 and 18 exhibit longer hold times, adding

noticeable pauses to their timing patterns.

Figure 13: Subjects timing comparison

To evaluate the overall similarity between subjects, cosine similarity and Euclidean distancemetricswere

calculated. Figure 14 illustrates a subset of subject similarities, revealing that all subjects exhibit considerable

similarity, with cosine similarity values above 0.85 for all pairs. The lowest cosine similarity, 0.854, is observed

between subjects 2 and 52, while the largest Euclidean distance, 3.696, is found between subjects 36 and

55. Furthermore, the highest cosine similarity, 0.997, is noted between subjects 18 and 29, and the smallest

Euclidean distance, 0.171, occurs between subjects 7 and 51.

Figure 14: Cosine similarity and Euclidean distance between subjects
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To further investigate the patterns in H and UD feature values, Fig. 15 was plotted to determine whether

these attributes exhibit similarities that are consistent with the findings of the similarity graph. These metrics

were chosen because all other data points in the dataset are derived from them. The graphs are based on the

subject pairs identified in the previous analysis.

The resulting linear graphs show that the UD attributes for the most similar pairs align closely, indicating

consistent transitions between key presses. However, notable differences in the H attribute values are ob­

served, even among pairs with high similarity metrics. Additionally, pairs with lower similarity exhibit more

pronounced discrepancies in H feature values, highlighting variability in key hold times across less similar sub­

jects.

Figure 15: H and UD feature comparison in CMU dataset

Furthermore, dimensionality reduction and data visualization techniques are important in machine

learning, especially when working with complex datasets. These methods provide valuable insights into simi­

larity relationships within multidimensional data [34]. Fig. 16 presents the results of applying various dimen­

sionality reduction techniques to pairs derived from cosine similarity and Euclidean distance. The techniques

include radial basis function (RBF) kernel PCA with n_components=2, UMAP with n_components=2, n_neigh­

bors=10, min_dist=0.01, and metric MDS with n_components=2, as well as t­SNE with n_components=2, per­

plexity=3, learning_rate=200, and n_iter=3500. The parameters for the dimensionality reduction methods

were selected after thorough evaluation and multiple experimental trials to ensure optimal performance.

The Fig. 16 demonstrates that pairs with low similarity or high Euclidean distance can be effectively

separated using all dimensionality reduction methods. However, for pairs of similar subjects, these methods

are less effective at achieving clear separation. Among the techniques, t­SNE proved to be the most effective

in distinguishing patterns for closely related subjects.

In this analysis, t­SNE is used solely for visualization purposes, not for dimensionality reduction. While

t­SNE can reduce dimensionality for visualization by projecting high­dimensional data into a 2D or 3D space, it

does not retain global structure, making it unsuitable for dimensionality reduction in the feature space used

for classification.
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Figure 16: Multidimensional data in a lower dimensional space for CMU dataset

Moreover, all dimensionality reduction techniques are applied solely for visualization purposes rather

than for dimensionality reduction. Time series data is highly sensitive to transformations that could distort or

obscure critical temporal relationships. Reducing the dimensionality of such data risks losing essential informa­

tion needed to capture the nuanced patterns in keystroke dynamics, which are crucial for accurate classifica­

tion. By preserving the original feature dimensions, this approach ensures that all time­sensitive characteristics

of the data are fully retained and effectively utilized in the analysis.

Therefore, after the dataset was split, six machine learning models and two ensemble methods were

applied to evaluate four different versions of the data and assess their performance. Models were chosen

based on the research conducted during the literature review. The following machine learning models were

chosen: DT, GB, KNN, RF, SVM, XGB. Using the ensemblemodel proposed in [10] as a baseline, the decision tree

model was replaced with a random forest model to improve performance. Compared with the single DT, RF

offer greater robustness and accuracy by combining multiple trees through bagging, which reduces overfitting

and enhances generalization. Additionally, an XGB model was incorporated into the ensemble, leveraging its

efficiency and superior handling of complex data patterns. These modifications were used to create ensemble

models for both the voting and stacking methods, enhancing the overall classification.

Hyperparameter tuning for machine learning classification models was conducted using 5­fold cross­

validation. The tuned parameters are shown in Table C3. Cross­validation was applied to the training data to

evaluate different hyperparameter combinations, and the best set of hyperparameters was selected based on

the accuracy scoring metric.

For the CNN model, random search was employed to optimize accuracy and EER values by exploring

a wide range of hyperparameter combinations. When dealing with a large number of parameters, random

search offers a significant advantage over grid search, as it efficiently identifies models with comparable or

superior performance while significantly reducing computational time [14].

A comprehensive analysis of the dataset’s structure and preprocessing techniques, including feature

extension and normalization, was conducted to evaluate their impact on the performance of machine learn­

ing models and ensemble methods. The first model utilized the extended dataset, which included additional

features calculated during explanatory data, combined with quantile transformation to normalize the data.
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The second model also employed the extended dataset but without applying quantile transformation. The

third model used the original dataset, with quantile transformation. Finally, the fourth model used the original

dataset without quantile transformation, serving as a baseline.

After testing different feature sets and evaluating the impact of using or not using transformations, the

results were very similar between the original and extended datasets across all classifiers. This finding indicates

that the additional features do not provide any extra information that the classification models can utilize.

However, slightly higher accuracy results were observed with transformations than without transformations

(see Table C4).

Table 7: Performance metrics for different classifiers for CMU dataset

Classifier Accuracy EER FAR FRR

DT 0.8962 0.1296 0.0643 0.1532

GB 0.9487 0.0450 0.0260 0.0828

KNN 0.9533 0.0461 0.0507 0.0418

RF 0.9479 0.0402 0.0163 0.0968

SVM 0.9541 0.0355 0.0210 0.0770

Stacking 0.9618 0.0329 0.0160 0.0659

Voting 0.9648 0.0314 0.0193 0.0550

XGB 0.9485 0.0449 0.0235 0.0866

CNN 0.9139 0.0873 0.0764 0.0978

The following results (see Table 7 and Fig. B2) summarize each model’s accuracy, EER, FAR, and FRR

calculated on the original dataset with quantile transformation to facilitate model comparison. The highest

accuracy and EER performance were achieved by the voting ensemble model, with accuracy reaching 96.48%

and an EER of 3.14%. The stacking ensemble method demonstrated the lowest FAR, indicating that it is the

least likely to misclassify an impostor as a genuine subject. Meanwhile, the KNN model exhibited the lowest

FRR, meaning that it is the least likely to misclassify a genuine user as an impostor.

(a) GASF Image (b) GADF Image

Figure 17: Comparison of GASF and GADF images for subject 2, session 1, repetition 1

To compare the performance ofmachine learning and ensemblemodels on numeric featureswith image

classification using CNN, time­series transformations GASF (17a) and GADF (17b) were applied. These trans­
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formations convert numeric features into images, which are then used as inputs for the CNN. To generalize and

improvemodel robustness, Gaussian noise was introduced into the images during preprocessing [29]. This ad­

dition helps simulate real­world variability, making the model more robust. Furthermore, Gaussian noise acts

as a form of regularization, reducing the risk of overfitting and encouraging the model to focus on meaningful

patterns rather than artifacts or noise in the data.

Fig. B1 illustrates the customized architecture of the CNN used for the binary classification of keystroke

dynamics time series images.

From Table 7 and Fig. B2, it can be observed that the CNN achieved lower accuracy than did themachine

learning and ensemble models. Results of each subject seperately can be seen in Table C7. This performance

discrepancy may be attributed to the CNN’s complexity, which could make it less suitable for processing con­

sistent and clean data, as it requires more diverse and variable input to fully leverage its capacity.

3.2 KeyRecs Dataset

Unlike the CMUdataset, which focuses on collecting highly accurate data using a predefined strong pass­

word, the KeyRecs dataset [21] allowed participants to use their own keyboards. Additionally, the password in

KeyRecs consisted solely of letters and had a fixed length of 10 characters: vpwjkeurkb.

For data collection, 99 participants were recruited. Each participant completed two sessions, during

which they were asked to type the password 100 times.

The dataset captured participants’ typing patterns using the following features: DU.key1.key1,

DD.key1.key2, DU.key1.key2, UD.key1.key2, and UU.key1.key2 for all characters in the password. These

features are consistent with the abbreviations used in the CMU dataset. In total, 46 timing features were

extracted, with each feature’s timing stored as a floating­point number in seconds.

To ensure data consistency, several modifications were applied to the dataset. First, the DU.key1.key1

feature was renamed to H.key1, as it represents the hold time of a single key. Additionally, discrepancies were

identified between some column names and the values they represented, prompting corrections to align the

data accurately.

In Table 8, a snippet of the original data is provided, showing the keystroke values for the first row with

the timing data for the first three symbols.

Table 8: Keystroke timing data for participant p001, session 1, repetition 1

Participant Session Repetition DU.v.v DD.v.p DU.v.p UD.v.p

p001 1 1 0.129 1.917 1.804 2.046

UU.v.p DU.p.p DD.p.w DU.p.w UD.p.w UU.p.w DU.w.w

1.933 0.113 0.719 0.569 0.832 0.682 0.15

The same data values are displayed on the left side of Fig. 18. As seen from the table and the image,

some inconsistencies exist. For example, the value of UD.v.p is 2.045, which is higher than DU.v.p. However,

the DU value should be calculated by adding H.v (0.129) and H.p (0.113) to UD.v.p, resulting in DU.v.p being

2.288. This discrepancy suggests swapping the DUs and UDs yields the correct values.

A similar issue exists with the DD and UU values. The DD.v.p value is 1.917, which should be calculated

by adding H.v and the adjusted UD.v.p value, resulting in 1.933. This value can be observed in UU.v.p. If we

calculate UU.v.p by adding UD.v.p and H.p, we obtain 1.917, which appears in DD. Therefore, swapping the
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column names for DDs and UUs also corrects the inconsistency. The correct order of timings can be seen on

the right side of Fig. 18. The colors in the figure show which feature names were swaped between each other.

v p w
0.129 0.113 0.15

1.917 0.719

1.804

2.046 0.832

1.933 0.682

0.569

v p w
0.129 0.113 0.15

1.933 0.682

2.046

1.804 0.569

1.917 0.719

0.832

Figure 18: Changes in keystroke timing data for participant p001, session 1, repetition 1

Thediscrepancieswere present throughout the dataset for all subjects. To address these inconsistencies,

the column names DD and UU, as well as DU and UD, were swapped to reflect the correct timing relationships.

Additionally, trigraphs were calculated as the sum of two DD.key1.key2 features. The final dataset con­

sists of 54 features related to keystroke timing, along with the subject number, session index, and repetition

number.

Furthermore, 24 rows were eliminated due to negative values in the H and DD columns, as such values

are illogical for these features. Additionally, 12 rows were removed because they exceeded the 20­second

threshold for the H and UD features (the threshold was based on the CMU dataset values). All removed rows

presented excessive UD timing values, as detailed in Table 9.

Table 9: Deleted rows from KeyRecs dataset

subject session rep UD.v.p UD.p.w UD.w.j UD.j.k UD.k.e UD.e.u UD.u.r UD.r.k UD.k.b

p011 2 2 0.695 51.323 0.761 0.481 1.448 0.405 0.323 0.917 0.203

p020 2 4 0.226 0.065 0.427 ­1077833.755 1077833.851 0.097 0.048 1077834.017 ­1077833.774

p025 2 82 0.729 67.254 0.937 0.105 0.796 0.028 0.018 12.382 0.318

p042 2 23 76.321 0.321 0.010 0.181 ­0.031 0.040 ­0.020 0.064 0.021

p050 2 95 0.096 35.890 0.027 1.129 0.152 0.982 0.085 0.083 0.502

p056 1 26 0.233 33.902 0.483 0.713 0.502 0.198 0.153 0.514 0.330

p056 2 56 0.573 0.111 28.286 0.134 0.150 0.078 0.046 0.492 0.189

p056 2 81 0.124 0.900 1.038 0.149 0.054 0.079 0.039 32.094 0.179

p063 2 2 0.136 0.808 0.641 0.064 0.705 0.337 20.157 0.137 0.225

p071 1 20 ­0.048 0.400 ­0.064 645.724 0.032 0.272 0.031 0.544 0.064

p071 2 24 ­0.048 0.048 0.256 21.760 ­0.048 0.000 0.320 ­0.032 0.496

p087 1 8 0.073 0.553 0.193 0.224 0.032 0.256 0.097 0.832 332.605

The descriptive statistics of the KeyRecs dataset are presented in Table C2. Similar to the CMU dataset,

the average duration for UD timings ranges from 0.13 to 0.35 seconds. The minimum values for UD timings

range from ­0.18 to 0.1 seconds, indicating overlapping key actions where one key is released as the next

is pressed. However, the maximum UD values, such as UD.w.j at 19.38 seconds, reflect occasional pauses

between key releases and subsequent key presses.
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H times exhibit low variability, with means ranging from 0.09 to 0.1 seconds and standard deviations

of approximately 0.03 seconds. This consistency suggests quick key releases. The relatively small maximum

values for H timings, such asH.k.k.1with amaximumof only 0.292 seconds, compared to other timing features.

Overall, while H and DD timings demonstrate stable and consistent keystroke durations across users,

the variability in UD and UU values reflects the diversity in key transition patterns. This variability is likely

influenced by individual differences in typing speed and rhythm.

Figure 19: Subjects normalized timing comparison

Like in the CMU dataset, fraction graphs were generated to compare users in the KeyRecs dataset, as

shown in Fig. 19. The normalized figure reveals notable timing patterns among subjects. For instance, all

subjects in the graph exhibit distinct pauses at specific points in the typing sequence. This is particularly evident

in subject 18’s 79 repetitions, where dots are densely concentrated at certain points, followed by occasional

longer intervals between keystrokes.

Figure 20: Subjects timing comparison
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From the normalized patterns, both lines representing subject 18 exhibit very similar keystroke timing

patterns, suggesting a consistent typing rhythm across different sessions, as shown in Fig. 20. However, when

the raw timing data for the same subject is examined, it is evident that repetition 79 takes significantly longer

to complete.

Additionally, subject 92 demonstrates a keystroke pattern similar to that of subject 18 toward the end of

the typing sequence, suggesting shared timing characteristics in their final keystrokes. Interestingly, subjects

41 and 92 exhibit comparable patterns at the beginning of their sequences, indicating a similar approach or

rhythm in the initial stages of typing. These observations highlight both the individual consistency of typing

patterns and the presence of cross­subject similarities in specific parts of the typing sequence.

Figure 21: H and UD feature comparison in KeyRecs dataset

After calculating the cosine similarity and Euclidean distance between subjects in the KeyRecs dataset,

the following pairs were identified: the lowest cosine similarity value was 0.830 between subjects 18 and 92,

whereas the highest Euclidean distance was 9.745 between subjects 3 and 41. Moreover, the highest cosine

similarity of 0.998 was observed between subjects 52 and 80, and the smallest Euclidean distance, 0.152, was

also found between these two subjects.

To further investigate whether the H and UD attribute values align with these similarity metrics, linear

graphs were plotted, as shown in Fig. 21.

The resulting linear graphs indicate that all pairs exhibit significant differences, except for participants

52 and 80, which showed relatively similar UD features.

Fig. 22 presents the results of KPCA, UMAP,metricMDS, and t­SNE as dimensionality reductionmethods

applied to pairs derived from cosine similarity and Euclidean distance, using the same dimension reduction

model parameters as those in theCMUdataset. The results show that pairswith low similarity or high Euclidean

distance are effectively separated using all dimensionality reduction methods. However, for similar subjects,

the t­SNE method proved to be the most effective, although it does not seperate all data points.

Similarly to the CMU dataset, after the KeyRecs dataset was split into training and testing sets, six ma­

chine learning models and two ensemble methods were applied across four scenarios: using either the ex­

tended dataset or the original dataset, with orwithout transformation. Hyperparameter tuningwas conducted
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using random search. The results were similar, demonstrating that the extended version of the dataset does

not provide significantly more information. However, transformations slightly improved the results (see Table

C5).

Figure 22: Multidimensional data in a lower dimensional space for the KeyRecs datset

The results of the original dataset with transformation (See Table 10 and Fig. B3) show that the best

model among the machine learning classifiers and ensemble methods according to accuracy is the voting en­

semble, with an accuracy of 86.63%, and while the lowest EER of 11.07% was achieved by the stacking ensem­

ble. However, after running a CNN with GASF and GADF images with additional Gaussian noise as inputs, an

accuracy of 90.45% and an EER of 10.06%were achieved, improving on the performance of themachine learn­

ing models. Results of each subject seperately can be seen in Table C6. It is also important to note that the

FAR and FRR results for the CNN are very similar, at 9.19% and 10.07%, respectively. This indicates a balanced

likelihood of the model misclassifying an impostor as a genuine user or vice versa. In contrast, for the machine

learning models, the FRR is consistently much higher than the FAR except for KNN—meaning these models are

more likely to misclassify a genuine user as an impostor, potentially making the login process less convenient

for users.

Table 10: Performance metrics of different classifiers

Classifier Accuracy EER FAR FRR

DT 0.7956 0.2268 0.1335 0.2733

GB 0.8510 0.1352 0.0814 0.2147

KNN 0.8690 0.1266 0.1408 0.1215

RF 0.8531 0.1240 0.0606 0.2307

SVM 0.8608 0.1086 0.0616 0.2147

Stacking 0.8767 0.1163 0.0691 0.1976

Voting 0.8822 0.1107 0.0636 0.2018

XGB 0.8616 0.1202 0.0702 0.2047

CNN 0.9045 0.1006 0.0919 0.1007
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4 Conclusion

This study evaluates and compares machine learning models for user authentication based on keystroke

dynamics, leveraging both numerical features and time­series image transformations to classify genuine users

and impostors.

The literature review explores various methods for keystroke dynamics­based biometric authentication,

analyzing statistical, machine learning, and deep learning approaches. Key findings highlight the effective­

ness of traditional models such as k­nearest neighbor (KNN) and support vector machine (SVM) for structured

data. In contrast, deep learning methods, including convolutional neural networks (CNNs) and recurrent neu­

ral networks (RNNs), demonstrate superior performance in free­text and image­based analyses. Challenges

identified include user variability, differences in device types, and the influence of emotional states, fatigue,

and environmental factors on typing behavior. This study addresses these challenges by exploring innovative

time­series­to­image transformations and testing their effectiveness on diverse datasets.

This study not only provides a comprehensive analysis of the widely used CMU dataset, which is often

utilized in keystroke dynamics research but also, introduces the novelty of evaluating a relatively new KeyRecs

dataset. The CMU dataset offers structured, fixed­text typing samples across multiple sessions, enabling con­

trolled evaluations ofmachine learningmodels. In contrast, the KeyRecs dataset provides data froma variety of

sources, capturing fixed­text typing behavior across diverse devices. This diversity makes KeyRecs particularly

suitable for testing model generalization in real­world scenarios.

Data preprocessing involved cleaning and preparing the datasets to ensure reliable model performance.

This included addressing inconsistencies, generating additional features from raw timing data, and applying

data transformations. Exploratory analysis revealed that, while subjects shared numerous similarities in their

typing patterns, classification was particularly challenging due to closely aligned trends in some features. For

example, in the CMU dataset, subjects 18 and 29, as well as subjects 7 and 51, exhibited very similar trends in

the keyup­keydown feature. Similarly, in the KeyRecs dataset, subjects 52 and 80 demonstrated closely aligned

trends in the same feature. However, subjects with more distinct typing patterns were easier to differentiate,

emphasizing the importance of feature separability within the dataset.

Unlike traditional approaches that rely solely on numeric features for classification, this research ex­

plores an innovative use of time­series transformations, such as gramian angular summation fields (GASF) and

gramian angular difference fields (GADF), to convert numeric keystroke data into visual representations. These

transformations facilitated the application of CNNs, enabling a direct comparison between the performance of

machine learning and ensemble models on numeric features and CNNs on image­based data. All evaluations

were conducted using consistent data cleaning and preprocessing techniques.

Various machine learning models were assessed for their ability to distinguish between genuine and

impostor users. Commonly used classifiers, such as KNN, SVM, and gradient boosting (GB), achieved high ac­

curacy rates of 94–95% and low equal error rates (EERs) ranging from 0.03 to 0.04 on the structured CMU

dataset, collected in a controlled environment. The voting ensemble method achieved the highest accuracy of

96.48% and an EER of 0.0314. However, CNNs did not yield further improvements in the CMU dataset. In con­

trast, on the KeyRecs dataset, these classifiers achieved accuracy levels of 85–86%, while the voting ensemble

method reached 88%. CNNs outperformed all othermethods on the KeyRecs dataset, achieving an accuracy of

up to 90.45% and an EER as low as 0.1006. These results underscore the value of analyzing keystroke dynamics

using both numeric features and time­series image representations. This novel methodology enables a fresh
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perspective on comparing traditional machine learning models with deep learning approaches for keystroke

dynamics.

A key finding of this research is that extended feature sets provided minimal improvement, suggesting

that additional features may not always contribute significant new information for model training. On the

other hand, the application of data transformations improved performance metrics across both datasets, em­

phasizing the importance of robust preprocessing in keystroke dynamics research. Furthermore, this study

highlights the strengths and weaknesses of different approaches. For instance, machine learning models ex­

hibited higher false rejection rates (FRR) compared to false acceptance rates (FAR), indicating a tendency to

reject genuine usersmore frequently than impostors. In contrast, CNNs demonstrated amore balanced perfor­

mance between these two metrics, with significantly lower FRR. This balance makes CNNs a promising option

for practical biometric systems, as they reduce the inconvenience of rejecting genuine users while maintaining

strong security against impostors.

Future research should explore diverse real­world datasets and conduct real­time evaluations under

varying conditions, such as different keyboard types and user stress levels, to enhance model robustness and

practical applicability. Hybrid approaches that combine numeric and image­based methods could leverage

the strengths of both for improved accuracy and robustness. Additionally, alternative time­series­to­image

transformation techniques, such as recurrence plots or spectrograms, should be investigated to better cap­

ture temporal patterns. Finally, advanced deep learning architectures, such as attention­based models, could

provide novel ways to emphasize critical features in keystroke dynamics.
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Appendix

Appendix A: Artificial intelligence

In this thesis, ChatGPT [43], Grammarly [27], Curie [19], and Scopus [23] were utilized to enhance the

quality of the research.

ChatGPT was instrumental in assisting with technical writing, code optimization, and commenting. Ad­

ditionally, it was used to efficiently create and modify LaTeX tables. For writing, it contributed significantly

to improving the report structure, identifying grammar and punctuation errors, rephrasing sentences for bet­

ter clarity, and suggesting synonyms to avoid repetitive word usage. In code optimization, ChatGPT provided

valuable insights by identifying areas where performance and readability could be enhanced. It highlighted

redundant or inefficient sections and offered concrete suggestions for improvement. For code commenting,

ChatGPT identified parts of the code that required additional explanations to improve comprehensibility, en­

suring the code was accessible to future reviewers or collaborators.

Grammarly was used to significantly enhance the quality of my written communication. It ensured that

the writing was clear, grammatically correct, and well­structured. Furthermore, its tone suggestions and style

enhancements improved the overall professionalism and readability of the content.

Curie played a crucial role in ensuring the coherence of my arguments. It excelled in handling complex

academic language, summarizing detailed sections concisely, and suggesting improvements to enhance the

logical flow of the report. By leveraging Curie, I achieved greater efficiency in refining technical sections and

ensured that the thesis adhered to high academic standards.

Finally, Scopus was utilized to efficiently locate articles relevant to the analyzed topics. Its advanced

search capabilities allowed for keyword­based searches, simplifying the process of finding high­quality and

relevant literature for this research.
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Appendix B: Supplementary figures

Input

Conv2D: filters={16, 32}, kernel=3, activation=ReLU MaxPooling2D

Conv2D: filters={64, 128}, kernel=3, activation=ReLU MaxPooling2D

Conv2D: filters={128, 256}, kernel={3, 5}, activation=ReLU MaxPooling2D

Flatten

Dense: units={64, 128, 256}, activation=ReLU Dropout: rate={0.2, 0.4, 0.5}

Dense: units=1, activation=Sigmoid

Optimizer: AdamW / RMSprop

Learning Rate: {1e­2, 1e­3, 1e­4}

Figure B1: Architecture of the convolutional neural network model
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Figure B2: CMU dataset performance metrics graph

Figure B3: KeyRecs dataset performance metrics graph for KeyRecs dataset
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Appendix C: Supplementary Tables

Table C1: CMU keystroke timing statistics

Feature Mean Std Min 50% Max

DD.Shift.r.o 0.251 0.174 0.049 0.201 4.152

DD.a.n 0.151 0.107 0.001 0.125 3.328

DD.e.five 0.377 0.265 0.001 0.289 4.962

DD.five.Shift.r 0.439 0.260 0.169 0.378 8.370

DD.i.e 0.158 0.137 0.001 0.121 2.655

DD.l.Return 0.322 0.225 0.008 0.263 5.884

DD.n.l 0.203 0.150 0.001 0.173 4.025

DD.o.a 0.157 0.107 0.001 0.132 2.857

DD.period.t 0.264 0.219 0.019 0.206 12.506

DD.t.i 0.169 0.123 0.001 0.140 4.920

DU.Shift.r.o 0.243 0.177 0.026 0.195 4.105

DU.a.n 0.134 0.104 ­0.145 0.113 2.594

DU.e.five 0.365 0.265 ­0.111 0.278 4.965

DU.five.Shift.r 0.458 0.263 0.171 0.395 8.373

DU.i.e 0.166 0.142 ­0.031 0.129 2.658

DU.l.Return 0.315 0.228 0.035 0.249 5.887

DU.n.l 0.208 0.151 ­0.084 0.188 4.045

DU.o.a 0.175 0.115 ­0.122 0.147 2.944

DU.period.t 0.256 0.225 ­0.076 0.194 12.524

DU.t.i 0.165 0.124 ­0.141 0.137 4.899

H.Return 0.088 0.027 0.003 0.085 0.265

H.Shift.r 0.096 0.034 0.001 0.093 0.282

H.a 0.106 0.039 0.004 0.102 2.035

H.e 0.089 0.031 0.002 0.083 0.325

H.five 0.077 0.022 0.001 0.074 0.199

H.i 0.082 0.027 0.003 0.077 0.331

H.l 0.096 0.028 0.004 0.094 0.341

H.n 0.090 0.031 0.004 0.085 0.358

H.o 0.088 0.026 0.007 0.086 0.687

H.period 0.093 0.030 0.001 0.090 0.376

H.t 0.086 0.027 0.009 0.081 0.241

UD.Shift.r.o 0.155 0.182 ­0.087 0.102 4.012

UD.a.n 0.044 0.105 ­0.236 0.023 2.524

UD.e.five 0.288 0.267 ­0.151 0.200 4.883

UD.five.Shift.r 0.362 0.261 0.086 0.302 8.291

UD.i.e 0.077 0.140 ­0.160 0.041 2.586

Continued on the next page
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Table C1: CMU keystroke data summary (continued)

Keystroke Mean Std Min 50% Max

UD.l.Return 0.226 0.231 ­0.125 0.160 5.836

UD.n.l 0.113 0.160 ­0.176 0.096 3.978

UD.o.a 0.069 0.109 ­0.229 0.044 2.815

UD.period.t 0.171 0.226 ­0.236 0.109 12.452

UD.t.i 0.083 0.126 ­0.162 0.058 4.800

UU.Shift.r.o 0.243 0.177 0.026 0.195 4.105

UU.a.n 0.134 0.104 ­0.145 0.113 2.594

UU.e.five 0.365 0.265 ­0.111 0.278 4.965

UU.five.Shift.r 0.458 0.263 0.171 0.395 8.373

UU.i.e 0.166 0.142 ­0.031 0.129 2.658

UU.l.Return 0.315 0.228 0.035 0.249 5.887

UU.n.l 0.208 0.151 ­0.084 0.188 4.045

UU.o.a 0.175 0.115 ­0.122 0.147 2.944

UU.period.t 0.256 0.225 ­0.076 0.194 12.524

UU.t.i 0.165 0.124 ­0.141 0.137 4.899

tri.Shift.r.o.a 0.408 0.232 0.126 0.335 4.319

tri.a.n.l 0.353 0.218 0.066 0.295 4.259

tri.e.five.Shift.r 0.816 0.442 0.254 0.714 11.317

tri.five.Shift.r.o 0.690 0.376 0.252 0.588 11.031

tri.i.e.five 0.536 0.330 0.087 0.437 5.128

tri.n.l.Return 0.524 0.319 0.108 0.435 7.796

tri.o.a.n 0.308 0.175 0.084 0.258 3.659

tri.period.t.i 0.433 0.276 0.138 0.357 12.684

tri.t.i.e 0.327 0.208 0.085 0.264 6.013

Table C2: KeyRecs keystroke timing statistics

Feature Mean Std Min 50% Max

DD.e.u 0.245 0.259 0.005 0.185 14.772

DD.j.k 0.256 0.261 0.001 0.197 8.861

DD.k.b 0.277 0.213 0.001 0.232 5.730

DD.k.e 0.293 0.350 0.003 0.201 16.554

DD.p.w 0.392 0.436 0.004 0.255 18.715

DD.r.k 0.445 0.422 0.007 0.310 11.384

DD.u.r 0.221 0.208 0.002 0.173 4.981

DD.v.p 0.259 0.246 0.001 0.199 7.466

DD.w.j 0.436 0.514 0.001 0.282 19.503

DU.e.u 0.337 0.262 0.008 0.278 14.871

DU.j.k 0.356 0.260 0.006 0.295 8.990

Continued on the next page
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Table C2: KeyRecs keystroke timing statistics (continued)

Keystroke Mean Std Min 50% Max

DU.k.b 0.367 0.217 0.041 0.323 5.784

DU.k.e 0.398 0.351 0.006 0.312 16.642

DU.p.w 0.495 0.437 0.007 0.364 18.843

DU.r.k 0.540 0.422 0.014 0.410 11.465

DU.u.r 0.318 0.212 0.006 0.270 5.056

DU.v.p 0.355 0.247 0.004 0.296 7.542

DU.w.j 0.533 0.519 0.006 0.382 19.763

H.b.b 0.090 0.043 0.002 0.085 4.573

H.e.e 0.105 0.031 0.002 0.101 0.294

H.j.j 0.096 0.041 0.002 0.085 0.548

H.k.k 0.100 0.030 0.003 0.095 0.333

H.k.k.1 0.095 0.029 0.004 0.090 0.292

H.p.p 0.096 0.029 0.002 0.090 0.250

H.r.r 0.096 0.028 0.002 0.093 0.321

H.u.u 0.092 0.028 0.002 0.087 0.266

H.v.v 0.098 0.030 0.002 0.094 0.965

H.w.w 0.103 0.031 0.003 0.098 0.448

UD.e.u 0.141 0.259 ­0.111 0.080 14.625

UD.j.k 0.160 0.266 ­0.179 0.118 8.749

UD.k.b 0.182 0.214 ­0.147 0.140 5.677

UD.k.e 0.193 0.349 ­0.144 0.100 16.458

UD.p.w 0.296 0.436 ­0.104 0.160 18.624

UD.r.k 0.349 0.423 ­0.148 0.210 11.332

UD.u.r 0.130 0.206 ­0.100 0.080 4.900

UD.v.p 0.161 0.247 ­0.172 0.098 7.391

UD.w.j 0.333 0.514 ­0.145 0.178 19.384

UU.e.u 0.232 0.260 ­0.045 0.170 14.724

UU.j.k 0.260 0.263 ­0.075 0.209 8.878

UU.k.b 0.272 0.215 ­0.063 0.228 5.731

UU.k.e 0.298 0.348 ­0.012 0.211 16.546

UU.p.w 0.399 0.436 0.004 0.265 18.752

UU.r.k 0.444 0.421 ­0.051 0.310 11.413

UU.u.r 0.226 0.208 0.001 0.176 4.975

UU.v.p 0.257 0.247 ­0.061 0.196 7.467

UU.w.j 0.429 0.518 ­0.073 0.279 19.644

tri.e.u.r 0.467 0.357 0.008 0.377 14.925

tri.j.k.e 0.549 0.441 0.006 0.428 17.050

tri.k.e.u 0.538 0.448 0.008 0.433 16.658

tri.p.w.j 0.828 0.711 0.008 0.619 20.161

Continued on the next page
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Table C2: KeyRecs keystroke timing statistics (continued)

Keystroke Mean Std Min 50% Max

tri.r.k.b 0.722 0.469 0.091 0.612 11.741

tri.u.r.k 0.667 0.487 0.013 0.536 11.781

tri.v.p.w 0.651 0.526 0.011 0.504 18.893

tri.w.j.k 0.693 0.588 0.007 0.526 19.655

Table C3: Hyperparameter tunning

Hyperparameter Model Values

n_neighbors KNN [3, 5, 7]

weights KNN [’uniform’, ’distance’]

p KNN [1, 2, 3]

C SVM [0.1, 1, 10]

kernel SVM [’linear’, ’rbf’]

degree SVM [2,3,4]

n_estimator RF, XGBoost, GB [100, 200, 300]

max_depth RF, DT [None, 10, 20]

criterion DT [’gini’, ’entropy’, ’log_loss’]

min_samples_split DT [2, 5, 10]

max_depth XGBoost [4, 6, 8]

learning_rate XGBoost [0.2, 0.3, 0.4]

learning_rate GB [0.01, 0.1, 0.2]
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Table C4: Comparison of model performance on original and extended CMU datasets

Model Dataset Type Accuracy EER

DT Extended with transformation 0.895 0.130

DT Extended without transformation 0.896 0.129

DT Original with transformation 0.896 0.130

DT Original without transformation 0.894 0.132

GB Extended with transformation 0.948 0.045

GB Extended without transformation 0.947 0.046

GB Original with transformation 0.946 0.046

GB Original without transformation 0.945 0.046

KNN Extended with transformation 0.953 0.046

KNN Extended without transformation 0.910 0.080

KNN Original with transformation 0.958 0.041

KNN Original without transformation 0.921 0.064

RF Extended with transformation 0.947 0.041

RF Extended without transformation 0.948 0.040

RF Original with transformation 0.950 0.038

RF Original without transformation 0.950 0.039

SVM Extended with transformation 0.954 0.036

SVM Extended without transformation 0.939 0.058

SVM Original with transformation 0.954 0.037

SVM Original without transformation 0.938 0.060

XGB Extended with transformation 0.949 0.045

XGB Extended without transformation 0.948 0.045

XGB Original with transformation 0.947 0.045

XGB Original without transformation 0.947 0.045

Stacking Extended with transformation 0.961 0.033

Stacking Extended without transformation 0.952 0.040

Stacking Original with transformation 0.962 0.032

Stacking Original without transformation 0.954 0.038

Voting Extended with transformation 0.965 0.032

Voting Extended without transformation 0.957 0.042

Voting Original with transformation 0.965 0.032

Voting Original without transformation 0.959 0.038

63



Table C5: Comparison of model performance on original and extended KeyRecs datasets

Model Dataset Type Accuracy EER FAR FRR

DT Extended with transformation 0.8071 0.2738 0.1101 0.3529

DT Extended without transformation 0.8026 0.2680 0.1098 0.3667

DT Original with transformation 0.8060 0.2590 0.1118 0.3532

DT Original without transformation 0.8132 0.1391 0.1096 0.3361

GB Extended with transformation 0.8630 0.1381 0.0534 0.2984

GB Extended without transformation 0.8647 0.1349 0.0524 0.2957

GB Original with transformation 0.8679 0.1356 0.0569 0.2775

GB Original without transformation 0.8670 0.1362 0.0565 0.2808

KNN Extended with transformation 0.8685 0.2163 0.1046 0.1836

KNN Extended without transformation 0.7959 0.1227 0.1640 0.2816

KNN Original with transformation 0.8801 0.1948 0.1023 0.1540

KNN Original without transformation 0.8108 0.1469 0.1616 0.2427

RF Extended with transformation 0.8547 0.1443 0.0371 0.3543

RF Extended without transformation 0.8582 0.1411 0.0366 0.3451

RF Original with transformation 0.8604 0.1408 0.0358 0.3401

RF Original without transformation 0.8596 0.1205 0.0392 0.3361

SVM Extended with transformation 0.8675 0.1581 0.0498 0.2924

SVM Extended without transformation 0.8333 0.1115 0.0905 0.3140

SVM Original with transformation 0.8761 0.1611 0.0453 0.2760

SVM Original without transformation 0.8292 0.1376 0.0891 0.3287

XGB Extended with transformation 0.8664 0.1378 0.0493 0.2967

XGB Extended without transformation 0.8655 0.1423 0.0501 0.2975

XGB Original with transformation 0.8610 0.1423 0.0550 0.3013

XGB Original without transformation 0.8610 0.1181 0.0550 0.3013

Stacking Extended with transformation 0.8794 0.1381 0.0392 0.2779

Stacking Extended without transformation 0.8675 0.1130 0.0433 0.3049

Stacking Original with transformation 0.8830 0.1353 0.0412 0.2635

Stacking Original without transformation 0.8691 0.1190 0.0441 0.2986

Voting Extended with transformation 0.8809 0.1496 0.0438 0.2646

Voting Extended without transformation 0.8587 0.1125 0.0443 0.3288

Voting Original with transformation 0.8852 0.1450 0.0473 0.2454

Voting Original without transformation 0.8635 0.1450 0.0426 0.3181

Table C6: KeyRecs dataset CNN results for each subject

Subject Acc. (%) EER FAR FRR Subject Acc. (%) EER FAR FRR

1 93 0.0773 0.0825 0.065 52 83 0.175 0.1237 0.21

2 91 0.095 0.0515 0.12 53 96 0.0464 0.0773 0.0102
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Table C6: KeyRecs dataset CNN results for each subject (continued)

Subject Acc. (%) EER FAR FRR Subject Acc. (%) EER FAR FRR

3 99 0.0103 0.0103 0 54 96 0.0412 0.0309 0.0556

5 78 0.2165 0.1495 0.28 55 80 0.22 0.1237 0.28

6 94 0.0619 0.0773 0.045 56 96 0.038 0.056 0.025

7 80 0.18 0.2474 0.145 57 97 0.03 0.0361 0.03

8 98 0.015 0.0206 0.015 58 91 0.1082 0.1392 0.05

9 77 0.2268 0.1959 0.27 59 87 0.13 0.1289 0.14

10 86 0.1392 0.1392 0.135 60 97 0.0309 0.0515 0.01

11 88 0.1263 0.0619 0.1818 61 98 0.0309 0.0103 0.035

12 97 0.0309 0.0464 0.0102 62 90 0.134 0.1598 0.05

13 83 0.1134 0.0258 0.315 63 85 0.1495 0.1598 0.1414

14 93 0.0707 0.0876 0.0606 64 95 0.05 0.0412 0.055

15 96 0.0412 0.0464 0.03 65 88 0.115 0.078 0.1625

16 86 0.135 0.1701 0.105 66 91 0.085 0.066 0.1125

17 93 0.067 0.1082 0.03 67 96 0.0412 0.0412 0.045

18 93 0.08 0.0928 0.055 68 82 0.1753 0.1649 0.195

19 76 0.2268 0.2629 0.22 69 89 0.1443 0.1804 0.05

20 91 0.0909 0.0722 0.1162 70 71 0.1598 0.0515 0.515

21 99 0.0103 0.0103 0 71 88 0.0979 0.0515 0.1818

22 92 0.0876 0.0515 0.11 72 93 0.0825 0.1186 0.03

23 89 0.12 0.17 0.06 73 84 0.1598 0.1031 0.2092

24 90 0.135 0.0464 0.155 74 89 0.12 0.1082 0.12

25 81 0.1804 0.2371 0.1465 75 93 0.0567 0.0979 0.04

26 96 0.0412 0.0412 0.0455 76 91 0.095 0.0876 0.095

27 96 0.0361 0.0361 0.035 77 99 0.02 0.0052 0.02

28 83 0.1598 0.2165 0.12 78 96 0.464 0.0309 0.055

29 80 0.1856 0.1186 0.285 79 95 0.0412 0.0722 0.025

30 86 0.1443 0.1753 0.11 80 94 0.0567 0.0412 0.07

31 95 0.0515 0.0464 0.06 81 80 0.2062 0.3557 0.055

32 89 0.125 0.1649 0.055 82 83 0.1869 0.2784 0.0707

33 91 0.0979 0.0515 0.1364 83 98 0.0309 0.0309 0

34 97 0.0361 0.0206 0.04 84 88 0.1495 0.1804 0.06

35 96 0.0455 0.0567 0.0202 85 96 0.0354 0.0155 0.0556

36 94 0.08 0.0464 0.08 86 98 0.0309 0.0052 0.035

37 88 0.12 0.1546 0.095 87 88 0.1082 0.0619 0.1717

38 87 0.13 0.1186 0.14 88 94 0.06 0.0104 0.16

39 99 0.015 0.0052 0.02 89 83 0.1649 0.1443 0.1919

40 96 0.0361 0.0464 0.0303 90 88 0.1546 0.1959 0.05

41 86 0.145 0.0933 0.22 91 98 0.025 0.0155 0.025

42 98 0.0204 0.0155 0.0204 92 97 0.0309 0.0309 0.0253
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Table C6: KeyRecs dataset CNN results for each subject (continued)

Subject Acc. (%) EER FAR FRR Subject Acc. (%) EER FAR FRR

43 100 0 0.0052 0 93 94 0.07 0.0361 0.09

44 97 0.0258 0.0515 0.01 94 93 0.065 0.0515 0.08

45 73 0.3041 0.0773 0.455 95 87 0.1443 0.1443 0.125

46 91 0.0825 0.1598 0.03 96 92 0.0825 0.0825 0.085

47 98 0.0206 0.0206 0.0108 97 98 0.025 0.0052 0.035

48 93 0.0725 0.066 0.075 98 80 0.1443 0.0825 0.305

49 86 0.1392 0.1856 0.09 99 85 0.1546 0.134 0.175

50 82 0.1818 0.1959 0.1717 100 85 0 0.0052 0

51 95 0.0606 0.0722 0.0253

Table C7: CMU dataset CNN results for each subject

Subject Acc. (%) EER FAR FRR Subject Acc. (%) EER FAR FRR

2 81 0.1825 0.2220 0.1500 30 97 0.0350 0.0400 0.0350

3 98 0.0125 0.0120 0.0200 31 76 0.2500 0.1520 0.3350

4 91 0.1100 0.1120 0.0625 32 82 0.1940 0.0860 0.3075

5 95 0.0460 0.0400 0.0600 33 88 0.1200 0.0520 0.2075

7 95 0.0525 0.0420 0.0700 35 88 0.1200 0.1180 0.1250

8 94 0.0580 0.0520 0.0725 36 88 0.1200 0.1750 0.1075

10 96 0.0340 0.0160 0.0050 37 86 0.1300 0.0140 0.0425

11 99 0.0100 0.0020 0.0175 39 97 0.0325 0.2740 0.1100

12 99 0.0100 0.0020 0.0175 40 80 0.2075 0.0160 0.0375

13 93 0.0740 0.0760 0.0550 41 97 0.0300 0.0560 0.0075

15 78 0.2275 0.1760 0.2700 43 96 0.0175 0.1000 0.0375

16 74 0.3075 0.1060 0.4600 44 93 0.0800 0.1560 0.1800

18 89 0.1100 0.0120 0.1025 46 93 0.1675 0.0960 0.0900

19 96 0.0640 0.0680 0.0425 47 94 0.0550 0.0540 0.0725

20 93 0.0675 0.0300 0.1125 48 91 0.0580 0.0660 0.1125

21 87 0.1320 0.1180 0.1400 50 99 0.0850 0.0120 0.0100

22 89 0.1080 0.1100 0.1000 51 100 0.0120 0.0120 0.0000

24 90 0.1025 0.1260 0.0700 52 88 0.0000 0.0000 0.0050

25 92 0.0775 0.1080 0.0425 53 99 0.0075 0.0120 0.0050

27 87 0.1380 0.0680 0.2000 55 97 0.0400 0.0200 0.0200

28 94 0.1780 0.0080 0.2425 56 94 0.0600 0.0420 0.0675
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Appendix D: Code

import pandas as pd

from sklearn.manifold import MDS, TSNE

from sklearn.preprocessing import StandardScaler

from umap import UMAP

from sklearn.decomposition import KernelPCA

import pandas as pd

import numpy as np

from sklearn.metrics.pairwise import cosine_similarity

from scipy.spatial.distance import euclidean

import matplotlib.pyplot as plt

import seaborn as sns

# Load the dataset from the CSV file

df = pd.read_csv('DSL-StrongPasswordData.csv')

# Define the password used to extract features

password = '.tie5Roanl_'

# Initialize lists to store feature column names

listofUp = [] # Holds UU (key release) features

listofUpDown = [col for col in df.columns if col.startswith('UD')] # UD (key

press-to-release) features↪→

listofHold = [col for col in df.columns if col.startswith('H')] # H (key hold

duration) features↪→

listofDown = [col for col in df.columns if col.startswith('DD')] # DD (key

press-to-press) features↪→

# Generate UU (key release) features based on the password

for i in range(len(password) - 1):

up = 'UU.'

current_symbol = password[i]

next_symbol = password[i + 1]

# Handle specific cases for symbols and append to listofUp

if current_symbol == '.':

listofUp.append(f'{up}period.{next_symbol}')

elif current_symbol == '5' and next_symbol == 'R':

listofUp.append(f'{up}five.Shift.r')

elif next_symbol == '5':

listofUp.append(f'{up}{current_symbol}.five')

elif current_symbol == 'R':

listofUp.append(f'{up}Shift.r.{next_symbol}')

elif next_symbol == 'R':

listofUp.append(f'{up}{current_symbol}.Shift.r')

elif next_symbol == '_':
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listofUp.append(f'{up}{current_symbol}.Return')

else:

listofUp.append(f'{up}{current_symbol}.{next_symbol}')

# Define trigraph features (sequence of three keys pressed in order)

trigraph = [

'tri.period.t.i', 'tri.t.i.e', 'tri.i.e.five', 'tri.e.five.Shift.r',

'tri.five.Shift.r.o', 'tri.Shift.r.o.a', 'tri.o.a.n', 'tri.a.n.l',

'tri.n.l.Return'

]

# Calculate new UU features using UD and H features

for i in range(len(listofUpDown)):

df[listofUp[i]] = df[listofUpDown[i]] + df[listofHold[i + 1]]

# Generate trigraph features using DD features

for j in range(len(listofDown) - 1):

df[trigraph[j]] = df[listofDown[j]] + df[listofDown[j + 1]]

# Define Down-Up (DU) features

DownUp = [

'DU.period.t', 'DU.t.i', 'DU.i.e', 'DU.e.five', 'DU.five.Shift.r',

'DU.Shift.r.o', 'DU.o.a', 'DU.a.n', 'DU.n.l', 'DU.l.Return'

]

# Calculate Down-Up (DU) features using UD and H features

for j in range(len(listofDown)):

df[DownUp[j]] = df[listofUpDown[j]] + df[listofHold[j + 1]]

# Extract numerical subject ID from the 'subject' column and add as a new column

df['subject_num'] = df['subject'].str.extract('(\d+)').astype(int)

# Save the modified DataFrame to a new CSV file

df.to_csv('modified_cmu.csv', index=False)

##############################################

###########Explanatory data analysis##########

##############################################

pd.set_option('display.max_rows', None)

# Descriptive statistics after cleaning data from illogical values

descriptive_stats = df[df.columns.difference(['subject', 'session', 'repetition',

'subject_num'])].describe().T↪→

descriptive_stats = descriptive_stats[['mean', 'std', 'min', '50%', 'max']]

print(descriptive_stats)

###############################################

#####################Plots#####################

###############################################

# Prepare lists of features

listofUpDown = [col for col in df.columns if col.startswith('UD')]

listofHold = [col for col in df.columns if col.startswith('H')]

listofDown = [col for col in df.columns if col.startswith('DD')]
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# Features to use for similarity and distance computations

features = df.columns.difference(['subject', 'sessionIndex', 'rep', 'subject_num'])

# Get unique subjects

subjects = df['subject'].unique()

results = []

# Compute similarity and distance metrics between subjects

for i in range(len(subjects)):

for j in range(i + 1, len(subjects)):

subj1 = subjects[i]

subj2 = subjects[j]

# Extract subject data

subject1 = df[df['subject'] == subj1]

subject2 = df[df['subject'] == subj2]

# Calculate feature vector means

avg_vector1 = subject1[features].mean().values

avg_vector2 = subject2[features].mean().values

# Compute similarity and distance metrics

cos_sim = cosine_similarity(avg_vector1.reshape(1, -1),

avg_vector2.reshape(1, -1))[0][0]↪→

euclidean_dist = euclidean(avg_vector1, avg_vector2)

results.append({

'Subject1': subj1,

'Subject2': subj2,

'Cosine Similarity': cos_sim,

'Euclidean Distance': euclidean_dist

})

# Create results DataFrame

results_df = pd.DataFrame(results)

# Function to find maximum and minimum values for a metric

def similar(name, results_df):

max_val = results_df[name].max()

min_val = results_df[name].min()

print(f"\nMax value: \n{results_df[results_df[name] == max_val]}:")

print(f"\nMin value: \n{results_df[results_df[name] == min_val]}:")

# Print max/min results for each metric

for metric in ['Cosine Similarity', 'Euclidean Distance']:

print(f"\nResults for {metric}:")

similar(metric, results_df)

# Function to plot similarity and distance heatmaps

def plot_similarities(results_df):

fig, axes = plt.subplots(1, 2, figsize=(25, 20))

# Cosine Similarity Heatmap
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pivot_cosine = results_df.pivot(index='Subject1', columns='Subject2',

values='Cosine Similarity')↪→

sns.heatmap(

pivot_cosine, annot=False, cmap='coolwarm',

cbar_kws={'label': 'Cosine Similarity'}, ax=axes[0]

)

axes[0].set_title('Cosine Similarity Between Subjects', fontsize=16)

axes[0].tick_params(axis='x', labelrotation=90, labelsize=12)

axes[0].tick_params(axis='y', labelrotation=0, labelsize=12)

axes[0].set_xlabel('Subject2', fontsize=14)

axes[0].set_ylabel('Subject1', fontsize=14)

# Euclidean Distance Heatmap

pivot_euclidean = results_df.pivot(index='Subject1', columns='Subject2',

values='Euclidean Distance')↪→

sns.heatmap(

pivot_euclidean, annot=False, cmap='coolwarm',

cbar_kws={'label': 'Euclidean Distance'}, ax=axes[1]

)

axes[1].set_title('Euclidean Distance Between Subjects', fontsize=16)

axes[1].tick_params(axis='x', labelrotation=90, labelsize=12)

axes[1].tick_params(axis='y', labelrotation=0, labelsize=12)

axes[1].set_xlabel('Subject2', fontsize=14)

axes[1].set_ylabel('Subject1', fontsize=14)

# Add legends for both subplots

cbar_cosine = axes[0].collections[0].colorbar

cbar_cosine.ax.tick_params(labelsize=12)

cbar_cosine.set_label('Cosine Similarity Scale', fontsize=14)

cbar_euclidean = axes[1].collections[0].colorbar

cbar_euclidean.ax.tick_params(labelsize=12)

cbar_euclidean.set_label('Euclidean Distance Scale', fontsize=14)

plt.tight_layout()

plt.show()

# Plot similarity and distance graphs for a subset of subjects

unique_subjects = results_df['Subject1'].unique()

# Dynamically subset subjects

subjects_subset = unique_subjects[0:31]

subjects_subset = np.append(subjects_subset, unique_subjects[44:49])

# Filter results for both Subject1 and Subject2

subset_df = results_df[

results_df['Subject1'].isin(subjects_subset) &

results_df['Subject2'].isin(subjects_subset)↪→
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]

# Plot the similarities

plot_similarities(subset_df)

################Timing########################

def plot_subject_data(subject_data, subject_of_interest, session_number,

repetition_number, normalized=False):↪→

# Select columns starting with H or UD

filtered_columns = subject_data.filter(regex='^(H|UD)').columns

# Check if non-empty dataframe with info about subject, session and repetition

if not subject_data.empty:

# Flaten the timing values into a 1D array for cumulative sum

timing_values = subject_data[filtered_columns].values.flatten()

# Calculate cumulative sum

x_values = np.cumsum(timing_values)

# Normalization for graph with normalized data (in 0 to 1 range)

if normalized:

x_values = (x_values - x_values[0]) / (x_values[-1] - x_values[0])

# Label containing subject, session, repetition

y_value = f'{subject_of_interest}, Session: {session_number}, Repetition:

{repetition_number}'↪→

return x_values, [y_value] * len(x_values)

return None, None

def plot_keystroke_timing(df, subject_combinations, normalized=False):

plt.figure(figsize=(12, 8))

# Loop over each subject combination

for subject_of_interest, session_number, repetition_number in

subject_combinations:↪→

# Filter the data for the specific subject, session, and repetition

subject_data = df[(df['subject'] == subject_of_interest) &

(df['sessionIndex'] == session_number) &

(df['rep'] == repetition_number)]

# Get the timing values for plotting

x_values, y_values = plot_subject_data(subject_data, subject_of_interest,

session_number, repetition_number, normalized=normalized)↪→

if x_values is not None:

plt.plot(x_values, y_values, marker='o', linestyle='-', linewidth=4)

plt.scatter(x_values, y_values, s=100)

normalization_text = "Normalized" if normalized else "Non-Normalized"

plt.title(f'{normalization_text} Keystroke Timing for Selected Subjects',

fontsize = 20)↪→

plt.xlabel('Timing (Fraction of Typing Time)' if normalized else 'Timing

(Cumulative Time)', fontsize = 18)↪→
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plt.ylabel('Subject, Session, and Repetition', fontsize = 18)

plt.xticks(fontsize = 14)

plt.yticks(fontsize = 14)

plt.grid(True)

plt.tight_layout()

plt.show()

# Define all combinations of subject, session, and repetition

subject_combinations = [

('s007', 4, 47), ('s051', 8, 10),

('s018', 1, 15), ('s029', 3, 20),

]

# Plot normalized data

plot_keystroke_timing(df, subject_combinations, normalized=True)

# Plot non-normalized data

plot_keystroke_timing(df, subject_combinations, normalized=False)

##################Linear#####################

# Define specific subject pairs for comparison

subject_pairs = [

['s036', 's055'],

['s018', 's029'],

['s002', 's052'],

['s007', 's051']

]

# Extract all unique subjects from the defined pairs

all_subjects = [subject for pair in subject_pairs for subject in pair]

# Filter the DataFrame to include only rows corresponding to the selected subjects

df_filtered = df[df['subject'].isin(all_subjects)]

# Compute the mean of each feature for each subject

mean_features_per_subject = df_filtered.groupby('subject').mean()

# Function to plot Hold and Up-Down features side-by-side for each pair of subjects

def plot_side_by_side_hold_updown(df, subject_pairs, hold_features,

updown_features):↪→

nrows = 2

ncols = 4

fig, axes = plt.subplots(nrows, ncols, figsize=(12, 18))

axes = axes.flatten()

# Iterate over each pair of subjects

for i, pair in enumerate(subject_pairs):

hold_ax = axes[i * 2]

updown_ax = axes[i * 2 + 1]

# Plot Hold features for each subject in the pair

for subject in pair:

hold_values = df.loc[subject, hold_features]
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hold_ax.plot(

hold_values.index, hold_values.values,

marker='o', linestyle='-', label=f'{subject}'

)

# Customize the Hold features plot

hold_ax.set_xticks(range(len(hold_features)))

hold_ax.set_xticklabels(hold_features, rotation=45, ha='right', fontsize=12)

hold_ax.set_title(f'Hold Features: {pair[0]} vs {pair[1]}', fontsize=14)

hold_ax.set_ylabel('Value', fontsize=12)

hold_ax.legend(title='Subject', fontsize=12, loc='best')

# Plot Up-Down features for each subject in the pair

for subject in pair:

updown_values = df.loc[subject, updown_features]

updown_ax.plot(

updown_values.index, updown_values.values,

marker='o', linestyle='-', label=f'{subject}'

)

updown_ax.set_xticks(range(len(updown_features)))

updown_ax.set_xticklabels(updown_features, rotation=45, ha='right',

fontsize=12)↪→

updown_ax.set_title(f'Up-Down Features: {pair[0]} vs {pair[1]}',

fontsize=14)↪→

updown_ax.set_ylabel('Value', fontsize=12)

updown_ax.legend(title='Subject', fontsize=12, loc='upper left')

plt.tight_layout()

plt.show()

# Plot Hold and Up-Down features for the defined subject pairs

plot_side_by_side_hold_updown(mean_features_per_subject, subject_pairs, listofHold,

listofUpDown)↪→

################Dimension reduction################

# Define pairs of subject numbers to compare

user_pairs = [[36, 55], [18, 29], [2, 52], [7, 51]]

fig, axes = plt.subplots(len(user_pairs), 4, figsize=(24, 10))

# Iterate through each row (user pair) in the grid

for row, pair in enumerate(user_pairs):

# Filter the DataFrame to include only the two subjects in the current pair

df_two_users = df[df['subject_num'].isin(pair)]

# Extract feature matrix (X) and target labels (y)

# Drop non-feature columns like 'subject', 'rep', 'subject_num', and

'sessionIndex'↪→

X = df_two_users.drop(columns=['subject', 'rep', 'subject_num', 'sessionIndex'],

errors='ignore').values↪→

y = df_two_users['subject_num'].values

73



# Standardize the feature matrix (mean=0, variance=1)

X = StandardScaler().fit_transform(X)

# Define dimensionality reduction methods with their configurations

projection_methods = {

'Kernel PCA': KernelPCA(n_components=2, kernel='rbf'),

'Umap': UMAP(n_components=2, n_neighbors=10, min_dist=0.01),

'Metric MDS': MDS(n_components=2, metric=True),

't-SNE': TSNE(n_components=2, perplexity=3, learning_rate=200, n_iter=3500),

}

# Map subject numbers to colors for the scatter plot

color_map = {pair[0]: 'orange', pair[1]: 'blue'}

colors = np.array([color_map[num] for num in y])

for col, (name, method) in enumerate(projection_methods.items()):

# Apply the dimensionality reduction method

transformed = method.fit_transform(X)

# Plot the transformed data in the corresponding subplot

axes[row, col].scatter(

transformed[:, 0], transformed[:, 1], c=colors, s=25, alpha=0.6

)

axes[row, col].set_title(f"{name} for subjects {pair[0]} and {pair[1]}",

fontsize=14)↪→

axes[row, col].set_xticks([]), axes[row, col].set_yticks([])

plt.tight_layout()

plt.show()

from pyts.image import GramianAngularField

from sklearn.neighbors import KNeighborsClassifier

from sklearn.preprocessing import MinMaxScaler

from sklearn.svm import SVC

from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier,

VotingClassifier, StackingClassifier, BaggingClassifier↪→

from sklearn.tree import DecisionTreeClassifier

from xgboost import XGBClassifier

from sklearn.metrics import accuracy_score

from sklearn.model_selection import StratifiedKFold, GridSearchCV

from sklearn.linear_model import LogisticRegression

import pandas as pd

import os

import numpy as np

import tensorflow as tf

import keras_tuner as kt

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout

from tensorflow.keras.optimizers import AdamW, RMSprop
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from tensorflow.keras.preprocessing.image import load_img, img_to_array

from sklearn.metrics import classification_report, confusion_matrix, roc_curve

from pathlib import Path

import matplotlib.pyplot as plt

from sklearn.preprocessing import QuantileTransformer

data = pd.read_csv("modified_cmu.csv")

# Define the feature columns used for classification

feature_columns = [

'H.period', 'DD.period.t', 'UD.period.t', 'H.t', 'DD.t.i', 'UD.t.i', 'H.i',

'DD.i.e', 'UD.i.e',↪→

'H.e', 'DD.e.five', 'UD.e.five', 'H.five', 'DD.five.Shift.r', 'UD.five.Shift.r',

'H.Shift.r',↪→

'DD.Shift.r.o', 'UD.Shift.r.o', 'H.o', 'DD.o.a', 'UD.o.a', 'H.a', 'DD.a.n',

'UD.a.n', 'H.n',↪→

'DD.n.l', 'UD.n.l', 'H.l', 'DD.l.Return', 'UD.l.Return', 'H.Return'

]

# Define the classifiers to be evaluated

classifiers = {

'KNN': KNeighborsClassifier(),

'SVM': SVC(probability=True),

'Random Forest': RandomForestClassifier(),

'Decision Tree': DecisionTreeClassifier(),

'XGBoost': XGBClassifier(eval_metric='logloss'),

'Gradient Boosting': GradientBoostingClassifier(),

'Voting': VotingClassifier(estimators=[

('rf', RandomForestClassifier()),

('svc', SVC(probability=True)),

('xgb', XGBClassifier(eval_metric='logloss')),

('knn', KNeighborsClassifier())

], voting='soft'),

'Stacking': StackingClassifier(estimators=[

('rf', RandomForestClassifier()),

('svc', SVC(probability=True)),

('xgb', XGBClassifier(eval_metric='logloss')),

('knn', KNeighborsClassifier())

], final_estimator=LogisticRegression()),

}

# Define the parameter grids for hyperparameter tuning

param_grids = {
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'KNN': {'n_neighbors': [3, 5, 7], 'weights': ['uniform', 'distance'], 'p': [1,

2]},↪→

'SVM': {'C': [0.1, 1, 10], 'kernel': ['linear', 'rbf']},

'Random Forest': {'n_estimators': [100, 200], 'max_depth': [None, 10, 20]},

'Decision Tree': {'max_depth': [None, 10, 20], 'min_samples_split': [2, 5, 10]},

'XGBoost': {'n_estimators': [100, 200], 'max_depth': [3, 5, 7]},

'Gradient Boosting': {'n_estimators': [100, 200], 'learning_rate': [0.01, 0.1,

0.2]},↪→

}

# Function to calculate the Equal Error Rate (EER)

def calculate_equal_error_rate(user_scores, impostor_scores):

predictions = np.concatenate([user_scores, impostor_scores])

labels = np.concatenate([np.zeros(len(user_scores)),

np.ones(len(impostor_scores))])↪→

fpr, tpr, thresholds = roc_curve(labels, predictions)

missrates = 1 - tpr

farates = fpr

dists = missrates - farates

idx1 = np.where(dists >= 0, dists, np.inf).argmin()

idx2 = np.where(dists < 0, dists, -np.inf).argmax()

if abs(idx1 - idx2) != 1:

idx2 = idx1 - 1 if idx1 > 0 else idx1 + 1

x = np.array([missrates[idx1], farates[idx1]])

y = np.array([missrates[idx2], farates[idx2]])

a = (x[0] - x[1]) / (y[1] - x[1] - y[0] + x[0])

eer = x[0] + a * (y[0] - x[0])

return eer

# Prepare data for a specific subject

def prepare_data_for_subject(X, eval_subject):

# Training data: genuine users and imposters

Y_train_genuine = X[(X['subject'] == eval_subject) & (X['sessionIndex'] <= 4)]

Y_train_impostor = X[(X['subject'] != eval_subject) & (X['sessionIndex'] == 2) &

(X['rep'] <= 4)]↪→

Y_train = pd.concat([Y_train_genuine, Y_train_impostor], ignore_index=True)

labels_train = np.concatenate([np.ones(len(Y_train_genuine)),

np.zeros(len(Y_train_impostor))])↪→

# Testing data: genuine users and imposters

Y_test_genuine = X[(X['subject'] == eval_subject) & (X['sessionIndex'] > 4)]

Y_test_impostor = X[(X['subject'] != eval_subject) & (X['sessionIndex'] == 1) &

(X['rep'] <= 4)]↪→

Y_test = pd.concat([Y_test_genuine, Y_test_impostor], ignore_index=True)

labels_test = np.concatenate([np.ones(len(Y_test_genuine)),

np.zeros(len(Y_test_impostor))])↪→
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# Feature columns

feature_columns = Y_train.columns.difference(['subject', 'sessionIndex', 'rep',

'subject_num', 'total time'])↪→

X_train = Y_train[feature_columns].values

X_test = Y_test[feature_columns].values

return X_train, labels_train, X_test, labels_test

# Evaluate a classifier using cross-validation

def evaluate_classifier_cv(X_train, y_train, X_test, y_test, classifier,

param_grid):↪→

skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)

grid_search = GridSearchCV(classifier, param_grid, cv=skf, scoring='accuracy',

n_jobs=-1)↪→

grid_search.fit(X_train, y_train)

best_classifier = grid_search.best_estimator_

predictions = best_classifier.predict(X_test)

accuracy = accuracy_score(y_test, predictions)

# Calculate EER if classifier supports probability prediction

if hasattr(best_classifier, "predict_proba"):

scores = best_classifier.predict_proba(X_test)[:, 1]

user_scores = scores[y_test == 0]

impostor_scores = scores[y_test == 1]

eer = calculate_equal_error_rate(user_scores, impostor_scores)

else:

eer = None

# Calculate FAR and FRR

tn, fp, fn, tp = confusion_matrix(y_test, predictions).ravel()

far = fp / (fp + tn) if (fp + tn) > 0 else 0

frr = fn / (fn + tp) if (fn + tp) > 0 else 0

return accuracy, eer, far, frr

# Evaluate all classifiers for all subjects

def evaluate_all_subjects(data):

subjects = data['subject'].unique()

results = []

for subject in subjects:

X_train, y_train, X_test, y_test = prepare_data_for_subject(data, subject)

quantile_transformer = QuantileTransformer(output_distribution='uniform')

X_train = quantile_transformer.fit_transform(X_train)

X_test = quantile_transformer.transform(X_test)

for classifier_name, classifier in classifiers.items():

param_grid = param_grids.get(classifier_name, {})

accuracy, eer, far, frr = evaluate_classifier_cv(X_train, y_train,

X_test, y_test, classifier, param_grid)↪→

results.append({
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'Subject': subject,

'Classifier': classifier_name,

'Accuracy': accuracy,

'EER': eer,

'FAR': far,

'FRR': frr

})

return pd.DataFrame(results)

# Run evaluation across all subjects

results_df = evaluate_all_subjects(data)

# Calculate and display average results for all classifiers

average_results = results_df.groupby(['Classifier']).agg({'Accuracy': 'mean', 'EER':

'mean', 'FAR': 'mean', 'FRR': 'mean'}).round(4)↪→

print(average_results)

#############################GASF and GADF###############################

# Initialize MinMaxScaler for normalization to [-1, 1]

scaler = MinMaxScaler(feature_range=(-1, 1))

# Initialize GASF and GADF transformations

gasf = GramianAngularField(method='summation')

gadf = GramianAngularField(method='difference')

# Define selected features and output directory

selected_features = [

'H.period', 'DD.period.t', 'UD.period.t', 'H.t', 'DD.t.i', 'UD.t.i', 'H.i',

'DD.i.e', 'UD.i.e',↪→

'H.e', 'DD.e.five', 'UD.e.five', 'H.five', 'DD.five.Shift.r', 'UD.five.Shift.r',

'H.Shift.r',↪→

'DD.Shift.r.o', 'UD.Shift.r.o', 'H.o', 'DD.o.a', 'UD.o.a', 'H.a', 'DD.a.n',

'UD.a.n', 'H.n',↪→

'DD.n.l', 'UD.n.l', 'H.l', 'DD.l.Return', 'UD.l.Return', 'H.Return'

]

output_dir = "gasf_gadf_images_cmu/"

os.makedirs(output_dir, exist_ok=True)

# Function to generate a single GASF and GADF image per subject

def generate_gasf_gadf_images(data, output_dir, split_ratio=0.5):

subjects = data['subject'].unique()

for subject in subjects:

subject_data = data[data['subject'] == subject]

for (session, repetition), group in subject_data.groupby(['session',

'repetition']):↪→

# Concatenate selected features into a single time series

time_series = group[selected_features].values.flatten()
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# Normalize the concatenated time series to [-1, 1]

time_series_scaled = scaler.fit_transform(time_series.reshape(-1,

1)).reshape(1, -1)↪→

# Generate GASF and GADF images

gaf_image = gasf.fit_transform(time_series_scaled)[0]

gadf_image = gadf.fit_transform(time_series_scaled)[0]

# Normalize images to [0, 1] for saving

gaf_image = (gaf_image - gaf_image.min()) / (gaf_image.max() -

gaf_image.min())↪→

gadf_image = (gadf_image - gadf_image.min()) / (gadf_image.max() -

gadf_image.min())↪→

# Save the images in the specified output directory

gaf_filename =

f"{subject}_session{session}_rep{repetition}_gasf.png"↪→

gadf_filename =

f"{subject}_session{session}_rep{repetition}_gadf.png"↪→

plt.imsave(os.path.join(output_dir, gaf_filename), gaf_image,

cmap='rainbow')↪→

plt.imsave(os.path.join(output_dir, gadf_filename), gadf_image,

cmap='rainbow')↪→

# Generate a single GASF and GADF image per subject

generate_gasf_gadf_images(data, output_dir)

#############################CNN#################################################

# Define the main tuning directory

tuning_directory = 'cmu'

# Define image size and directories

output_dir = "gasf_gadf_images_cmu/"

image_size = (64, 64)

# Define a helper function to add Gaussian noise

def add_gaussian_noise(image, mean=0.0, stddev=0.05):

noise = np.random.normal(mean, stddev, image.shape)

return np.clip(image + noise, 0.0, 1.0)

# Helper function to load images for specific sessions and repetitions

def load_images(subject_code, sessions, reps, label):

images = []

labels = []

for session in sessions:

for rep in reps:

for image_type in ['gasf', 'gadf']:

filename = f"{subject_code}_session{session}_rep{rep +

1}_{image_type}.png"↪→

path = os.path.join(output_dir, filename)

if os.path.exists(path):
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img = load_img(path, target_size=image_size, color_mode="rgb")

img_array = img_to_array(img) / 255.0

img_array = add_gaussian_noise(img_array)

images.append(img_array)

labels.append(label)

return np.array(images), np.array(labels)

# Get unique subject codes from filenames

subject_codes = set(filename.split("_")[0] for filename in os.listdir(output_dir) if

filename.startswith("s"))↪→

# Function to build the CNN model

def build_model(hp):

model = Sequential()

model.add(Conv2D(

filters=hp.Choice('filters_1', values=[16, 32]),

kernel_size=hp.Choice('kernel_size_1', values=[3]),

activation='relu', input_shape=(image_size[0], image_size[1], 3)))

model.add(MaxPooling2D())

model.add(Conv2D(

filters=hp.Choice('filters_2', values=[64, 128]),

kernel_size=hp.Choice('kernel_size_2', values=[3]),

activation='relu'))

model.add(MaxPooling2D())

model.add(Conv2D(

filters=hp.Choice('filters_3', values=[128, 256]),

kernel_size=hp.Choice('kernel_size_3', values=[3, 5]),

activation='relu'))

model.add(MaxPooling2D())

model.add(Flatten())

model.add(Dense(units=hp.Choice('units_dense', values=[64, 128, 256]),

activation='relu'))↪→

model.add(Dropout(rate=hp.Choice('dropout_dense', values=[0.2, 0.4, 0.5])))

model.add(Dense(1, activation='sigmoid'))

optimizer_choice = hp.Choice('optimizer', ['AdamW', 'RMSprop'])

learning_rate = hp.Choice('learning_rate', values=[1e-2, 1e-3, 1e-4])

if optimizer_choice == 'AdamW':

optimizer = AdamW(learning_rate=learning_rate)

else:

optimizer = RMSprop(learning_rate=learning_rate)

model.compile(optimizer=optimizer, loss='binary_crossentropy',

metrics=['accuracy'])↪→

return model

# Loop through each subject as the genuine user

accuracies = []
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eers = []

fars = []

frrs = []

for genuine_user_code in subject_codes:

print(f"Evaluating for subject {genuine_user_code} as the genuine user...")

# Load data for genuine user and imposters

train_images_genuine, train_labels_genuine = load_images(genuine_user_code, [1],

range(100), 1)↪→

test_images_genuine, test_labels_genuine = load_images(genuine_user_code, [2],

range(100), 1)↪→

train_images_imposter = []

train_labels_imposter = []

test_images_imposter = []

test_labels_imposter = []

for subject_code in subject_codes:

if subject_code != genuine_user_code:

imp_train_images, imp_train_labels = load_images(subject_code, [2],

range(1), 0)↪→

imp_test_images, imp_test_labels = load_images(subject_code, [1],

range(1), 0)↪→

train_images_imposter.extend(imp_train_images)

train_labels_imposter.extend(imp_train_labels)

test_images_imposter.extend(imp_test_images)

test_labels_imposter.extend(imp_test_labels)

train_images_imposter = np.array(train_images_imposter)

train_labels_imposter = np.array(train_labels_imposter)

test_images_imposter = np.array(test_images_imposter)

test_labels_imposter = np.array(test_labels_imposter)

# Combine genuine and imposter data

X_train = np.concatenate((train_images_genuine, train_images_imposter), axis=0)

y_train = np.concatenate((train_labels_genuine, train_labels_imposter), axis=0)

X_test = np.concatenate((test_images_genuine, test_images_imposter), axis=0)

y_test = np.concatenate((test_labels_genuine, test_labels_imposter), axis=0)

# Set the random seed for reproducibility

seed = 1

np.random.seed(seed)

tf.random.set_seed(seed)

# Define unique tuning directory for each subject

subject_tuning_dir = Path(tuning_directory) / f'tuning_{genuine_user_code}'

# Check if the subject's tuner data exists

if subject_tuning_dir.exists() and any(subject_tuning_dir.iterdir()):

print(f"Tuner data for {genuine_user_code} found. Restoring previous

tuner.")↪→
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overwrite_tuner = False

else:

print(f"No tuner data for {genuine_user_code} or data is corrupt. Starting

fresh tuning.")↪→

overwrite_tuner = True

# Initialize the tuner for the current subject

tuner = kt.RandomSearch(

build_model,

objective='val_accuracy',

directory=tuning_directory,

project_name=f'tuning_{genuine_user_code}',

seed=seed,

overwrite=overwrite_tuner # Decide whether to overwrite or restore previous

tuning↪→

)

if overwrite_tuner:

tuner.search(X_train, y_train, epochs=20, validation_data=(X_test, y_test),

verbose=0)↪→

# Retrieve the best model

best_model = tuner.get_best_models(num_models=1)[0]

# Evaluate on the test set and calculate metrics

y_pred = (best_model.predict(X_test) > 0.5).astype("int32")

acc = np.mean(y_pred.flatten() == y_test)

accuracies.append(acc)

# Get confusion matrix for FAR and FRR calculation

conf_matrix = confusion_matrix(y_test, y_pred)

tn, fp, fn, tp = conf_matrix.ravel()

# Calculate FAR and FRR

far = fp / (fp + tn) if (fp + tn) > 0 else 0 # FAR: False positives / All

negatives↪→

frr = fn / (fn + tp) if (fn + tp) > 0 else 0 # FRR: False negatives / All

positives↪→

fars.append(far)

frrs.append(frr)

# Get scores for EER calculation

scores = best_model.predict(X_test).flatten()

user_scores = scores[y_test == 0]

impostor_scores = scores[y_test == 1]

eer = calculate_equal_error_rate(user_scores, impostor_scores)

eers.append(eer)

print(f"Classification Report for {genuine_user_code}:\n")

print(classification_report(y_test, y_pred, target_names=['Imposter',

'Genuine']))↪→
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print(f"Confusion Matrix for {genuine_user_code}:\n{conf_matrix}\n")

print(f"False Acceptance Rate (FAR): {far:.4f}")

print(f"False Rejection Rate (FRR): {frr:.4f}")

print(f"Equal Error Rate (EER) for {genuine_user_code}: {eer:.4f}\n")

# Calculate and print the average metrics across all subjects

average_accuracy = np.mean(accuracies)

average_eer = np.mean(eers)

average_far = np.mean(fars)

average_frr = np.mean(frrs)

print(f"Average Test Accuracy across all subjects: {average_accuracy * 100:.2f}%")

print(f"Average Equal Error Rate (EER) across all subjects: {average_eer:.4f}")

print(f"Average False Acceptance Rate (FAR) across all subjects: {average_far:.4f}")

print(f"Average False Rejection Rate (FRR) across all subjects: {average_frr:.4f}")

from sklearn.manifold import MDS, TSNE

from sklearn.preprocessing import StandardScaler

from umap import UMAP

from sklearn.decomposition import KernelPCA

import pandas as pd

import numpy as np

from sklearn.metrics.pairwise import cosine_similarity

from scipy.spatial.distance import euclidean

import matplotlib.pyplot as plt

import seaborn as sns

############################################

##########Data cleaning#####################

############################################

df = pd.read_csv('fixed-text1.csv')

df.rename(columns={'participant':'subject'}, inplace=True)

# Create a numeric variable

df['subject_num'] = df['subject'].str.extract('(\d+)').astype(int)

pd.set_option('display.max_columns', None)

pd.set_option('display.max_rows', None)

# Rename columns from DU to H

def modify_DU_columns(df):

# Starts with DU (group 1), followed by . (group 2), followed by one symbol

(group 3),↪→

# followed by . followed by the same symbol as in group 3,

# then we replace DU by H followed by everything after group 2

df.columns = df.columns.str.replace(r'^(DU)(\.(.)(\.\3)?)$', r'H\2', regex=True)

# Starts with DU (group 1), followed by . (group 2), followed by one symbol

(group 3),↪→

# followed by . followed by the same symbol as in group 3, followed by any

symbol↪→
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# then we replace DU by H followed by everything after group 2

df.columns = df.columns.str.replace(r'^(DU)(\.(.)(\.\3).(.))', r'H\2',

regex=True)↪→

return df

df = modify_DU_columns(df)

# List of column names starting with DD

dd_columns = [col for col in df.columns if col.startswith('DD')]

# List of column names starting with UU

uu_columns = [col for col in df.columns if col.startswith('UU')]

# Swapping values between columns starting with DD and UU

for dd_col, uu_col in zip(dd_columns, uu_columns):

df[dd_col], df[uu_col] = df[uu_col].copy(), df[dd_col].copy()

# List of column names starting with DU

du_columns = [col for col in df.columns if col.startswith('DU')]

# List of column names starting with UD

ud_columns = [col for col in df.columns if col.startswith('UD')]

# Swapping values between columns starting with DU and UD

for du_col, ud_col in zip(du_columns, ud_columns):

df[du_col], df[ud_col] = df[ud_col].copy(), df[du_col].copy()

password = "vpwjkeurkb"

# Creating lists of column names

listofUpDown = [col for col in df.columns if col.startswith('UD')]

listofUp = [col for col in df.columns if col.startswith('UU')]

listofDown = [col for col in df.columns if col.startswith('DD')]

listofHold = [col for col in df.columns if col.startswith('H')]

listofDownUp = [col for col in df.columns if col.startswith('DU')]

listofTrigraph = ['tri.v.p.w', 'tri.p.w.j', 'tri.w.j.k', 'tri.j.k.e', 'tri.k.e.u',

'tri.e.u.r', 'tri.u.r.k', 'tri.r.k.b']↪→

# Creating columns with trigraph values

for j in range(len(listofDown) - 1):

df[listofTrigraph[j]] = df[listofDown[j]] + df[listofDown[j + 1]]

#################################################

############Explanatory data analysis############

#################################################

# Descriptive statistics of all the columns capturing the keystroke timing

descriptive_stats = df[df.columns.difference(['subject', 'session', 'repetition',

'subject_num'])].describe().T↪→

descriptive_stats = descriptive_stats[['mean', 'std', 'min', '50%', 'max']]

# Delete all rows that have values higher then 20 in columns H and UD

numeric_cols = df.filter(regex=r'^(H|UD)').select_dtypes(include=np.number)
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# deleted_rows = df[~(numeric_cols <= 20).all(axis=1)]

df = df[(numeric_cols <= 20).all(axis=1)]

# Delete all rows that have negative values in columns H and DD

numeric_cols1 = df.filter(regex=r'^(H|DD)').select_dtypes(include=np.number)

# deleted_rows1 = df[~(numeric_cols >= 0).all(axis=1)]

df = df[(numeric_cols1 >= 0).all(axis=1)]

df = df[df["subject"] != "p004"]

# Descriptive statistics after cleaning data from illogical values

descriptive_stats = df[df.columns.difference(['subject', 'session', 'repetition',

'subject_num'])].describe().T↪→

descriptive_stats = descriptive_stats[['mean', 'std', 'min', '50%', 'max']]

print(descriptive_stats)

df.to_csv(r'C:\Users\eveli\PycharmProjects\Magistrinis\modified_fixed-text.csv',

index=False)↪→

####################################################

#####################Plots##########################

####################################################

# Prepare lists of features

listofUpDown = [col for col in df.columns if col.startswith('UD')]

listofHold = [col for col in df.columns if col.startswith('H')]

listofDown = [col for col in df.columns if col.startswith('DD')]

# Features to use for similarity and distance computations

features = df.columns.difference(['subject', 'sessionIndex', 'rep', 'subject_num'])

# Get unique subjects

subjects = df['subject'].unique()

results = []

# Compute similarity and distance metrics between subjects

for i in range(len(subjects)):

for j in range(i + 1, len(subjects)):

subj1 = subjects[i]

subj2 = subjects[j]

# Extract subject data

subject1 = df[df['subject'] == subj1]

subject2 = df[df['subject'] == subj2]

# Calculate feature vector means

avg_vector1 = subject1[features].mean().values

avg_vector2 = subject2[features].mean().values

# Compute similarity and distance metrics

cos_sim = cosine_similarity(avg_vector1.reshape(1, -1),

avg_vector2.reshape(1, -1))[0][0]↪→

euclidean_dist = euclidean(avg_vector1, avg_vector2)

results.append({

'Subject1': subj1,
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'Subject2': subj2,

'Cosine Similarity': cos_sim,

'Euclidean Distance': euclidean_dist

})

# Create results DataFrame

results_df = pd.DataFrame(results)

# Function to find maximum and minimum values for a metric

def similar(name, results_df):

max_val = results_df[name].max()

min_val = results_df[name].min()

print(f"\nMax value: \n{results_df[results_df[name] == max_val]}:")

print(f"\nMin value: \n{results_df[results_df[name] == min_val]}:")

# Print max/min results for each metric

for metric in ['Cosine Similarity', 'Euclidean Distance']:

print(f"\nResults for {metric}:")

similar(metric, results_df)

# Function to plot similarity and distance heatmaps

def plot_similarities(results_df):

# Increase figure size for better readability

fig, axes = plt.subplots(1, 2, figsize=(25, 20))

# Cosine Similarity Heatmap

pivot_cosine = results_df.pivot(index='Subject1', columns='Subject2',

values='Cosine Similarity')↪→

sns.heatmap(

pivot_cosine, annot=False, cmap='coolwarm',

cbar_kws={'label': 'Cosine Similarity'}, ax=axes[0]

)

axes[0].set_title('Cosine Similarity Between Subjects', fontsize=16)

axes[0].tick_params(axis='x', labelrotation=90, labelsize=12)

axes[0].tick_params(axis='y', labelrotation=0, labelsize=12)

axes[0].set_xlabel('Subject2', fontsize=14)

axes[0].set_ylabel('Subject1', fontsize=14)

# Euclidean Distance Heatmap

pivot_euclidean = results_df.pivot(index='Subject1', columns='Subject2',

values='Euclidean Distance')↪→

sns.heatmap(

pivot_euclidean, annot=False, cmap='coolwarm',

cbar_kws={'label': 'Euclidean Distance'}, ax=axes[1]

)

axes[1].set_title('Euclidean Distance Between Subjects', fontsize=16)

axes[1].tick_params(axis='x', labelrotation=90, labelsize=12)

axes[1].tick_params(axis='y', labelrotation=0, labelsize=12)

axes[1].set_xlabel('Subject2', fontsize=14)
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axes[1].set_ylabel('Subject1', fontsize=14)

# Add legends for both subplots

cbar_cosine = axes[0].collections[0].colorbar

cbar_cosine.ax.tick_params(labelsize=12)

cbar_cosine.set_label('Cosine Similarity Scale', fontsize=14)

cbar_euclidean = axes[1].collections[0].colorbar

cbar_euclidean.ax.tick_params(labelsize=12)

cbar_euclidean.set_label('Euclidean Distance Scale', fontsize=14)

plt.tight_layout()

plt.show()

# Plot similarity and distance graphs for a subset of subjects

unique_subjects = results_df['Subject1'].unique()

# Dynamically subset subjects

subjects_subset = unique_subjects[0:31]

if len(unique_subjects) > 46:

subjects_subset = np.append(subjects_subset, unique_subjects[44:49])

# Filter results for both Subject1 and Subject2

subset_df = results_df[

results_df['Subject1'].isin(subjects_subset) &

results_df['Subject2'].isin(subjects_subset)↪→

]

# Plot the similarities

plot_similarities(subset_df)

######################Timing##################

def plot_subject_data(subject_data, subject_of_interest, session_number,

repetition_number, normalized=False):↪→

# Select columns starting with H or UD

filtered_columns = subject_data.filter(regex='^(H|UD)').columns

# Check if non-empty dataframe with info about subject, session and repetition

if not subject_data.empty:

# Flaten the timing values into a 1D array for cumulative sum

timing_values = subject_data[filtered_columns].values.flatten()

# Calculate cumulative sum

x_values = np.cumsum(timing_values)

# Normalization for graph with normalized data (in 0 to 1 range)

if normalized:

x_values = (x_values - x_values[0]) / (x_values[-1] - x_values[0])

# Label containing subject, session, repetition

y_value = f'{subject_of_interest}, Session: {session_number}, Repetition:

{repetition_number}'↪→

return x_values, [y_value] * len(x_values)

return None, None

def plot_keystroke_timing(df, subject_combinations, normalized=False):
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plt.figure(figsize=(12, 8))

# Loop over each subject combination

for subject_of_interest, session_number, repetition_number in

subject_combinations:↪→

# Filter the data for the specific subject, session, and repetition

subject_data = df[(df['subject'] == subject_of_interest) &

(df['session'] == session_number) &

(df['repetition'] == repetition_number)]

# Get the timing values for plotting

x_values, y_values = plot_subject_data(subject_data, subject_of_interest,

session_number, repetition_number, normalized=normalized)↪→

if x_values is not None:

plt.plot(x_values, y_values, marker='o', linestyle='-', linewidth=4)

plt.scatter(x_values, y_values, s=100)

normalization_text = "Normalized" if normalized else "Non-Normalized"

plt.title(f'{normalization_text} Keystroke Timing for Selected Subjects',

fontsize=20)↪→

plt.xlabel('Timing (Fraction of Typing Time)' if normalized else 'Timing

(Cumulative Time)', fontsize=18)↪→

plt.ylabel('Subject, Session, and Repetition', fontsize=18)

plt.xticks(fontsize=14)

plt.yticks(fontsize=14)

plt.grid(True)

plt.tight_layout()

plt.show()

# Define all combinations of subject, session, and repetition

subject_combinations = [

('p018', 2, 75), ('p041', 1, 69),

('p018', 2, 79), ('p092', 1, 9),

]

# Plot normalized data

plot_keystroke_timing(df, subject_combinations, normalized=True)

# Plot non-normalized data

plot_keystroke_timing(df, subject_combinations, normalized=False)

#######################Linear######################

subject_pairs = [

['p052', 'p080'],

['p018', 'p092'],

['p003', 'p041']

]

# Extracting data for specific subjects

all_subjects = [subject for pair in subject_pairs for subject in pair]

df_filtered = df[df['subject'].isin(all_subjects)]
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# Compute mean of each feature per subject

mean_features_per_subject = df_filtered.groupby('subject').mean()

def plot_side_by_side_hold_updown(df, subject_pairs, hold_features,

updown_features):↪→

nrows = 3

ncols = 2

fig, axes = plt.subplots(nrows, ncols, figsize=(12, 18))

axes = axes.flatten()

# Iterate over each pair of subjects

for i, pair in enumerate(subject_pairs):

hold_ax = axes[i * 2]

updown_ax = axes[i * 2 + 1]

# Plot Hold features for each subject in the pair

for subject in pair:

hold_values = df.loc[subject, hold_features]

hold_ax.plot(

hold_values.index, hold_values.values,

marker='o', linestyle='-', label=f'{subject}'

)

# Customize the Hold features plot

hold_ax.set_xticks(range(len(hold_features)))

hold_ax.set_xticklabels(hold_features, rotation=45, ha='right', fontsize=12)

hold_ax.set_title(f'Hold Features: {pair[0]} vs {pair[1]}', fontsize=14)

hold_ax.set_ylabel('Value', fontsize=12)

hold_ax.legend(title='Subject', fontsize=12, loc='best')

# Plot Up-Down features for each subject in the pair

for subject in pair:

updown_values = df.loc[subject, updown_features]

updown_ax.plot(

updown_values.index, updown_values.values,

marker='o', linestyle='-', label=f'{subject}'

)

updown_ax.set_xticks(range(len(updown_features)))

updown_ax.set_xticklabels(updown_features, rotation=45, ha='right',

fontsize=12)↪→

updown_ax.set_title(f'Up-Down Features: {pair[0]} vs {pair[1]}',

fontsize=14)↪→

updown_ax.set_ylabel('Value', fontsize=12)

updown_ax.legend(title='Subject', fontsize=12, loc='upper left')

plt.tight_layout()

plt.show()

# Plot Hold and Up-Down features for the defined subject pairs

89



plot_side_by_side_hold_updown(mean_features_per_subject, subject_pairs, listofHold,

listofUpDown)↪→

###############################################Dimension

reduction######################################################↪→

user_pairs = [[52, 80], [18, 92], [3, 41]]

fig, axes = plt.subplots(len(user_pairs), 4, figsize=(24, 10))

# Iterate through each row (user pair) in the grid

for row, pair in enumerate(user_pairs):

# Filter the DataFrame to include only the two subjects in the current pair

df_two_users = df[df['subject_num'].isin(pair)]

# Extract feature matrix (X) and target labels (y)

# Drop non-feature columns like 'subject', 'rep', 'subject_num', and

'sessionIndex'↪→

X = df_two_users.drop(columns=['subject', 'rep', 'subject_num', 'sessionIndex'],

errors='ignore').values↪→

y = df_two_users['subject_num'].values

# Standardize the feature matrix (mean=0, variance=1)

X = StandardScaler().fit_transform(X)

# Define dimensionality reduction methods with their configurations

projection_methods = {

'Kernel PCA': KernelPCA(n_components=2, kernel='rbf'),

'Umap': UMAP(n_components=2, n_neighbors=10, min_dist=0.01),

'Metric MDS': MDS(n_components=2, metric=True),

't-SNE': TSNE(n_components=2, perplexity=3, learning_rate=200, n_iter=3500),

}

# Map subject numbers to colors for the scatter plot

color_map = {pair[0]: 'orange', pair[1]: 'blue'}

colors = np.array([color_map[num] for num in y])

for col, (name, method) in enumerate(projection_methods.items()):

# Apply the dimensionality reduction method

transformed = method.fit_transform(X)

# Plot the transformed data in the corresponding subplot

axes[row, col].scatter(

transformed[:, 0], transformed[:, 1], c=colors, s=25, alpha=0.6

)

axes[row, col].set_title(f"{name} for subjects {pair[0]} and {pair[1]}",

fontsize=14)↪→

axes[row, col].set_xticks([]), axes[row, col].set_yticks([])

plt.tight_layout()

plt.show()

from sklearn.neighbors import KNeighborsClassifier

from sklearn.svm import SVC
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from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier,

VotingClassifier, StackingClassifier, BaggingClassifier↪→

from sklearn.tree import DecisionTreeClassifier

from xgboost import XGBClassifier

from sklearn.metrics import accuracy_score

from sklearn.model_selection import StratifiedKFold, GridSearchCV

from sklearn.linear_model import LogisticRegression

import pandas as pd

import os

import numpy as np

import tensorflow as tf

import keras_tuner as kt

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout

from tensorflow.keras.optimizers import AdamW, RMSprop

from tensorflow.keras.preprocessing.image import load_img, img_to_array

from sklearn.metrics import classification_report, confusion_matrix, roc_curve

from pathlib import Path

# Load data

data = pd.read_csv("modified_fixed-text.csv")

print(data.columns)

# Define feature columns

feature_columns = [

'H.v.v', 'DD.v.p','UD.v.p', 'H.p.p', 'DD.p.w', 'UD.p.w','H.w.w', 'DD.w.j',

'UD.w.j', 'H.j.j', 'DD.j.k',↪→

'UD.j.k', 'H.k.k', 'DD.k.e', 'UD.k.e', 'H.e.e', 'DD.e.u', 'UD.e.u', 'H.u.u',

'DD.u.r', 'UD.u.r', 'H.r.r',↪→

'DD.r.k', 'UD.r.k', 'H.k.k.1', 'DD.k.b', 'UD.k.b', 'H.b.b'

]

param_grids = {

'KNN': {'n_neighbors': [3, 5, 7], 'weights': ['uniform', 'distance'], 'p': [1,

2, 3]},↪→

'SVM': {'C': [0.1, 1, 10], 'kernel': ['linear', 'rbf'], 'degree':[2,3,4]},

'Random Forest': {'n_estimators': [100, 200, 300], 'max_depth': [None, 10, 20]},

'Decision Tree': {'criterion': ['gini', 'entropy', 'log_loss'], 'max_depth':

[None, 10, 20], 'min_samples_split': [2, 5, 10]},↪→

'XGBoost': {'n_estimators': [100, 200, 300], 'max_depth': [4, 6, 8],

'learning_rate': [0.2, 0.3, 0.4]},↪→

'Gradient Boosting': {'n_estimators': [100, 200, 300], 'learning_rate': [0.01,

0.1, 0.2]},↪→

}

# Base classifiers
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classifiers = {

'KNN': KNeighborsClassifier(),

'SVM': SVC(probability=True),

'Random Forest': RandomForestClassifier(),

'Decision Tree': DecisionTreeClassifier(),

'XGBoost': XGBClassifier(eval_metric='logloss'),

'Gradient Boosting': GradientBoostingClassifier(),

'Voting': VotingClassifier(estimators=[

('rf', RandomForestClassifier()),

('svc', SVC(probability=True)),

('xgb', XGBClassifier(eval_metric='logloss')),

('knn', KNeighborsClassifier())

], voting='soft'),

'Stacking': StackingClassifier(estimators=[

('rf', RandomForestClassifier()),

('svc', SVC(probability=True)),

('xgb', XGBClassifier(eval_metric='logloss')),

('knn', KNeighborsClassifier())

], final_estimator=LogisticRegression()),

}

# EER calculation function

def calculate_equal_error_rate(user_scores, impostor_scores):

predictions = np.concatenate([user_scores, impostor_scores])

labels = np.concatenate([np.zeros(len(user_scores)),

np.ones(len(impostor_scores))])↪→

fpr, tpr, thresholds = roc_curve(labels, predictions)

missrates = 1 - tpr

farates = fpr

dists = missrates - farates

idx1 = np.where(dists >= 0, dists, np.inf).argmin()

idx2 = np.where(dists < 0, dists, -np.inf).argmax()

if abs(idx1 - idx2) != 1:

idx2 = idx1 - 1 if idx1 > 0 else idx1 + 1

x = np.array([missrates[idx1], farates[idx1]])

y = np.array([missrates[idx2], farates[idx2]])

a = (x[0] - x[1]) / (y[1] - x[1] - y[0] + x[0])

eer = x[0] + a * (y[0] - x[0])

return eer

# Data preparation for each subject

def prepare_data_for_subject(X, eval_subject):

Y_train_genuine = X[(X['subject'] == eval_subject) & (X['session'] <= 1)]

Y_train_impostor = X[(X['subject'] != eval_subject) & (X['session'] == 2) &

(X['repetition'] <= 1)]↪→
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Y_train = pd.concat([Y_train_genuine, Y_train_impostor], ignore_index=True)

labels_train = np.concatenate([np.ones(len(Y_train_genuine)),

np.zeros(len(Y_train_impostor))])↪→

Y_test_genuine = X[(X['subject'] == eval_subject) & (X['session'] > 1)]

Y_test_impostor = X[(X['subject'] != eval_subject) & (X['session'] == 1) &

(X['repetition'] <= 1)]↪→

Y_test = pd.concat([Y_test_genuine, Y_test_impostor], ignore_index=True)

labels_test = np.concatenate([np.ones(len(Y_test_genuine)),

np.zeros(len(Y_test_impostor))])↪→

feature_columns = Y_train.columns.difference(['subject', 'session',

'repetition', 'subject_num', 'total time'])↪→

X_train = Y_train[feature_columns].values

X_test = Y_test[feature_columns].values

return X_train, labels_train, X_test, labels_test

# Evaluate classifiers

def evaluate_classifier_cv(X_train, y_train, X_test, y_test, classifier,

param_grid):↪→

skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)

grid_search = GridSearchCV(classifier, param_grid, cv=skf, scoring='accuracy',

n_jobs=-1)↪→

grid_search.fit(X_train, y_train)

best_classifier = grid_search.best_estimator_

predictions = best_classifier.predict(X_test)

accuracy = accuracy_score(y_test, predictions)

if hasattr(best_classifier, "predict_proba"):

scores = best_classifier.predict_proba(X_test)[:, 1]

user_scores = scores[y_test == 0]

impostor_scores = scores[y_test == 1]

eer = calculate_equal_error_rate(user_scores, impostor_scores)

else:

eer = None

# Calculate FAR and FRR

tn, fp, fn, tp = confusion_matrix(y_test, predictions).ravel()

far = fp / (fp + tn) if (fp + tn) > 0 else 0

frr = fn / (fn + tp) if (fn + tp) > 0 else 0

return accuracy, eer, far, frr

# Evaluate all subjects

def evaluate_all_subjects(data):

subjects = data['subject'].unique()

results = []

for subject in subjects:
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X_train, y_train, X_test, y_test = prepare_data_for_subject(data, subject)

for classifier_name, classifier in classifiers.items():

param_grid = param_grids.get(classifier_name, {})

accuracy, eer, far, frr = evaluate_classifier_cv(X_train, y_train,

X_test, y_test, classifier, param_grid)↪→

results.append({

'Subject': subject,

'Classifier': classifier_name,

'Accuracy': accuracy,

'EER': eer,

'FAR': far,

'FRR': frr

})

return pd.DataFrame(results)

# Run evaluation

results_df = evaluate_all_subjects(data)

average_results = results_df.groupby(['Classifier']).agg({'Accuracy': 'mean', 'EER':

'mean', 'FAR': 'mean', 'FRR': 'mean'}).round(4)↪→

print(average_results)

#############################GASF and GADF###############################

# Initialize MinMaxScaler for normalization to [-1, 1]

scaler = MinMaxScaler(feature_range=(-1, 1))

# Initialize GASF and GADF transformations

gasf = GramianAngularField(method='summation')

gadf = GramianAngularField(method='difference')

# Define selected features and output directory

selected_features = [

'H.v.v', 'DD.v.p', 'UD.v.p', 'H.p.p', 'DD.p.w', 'UD.p.w',

'H.w.w', 'DD.w.j', 'UD.w.j', 'H.j.j', 'DD.j.k', 'UD.j.k',

'H.k.k', 'DD.k.e', 'UD.k.e', 'H.e.e', 'DD.e.u', 'UD.e.u',

'H.u.u', 'DD.u.r', 'UD.u.r', 'H.r.r', 'DD.r.k', 'UD.r.k',

'H.k.k.1', 'DD.k.b', 'UD.k.b', 'H.b.b'

]

output_dir = "gasf_gadf_images_final/"

os.makedirs(output_dir, exist_ok=True)

# Function to generate a single GASF and GADF image per subject

def generate_gasf_gadf_images(data, output_dir, split_ratio=0.5):

subjects = data['subject'].unique()

for subject in subjects:

subject_data = data[data['subject'] == subject]

for (session, repetition), group in subject_data.groupby(['session',

'repetition']):↪→

# Concatenate selected features into a single time series
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time_series = group[selected_features].values.flatten()

# Normalize the concatenated time series to [-1, 1]

time_series_scaled = scaler.fit_transform(time_series.reshape(-1,

1)).reshape(1, -1)↪→

# Generate GASF and GADF images

gaf_image = gasf.fit_transform(time_series_scaled)[0]

gadf_image = gadf.fit_transform(time_series_scaled)[0]

# Normalize images to [0, 1] for saving

gaf_image = (gaf_image - gaf_image.min()) / (gaf_image.max() -

gaf_image.min())↪→

gadf_image = (gadf_image - gadf_image.min()) / (gadf_image.max() -

gadf_image.min())↪→

# Save the images in the specified output directory

gaf_filename =

f"{subject}_session{session}_rep{repetition}_gasf.png"↪→

gadf_filename =

f"{subject}_session{session}_rep{repetition}_gadf.png"↪→

plt.imsave(os.path.join(output_dir, gaf_filename), gaf_image,

cmap='rainbow')↪→

plt.imsave(os.path.join(output_dir, gadf_filename), gadf_image,

cmap='rainbow')↪→

# Generate a single GASF and GADF image per subject

generate_gasf_gadf_images(data, output_dir)

#############################CNN#################################################

# Define the main tuning directory

tuning_directory = 'fixed'

# Define image size and directories

output_dir = "gasf_gadf_images_final/"

image_size = (64, 64)

# Define a helper function to add Gaussian noise

def add_gaussian_noise(image, mean=0.0, stddev=0.05):

noise = np.random.normal(mean, stddev, image.shape)

return np.clip(image + noise, 0.0, 1.0)

# Helper function to load images for specific sessions and repetitions

def load_images(subject_code, sessions, reps, label):

images = []

labels = []

for session in sessions:

for rep in reps:

for image_type in ['gasf', 'gadf']:

filename = f"{subject_code}_session{session}_rep{rep +

1}_{image_type}.png"↪→

path = os.path.join(output_dir, filename)
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if os.path.exists(path):

img = load_img(path, target_size=image_size, color_mode="rgb")

img_array = img_to_array(img) / 255.0

img_array = add_gaussian_noise(img_array)

images.append(img_array)

labels.append(label)

return np.array(images), np.array(labels)

# Get unique subject codes from filenames

subject_codes = set(filename.split("_")[0] for filename in os.listdir(output_dir) if

filename.startswith("p"))↪→

# Function to build the CNN model

def build_model(hp):

model = Sequential()

model.add(Conv2D(

filters=hp.Choice('filters_1', values=[16, 32]),

kernel_size=hp.Choice('kernel_size_1', values=[3]),

activation='relu', input_shape=(image_size[0], image_size[1], 3)))

model.add(MaxPooling2D())

model.add(Conv2D(

filters=hp.Choice('filters_2', values=[64, 128]),

kernel_size=hp.Choice('kernel_size_2', values=[3]),

activation='relu'))

model.add(MaxPooling2D())

model.add(Conv2D(

filters=hp.Choice('filters_3', values=[128, 256]),

kernel_size=hp.Choice('kernel_size_3', values=[3, 5]),

activation='relu'))

model.add(MaxPooling2D())

model.add(Flatten())

model.add(Dense(units=hp.Choice('units_dense', values=[64, 128, 256]),

activation='relu'))↪→

model.add(Dropout(rate=hp.Choice('dropout_dense', values=[0.2, 0.4, 0.5])))

model.add(Dense(1, activation='sigmoid'))

optimizer_choice = hp.Choice('optimizer', ['AdamW', 'RMSprop'])

learning_rate = hp.Choice('learning_rate', values=[1e-2, 1e-3, 1e-4])

if optimizer_choice == 'AdamW':

optimizer = AdamW(learning_rate=learning_rate)

else:

optimizer = RMSprop(learning_rate=learning_rate)

model.compile(optimizer=optimizer, loss='binary_crossentropy',

metrics=['accuracy'])↪→

return model

# Loop through each subject as the genuine user
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accuracies = []

eers = []

fars = []

frrs = []

for genuine_user_code in subject_codes:

print(f"Evaluating for subject {genuine_user_code} as the genuine user...")

# Load data for genuine user and imposters

train_images_genuine, train_labels_genuine = load_images(genuine_user_code, [1],

range(100), 1)↪→

test_images_genuine, test_labels_genuine = load_images(genuine_user_code, [2],

range(100), 1)↪→

train_images_imposter = []

train_labels_imposter = []

test_images_imposter = []

test_labels_imposter = []

for subject_code in subject_codes:

if subject_code != genuine_user_code:

imp_train_images, imp_train_labels = load_images(subject_code, [2],

range(1), 0)↪→

imp_test_images, imp_test_labels = load_images(subject_code, [1],

range(1), 0)↪→

train_images_imposter.extend(imp_train_images)

train_labels_imposter.extend(imp_train_labels)

test_images_imposter.extend(imp_test_images)

test_labels_imposter.extend(imp_test_labels)

train_images_imposter = np.array(train_images_imposter)

train_labels_imposter = np.array(train_labels_imposter)

test_images_imposter = np.array(test_images_imposter)

test_labels_imposter = np.array(test_labels_imposter)

# Combine genuine and imposter data

X_train = np.concatenate((train_images_genuine, train_images_imposter), axis=0)

y_train = np.concatenate((train_labels_genuine, train_labels_imposter), axis=0)

X_test = np.concatenate((test_images_genuine, test_images_imposter), axis=0)

y_test = np.concatenate((test_labels_genuine, test_labels_imposter), axis=0)

# Set the random seed for reproducibility

seed = 1

np.random.seed(seed)

tf.random.set_seed(seed)

# Define unique tuning directory for each subject

subject_tuning_dir = Path(tuning_directory) / f'tuning_{genuine_user_code}'

# Check if the subject's tuner data exists

if subject_tuning_dir.exists() and any(subject_tuning_dir.iterdir()):
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print(f"Tuner data for {genuine_user_code} found. Restoring previous

tuner.")↪→

overwrite_tuner = False

else:

print(f"No tuner data for {genuine_user_code} or data is corrupt. Starting

fresh tuning.")↪→

overwrite_tuner = True

# Initialize the tuner for the current subject

tuner = kt.RandomSearch(

build_model,

objective='val_accuracy',

directory=tuning_directory,

project_name=f'tuning_{genuine_user_code}',

seed=seed,

overwrite=overwrite_tuner # Decide whether to overwrite or restore previous

tuning↪→

)

if overwrite_tuner:

tuner.search(X_train, y_train, epochs=20, validation_data=(X_test, y_test),

verbose=0)↪→

# Retrieve the best model

best_model = tuner.get_best_models(num_models=1)[0]

# Evaluate on the test set and calculate metrics

y_pred = (best_model.predict(X_test) > 0.5).astype("int32")

acc = np.mean(y_pred.flatten() == y_test)

accuracies.append(acc)

# Get confusion matrix for FAR and FRR calculation

conf_matrix = confusion_matrix(y_test, y_pred)

tn, fp, fn, tp = conf_matrix.ravel()

# Calculate FAR and FRR

far = fp / (fp + tn) if (fp + tn) > 0 else 0 # FAR: False positives / All

negatives↪→

frr = fn / (fn + tp) if (fn + tp) > 0 else 0 # FRR: False negatives / All

positives↪→

fars.append(far)

frrs.append(frr)

# Get scores for EER calculation

scores = best_model.predict(X_test).flatten()

user_scores = scores[y_test == 0]

impostor_scores = scores[y_test == 1]

eer = calculate_equal_error_rate(user_scores, impostor_scores)

eers.append(eer)

print(f"Classification Report for {genuine_user_code}:\n")
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print(classification_report(y_test, y_pred, target_names=['Imposter',

'Genuine']))↪→

print(f"Confusion Matrix for {genuine_user_code}:\n{conf_matrix}\n")

print(f"False Acceptance Rate (FAR): {far:.4f}")

print(f"False Rejection Rate (FRR): {frr:.4f}")

print(f"Equal Error Rate (EER) for {genuine_user_code}: {eer:.4f}\n")

# Calculate and print the average metrics across all subjects

average_accuracy = np.mean(accuracies)

average_eer = np.mean(eers)

average_far = np.mean(fars)

average_frr = np.mean(frrs)

print(f"Average Test Accuracy across all subjects: {average_accuracy * 100:.2f}%")

print(f"Average Equal Error Rate (EER) across all subjects: {average_eer:.4f}")

print(f"Average False Acceptance Rate (FAR) across all subjects: {average_far:.4f}")

print(f"Average False Rejection Rate (FRR) across all subjects: {average_frr:.4f}")
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