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Summary

Semi­supervised learning (SSL) is a promising approach to address the challenges of limited la­

beled data inmedical image segmentation, particularly in 3Dmagnetic resonance imaging (MRI). The

goal of semi­supervised learning is to learn patterns from unlabeled data, improving the accuracy of

models trained on limited labeled datasets. However, SSL is an emerging field with numerous tech­

niques being introduced, leading to ambiguity in method classification, and only a limited number of

comprehensive reviews on semi­supervised learning are available. This research systematically inves­

tigates various semi­supervised learning techniques, focusing on their application to segmentation

tasks involving the Left Atrium and BraTS­Africa datasets. A comprehensive literature review was

conducted to identify and classify prominent semi­supervised methods, namely consistency regular­

ization, pseudo­labeling, co­training, contrastive learning, adversarial learning, and hybrid methods.

Comparative experiments were conducted, with techniques including Mean Teacher (MT), Deep

Adversarial Networks (DAN), Adversarial Entropy Minimization (ADVENT), Cross Pseudo Supervision

(CPS), Deep Co­Training (DCT), and Semi­Supervised Contrastive Consistency (SCC). These methods

were evaluated using metrics such as Dice coefficient, Jaccard index, HD95, and ASD. Comparative

experiments demonstrated that Cross Pseudo Supervision and Deep Co­Training outperformed other

semi­supervised approaches, achieving results closer to fully supervised models, especially when

applied to datasets with simpler structures, such as the Left Atrium. In Left Atrium case, contrastive

learning (SCC) approach yielded the best scores, however, this approach did not work in BraTS­Africa

case. Increasing the proportion of labeled data from 10% to 20% led to substantial improvements

in segmentation performance, highlighting the importance of labeled data for model training.

However, more complex datasets, like BraTS­Africa, posed additional challenges due to heteroge­

neous tumor regions, resulting in lower accuracy and precision as comparedwith Left Atriumdataset.

Keywords: Semi­supervised learning, medical image segmentation, magnetic resonance imag­

ing, 3D segmentation
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Santrauka

Pusiau prižiūrimasmokymasis (SSL) yra perspektyvusmetodas, padedantis spręsti riboto kiekio

pažymėtų duomenų problemas, susijusias su medicininių vaizdų segmentavimu, ypač 3Dmagnetinio

rezonanso nuotraukomis. Pusiau prižiūrimomokymosi tikslas ­ iš nepažymėtų duomenų išmokti ten­

dencijas, pagerinant modelių, apmokytų iš dalinai pažymėtų duomenų rinkinių, tikslumą. Tačiau SSL

yra nauja sritis, išleista daug metodų, todėl metodų klasifikavimas neaiškus, be to, yra tik kelios pu­

siau prižiūrimo mokymosi apžvalgos. Šiame tyrime sistemingai nagrinėjami įvairūs pusiau prižiūrimo

mokymosi metodai, daugiausia dėmesio skiriant jų taikymui segmentavimo užduotims, susijusioms

su Left Atrium ir BraTS­Africa duomenų rinkiniais. Atlikta išsami literatūros apžvalga, siekiant nus­

tatyti ir klasifikuoti žinomus pusiau prižiūrimus metodus, t. y. nuoseklumo reguliarizavimo (angl.

consistency regularization), pseudoženklinimo (angl. pseudo­labeling), bendrojo mokymo (angl. co­

training), kontrastinio mokymosi (angl. contrastive learning), priešingo mokymosi (angl. adversarial

learning) ir hibridinius metodus. Atlikti lyginamieji eksperimentai su tokiais metodais, kaip Mean

Teacher (MT), Deep Adversarial Networks (DAN), Adversarial Entropy Minimization (ADVENT), Cross

Pseudo Labeling (CPS), Deep Co­Training (DCT) ir Semi­Supervised Contrastive Consistency (SCC).

Šie metodai buvo vertinami naudojant tokius rodiklius kaip Dice koeficientas, Jaccard indeksas,

95­ojo percentilio Hausdorff atstumas ir vidutinis paviršiaus atstumas. Lyginamieji eksperimentai

parodė, kad CPS ir DCT technikos pranoko kitas pusiau prižiūrimas technikas, pasiekdamos rezulta­

tus, artimesnius visiškai prižiūrimiems modeliams. Left Atrium duomenų rinkinio atveju geriausius

rezultatus parodė kontrastinio mokymosi (angl. contrastive learning, SCC) technika, tačiau ši nepa­

siteisino BraTS­Africa duomenų rinkinio atveju. Pakeitus pažymėtų duomenų dalį nuo 10 % iki 20 %,

segmentavimo rezultatai pagerėjo. Tačiau sudėtingesni duomenų rinkiniai, tokie kaip BraTS­Africa,

kėlė papildomų iššūkių dėl nevienalyčių naviko sričių, todėl tikslumas buvo mažesnis.

Raktiniai žodžiai: Pusiau prižiūrimas mokymasis, medicininių vaizdų segmentavimas, magne­

tinio rezonanso vaizdavimas, 3D vaizdų segmentavimas
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List of symbols

• supA denotes the supremum (least upper bound) of the set A.

• infA denotes the infimum (greatest lower bound) of the set A.

• A ∪B denotes the union of the sets A and B.

• A ∩B denotes the intersection of the sets A and B.
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Introduction

Medical image segmentation plays a critical role in various clinical and research applications,

enabling the precise delineation of anatomical structures, pathological regions, and other features

of interest. High­quality segmentation is essential for accurate diagnosis, treatment planning, and

monitoring disease progression [60]. However, achieving such accuracy typically requires large, anno­

tated datasets where each image is meticulously labeled by experts. Given the complexity of medical

imaging, generating these annotations is time­consuming, expensive, and often infeasible, particu­

larly when dealing with large datasets or specialized medical cases. Semi­supervised learning (SSL)

offers a promising solution to address these challenges by leveraging both labeled and unlabeled

data effectively.

The relevance of SSL in medical imaging lies in the inherent abundance of unlabeled medical

data. Hospitals and research institutions routinely generate vast amounts of imaging data, but only

a small fraction of it is annotated due to the expertise required for labeling. SSL allows researchers

to harness this wealth of unlabeled data, reducing reliance on labor­intensive annotation processes

while still achieving competitive segmentation performance.

Beyond reducing annotation costs, SSL also addresses the variability and complexity of medical

data. Medical images often exhibit substantial variability due to differences in imagingmodalities, ac­

quisition protocols, patient demographics, and disease presentations [3]. Training models on limited

labeled data can lead to overfitting or poor generalization to new cases. By incorporating unlabeled

data, SSL encourages models to learn more diverse feature representations, ultimately improving

their ability to generalize across varied datasets.

Another crucial advantage of SSL is its potential to improve segmentation accuracy for rare

diseases and conditions. Rare cases often lack sufficient labeled examples to train traditional fully

supervised models effectively. However, SSL enables the model to extract meaningful patterns from

abundant unlabeled examples, complementing the limited annotated data. This capability can sig­

nificantly enhance the model’s performance on underrepresented conditions, making it a valuable

tool for advancing personalized medicine.

SSL aligns well with the growing emphasis on data efficiency in machine learning. Traditional

fully supervised methods require extensive computational and human resources to annotate large­

scale datasets. SSL, by contrast, offers a cost­effective alternative by making better use of available

data, leading to faster development cycles and potentially earlier deployment in clinical workflows.

This efficiency is particularly important as medical AI systems move closer to real­world implemen­

tation.

The utility of SSL is further underscored by its capacity to mitigate ethical and privacy concerns

associated with medical data. Sharing labeled datasets often involves extensive efforts to de­identify

patient information and obtain necessary permissions, which can delay or hinder research efforts.

By reducing the need for labeled data, SSL allows institutions to retain sensitive information locally

while still collaborating on model development using unlabeled data, fostering innovation without

compromising patient confidentiality.
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Goals and Objectives

The main goal of the Master’s thesis is to perform a comprehensive comparative analysis of

various semi­supervised learning techniques for medical image segmentation and evaluate their per­

formance under varying conditions.

To reach the goal of the thesis, the following objectives are needed to be completed:

• Conduct a systematic literature review to explore semi­supervised learning methods for med­

ical image segmentation, detailing their characteristics, strengths, and limitations;

• Identify suitablemethods and evaluationmetrics formagnetic resonance image segmentation;

• Propose a classification framework for semi­supervised learning methods based on insights

gained from the literature review;

• Perform a comparative analysis by implementing and testing the selectedmethods to compare

their performance;

• Evaluate the impact of varying the size of the labeled dataset, by using subsets of different

sizes, on the performance of these techniques through comparative experiments.
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1 Literature Review

The literature reviewexplores the landscape of semi­supervised learning (SSL)methods inmed­

ical image segmentation, emphasizing their theoretical foundations, methods, applications, and lim­

itations. The section begins with magnetic resonance imaging overview, after that, a thorough SSL

analysis is done. SSL classification strategies are analyzed, and the author’s approach is provided.

Then, each method is analyzed, emphasizing their unique properties. Lastly, advantages and disad­

vantages of SSL is researched. This section lays the groundwork for themethodological approach and

experiments conducted in subsequent chapters.

1.1 MR Imaging Analysis

1.1.1 Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) is a non­invasive medical imaging modality that utilizes

strong magnetic fields and radio waves to produce images of internal body structures. Unlike imag­

ing techniques such as X­rays or computer tomography (CT) scans, MRI does not involve ionizing

radiation, making it safe for repeated usage. It is effective in visualizing soft tissues, such as the

brain, muscles, and organs, due to its high spatial resolution and contrast. The ability of MRI to gen­

erate multiple contrast­weighted images, for example, T1­weighted, T2­weighted, FLAIR sequences,

highlights different parts of the image, therefore enabling comprehensive diagnostic and research

applications [57]. Figure 1. shows how different sequences can look. In this image, brain images and

brain tumor masks are shown. Taking mask as a ground truth of the position of the tumor, it can be

seen that each sequence highlights a different part of the brain tumor.
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Figure 1. MRI visualizations on several different sequences. Image from BraTS­Africa Dataset [7]

The contrast­weighted sequences provide critical information about tissue properties such as

spin­lattice T1 and spin­spin T2 relaxation times, blood flow velocity, and chemical changes. For ex­

ample, T2­weighted images help in the objective assessment of brain tumors, aiding in distinguishing

cancerous tissue from normal tissue, while T1­weighted images with contrast material (T1C) improve

the delineationof tumor boundaries. FLAIR sequences, combinedwith T2­weighted scans, effectively

highlight unenhanced tumors in axial views [4]. Using these diverse imaging characteristics, MRI is

a tool in detecting and assessing brain tumors, facilitating informed clinical decision­making and ad­

vancing research in brain tumor analysis.

Magnetic resonance imaging is useful not only for tumor detection and segmentation, but also

for organ analysis. Atrial fibrillation (AF) is a common heart disease and symptomsmay include heart

palpitations, breathlessness, low energy, and an increased risk of stroke. Learning the topology of

the left atrium (LA) is crucial to evaluate the degree of atrial fibrosis and scar related to ablation in

patients with AF. Therefore, to improve the success ratio of the catheter ablation procedure, accu­

rate segmentation of LA medical images is a critical process that can help the clinic assess the risk

of AF and develop a patient­specific treatment plan. Recently, late gadolinium­enhanced MRI (LGE

MRI) has provided a promising visualizing ability for myocardial scar tissues by brightening scar signal

intensities to differentiate them from healthy tissues, resulting in a poor LA boundary. The LA seg­

mentation involves the LA cavity, pulmonary veins, LA appendage, etc. These complex structures and

the fuzzy boundary problem make the acquirement of the semantic­level label of the LA consuming

much more time and labor. Therefore, accurate and automatic segmentation of the LA in LGE MRI is

a challenging and necessary task [37].
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1.1.2 MRI in Deep Learning

In medical image analysis, deep learning has become a transformative technology that uses

MRI data to enhance diagnostic accuracy and efficiency. Deep learning models can process the high­

dimensional and complex data provided byMR images to predict tumors or other tissue pathologies,

automating tasks such as segmentation, classification, and anomaly detection. This automation re­

duces the manual effort required by medical professionals, enabling precise identification of tumors,

classification of neurological disorders, and assessment of cardiac function [40, 77].

Contemporary medical image segmentation approaches typically build on fully convolutional

networks (FCN) or U­Net, which formulates the task as a dense classification problem. In general, cur­

rent medical image segmentation methods can be cast into two sets: network design and optimiza­

tion strategy. One is to optimize segmentation network design for improving feature representations

through convolutions, pyramid pooling, and attention mechanisms [26].

Despite these advancements, several challenges remain in integrating deep learning into clini­

cal MRI workflows. Model generalizability is critical, as variations in MRI scanners, acquisition proto­

cols, and patient populations can affect performance. Ensuring interpretability and transparency in

model predictions is also crucial to gain clinical trust. Furthermore, privacy concerns associated with

sensitivemedical data require secure data­sharing practices and compliancewithmedical regulations

[27].

Deep learning also plays a crucial role in the reconstruction and denoising of MRI, using tech­

niques such as compressed sensing and neural networks to reconstruct high­resolution images from

undersampled data [23]. This accelerates MRI acquisition, reducing scan times and improving pa­

tient comfort while maintaining diagnostic quality. Additionally, semi­supervised learning methods

address the scarcity of labeled medical data by allowing models to learn from both labeled and un­

labeled MRI data. This approach minimizes the burden of manual annotation and facilitates efficient

training in resource­limited scenarios.

Competitions and challenges focused on MRI analysis, such as the Brain Tumor Segmentation

Challenge (BraTS) [3] and the Multiple Sclerosis Segmentation Challenge (MSSEG) [12], have played

a significant role in advancing the field. By providing standardized datasets, clear benchmarks, and

collaborative platforms, these initiatives inspire researchers to develop innovative solutions for prac­

tical clinical problems. They promote transparency and reproducibility through the sharing of data,

code, and evaluation protocols, accelerating the translation of research into clinical practice. In ad­

dition, such challenges encourage collaboration among radiologists, data scientists, and engineers,

fostering the integration of advanced technologies into MRI­based diagnostics and therapeutics. In

this way, challenges act as both a testing ground for state­of­the­art algorithms and a driving force

behind the popularization of MRI analysis in medical research.

1.1.3 Medical Image Segmentation

Most widely used methods for medical image segmentation are inspired by U­Net based on an

encoder–decoder structure to extract features on multiple scales. The network architecture fused

features of different scales by concatenating the feature maps of the downsampling layers and the
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corresponding upsampling layers for subsequent learning. For segmentation of medical volumes, 3D

segmentation networks such as 3D U­Net and V­Net are proposed to use 3D convolution kernels to

extract volumetric features [79].

Recent advances in image segmentation driven by deep learning have garnered significant at­

tention due to their ability to automatically identify pixel­level details in images with great accuracy.

As a result, the field of deep learning­based segmentation has witnessed growth over the past sev­

eral years. These methods typically begin with extracting image features, a task where convolutional

neural networks (CNNs) have demonstrated exceptional capability. Initially developed for simple im­

age classification tasks, CNNs have rapidly evolved over the past decade to address more complex

problems, such as segmentation, restoration, and enhancement. Beyond these applications, CNNs

are widely used in fields like cancer detection, autonomous driving, and facial recognition.

Among CNN architectures, U­Net is a widely used model for segmentation, achieving state­of­

the­art performance in regular pictures and medical imaging. The U­Net architecture features an

encoder­decoder structure, where the encoder processes the input image to extract features, and

the decoder utilizes these features to generate a segmentationmask. Since the introductionofU­Net,

various adaptations of the U­shaped architecture have been developed to enhance its performance

and efficiency. Other adaptations, such as wide U­Net and U­Net++, improve the original model by

incorporating additional skip connections, enabling the direct transfer of low­level features from the

encoder to the decoder. Additionally, Residual U­Net integrates residual blocks into the encoder and

decoder, further boosting the network’s performance. These innovations continue to drive progress

in image segmentation, making deep learning techniques increasingly powerful and versatile [24].

1.2 Introduction to Semi­Supervised Learning

Semi­supervised learning (SSL) is a machine learning paradigm that combines a small amount

of labeled data with a large amount of unlabeled data to enhance learning efficiency. This approach

is particularly useful in domains where labeled data is scarce or expensive to obtain, such as medical

image analysis, where labeling often requires expert knowledge [36]. The goal of SSL is to learn

patterns from unlabeled data, improving the accuracy of models trained on limited labeled datasets

[22, 25, 44]. Using the structure of the data distribution, SSL can producemore accuratemodels than

those trained solely on labeled data [2, 78, 87]. In medical image segmentation tasks, the scarcity of

annotated data has driven research into SSL methods.

Semi­supervised approaches in deep learning often rely on uncertainty estimation for unla­

beled samples. High­entropy regions in the model output typically indicate areas of higher uncer­

tainty. Some methods implement a simple uncertainty estimation technique using a predefined

threshold on the softmax output, as it is straightforward to apply. Alternative methods, such as

Bayesian modeling, dropout, and input augmentation, have also been explored but are less com­

monly used in semi­supervised segmentation tasks [61].
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1.2.1 SSL Assumptions

Semi­supervised learning relies on several key assumptions about the data distribution to gen­

eralize effectively from a finite training set to unseen data. These assumptions help leverage unla­

beled data and guide the development of SSL methods:

1. Cluster Assumption: Sampleswithin the same cluster in the input distribution are likely to share

the same class label. If two samples, x1 and x2, belong to the same cluster, their outputs y1

and y2 should also be similar. This assumption ensures that each class forms distinct clusters

and is foundational to clustering­based and graph­based SSL methods [25, 33, 45, 64].

2. Low­Density Assumption: The decision boundary should lie in low­density regions of the fea­

ture space to avoid splittingdense clusters into different classes. This assumption complements

the cluster assumption, as samples within the same cluster tend to be concentrated and far

from decision boundaries. Low­entropy predictions, which are more confident, typically indi­

cate points far from classification boundaries [25, 83].

3. Manifold Assumption: Data points that are close to each other within a low­dimensional man­

ifold are likely to share the same class label. This reflects the local smoothness of the decision

boundary and encourages consistent predictions for nearby samples in the feature space. It

also allows distant samples to be mapped into low­dimensional neighborhoods for classifica­

tion [30, 77].

4. Smoothness Assumption: Nearby data points in the feature space should have the same class

label. This assumption is essential for consistency regularization method, where models are

trained to produce stable predictions even when perturbations are introduced to the data or

model. It is widely applied in SSL methods to construct graphs or clusters over labeled and

unlabeled data, enabling label propagation techniques [33, 83].

5. Cross­View Consistency Assumption: The predictions for the same data point should remain

consistent across multiple augmentations or views of the data. This assumption supports

methods like consistency regularization and augmentations used in frameworks such asMean­

Teacher and Virtual Adversarial Training (VAT) [83].

By incorporating these assumptions, SSL methods exploit the structure of both labeled and

unlabeled data to improve model accuracy. Methods such as consistency regularization rely heavily

on these principles to guide decision boundary placement and ensure learning from sparse labels.

1.3 Semi­Supervised Learning Methods

Semi­supervised learning methods are presented differently in multiple research articles.

There are differences of opinions on how SSL techniques could be categorized. Table 1. showcases

the ways of SSL categorization in recent (2023, 2024) research papers. All papers contain consistency

regularization or consistency learning. Also, many papers suggest pseudo­labeling (or self­training,
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proxy label). Another field of techniques are associated with adversarial learning, adversarial train­

ing or generative adversarial networks. Co­training and contrastive learning arementioned in several

papers as well, therefore, there are several techniques created which are presented as co­training or

contrastive learning [37, 78, 81, 87].

However, there are few methods mentioned that can be a discussion point. For example, en­

tropy minimization is often mentioned as a feature or step used for techniques from other methods,

such as adversarial learning [1], pseudo­labeling [62]. In addition, [41] mentions that entropy min­

imization can be interpreted as an extension of unsupervised learning. Another potential method

mentioned is uncertainty based methods. Uncertainty estimation is used as a step in other methods

to improve the segmentation results, for example, in consistency regularization [88], co­training [87]

or hybrid methods [41]. Holistic, collaborative learning is used as synonyms for combination (hybrid)

methods.

Table 1.: SSL methods mentioned in 2023­2024 research articles

Authors Year Methods

Liu et al. [40] 2024 self­training, co­training, adversarial learning, consistency regularization

Miao et al. [46] 2023 pseudo­labeling, consistency regularization

Zhang et al. [82] 2023 self­training, adversarial training, co­training, consistency regularization

Sun et al. [65] 2024 pseudo­labeling, co­training, consistency regularization

Lei et al. [31] 2023 consistency learning, adversarial learning, self­training,

contrastive learning, collaborative learning

Wu et al. [71] 2024 generative adversarial networks, consistency regularization, pseudo­labeling

Miao et al. [47] 2024 self­training, consistency regularization, adversarial learning

He et al. [20] 2024 consistency regularization, uncertainty based methods, adversarial learning,

contrastive learning

Li et al. [35] 2024 pseudo­labeling, consistency regularization

Zhao and Wang [85] 2024 consistency learning, co­training, self­training, adversarial learning,

entropy minimization, and other methods

Gai et al. [17] 2024 adversarial learning, pseudo­labeling, consistency regularization

Su et al. [64] 2024 consistency regularization, proxy­label, holistic methods

Tang et al. [66] 2024 consistency regularization, pseudo­labeling, contrastive learning

Paul at al. [53] 2024 consistency regularization, entropy minimization

Lu et al. [41] 2023 consistency regularization, pseudo­labeling, entropy minimization, generative methods

Semi­supervised learning has seen significant advancements through various methods de­

signed to effectively utilize both labeled and unlabeled data. Among these, approaches such as con­

sistency regularization, co­training, pseudo­labeling, adversarial learning, contrastive learning and

hybrid methods are selected as methods in this work scope ( Figure 2.). Each method introduces a

unique perspective on the use of unlabeled data, enabling models to learn more about represen­

tations with limited labeled samples. In the following sections, these methods will be discussed in

detail, highlighting their principles, implementations, and contributions to the field.
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Figure 2. Semi­supervised learning methods

To analyze the research done in semi­supervised learning, the information about research ar­

ticles published is collected. Appendix 1 provides a detailed overview of SSL techniques relevant to

this work. The table summarizes datasets, evaluation metrics, and essential details about SSL meth­

ods described in other studies. These techniques are mapped to the methods within the scope of

this research. The techniques are further explored in each method part.

1.3.1 Consistency Regularization

Consistency regularization methods in semi­supervised learning rely on the smoothness as­

sumption, which posits that small perturbations in input data should not result in significant changes

in predictions [32]. These methods encourage the model to maintain consistent outputs for per­

turbed versions of the same input, thereby enforcing a smooth decision boundary and improving

generalization. Examples include the Mean Teacher (MT) model [68], where a student model learns

from labeled and unlabeled data, guided by a ”teacher” model whose weights are an exponential

moving average (EMA) of the student’s weights, ensuring stable targets for learning. Similarly, the

Π model and its enhancement, temporal ensembling, use EMA predictions for consistency targets

under data­level perturbations [63, 77].

Building on this foundation, other methods incorporate consistency regularization at various

levels. For instance, SASSnet [34] emphasizes geometric regularity of target object shapes, while

CPCL [76] integrates regularization between supervised and unsupervised training in a cyclic frame­

work. Task­level and model­level regularization have also been explored, as seen in DTC [43], which

introduces dual­task consistency. These approaches demonstrate the effectiveness and flexibility of

consistency regularization in enhancing the representational capacity of models [18, 63].

According to the number of the model, these models are mainly divided into single model,

dual­model and dual­decoder model.

1.3.2 Co­Training

The co­training framework assumes that each data sample has two independent and redundant

views, allowing each view to make independent predictions. The framework promotes consistency

between these views by initially training separate models for each view using labeled data. Predic­

tions from these models on unlabeled data are then iteratively incorporated into the training set for

further training [85].
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Multiview learning builds on the concept of co­training by incorporating multiple complemen­

tary views. The general principle of this type of method is to simultaneously train classifiers for each

view, using the labeled data, such that their predictions agree for unlabeled examples. Enforcing this

agreement among classifiers narrows the search space, aiding in the development of amodel capable

of generalizing effectively to new data. While co­trainingmethods have been usedwith great success

in natural language processing, their application to visual tasks has been limited. One of the main

reasons for this is that such methods require complementary models to learn from independent fea­

tures. Although such independent features may be available in specific scenarios (e.g., multiplanar

images), there is no effective way to construct these sets from individual images [54].

1.3.3 Pseudo­Labelling

Pseudo­labeling is a widely used method in semi­supervised learning (SSL) that leverages a

model predictions to generate labels for unlabeled data. The process begins by training a model on

labeled data and using it to predict labels for unlabeled examples. These predictions, referred to

as pseudo­labels, are then incorporated into the training process, blending them with the original

labeled data to improve the model further. This approach mimics supervised learning by expanding

the training set through pseudo­labeled examples, assuming that class clusters are compact and have

low entropy [63, 77].

A key aspect of pseudo­labeling is the use of confidence­based thresholds to retain only the

most reliable pseudo­labels. These thresholds ensure that the model uses predictions with high con­

fidence, thereby reducing the risk of introducing noise into the training process. Pseudo­label gen­

eration can be categorized into two methods: direct generation, which selects pseudo­labels with

higher confidence, and indirect generation, which focuses on creating high­fidelity pseudo­labels

through more sophisticated methods [18, 62].

Despite its simplicity and effectiveness, pseudo­labeling faces challenges, particularly in sce­

narios like 3D medical imaging, where labeled data is scarce. The quality of pseudo­labels is critical,

as unreliable or incorrect labels can hinder model performance. Additionally, pseudo­labeling often

requiresmultiple iterations, which can lead to slowmodel convergence. Addressing these challenges

involves developing strategies to ensure reliable voxel­wise pseudo­labels andoptimizing the pseudo­

labeling process for faster convergence [17, 77].

1.3.4 Adversarial Learning

Adversarial learning is a powerful method in semi­supervised image segmentation. The central

idea is to challenge themodel by introducing adversarial objectives, either through explicitly compet­

ing networks or perturbation­based methods. Techniques such as Generative Adversarial Networks

(GANs), Deep Adversarial Networks (DANs), and Virtual Adversarial Training (VAT) are prominent ex­

amples that apply adversarial principles in different ways to achieve accurate segmentations.

Adversarial learning, originally developed in the form of generative adversarial networks

(GANs) for generating natural images from random noise, has found applications in various domains,

including image enhancement, image­to­image translation, image editing, and segmentation tasks.
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In segmentation, GANs enhance the supervision of structural information, making them suitable for

semi­supervised learning [70].

In semi­supervised segmentation, adversarial learning employs a discriminator to distinguish

between predictions on labeled and unlabeled data. This approach encourages themodel to produce

similar feature embeddings or segmentation probabilities for both data types, thereby providing aux­

iliary supervision for the unlabeled data. However, when labeled data is scarce, the discriminatormay

over­rely on it, increasing the risk of model overfitting [17, 84].

Deep Adversarial Networks (DANs) extend adversarial learning with additional enhancements,

such as domain adaptation or feature­space alignment. In a typical DAN framework [80], the seg­

mentation network is trained not only with a supervised loss on labeled data but alsowith adversarial

losses on unlabeled data. These losses ensure that the outputs for unlabeled inputs align with the

labeled data distribution. Furthermore, DANs can incorporate adversarial perturbations in the fea­

ture or input space. This dual adversarial strategy is especially useful in scenarios involving domain

shifts or heterogeneous datasets, such as multi­center medical imaging studies.

Unlike GANs and DANs, Virtual Adversarial Training (VAT) [48] focuses on generating adversar­

ial perturbations in the input space without requiring a separate discriminator. VAT computes small,

worst­case perturbations thatmaximize the divergence in themodel’s predictions for unlabeled data.

The model is then trained to produce consistent outputs for both the original and perturbed inputs,

enforcing smooth decision boundaries. VAT is particularly appealing in semi­supervised segmen­

tation due to its simplicity and computational efficiency compared to GAN­based methods. It en­

sures that the segmentation network generalizes well to unseen data, making it a reliable approach

for high­stakes tasks like medical image segmentation.

1.3.5 Contrastive Learning

Contrastive learning (CL) is a self­supervised learningmethod that uses contrastive loss tomake

representations of similar pairs more alike and dissimilar pairs more distinct. Similarity is typically

defined in an unsupervised manner, such as treating different transformations of the same image as

similar examples [8]. One of the most popular contrastive loss functions is the InfoNCE loss [15]:

LInfoNCE = − log
exp(sim(z, z+)/τ)

exp(sim(z, z+)/τ) +
∑

∀(z,z−) exp(sim(z, z−)/τ)
, (1)

where sim is a similarity function, for example, cosine similarity, (z, z+) is a similar (positive) pair of

data points, (z, z−) is a dissimilar (negative) pair of data points and τ is a scaling factor.

The core principle of CL is to cluster semantically similar samples (positives) around an anchor

sample while pushing dissimilar samples (negatives) further apart. This approach has proven effec­

tive for extracting discriminative features without annotations and is widely used in image­level tasks

like classification. To extend its utility to dense prediction tasks, such as semantic segmentation, re­

cent adaptations focus on contrasting pixel­level representations rather than global image­level fea­

tures [66].

In semi­supervised segmentation, CL has been employed to leverage predefined positive and
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negative relationships for learning valuable representations. By exploiting these relationships, CL

provides a powerful framework for improving segmentation performance, even with limited labeled

data [73].

1.3.6 Hybrid Methods

Hybrid methods in semi­supervised learning combine multiple SSL strategies to leverage the

strengths of each approach. By integrating complementary techniques, these methods address the

limitations of individual strategies, resulting in efficient learning from limited labeled data. For in­

stance, consistency regularization, which ensures the model’s predictions remain stable under dif­

ferent perturbations, is often combined with pseudo­labeling, where the model generates labels for

unlabeled data to augment the training process [41]. Another common combination of methods is

consistency regularization and adversarial learning [67]. Each hybrid techniquemay vary significantly,

therefore their strengths or limitations should be evaluated by case.

1.4 Uncertainty Estimation

Quantification of uncertainty is essential for evaluating the reliability of predictions in deep

neural networks, particularly in medical imaging. It helps identify when and where a model is likely

to make incorrect predictions, which is critical in high­stakes applications like healthcare. Various

methods have been developed to estimate uncertainty, including statistical modeling, resampling

datasets in ensemble approaches, and modifications to the predictive procedure, such as Monte

Carlo dropout. In semi­supervised learning, uncertainty can be used to judge the confidence of pre­

dictions, enabling the effective utilization of unlabeled data. This has proven beneficial in manymed­

ical image segmentation tasks [79].

Uncertainty estimation methods in medical image segmentation are typically categorized into

probabilistic­based, ensemble­based, and evidence­based approaches. Probabilistic methods use

deep learning architectures to estimate uncertainty through probability distributions, such as those

generated by dropout or conditional variational autoencoders. Ensemble­based methods rely on

training multiple models to derive uncertainty, though these can be computationally expensive and

suffer from low diversity. Evidence­based approaches use an evidential layer cascaded with a deep

learning model to quantify uncertainty in segmentation results, providing a direct measure of trust­

worthiness [21].

Bayesian neural networks offer a principled approach to uncertainty estimation by modeling

the posterior distribution over parameters based on training data. However, exact Bayesian inference

is often computationally intractable, leading to approximate methods likeMonte Carlo dropout. This

technique estimates uncertainty by applying dropout at test time, effectively simulating an ensemble

of models for efficient training and prediction [61].

In semi­supervised semantic segmentation, uncertainty­guided methods enable models to

leverage unlabeled data effectively. These methods guide the model to learn from meaningful and

reliable targets while mitigating noise from unreliable predictions. Techniques such as co­training,
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multi­view co­training, and contrastive learning have been employed to exploit uncertainty informa­

tion. However, challenges like low­confidence pseudo­labels and the need for high­quality data can

limit their effectiveness. To address these issues, novelmodules, such as the dual­branch uncertainty­

awaremodule, compute the uncertainty of each sub­network prediction to jointly guidemodel train­

ing [56].

Uncertainty can be calculated using data augmentation or modifications to the network archi­

tecture. Data augmentation involves adding small perturbations to the input images or feature space

and comparing predictionswith andwithout the perturbations to identify uncertain regions. Another

approach is network modification, such as Monte Carlo dropout, where parameters are randomly

deactivated at test time. This process generates diverse predictions, enabling the identification of

uncertain areas without altering the input image [41].

1.5 Challenges and Limitations

Semi­supervised learning (SSL) methods offer several advantages, particularly in domains

where labeled data is scarce or expensive to obtain but unlabeled data is abundant. One of the

primary benefits of SSL is that it reduces the dependency on large, labeled datasets. In many fields,

such as medical imaging or autonomous driving, annotating data requires significant time, cost, and

expertise. SSL enables models to leverage a small amount of labeled data combined with a much

larger pool of unlabeled data to achieve high performance, often approaching that of fully supervised

models trained on extensive labeled datasets. This makes SSL highly cost­effective and practical in

real­world applications where obtaining labels is a major challenge [87].

Another key advantage of SSL is its potential to improve generalization. By incorporating un­

labeled data, SSL models can better understand the overall structure and distribution of the data.

This helps the model learn more robust representations, particularly in complex or high­dimensional

datasets. Techniques like consistency regularization and pseudo­labeling encourage models to pro­

duce smooth decision boundaries, which reduces the risk of overfitting to the labeled data. SSL often

results in models that can generalize better to unseen data, making them particularly useful in do­

mains where overfitting is a concern due to the limited availability of labeled samples.

However, semi­supervised learning also has several challenges and disadvantages. One signifi­

cant drawback is the risk of propagating errors through the use of incorrect pseudo­labels or predic­

tions on unlabeled data . In pseudo­labeling methods, for example, the model’s own predictions are

used to label unlabeled data, but if the initial predictions are incorrect or uncertain, they can intro­

duce noise into the learning process. This can cause the model to reinforce its ownmistakes, leading

to poorer performance. Effective SSL methods need to carefully manage the quality of pseudo­labels

and avoid overconfidence in uncertain predictions, which can be difficult to control in practice [10].

Another disadvantage of SSL is its reliance on the assumption that the labeled and unlabeled

data share the same underlying distribution. If the unlabeled data comes from a different domain

or is noisy, the model might learn incorrect patterns, reducing its overall accuracy. Furthermore,

designing SSL models can be complex, as it often requires balancing supervised and unsupervised

losses, selecting appropriate thresholds for pseudo­labeling, and applying the right regularization
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techniques. This complexity can make SSL models more difficult to implement and tune compared

to purely supervised or unsupervised approaches.

Despite these challenges, semi­supervised learning continues to be a powerful tool in scenarios

where labeled data is limited, and its advantages often outweigh the disadvantages, especially when

careful techniques are applied to mitigate issues such as label noise and distribution mismatch. The

field is actively evolving, with researchers exploring more methods to enhance the reliability and

efficiency of SSL approaches.

1.6 Applications of Semi­Supervised Learning in Medical Image Segmentation

Another significant application is medical image segmentation, where ML models are used to

delineate anatomical structures or regions of interest within an image. This is particularly important

in tasks such as tumor segmentation, organ boundary detection, and lesion identification. Segmen­

tation is a critical step in many clinical workflows, including surgical planning and radiation therapy.

Deep learning­basedmodels, such as U­Net and its variants, have become the gold standard formed­

ical image segmentation due to their ability to capture both local and global contextual information.

These models can learn from labeled datasets to accurately segment tissues and lesions in images,

helping clinicians make more precise diagnoses and treatment decisions.

Most of the existing semi­supervised methods leverage the prediction of unannotated data,

but the quality of the prediction is not guaranteed. Optimizing model parameters via unreliable

predictions in unsupervised learning is not convinced, even towards wrong results [87].

There are several other popular approaches in semi­supervised learning, including self­training,

co­training, adversarial training methods. Self­training, one of the simplest SSL methods, works by

training a model on labeled data, then using the model to predict labels for the unlabeled data. The

most confident predictions are then added to the labeled set, and themodel is retrained. Co­training

involves two different models that train simultaneously on different views of the data, each model

helping to label the unlabeled data for the other.

The success of semi­supervised learning lies in its ability to improve model performance in

data­scarce environments. By effectively utilizing unlabeled data, SSL reduces the need for extensive

labeled datasets, making it particularly useful in domains like healthcare, where labeled data is often

limited but vast amounts of raw data exist. However, SSL also poses challenges, such as ensuring that

the pseudo­labels or predictions on unlabeled data are accurate and not introducing noise into the

training process. Despite these challenges, SSL continues to be a powerful approach for tasks where

acquiring labeled data is difficult, allowing models to learn from both labeled and unlabeled data for

better performance.
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2 Materials and Methods

This section outlines the methodological approach adopted in this study. It begins with a de­

tailed description of the dataset, including its sources, preprocessing steps, and characteristics rele­

vant to the research objectives. Next, themethods employed for semi­supervised learning inmedical

image segmentation are presented, with an emphasis on the key techniques and architectures uti­

lized. The technical specifications of the experimental setup, including hardware and software con­

figurations, are provided to ensure reproducibility. Finally, the evaluation metrics used to assess the

performance of the proposed methods are described, highlighting their relevance to the problem of

medical image segmentation.

2.1 Semi­Supervised­Learning Techniques

The techniques used in this work have been carefully selected to cover most of the meth­

ods: Mean Teacher (MT) [68] (consistency regularization), ADVENT [1] (adversarial learning), DAN

[80] (adversarial learning), CPS [10] (pseudo­labeling), Deep Co­training [55] (co­training) and Semi­

supervised Contrastive Consistency (SCC) [37] (contrastive learning). All techniques are run on Unet

architecture, except for SCC technique ­ Vnet was used for modeling. The code for all of these tech­

niques is available online and it is open­source. The code is accessed from https://github.com/Per­

ceptionComputingLab/SCC for SCC technique and the rest of the techniques can be found here:

https://github.com/HiLab­git/SSL4MIS [74]. The code has been additionally processed to run

smoothly on Google Colab platform and Deep Co­training technique was additionally transformed

to process 3D images instead of 2D images. Moreover, code for validation has been added for SCC

technique.

2.1.1 Mean Teacher

TheMean Teacher technique [68] builds upon the consistency regularization framework, where

the idea is to enforce similar predictions for perturbed versions of the same input. It does so bymain­

taining two networks: a student model and a teacher model, which interact to improve performance

on both labeled and unlabeled data.

In the Mean Teacher framework, the student model is the primary network being trained. The

teachermodel serves as a stable target for the student. Unlike traditional teacher­student paradigms

where the teacher is a pre­trained network, the teacher in this technique is an exponential moving

average (EMA) of the student’s weights. This design ensures that the teacher’s parameters evolve

smoothly over training iterations, providing consistent guidance.

The student model learns from labeled data using a supervised loss, typically a cross­entropy

loss. For the unlabeled data, the student is encouraged to match the teacher’s predictions through a

consistency loss. This dual trainingmechanism ensures that themodel benefits from the information

present in the unlabeled dataset, enhancing its generalization capabilities.

Consistency regularization is the method for the Mean Teacher approach. It assumes that
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meaningful perturbations applied to the input data should not drastically change the model’s pre­

dictions. To implement this, the student and teacher are fed different augmented versions of the

same input. Common perturbations include random cropping, flipping, noise injection, or other data

augmentation techniques.

2.1.2 Adversarial Entropy Minimization (ADVENT)

The ADVENT technique [1] presents an innovative approach to domain adaptation for semantic

segmentation tasks. Domain adaptation is crucial in computer vision when a model trained on a

labeled source domain performs poorly on a related but unlabeled target domain due to a domain

shift. ADVENT addresses this problem byminimizing the entropy of predictions on the target domain

using adversarial training.

At its core, ADVENT employs adversarial entropy minimization to encourage confident predic­

tions in the target domain. Entropy is a measure of uncertainty in the model’s output. ADVENT

ensures that the segmentation network produces sharp, confident predictions even in the absence

of target labels by minimizing the entropy of the predictions in the target domain. This approach

directly addresses the problem of uncertainty in predictions caused by the domain gap.

A key aspect of the technique is its use of adversarial training to align the output space dis­

tributions of the source and target domains. An adversarial network, or discriminator, is trained to

distinguish between the segmentation outputs (probability maps) of the source and target domains.

Meanwhile, the segmentation network learns to generate outputs from the target domain that fool

or confuse the discriminator. This adversarial process aligns the output distributions of the two do­

mains, improving the network’s ability to generalize across them.

The ADVENT training strategy is divided into two stages. First, the segmentation network is

trained on the labeled source domain using standard supervised learning. Then, adversarial entropy

minimization is applied to align the target domain while fine­tuning the network. This systematic

approach leverages both labeled and unlabeled data effectively.

2.1.3 Deep Adversarial Network

Deep Adversarial Network (DAN) [80] combines deep learning with adversarial training to ad­

dress the challenge of limited labeled data, which is a common issue in biomedical imaging. The

framework consists of two components: a segmentation network and an evaluation network. The

segmentation network generates segmentation maps from input images, while the evaluation net­

work distinguishes between these predicted maps and ground truth segmentation maps. Through

this adversarial process, the segmentation network learns to produce outputs that are indistinguish­

able from the ground truth.

To utilize unannotated images effectively, the technique incorporates unsupervised learning

principles. The segmentation network is trained not only on annotated images using supervised loss

but also on unannotated images through adversarial feedback. By aligning the feature distributions of

annotated and unannotated images in the output space, the method ensures that the segmentation

network generalizes well to data without ground truth labels.
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2.1.4 Cross Pseudo Supervision

The Cross Pseudo Supervision (CPS) [10] focuses on leveraging multiple augmentations of un­

labeled images to create complementary pseudo­labels. At its foundation, CPS generates pseudo­

labels from various augmented versions of unlabeled images. These augmented images may include

transformations such as rotations, flips, scaling, or other data augmentations that preserve the un­

derlying structures but provide different views of the same scene. By creatingmultiple pseudo­labels

for a single unlabeled image, the model is exposed to diverse perspectives of the data, allowing it to

capture more nuanced features and reduce the risk of relying on potentially noisy pseudo­labels.

The key innovation of CPS lies in its ability to utilize these multiple pseudo­labels for a more

effective training process. During training, the model takes into account all available pseudo­labels

and enforces consistency across them. This cross­supervision approach ensures that themodel learns

variations introduced by different augmentations, effectively improving the stability and accuracy of

predictions on unlabeled data.

Furthermore, CPS introduces a weighted combination strategy for aggregating pseudo­labels.

Pseudo­labels generated from augmentations that are closer to the ground truth receive higher

weights, while those with higher uncertainty or divergence are down­weighted. This dynamic ap­

proach helps the model focus more on reliable and consistent information, reducing the impact of

less accurate pseudo­labels and boosting overall segmentation performance.

2.1.5 Deep Co­Training

Deep Co­Training technique [55] builds on the classical co­training algorithm, adapting it to

deep learning by incorporating complementary models that collaboratively enhance each other’s

performance during training. This approach is particularly valuable in scenarios where labeled data

is scarce but unlabeled data is abundant.

At the heart of the Deep Co­Training framework are two deep neural networks, each trained on

the same dataset but initialized differently and optimized independently. These networks generate

pseudo­labels for unlabeled data, which are then used to supervise the other network. The intuition

behind this approach is that the two networks, due to their differing initialization and training dy­

namics, will focus on different aspects of the data and make complementary errors. By exchanging

pseudo­labels, the networks reinforce each other’s strengths and compensate for their weaknesses.

To ensure reliable pseudo­labeling, the method employs confidence thresholds. Each network

only provides pseudo­labels for unlabeled data points it predicts with high confidence, reducing the

risk of noisy labels being propagated during training. This selective exchange of pseudo­labels helps

maintain the efficiency of the co­training process and enhances the generalization capability of both

networks.

The paper further enhances the co­training process by introducing feature­level diversification.

By using dropout, data augmentations, or different architectures for the two networks, the method

ensures that the networks learn diverse representations. This diversity is crucial for the success of

co­training, as it prevents the networks from converging to similar representations and making cor­

related errors.
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Experimental results demonstrate that Deep Co­Training achieves state­of­the­art performance

in semi­supervised image recognition tasks. The ability to harness large amounts of unlabeled data

while maintaining model diversity makes Deep Co­Training a powerful and practical approach for

semi­supervised learning.

2.1.6 Semi­Supervised Contrastive Consistency

The Semi­Supervised Contrastive Consistency (SCC) [37] comprises two sub­models: a segmen­

tation model, and a classification model. The segmentation model, referred to as E2DNet, adopts a

dual­decoder architecture and processes 3D volumes as input to predict pixel­level segmentation

probabilities. Following E2DNet, the classification model, maps these segmentation probabilities to

the class­vector space. The segmentation model, E2DNet, is a modified version of VNet, incorpo­

rating an additional decoder. Specifically, it consists of one encoder and two decoders, enabling it

to generate two segmentation probabilities for each input. During inference, the final prediction is

computed as the average of the two decoder outputs. This dual­decoder structure allows the model

to leverage an ensemble strategy, improving segmentation performance in challenging regions.

During training, the segmentation loss is computed using only the labeled data. A combination

of the Dice loss function and the cross­entropy loss function is employed as the supervised segmen­

tation loss to optimize segmentation model.

To incorporate class­level information from both labeled and unlabeled data for representation

learning, a classificationmodel is introduced after the segmentationmodel. This classificationmodel

takes segmentation probabilities as input and maps them to the class­vector space. Based on these

class­vectors, a contrastive consistency loss function is designed using a class­level sample construc­

tion strategy. To mitigate the influence of unreliable predictions from unlabeled data, the class­

vectors derived from labeled data are used as references for those obtained from unlabeled data.

The final loss function of SCC combines the segmentation loss and the contrastive consistency loss.

2.2 Evaluation Metrics

To evaluate the performance of the proposed semi­supervised segmentation model, we em­

ploy widely­used metrics in medical image analysis, including the Dice Coefficient, Jaccard Index, the

95th percentile Hausdorff Distance (HD95), and the Average Surface Distance (ASD). These metrics

are chosen based on their prevalence in the literature, as highlighted in Appendix 1, which presents a

comprehensive table of semi­supervised learning techniques and their associated evaluationmetrics.

The Dice Coefficient and Jaccard Index assess the overlap between predicted and ground truth seg­

mentations, providing complementary insights into segmentation accuracy. Meanwhile, HD95 and

ASD evaluate the geometric similarity between segmentation boundaries, with HD95 emphasizing

outlier distances and ASD capturing average boundary deviations.
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2.2.1 Dice Coefficient

The Dice coefficient, also known as the Dice Similarity Coefficient (DSC), is a statistical mea­

sure commonly used to gauge the similarity between two sets. In medical image segmentation, it

quantifies the overlap between the predicted segmentation and the ground truth. It ranges from 0

to 1, where 1 indicates perfect agreement and 0 indicates no overlap. This measure is particularly

well­suited for applications in which regions of interest can be small compared to the overall image,

making other metrics like accuracy less informative.

The Dice coefficient for two sets A (predicted) and B (ground truth) is defined as:

Dice(A,B) =
2|A ∩B|
|A|+ |B|

(2)

Here, | A∩B | represents the number of elements common to both sets. In 3Dmedical image

case, the elements are voxels. | A | + | B | is the sum of elements A and B.

2.2.2 Jaccard Index

The Jaccard Index, also known as the Intersection over Union (IoU), is a widely used metric

to measure the similarity or overlap between two sets. In the context of image segmentation, it

evaluates the overlap between a predicted segmentation and the ground truth by calculating the

ratio of their intersection to their union. Like the Dice coefficient, the Jaccard Index ranges from 0 to

1, where 1 indicates a perfect match and 0 indicates no overlap at all.

For two sets A (predicted) and B (ground truth), the Jaccard Index is defined as:

Jaccard(A,B) =
|A ∩B|
|A ∪B|

. (3)

Here, |A ∩ B| represents the number of elements common to both sets, while |A ∪ B| is the
total number of unique elements in either set.

2.2.3 95th Percentile Hausdorff Distance

The 95th Percentile Hausdorff Distance is a metric used to evaluate the similarity between two

sets of points, often applied in medical image segmentation tasks. It is a variation of the classical

Hausdorff Distance (HD), which measures the largest deviation between the surfaces or boundaries

of two sets. While the standard HD is sensitive to outliers, the 95th percentile HDmitigates this issue

by discarding the worst 5% of outlier distances. This makes it more stable and practical for medical

imaging applications where segmentation artifacts or noise are common.

In the context of medical image segmentation, the two sets are typically the boundary points

of the predicted segmentation (P) and the ground truth segmentation (G). The Hausdorff Distance is

defined as:

H(P,G) = max
{
sup
p∈P

inf
g∈G

‖p− g‖, sup
g∈G

inf
p∈P

‖g − p‖
}
. (4)
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Here, sup denotes the supremum, inf denotes the infimum, and ‖ p − g ‖ is the Euclidean

distance between a point p in P and a point g inG.

The 95th Percentile Hausdorff Distance (H95) modifies this by computing the 95th percentile of

the distances, rather than taking the supremum. This is achieved by sorting all the shortest distances

between the points in P andG, then selecting the distance below which 95% of the distances lie:

H95(P,G) = max
{
h95(P,G), h95(G,P )

}
. (5)

Here, h95(P,G) represents the 95th percentile of all distances from P to G and h95(G,P )

represents the 95th percentile of all distances fromG to P .

2.2.4 Average Surface Distance

The Average Surface Distance (ASD) is a metric commonly used to evaluate the similarity be­

tween two surfaces, particularly in medical image segmentation. It calculates the average distance

between the surface points of a predicted segmentation and the corresponding ground truth surface

points. Unlike the Hausdorff Distance, which focuses on the worst­case deviation, the ASD provides

a more global and balanced assessment by considering the average error over all surface points.

In segmentation tasks, the surfaces of the predicted segmentation (P ) and the ground truth

(G) are typically represented as sets of points. The directed Average Surface Distance from P to G

is defined as the mean of the shortest distances from each point in P to the surface ofG:

d(P,G) =
1

|P |
∑
p∈P

inf
g∈G

‖p− g‖. (6)

Here, |P | is the number of points in P , infg∈G ‖p− g‖ is the shortest distance from a point p ∈ P to

the surface ofG, and ‖ p− g ‖ is the Euclidean distance between a point p ∈ P and a point g ∈ G.

The Average Surface Distance (ASD) is the symmetric version of this metric, computed as the

average of the directed distances in both directions:

ASD(P,G) =
1

2

(
d(P,G) + d(G,P )

)
. (7)

2.3 Datasets

For this study, the 2018 Left Atrium Segmentation Challenge dataset [75] was utilized. The

dataset consists of 3D late gadolinium­enhanced (LGE) MRI scans of the left atrium, which are com­

monly used for atrial segmentation tasks in cardiac imaging. Due to dataset accessibility limitations,

only the training set containing 100 images was used for this research. Originally, the dataset has

100 train images and 54 test images.

Each image is provided in a 3D volumetric format with corresponding ground truth segmen­

tationmasks. Themasks contain binary labels, where 0 represents the background, and 1 represents

the segmented left atrium region. The images underwent preprocessing to standardize them for the

semi­supervised learning methods. By focusing on the training set, this study simulates a scenario
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with limited labeled data, aligning with the objectives of semi­supervised learning approaches for

medical image segmentation.

The second dataset in this work is BraTS­Africa [7]. The BraTS­Africa dataset is a subset of the

Brain Tumor Segmentation Challenge (BraTS) dataset, adapted for applications focusing on brain tu­

mor segmentation. This dataset includes multi­modal MRI scans of brain tumor patients, specifically

designed to improve diversity in data representation by incorporating cases fromAfrican populations.

This dataset has 146 images in total, they are organized into 2 folders: glioma and other neoplasms.

In this work scope, only 95 glioma images are used.

Each case in the dataset comprises multiple MRI modalities and corresponding ground truth

segmentation masks. The MRI modalities include T1­weighted (T1) imaging, which emphasizes

anatomical boundaries; T1­weighted post­contrast (T1c), highlighting tumor regions with gadolinium

enhancement; T2­weighted (T2) imaging, which accentuates edema and fluid­associated abnormal­

ities; and T2 FLAIR (T2f), which suppresses fluid signals to delineate tumor and edema regions. The

provided segmentationmasks label tumor subregions as follows: 0 for background, 1 for the necrotic

tumor core, 2 for edema, and 3 for the enhancing tumor.

This dataset was selected to complement the 2018 Left Atrium Segmentation dataset, enabling

the study to evaluate the results in cases when there are either 2 or 4 classes.

2.4 Image Processing

The image processing pipeline for this study involved converting the original medical imaging

files into a more efficient format for storage and analysis. The original datasets were provided in

the NIfTI (.nii.gz) and NRRD (.nrrd) file formats, which are commonly used in medical imaging due

to their ability to handle multi­dimensional image data. However, for streamlined data handling and

to facilitate faster access during training, these files were converted into HDF5 (*.h5) format. The

HDF5 format allows for efficient storage and retrieval of large datasets, with the added benefit of

organizing multiple related data modalities in a single file.

In the LeftAtrium (LA) dataset, the relevant imaging data and segmentationmasks are extracted

from the lgemri.nrrd and laendo.nrrd files. These files correspond to the late gadolinium­enhanced

MRI images and the manual segmentation masks of the left atrium endocardium, respectively. Both

the imaging data and the corresponding segmentation masks were stored together in a single *.h5

file for each case.

Similarly, for the BraTS­Africa dataset, the contrast­enhanced T1­weighted MRI (t1c) images

and their associated segmentation masks (seg) were used. Other sequences were not used due to

computational limitations. These two data modalities were likewise combined into a single *.h5 file

for each subject. This integration of imaging and segmentation data simplifies the preprocessing

pipeline and reduces the overhead associated with managing separate files during model training.

The conversion process not only streamlined datamanagement but also standardized the input

format across both datasets, ensuring compatibility with the semi­supervised learning framework.

By integrating image data and segmentation masks into a unified format, the preprocessing step
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enabled efficient loading and processing of data, facilitating reproducibility and consistency across

experiments.

Left Atrium dataset has been split into 60 train, 20 validation and 20 test images. BraTS­Africa

dataset has been split into 60 train, 20 validation and 15 test images.

2.5 Model Training and Testing

Training and testing of all models in this study were conducted using Google Colab, leveraging

its computational GPU resources for efficient experimentation. All models are written on PyTorch

framework [52]. Each model was trained for 6000 iterations, with validation conducted every 200

iterations. The model achieving the highest validation Dice coefficient during training was selected

as the best­performing model and subsequently used for testing. The code used in this work can

be accessed https://github.com/ievapociute/ssl_techniques, moreover, the link is also available in

Appendix 4.

For training, a batch size of 5 was used, with 2 out of the 5 images in each batch labeled.

To assess the effectiveness of the semi­supervised techniques under different labeling constraints,

two experimental settings were defined. In the first setting, 20% of the training set was labeled,

corresponding to 12 images for both datasets. In the second setting, only 10% of the training set

was labeled, corresponding to 6 images for both datasets. These settings allowed for the evaluation

of the models’ ability to learn meaningful representations and achieve accurate segmentation with

limited labeled data.

A fully supervised model was also trained as a baseline for comparison. In this case, 100%

of the training data was labeled, and the same training configuration was applied. Specifically, the

fully supervisedmodelwas trained for 6000 iterationswith validation performed every 200 iterations,

using a batch size of 5. This baseline provided an upper bound for performance, serving as a reference

for evaluating the semi­supervised techniques.

The input patch sizes were tailored to the characteristics of each dataset to accommodate their

anatomical and imaging resolutions. For the Left Atrium (LA) dataset, the input image patch size was

set to (112, 112, 80), optimized for the spatial dimensions of the cardiac images. For the BraTS­

Africa dataset, the input image patch size was (144, 144, 64), designed to capture the larger spatial

variability and resolution of the brain tumor images. These patch sizes ensured that themodels could

process the data effectively while maintaining sufficient context for segmentation tasks.
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3 Results

The results of this research are organized to provide a comprehensive evaluation of the pro­

posed semi­supervised learning techniques under varying data availability and to benchmark their

performance against existing literature. Initially, the results focus on comparing the segmentation

performance of the techniques when trained with 20% of the labeled data, providing insights into

their effectiveness in utilizing limited annotations. Subsequently, the impact of reducing the labeled

data to 10% is analyzed, highlighting the adaptability of the models in even more constrained label­

ing scenarios. Finally, the segmentation results for the Left Atrium dataset are compared with those

reported in other research studies, offering a broader context for the performance of the proposed

methods relative to state­of­the­art approaches in the field.

3.1 Technique Comparison

Table 2.: Performance metrics of different Semi­supervised methods for Left Atrium dataset.

Method Technique Dice % Jaccard % HD95 ASD

Consistency Regularization MT 85.46± 3.23 75.23± 4.24 12.72± 5.46 3.80± 2.13
Adversarial Training DAN 85.22± 2.72 74.69± 3.88 14.71± 5.67 4.21± 1.96
Adversarial Training ADVENT 85.31± 3.18 74.97± 4.34 12.89± 5.47 3.75± 1.94
Pseudo­labeling CPS 85.98± 3.13 75.98± 4.24 11.98± 4.86 3.53± 1.94
Co­training DCT 85.10± 2.74 74.53± 3.89 15.6± 6.41 4.38± 2.24
Contrastive Learning SCC 87.23± 3.24 78.02± 4.69 8.82± 3.51 2.08± 0.72

The Table 2. compares several semi­supervised learning methods for segmentation, evaluated

on the Left Atrium dataset. Dice, Jaccard, HD95, and ASDmetrics are used for technique comparison.

Among these methods, Contrastive Learning stands out as the best­performing approach, achieving

the highest Dice score (87.23%) and Jaccard index (78.02%). It also records the lowest HD95 (8.82)

and ASD (2.08), reflecting boundary precision andminimal segmentation errors. This combination of

high accuracy makes Contrastive Learning the most effective method for this task.

CPS is the second­best method in the LA dataset case. It achieves competitive Dice (85.98%)

and Jaccard (75.98%) scores, which are slightly lower than Contrastive Learning. It also has the lowest

HD95 (11.98) among all methods, apart from Contrastive Learning, and a reasonably low ASD (3.53).

While it does not outperform Contrastive Learning, it balances segmentation accuracy and boundary

error rates. Techniques like MT, ADVENT, DAN and DCT perform reasonably well in terms of Dice and

Jaccard scores (around 85% for Dice and 74­75% for Jaccard). However, their HD95 and ASD metrics

are higher, particularly for Deep Co­training, which has the highest HD95 (15.6) and the highest ASD

value (4.38). Thesemetrics suggest that while thesemethods achieve decent segmentation accuracy,

they struggle with boundary precision and smoothness compared to the leading techniques.

Table 3. evaluates several semi­supervised learning techniques applied to the BraTS­Africa

dataset using the Dice score, Jaccard index, HD95, and ASD metrics. Among the listed methods,

CPS achieves the best segmentation accuracy, with the highest Dice score (57.92%) and Jaccard in­

dex (44.04%). These metrics indicate that this method is most effective at capturing overlap and
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Table 3.: Performance metrics of different Semi­supervised methods for BraTS­Africa dataset.

Method Technique Dice % Jaccard % HD95 ASD

Consistency Regularization MT 53.00± 12.77 39.30± 11.13 16.68± 10.24 5.92± 3.68
Adversarial Training DAN 52.32± 11.80 38.38± 11.06 9.91± 3.43 2.50± 1.08
Adversarial Training ADVENT 55.13± 13.29 41.97± 12.76 9.92± 2.86 2.10± 1.04
Pseudo­labeling CPS 57.92± 11.67 44.04± 11.98 10.54± 4.09 2.37± 1.43
Co­training DCT 57.58± 10.97 43.24± 10.92 9.20± 2.77 1.97± 0.80
Contrastive Learning SCC −− −− −− −−

agreement between predicted and ground­truth segmentations. It also has competitive error rates,

with ASD (2.37), however, the HD95 (10.54) score is quite high, compared with other techniques.

This suggests that Cross Pseudo Supervision is suited for the segmentation challenges posed by this

dataset.

DCT has also a great performance, with a Dice score (57.58%) and Jaccard index (43.24%) close

to those of CPS. Its HD95 (9.20) and ASD (1.97) are the lowest error rates among the techniques

compared, indicating boundary precision and segmentation smoothness. While its segmentation

accuracy metrics slightly trail CPS, its error metrics are the best, making it a reliable option.

ADVENT demonstrates moderate performance, with a Dice score (55.13%) and Jaccard index

(41.97%) that are better than most but not the best. Its HD95 (9.92) and ASD (2.10) are relatively

low, suggesting that while its segmentation accuracy is not at the top, it produces reasonably precise

boundaries. This method provides a good balance between accuracy and error rates.

In contrast, Mean Teacher and Adversarial Network have slightly lower Dice score and Jaccard

index compared to other methods. Mean Teacher records the lowest Dice score (53.00%) and Jac­

card index (39.30%) while having the highest HD95 (16.68) and ASD (5.92). These metrics indicate

challenges in both segmentation accuracy and boundary adherence, making it the least effective

technique for this dataset.

SCC technique is trained, however, it did not provide any results. One of the possible reasons

why SCC did notmanage to predict results is probably that the techniquemight be specifically tailored

for LA dataset, as the research of this paper is focused on left atrium.
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3.2 Impact of Labeled Data Quantity in Dataset on Model Performance

Figure 3. Segmentation visualizations for one slice of one image from Left Atrium dataset

Figure 3. presents segmentation visualizations for a single slice from the Left Atrium dataset,

showcasing the predictionsmade by various semi­supervised learning techniques under two training

configurations: 20% labeled data and 10% labeled data. The visualizations include results from tech­

niques analyzed and a Fully Supervised model, which is based on U­Net architecture. Additionally,

the ground truth segmentation is provided for reference.

In the top row, segmentation results from models trained on 20% labeled data are displayed.

Among these, the Fully Supervised model produces a segmentation that most closely aligns with the

ground truth. The semi­supervised techniques exhibit varying degrees of accuracy, with methods

such as CPS and MT showing relatively good alignment with the ground truth. DAN and SCC also

generate reasonable segmentations, although slight discrepancies in boundary delineation can be

observed. ADVENT and DCT show some deviations, particularly near the edges of the segmentation.

The bottom row illustrates segmentation results frommodels trained on only 10% labeled data.

The performance of all models slightly decreases compared to their 20% labeled counterparts. How­

ever, techniques like CPS and MT segmentations maintain a high degree of overlap with the ground

truth. DAN and SCC display minor boundary inconsistencies. ADVENT and DCT exhibit more notice­

able deviations in this more challenging setting. It is important to note that Figure 3. images are

for a reference and the segmentation results from this frame does not indicate overall segmentation

results. This Figure indicates how similar / different predictions can be from the ground truth.

Table 4. summarizes the performancemetrics for various semi­supervised learning techniques

on the Left Atrium dataset under two labeling settings: 10% and 20% of the dataset labeled. Over­

all, the results demonstrate a clear improvement in performance as the proportion of labeled data

increases from 10% to 20%. Among the semi­supervised methods, SCC stands out, achieving the

highest Dice and Jaccard scores in both labeling settings, closely approaching the performance of

the Fully Supervised model, especially when 20% of the data is labeled. Notably, when the model

is trained on only 10% of the dataset labels, the results are generally poorer: mean Dice score and

Jaccard index is around 5­10% less, and the HD95 and ASD scores are higher.
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Table 4.: Performance Metrics of Semi­Supervised Methods with 10% and 20% Labeled Data on the

Left Atrium Dataset.

Technique Dice % Jaccard %

% of Dataset Labeled 10% 20% 10% 20%

MT 75.87 85.46 62.83 75.23
DAN 76.70 85.22 63.57 74.69
ADVENT 76.96 85.31 64.00 74.97
CPS 80.30 85.98 68.20 75.99
DCT 76.56 85.10 63.44 74.53
SCC 85.32 87.23 75.58 78.02

Fully Supervised 89.74 81.53

Technique HD95 ASD

% of Dataset Labeled 10% 20% 10% 20%

MT 23.77 12.72 7.71 3.80
DAN 24.16 14.72 7.66 4.21
ADVENT 25.92 12.89 8.31 3.75
CPS 20.47 11.99 6.33 3.53
DCT 26.74 15.60 8.53 4.38
SCC 9.58 8.86 2.38 2.08

Fully Supervised 7.57 1.95

HD95 and ASD emphasize the impact of labeled data on the geometric accuracy of segmen­

tation boundaries. SCC again demonstrates good performance in boundary alignment, achieving the

lowest HD95 and ASD values among the semi­supervised techniques. In contrast, methods such as

DCT and ADVENT show relatively higher boundary errors, particularly in the 10% labeled data setting,

highlighting their sensitivity to reduced annotation availability.

Additionally, Figure 5. in Appendix 3 is provided to analyze how test sample metric results are

varying. Looking at the graph it is noticable that for Dice score and Jaccard index are higher when the

model is trained on 20% of the dataset as opposed to 10%. Moreover, in most cases the interquantile

range is wider when the model is trained on 10% of the labels. With HD95 and ASD scores, most

of 20% labeled dataset cases tend to have lower distances between prediction and ground truth

and smaller boxes than 10% labeled dataset cases, underlying that models trained with 20% labeled

dataset are segmenting with better precision.

The Fully Supervisedmodel outperforms all semi­supervised techniques across all metrics, due

to its access to fully annotated training data. However, the strong performance of techniques like SCC

and CPS under limited labeling conditions underscores the potential of semi­supervised approaches

to achieve competitive results while reducing the reliance on labeled data.
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Figure 4. Segmentation visualizations for one slice of one image from BraTS­Africa dataset

Figure 4. presents segmentation visualizations for a single slice of an image from the BraTS­

Africa dataset, comparing the performance of different semi­supervised learning techniques under

two training configurations: 20% labeled data and 10% labeled data. In the top row, the segmen­

tation results from models trained with 20% labeled data are shown. The Fully Supervised model

provides the most accurate segmentation, closely matching the ground truth in both the tumor core

(red region) and the surrounding edema (green region). Among the semi­supervised methods, CPS

and MT demonstrate strong performance, capturing both the tumor core and edema regions with

high precision. DAN, DCT, and ADVENT also predict reasonable segmentations but exhibit some in­

consistencies, particularly at the boundaries of the segmented regions.

The bottom row highlights the performance of the same techniques when trained with only

10% labeled data. A reduction in labeled data generally results in less accurate segmentations. How­

ever, CPS and MT maintain relatively high fidelity to the ground truth, particularly in delineating the

tumor core. DAN, DCT, and ADVENT show more pronounced boundary deviations and inaccuracies,

especially in the edema region, suggesting that these methods are more sensitive to the reduced

availability of labeled data.

Table 5. presents the performance metrics of various semi­supervised learning techniques

applied to the BraTS­Africa dataset, in the same manner like with LA dataset. The metrics evaluated

include Dice coefficient, Jaccard index, HD95, and ASD, under two training scenarios: 10% and 20%

labeled data. Additionally, the performance of a Fully Supervised model, trained with 100% labeled

data, is provided as a baseline for comparison.

The results reveal a consistent trend across allmetrics: performance slightly improveswhen the

proportion of labeled data increases from 10% to 20%. This is particularly evident for metrics such

as Dice coefficient and Jaccard index, where the segmentation accuracy of all semi­supervised tech­

niques improves with more labeled data. CPS yields overall best results among the semi­supervised

techniques, demonstrating higher Dice and Jaccard values compared to others. These methods also

show smaller variations in performance.

In terms of boundary­based metrics (HD95 and ASD), the Fully Supervised model consistently

outperforms all semi­supervised approaches, achieving the smallest HD95 and ASD values, indica­
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Table 5.: Performance Metrics of Semi­Supervised Methods with 10% and 20% Labeled Data on the

BraTS­Africa dataset.

Technique Dice % Jaccard %

% of Dataset Labeled 10% 20% 10% 20%

MT 41.67 54.99 29.94 41.70
DAN 38.79 52.32 27.05 38.38
ADVENT 41.39 55.13 29.18 41.97
CPS 43.28 57.92 31.43 44.04
DCT 39.09 57.58 27.33 43.24

Fully Supervised 65.56 52.40

Technique HD95 ASD

% of Dataset Labeled 10% 20% 10% 20%

MT 19.41 16.91 5.92 4.98
DAN 12.85 9.91 2.95 2.50
ADVENT 18.92 9.92 4.70 2.10
CPS 14.29 10.54 2.90 2.37
DCT 12.98 9.20 4.58 1.97

Fully Supervised 7.13 1.72

tive of the most precise segmentations. Among the semi­supervised methods, DAN and DCT exhibit

relatively lower HD95 and ASD values, suggesting better boundary alignment compared to other

techniques.

Supplementary Figure 6. with metric result box­plots across testing cases from Appendix 2

shows that models, trained with 20% labeled dataset tend to have higher Dice score, Jaccard index

median values, however, interquantile ranges are overlapping a lot, showcasing that the findings from

the Table 5. need additional investigation. The median values are higher, however, interquantile

range positions are indicating that the results are very similar. Moreover, from HD95 and ASD graphs

it is clear that the results are similar, indicating several possibilities, such as dataset complexity, class

imbalance, or testing sample being too small.

Overall, the table highlights the trade­off between the amount of labeled data and segmen­

tation performance. While the Fully Supervised model achieves great results, semi­supervised tech­

niques demonstrate their capability to produce competitive segmentations, especially when only

limited labeled data is available. Notably, Cross Pseudo Supervision and Deep Co­Training show the

most potential, achieving performancemetrics closer to the Fully Supervised baseline in both training

settings.

The comparison between the performance metrics of semi­supervised learning techniques on

the Left Atrium and BraTS­Africa datasets highlights both dataset­specific challenges and general

trends. Although both tables demonstrate improved performance as the proportion of labeled data

increases from 10% to 20%, the degree of improvement and the relative ranking of methods vary

between the two datasets.

For the Dice coefficient and Jaccard index, the overall segmentation accuracy is consistently

higher for the Left Atrium dataset compared to the BraTS­Africa dataset, irrespective of the percent­

age of labeled data. This suggests that the Left Atrium dataset might pose a less complex segmen­
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tation challenge, or the evaluated methods better capture its anatomical structures. In contrast, the

BraTS­Africa dataset exhibits lower baseline performance, reflecting the increased difficulty of seg­

menting brain tumor regions, which involvemore heterogeneous and irregular structures, moreover,

BraTS­Africa dataset has more classes than Left Atrium dataset.

In regards of HD95 and ASD results, BraTS­Africa dataset has generally shorter distance values

as compared with

3.3 Left Atrium Dataset Result Comparison with Others

Left Atrium dataset has been used before in other works of semi­supervised learning tech­

niques, as shown in Appendix 1. Therefore, in this part the results obtained are compared with the

results, reported in other works. The information about the works and specifications for this com­

parison is shown in Table 7. (Appendix 3).

The comparison of the works in the tables reveals several interesting trends. In terms of it­

erations and patch size, the works by Yu et al. [28], Luo et al. [42], and the current work maintain

consistency, using 6000 iterations and a patch size of (112, 112, 80). However, Zhu et al. [88] devi­

ates slightly with only 3000 iterations, indicating a potential focus on reducing computational time

or resources. The batch size in the current work is increased to 5, compared to 4 in the other works,

suggesting an effort to improve training efficiency and model performance by processing more data

simultaneously. The number of labeled samples in the batch remains consistent at 2 for most works,

except for Zhu et al., which uses only 1 labeled sample.

When examining the performance metrics in Table 8. (Appendix 3), the current work demon­

strates competitive results across various techniques. The Dice % and Jaccard % values indicate that

the current work achieves a high level of accuracy in segmentation tasks, comparable to or slightly

better than previous works. The ASD and 95HD values show that the current work maintains a bal­

ance between accuracy and computational efficiency, with values generally within a similar range

or slightly higher than those of other works. This suggests that the current work has successfully

optimized its techniques to achieve a relatively great performance while managing computational

resources effectively.

Overall, the current work stands out for its increased batch size and competitive performance

metrics. The consistency in iterations and patch size, combined with the improvements in batch size

and performance, highlights the advancements made in this work compared to previous studies.

These trends indicate a continuous effort to enhance model efficiency and accuracy.

3.4 Future Works

Future research in semi­supervised learning (SSL) holds great potential for advancing the field,

particularly in handling multi­class, heterogeneous datasets like BraTS­Africa. BraTS­Africa, with its

unique characteristics, such as varying image quality, cultural differences, and diverse anatomical fea­

tures, presents a challenging environment for medical image segmentation. Therefore, developing
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more accurate SSL methods tailored to such datasets is essential. These methods should leverage

models capable of effectively managing variability and improving the accuracy of predictions.

Moreover, future works in SSL could extend beyond traditional imaging modalities, such as

MRI, to explore its applicability in other modalities like CT and X­ray scans. By investigating how SSL

can be adapted to these diverse imaging techniques, researchers can broaden the scope of its use

in medical imaging, potentially leading to more comprehensive and integrated diagnostic solutions.

The versatility of SSL could pave the way for seamless integration across different imaging platforms,

improving diagnostic accuracy and clinical decision­making.

Additionally, the development of 4D image segmentation through SSL methods could signifi­

cantly advance medical imaging. This approach would involve analyzing multiple sequences, such as

all MRI modalities (T1, T2, FLAIR, and others), simultaneously to capture dynamic changes. By lever­

aging the power of SSL to manage the complexity of temporal and spatial data, researchers could

unlock new possibilities for understanding disease progression, monitoring treatment efficacy. Thus,

future research in SSL should aim to address these challenges, ultimately leading to more effective

and adaptable methods for medical image analysis.
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Conclusions

The goal of the Thesis was to perform a comprehensive comparative analysis of various semi­

supervised learning techniques for medical image segmentation and evaluate their performance un­

der varying conditions. After literature, methodological and experimental analysis, the conclusions

are as follows:

1. A comprehensive reviewof semi­supervised learningmethods formedical image segmentation

was conducted, while categorizing the findings. Methods, techniques were summarized, high­

lighting their diversity. One of the main strenghts of semi­supervised learning is ability to

segment image with relatively good accuracy and precision, without losing unlabeled images,

while one of the limitations include uncertainty due to unsupervised labeling or other issues,

which should be addressed.

2. Among the reviewed techniques, six semi­supervised learning methods were selected for im­

plementation: Mean Teacher, Deep Adversarial Network, Adversarial Entropy Minimization,

Cross Pseudo Supervision, Deep Co­Training, and Contrastive Learning. These methods were

chosen based on their reported effectiveness and compatibility with the task of magnetic res­

onance image segmentation. Evaluation metrics such as Dice coefficient, Jaccard index, HD95,

and ASD were identified as reliable measures to assess segmentation accuracy and boundary

precision.

3. During systematic literature review, 6 methods were identified: consistency regularization,

pseudo­labeling, adversarial networks, deep co­training, contrastive learning and hybridmeth­

ods.

4. Comparative analysis of the selected methods demonstrated that Cross Pseudo Supervision

has the best evaluation scores overall. This technique showed strong generalization capa­

bilities and produced competitive segmentation results with limited labeled data. Semi­

Supervised Contrastive Consistency was the most accurate among techniques tested on Left

Atrium dataset, but this technique did not work with BraTS­Africa dataset. However, perfor­

mance of techniques was dataset­dependent, with higher accuracy achieved in the Left Atrium

dataset compared to the BraTS­Africa dataset, highlighting the influence of dataset complexity.

5. Experiments evaluating the impact of labeled dataset size revealed that increasing the propor­

tion of labeled data from10% to 20% led to improvements in segmentationperformance across

methods. However, fully supervised learning with 100% labeled data consistently achieved

the highest accuracy, underscoring the challenge of effectively leveraging unlabeled data in

semi­supervised learning. The improvements were more pronounced in simpler datasets (Left

Atrium), whereas more complex datasets (BraTS­Africa) showed slight improvements even

with increased labeled data.
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Appendix 1. Techniques andModalities, Datasets, Met­

rics Relevant to Research

Table 6.: Overview of Semi­Supervised Learning Techniques

Authors Technique

Title

Method 2D/3D Imaging

Modality

Datasets UsedMet­

rics

Year

Yu et al.

[28]

Uncertainty­

aware

mean

teacher

(UA­MT)

Consistency

regulariza­

tion

3D MRI Left Atrium

(LA)

Dice,

Jaccard,

HD95,

ASD

2019

Luo et

al. [44]

DTC Consistency

regulariza­

tion

3D CT, MRI Pancreas­

CT [58],

Left Atrium

(LA) [75]

Dice,

Jaccard,

HD95,

ASD

2020

Ouali et

al. [51]

CCT Consistency

regulariza­

tion

2D Regular

images

PASCAL

VOC [16],

Cityscapes

[13],

CamVid

[5], SUN

RGB­D

mIoU 2020

Shi et al.

[61]

Conservative­

radical

network

(CoraNet)

Consistency

regulariza­

tion

3D CT, MRI Pancreas­

CT, MR

Endo­

cardium

[69], ACDC

[59]

Dice, HD 2021

Zhu et

al. [88]

Hybrid

Dual Mean­

Teacher

Network

With

Double­

Uncertainty

Guidance

Consistency

regulariza­

tion

2D +

3D

MRI MUG­

gLE [89],

BraTS2019

[3], Left

Atrium

(LA)

Dice,

Jaccard,

HD95,

ASD

2023
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Authors Technique

Title

Method 2D/3D Imaging

Modality

Datasets UsedMet­

rics

Year

Chen et

al. [10]

CPS Pseudo

labeling

2D Regular

images

Cityscapes,

PASCAL

VOC 2012

mIoU 2021

Liu and

Zheng

[38]

Context­

aware

Condi­

tional Cross

Pseudo

Supervision

(C3PS)

Pseudo

labeling

3D CT BCV (Be­

yond the

Cranial

Vault) [19],

MMWHS

(Multi­

Modality

Whole

Heart Seg­

mentation

challenge)

[90]

Dice, ASD 2023

Zheng et

al. [87]

Uncertainty­

aware deep

co­training

Co­training 2D CT, MRI ACDC,

SCGM

[39],

Spleen

dataset

Dice, HD 2022

Miao et

al. [47]

SC­SSL Co­training 2D,

3D

CT, MRI ACDC,

Pancreas­

CT, Multi­

Centre,

Multi­

Vendor&

Multi­

Disease

Cardiac

Image Seg­

mentation

(M&Ms)

[6],

Task07_Pan­

creas

Dice,

Jaccard,

95HD,

ASD

2024
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Authors Technique

Title

Method 2D/3D Imaging

Modality

Datasets UsedMet­

rics

Year

Ding and

Li [14]

Curriculum

Consis­

tency

Learning

Co­training 2D Regular

images

polyp

dataset

Kvasir­SEG

[29], the

skin lesion

dataset

ISIC 2018

[11]

MAE,

Dice,

mIoU

2024

Zhang et

al. [80]

Deep Ad­

versarial

Network

(DAN)

Adversarial

learning

2D,

3D

tissue

imaging,

Electron

mi­

croscopy

2015 MIC­

CAI Gland

Challenge

dataset for

gland seg­

mentation

in H&E

stained tis­

sue images

[9], an

in­house

3D elec­

tron mi­

croscopy

(EM)

image

dataset

for fungus

segmen­

tation

F1 score,

Dice,

Hausdorff

2017

Nie et al.

[49]

Attention

based

Semi­

supervised

Deep Net­

works

(ASDNet)

Adversarial

learning

2D MRI Pelvic

dataset

(source

not pro­

vided)

Dice, ASD 2018
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Authors Technique

Title

Method 2D/3D Imaging

Modality

Datasets UsedMet­

rics

Year

Vu et al.

[1]

ADVENT Adversarial

learning

2D Regular

images

Cityscapes,

GTA5,

SYNTHIA

synthetic

data

mIoU 2018

Lei et al.

[31]

Adversar­

ial self­

ensembling

network

using dy­

namic

convo­

lution

(ASE­Net)

Adversarial

learning

2D,

3D

CT, der­

moscopy,

MRI

LiTS, 2018

ISIC, LA

Dice, Dice

per case

score,

ASD,

Jaccard,

Pixelwise

Accuracy,

Sensi­

tivity,

Speci­

ficity,

95HD

2023

Zhao et

al. [86]

Cross­Level

Contrastive

Learning

Contrastive

learning

2D regular

images

Kvasir­SEG

dataset,

ISIC 2018

dataset

MAE,

Dice,

mIoU

2022

Liu et al.

[40]

Prototype­

oriented

contrastive

learning

Contrastive

learning

3D CT, MRI BraTS

2019, LA,

LiTS

Dice,

Jaccard,

HD95,

ASD

2024

Tang et

al. [66]

Hard

positives

oriented

contrastive

(HPC)

learning

Contrastive

learning

3D CT, MRI MMWHS,

Hippocam­

pus

Dice,

HD95

2024

Zhang et

al. [81]

Progressive

Mixed

Contrastive

Learning

(ContrMix)

Contrastive

learning

3D MRI ACDC, LA Dice,

Jaccard,

HD95,

ASD

2024

53



Authors Technique

Title

Method 2D/3D Imaging

Modality

Datasets UsedMet­

rics

Year

Sohn et

al. [62]

FixMatch Pseudo­

labelling

2D Regular

images

CIFAR­

10/100

, STL­10,

ImageNet

Error rates 2020

Wu et al.

[72]

MC­Net+ Consistency

regulariza­

tion and

pseudo­

labelling

(Hybrid)

2D,

3D

CT, MRI Pancreas­

CT, ACDC

Dice,

Jaccard,

95HD,

ASD

2022

Tang et

al. [67]

Consis­

tency and

adversarial

semi­

supervised

learning

(CASSL)

Consistency

regulariza­

tion and

adversarial

learning

(Hybrid)

2D der­

moscopy

2017 ISIC

skin lesion

segmen­

tation

challenge,

MICCAI

2018 Reti­

nal Fundus

Glaucoma

Challenge

(REFUGE)

[50], low­

grade

glioma

(LGG)

dataset

mIoU,

F­score,

Recall

2023

Lu et al.

[41]

Mutually

aided un­

certainty

incorpo­

rated dual

consistency

regulariza­

tion with

pseudo

label

Consistency

regulariza­

tion and

pseudo­

labelling

(Hybrid)

3D CT, MRI Pancreas­

CT, LA,

BraTS

2019

Dice,

Jaccard,

HD95,

ASD

2023
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Appendix 2. Segmentation Result Graphs

Figure 5. Boxplot graph of LA dataset metric results
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Figure 6. Boxplot graph of BraTS­Africa dataset metric results
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Appendix 3. Comparison with other works

Table 7.: Comparison of Different Works Based on Various Parameters

Authors Year Iterations Patch size Batch size # labeled in batch

Yu et al. [28] 2019 6000 (112, 112, 80) 4 2

Luo et al. [42] 2020 6000 (112, 112, 80) 4 2

Zhu et al. [88] 2023 3000 (112, 112, 80) 2 1

This work 2025 6000 (112, 112, 80) 5 2

Table 8.: Comparison of Results from Several Works

Reported Technique Labeled Unlabeled Dice % Jaccard % ASD 95HD

Yu et al. [28] DAN 16 64 87.52 78.29 2.42 9.01

Yu et al. [28] ASDNet 16 64 87.90 78.85 2.08 9.24

Yu et al. [28] TCSE 16 64 88.15 79.20 2.44 9.57

Yu et al. [28] UA­MT­UN 16 64 88.83 80.13 3.12 10.04

Yu et al. [28] UA­MT 16 64 88.88 80.21 2.26 7.32

Luo et al. [42] MT 16 64 88.23 79.29 2.73 10.64

Luo et al. [42] Entropy Mini 16 64 88.45 79.51 3.72 14.14

Luo et al. [42] CCT 16 64 88.83 80.06 2.49 8.44

Luo et al. [42] SASSNet 16 64 89.27 80.82 3.13 8.83

Luo et al. [42] DTC 16 64 89.42 80.98 2.10 7.32

Zhu et al. [88] UA­MT 7 63 79 69 5.4 16.8

Zhu et al. [88] SASSNet 7 63 86 76 3.3 13.1

Zhu et al. [88] DTC 7 63 85 76 3.0 10.9

Zhu et al. [88] MC­Net 7 63 81 71 2.5 14.7

Zhu et al. [88] TU­MT 7 63 83 71 3.2 10.1

Zhu et al. [88] HD­MT 7 63 89 80 1.9 7.6

Zhu et al. [88] UA­MT 14 56 79 69 5.4 16.8

Zhu et al. [88] SASSNet 14 56 86 76 2.1 10.6

Zhu et al. [88] DTC 14 56 85 76 1.8 10.3

Zhu et al. [88] MC­Net 14 56 90 81 1.8 7.4

Zhu et al. [88] TU­MT 14 56 86 76 2.4 9.5

Zhu et al. [88] HD­MT 14 56 91 83 1.6 6.2

This work MT 12 48 85.46 73.23 3.80 12.72

This work AN 12 48 85.22 74.69 4.21 14.72

This work EM 12 48 85.31 74.97 3.75 12.89

This work CPS 12 48 85.98 75.99 3.53 11.99

This work DCT 12 48 85.10 74.53 4.38 15.60

This work SCC 12 48 87.23 78.02 2.08 8.86

This work MT 6 54 75.87 62.83 7.71 23.77

This work AN 6 54 76.70 63.57 7.66 24.16

This work EM 6 54 76.96 64.00 8.31 25.92

This work CPS 6 54 80.30 68.20 6.33 20.47

This work DCT 6 54 76.56 63.44 8.53 26.74

This work SCC 6 54 85.32 75.58 2.38 9.58
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Appendix 4. Code

There is a large amount of code used in the Master’s Thesis, therefore the code can be found

here: https://github.com/ievapociute/ssl_techniques.
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