
VILNIUS UNIVERSITY

FACULTY OF MATHEMATICS AND INFORMATICS

DATA SCIENCE STUDY PROGRAMME

Master’s thesis

Methods of Multiple Imputation

Daugialypiai praleistų reikšmių įrašymo metodai

Iveta Silkauskaitė

Supervisor : Assoc. Prof. Dr. Viktor Skorniakov

Vilnius

2025

Summary

Missing data is a major problem affecting decision­making processes and analysis results. The

thesis reviews existing literature on multiple imputation applications and gives insights about the us­

age of MICE and other methods for data imputation in Python. The study consists of a simulation

study and case study where real­world data was analysed and simulation results were confirmed.

Imputation methods are compared by different data scenarios: data size, missingness rate, missing­

ness type. The thesis could help practitioners while considering which data imputation method in

which case to choose. The study showed that the most effective and universal method currently is

MICE with Linear regression, Bayesian Ridge and Lasso estimators.

Keywords: Missing Values; Imputation; Multiple Imputation; MICE.

2

Santrauka

Praleistos reikšmės duomenyse yra didelė problema, kuri daro įtaką sprendimų priėmimui ir

analizės rezultatams. Darbe apžvelgiamaesama literatūra apie daugialypio praleistų reikšmių įrašymo

metodų taikymą ir pateikiamos įžvalgos apieMICE ir kitų įrašymometodų taikymą Python. Tyrimą su­

daro simuliacinis tyrimas ir atvejo analizė, kuriosmetu buvo analizuojami realūs duomenys ir patvirti­

nami simuliacinio tyrimo rezultatai. Praleistų reikšmių įrašymo metodai lyginami pagal skirtingus

duomenų scenarijus: duomenų dydį, praleistų reikšmių kiekį, tipą. Šis darbas gali padėti svarstant,

kokį praleistų reikšmių įrašymo metodą, kokiu atveju pasirinkti. Tyrimas parodė, kad šiuo metu efek­

tyviausias ir universaliausias metodas yra MICE su tiesinės regresijos, Bajeso Ridge ir Lasso įverčiais.

Raktiniai žodžiai: Praleistos reikšmės; Įrašymas; Daugialypis įrašymas; MICE.

3

Contents

Summary . 2

Santrauka . 3

1 Introduction . 5

2 Goal and Objectives . 6

3 Literature review . 7

4 Missing data mechanisms . 10

4.1 Missing Completely at Random (MCAR) . 10

4.2 Missing at Random (MAR) . 10

4.3 Missing Not at Random (MNAR) . 10

4.4 Little’s MCAR test . 11

5 Methods . 12

5.1 MICE . 12

5.2 Linear Regression Estimator . 13

5.3 Lasso Estimator . 13

5.4 Desicion Trees . 13

5.5 Random Forest . 14

5.6 XGBoost . 14

5.7 Light GBM . 14

5.8 Gradient Boosting Trees . 15

5.9 KNN . 15

6 Multiple Imputation process . 16

7 Simulation study . 17

8 Evaluation indicators . 18

9 Software . 19

10 Results . 20

11 Case study . 22

12 Conclusions . 25

13 Limitations and Future work . 26

Appendix 1. Simulation Results . 29

Appendix 2. Python code ­ Simulation study . 35

Appendix 3. Python code ­ Case Study . 42

Appendix 4. R code ­ Little’s MCAR test . 47

4

1 Introduction

Missing data is a common issue across various fields. If not properly addressed, regardless of

the dataset size and survey type, they affect the reliability of statistical analysis and can lead to bi­

ased or inconsistent results. Missingness can occur from nonresponse, data collection errors, data

unavailability, privacy issues, etc, also leading to reduced statistical power, and inaccurate conclu­

sions. Traditional methods, such as deletion or simple mean imputation, often result in distorted

outcomes, as these methods fail to account for the structure of the missing data. The choice of im­

putation method can drastically influence the final results. It is also important to evaluate whether

the missing attributes are significant enough to justify the time spent on data preprocessing and

consider the types of variables and the quantity of missing data.

This research will explore multiple imputation methods and apply them to various datasets

under different scenarios to demonstrate the impact of missing data. The study will include experi­

ments when assumptions about missing data are violated—whether the data is Missing Completely

at Random (MCAR), Missing at Random (MAR), or Missing Not at Random (MNAR).

Generative artificial intelligence (AI) models, such as ChatGPT and Grammarly, were used to

improve the English language and correct writing mistakes.

5

2 Goal and Objectives

The thesis aims to investigate and compare the performance of different multiple imputation

methods on various scenarios and datasets. To achieve this goal, I will:

• Conduct a literature review onmultiple imputationmethods and their applications with differ­

ent data scenarios.

• Compare the performance and accuracy of different multiple imputation methods under vari­

ousmissing data scenarios (Missing Completely at Random (MCAR),Missing at Random (MAR),

and Missing Not at Random (MNAR))

• Perform experiments on both simulated and real­world data to assess the practical impact and

compare processing time and accuracy with different data types.

• Provide practical guidelines for selecting and implementing suitable methods based on the

characteristics of the data.

By accomplishing these objectives, the thesis aims to offer valuable insights for researchers and

practitioners in applying multiple imputation techniques effectively.

6

3 Literature review

Multiple imputation (MI) was first introduced by Donald B. Rubin, who raised the question of

why data is missing ­ whether it occurs randomly or due to unknown factors. The author classified

missing data into three mutually exclusive categories: Missing at Random (MAR), Missing not at Ran­

dom (MNAR), and Missing Completely at Random (MCAR) [14]. Understanding differences is crucial

for addressingmissing data and for choosing the way of treatingmissing values, because in some sce­

narios incomplete dataset can introduce significant bias and compromise the integrity of statistical

analysis. Before starting analysis you always have to ask yourself ­ if there is a reason why your data

is incomplete [17].

Whether data is missing at random or not has a huge impact on how we should start our sta­

tistical analysis. The wrong way of dealing with missing data also can quickly lead to a substantial

reduction in the sample size and consequent statistical information [4]. While the deletion method

would not have a huge impact if data is missing completely at random, in othermissingness scenarios

results could change drastically.

Even though it is hard to determine the missingness type in real­world data, different studies

show, that with different mechanisms, we have to choose different imputation methods and even

classifiers. Unai Garciarena and Roberto Santana conducted an experiment [9] to test whether the

scores of classifiers for each missingness type are significantly different from each other. Complex

analyses were performed to compare classification scores, imputation methods, and missingness

mechanisms. The final conclusion emphasized the importance of identifying the missing data pat­

tern whenever possible, because it may influence the choice of imputationmethod and classification

scores.

Various statistical tests might be used for the identification of the missingness mechanism.

In the article [8] five clinical trial datasets were used for experimentations and four methods were

used to separate mechanisms: Little’s test, Listing and Schlittgen (LS) test, Ridout’s logistic regression

method and Fairclough’s logistic regression method. Additionally, since the data involved question­

naires, comparisons were made between immediate and reminder responses. Little’s test were rec­

ommended for assessing MCAR, while a logistic regression procedure could provide a more detailed

analysis. Also, reminder systems were highlighted as valuable tools, because they increase the re­

sponse rates significantly, as theywere found to be equivalent to the immediate responses. However,

the tests only determined whether the data were more likely to be MCAR or MAR.

Themissing data issue especially arises in themedical field, where data are especially expensive

and sensitive. Various imputation methods could play a huge role and make a huge impact. Liu,

Chia­Hui and Tsai, Chih­Fong and Sue, Kuen­Liang and Huang, Min­Wei demonstrated that combining

feature selection and imputation is a better choice formanymedical datasets [13]. As the researchers

suggest, performing feature selection to filter unrepresentative features would make the imputation

process more effective, and more efficient. Also, the imputation model would be trained by lower

dimensional data which could give better estimations and save time on computation. Researchers

also experiment with how missing data affects classifier accuracy and the experimental results show

7

that combining feature selection with imputation methods can make the classifier perform better

than the baseline classifier without feature selection.

Before selecting an imputation method it is suggested not only conduct feature selection but

also think about data normalization or standardization which can profoundly impact the imputation

process, which seldomdepends on the imputation technique [10]. Data preprocessing such as outlier

handling has a huge impact on imputed data. The imputed values are sometimes unreliable due to

the presence of outliers. So outlier handling should be done before imputation methods.

Another consideration after data preprocessing is missingness mechanisms and assumptions

about missing data, as these can affect which method should be used to achieve the best results. In

the article [16], where authors experiment with deep learning methods and compare them to con­

ventional methods, the results show, that Generative Adversarial Imputation Networks (GAIN) ap­

pear reasonable with data that are MCAR, but become poor in cases where data are MAR or MNAR.

Authors suggest using traditional methods such as MICE and missforest for tabular data with a lim­

ited sample size (n < 30,000). MICE and missforest outperform recently proposed deep generative

methods ­ GAIN and VAE in experiments and no obvious improvement were seen between using em­

bedding or onehot encoding for categorical variables. Authors conclude that missforest and MICE

methods are overall the best for now since their results are more stable, the accuracy is high, and

they have lower computational cost compared to deep learning methods.

Some researchers report that the easiestway is to complete all themissing data asMAR to some

degree because MAR resides in the middle of this continuum. Rubin’s MAR assumption is typically a

natural starting point if we wish to move beyond a complete records analysis [6].

In the article analysing Multiple Imputation Ensembles (MIE) [1], researchers as one of their

most important findings emphasize, that even in scenarios of increased uncertainty, it is possible to

obtain results similar or in some cases better than those obtained with the complete data, if the right

imputation technique is applied. This is a significant finding as it shows that missing data becomes

less of a problem when working with MCAR data.

Although multiple imputation may be time and memory­intensive, particularly with large

datasets, its advantages in terms of representing the uncertainty as well as the ability to introduce

diversity for the ensemble classifiers enable us to improve classification accuracy for scenarios with

large levels of missing data.

In article Multiple Imputation Through XGBoost [5] the authors claim that standard MI imple­

mentations, such as mice­default, do not automatically account for interaction effects among vari­

ables in data. Applying tree­based algorithms such as CART and Random Forests to MI has been

shown to alleviate this problem.

For evaluating the quality of imputation methods researchers use different approaches. In the

article Multiple Imputation Ensembles (MIE) for Dealing with Missing Data [1] researchers use the

normalized Euclidean distance. They also divide analysis by the feature type (i.e. numerical, categor­

ical, or mixed) as imputation may work differently for different data types. Finally, they analyse the

efficiency of the imputation method based on different data types and they relate this to the perfor­

mance of different classifiers. Other scientists conclude that, the precision and accuracy of machine

8

learning imputation algorithms depend strongly on the type of data being analysed, and that there

is no clear indication that favors one method over the other.

While multiple imputations seem to be a good way to deal with missing data because of high

accuracy, and reduced bias compared to listwise deletion or other traditional methods, some authors

emphasize some limitations as well. Scientists especially raise ethical considerations. There is a long

history ofminoritized individuals having their social identifiers assigned in ways that do not align with

their identities emphasizing that imputation might have ethical problems [17].

Another limitation is that the imputed values are treated as known with certainty and treated

on an equal footing with the values for the same variable for other subjects for whom the variable

was observed and recorded and not imputed [2].

In summary, numerous studies highlight the importance of addressing missingness types and

their impact on the selection of imputation methods, which can sometimes even affect the choice

of classifiers. Since the problem of missing data arises across various fields, it is crucial to develop

effective strategies for handling it properly.

9

4 Missing data mechanisms

Rubin [3] established the missing data theory and categorized it to three types of missingness.

To define missingness, let Y be the entire data matrix that can be decomposed into Yobs and Ymis,

which denote the observed and missing data. Let R denote a missingness matrix defined by

R :=

0, if Y is missing

1, if Y is observed

This matrix shows if the corresponding entries in Y are observed (1) or missing (0).

Let ψ contain the parameters of the missing data model, then the general expression of the

missing data model is Pr(R = 0|Yobs, Ymis, ψ).

4.1 Missing Completely at Random (MCAR)

Missing observations are completely unrelated to both the observed or unobserved measure­

ments, the absence of data occurs randomly. This type can occur when we have data corruption,

data loss or survey participant unintentionally skips a question. The probability of MCAR is defined

as

Pr(R = 0|Yobs, Ymis, ψ) = Pr(R = 0|ψ)

If the data are MCAR, the analysis and the estimated parameters remain unbiased.

With suchmissingness type, listwise or case deletion also could be a choice for handlingmissing

data.

4.2 Missing at Random (MAR)

InMAR, themissingness can be explained by certain observed features in the dataset. Although

the data is missing systematically, it is still said to be random because the missingness is unrelated to

the unobserved values.

In the MAR mechanism, the missingness of data can be predicted using other observed vari­

ables in the study, but not from themissing data itself. In other words, the probability of missingness

depends on the observed data, but not on the specific missing values.

This type can occur because of privacy and sensitivity of data. The probability ofMAR is defined

as

Pr(R = 0|Yobs, Ymis, ψ) = Pr(R = 0|Yobs, ψ)

4.3 Missing Not at Random (MNAR)

MNARoccurswhen the probability ofmissingness is directly related to themissing values them­

selves or other unobserved data. In this case, the missing data is not random and is associated with

10

specific reasons or patterns. Since the reason for missingness cannot be fully explained by the ob­

served data, it is considered the most challenging type of missing data to address.

Addressing MNAR is also termed a non­ignorable process that requires complex techniques,

often involving additional data collection, or other assumptions to ensure the integrity and accuracy

of the statistical analysis.

Data are MNAR if

Pr(R = 0|Yobs, Ymis, ψ)

does not simplify and the probability of being missing also depends on unobserved information,

including Ymis itself.

4.4 Little’s MCAR test

In Little’s test ofMCAR, the data yi, (i = 1, 2, . . . , n) aremodeled as p­dimensionalmultivariate

normal distributions with a mean vector µ and covariance matrixΣ, where some components of yi’s

are missing. When the normality assumption is not satisfied, Little’s test remains asymptotically valid

for quantitative random vectors yi’s but is not appropriate for categorical variables. Suppose there

are J missing­value patterns among all yi’s. For each pattern j, let oj andmj represent the index sets

of the observed and missing components, respectively, and pj = |oj| be the number of observed

components in pattern j. Furthermore, let µoj and Σoj be the pj × 1­dimensional mean vector and

the pj × pj covariancematrix of only the observed components for the jthmissing pattern, and let yoj
(pj × 1) represent the observed samplemean for the jthmissing pattern. Finally, let Ij ⊆ {1,2, . . . ,n}
be the index set of pattern j in the sample, with nj = |Ij|; then

∑J
j=1 nj = n. Little’s χ2 test statistic

for MCAR is defined as:

d20 =
J∑

j=1

nj(ȳoj − µT
oj
)Σ−1

oj
(ȳoj − µoj) (1)

The idea is that if the data areMCAR, then conditional on themissing indicator ri, the following

null hypothesis holds:

H0 : yo,i|ri ∼ N(µoj ,Σoj) if i ∈ Ij, 1 ≤ j ≤ J (2)

where µoj is a subvector of the mean vector µ. Instead, if the null hypothesis is not true, then

conditional on the missing indicator ri, the means of the observed y’s are expected to differ across

patterns, leading to the alternative hypothesis:

H1 : yo,i|ri ∼ N(νoj ,Σoj) if i ∈ Ij, 1 ≤ j ≤ J (3)

where νoj , j = 1, 2, · · · , J are mean vectors of each pattern j. Rejecting the null hypothesis

H0 is sufficient for rejecting the MCAR assumption, but it is not a necessary condition [12].

11

5 Methods

5.1 MICE

Multivariate Imputation by Chained Equations (MICE) is a powerful imputation technique for

handling missing data. It uses regression models based on the observed data by iteratively imputing

missing values, thereby preserving the relationships between variables and reducing bias introduced

during the imputation process.

In Python, the MICE technique can be implemented using the IterativeImputer() function from

the sklearn.impute module. This function allows to select from various estimators, such as a sim­

ple Linear Regression, Bayesian Ridge (default), K­Nearest Neighbors, to such advanced models as

XGBoost. The process involves identifying missing values, initializing the imputer, fitting and trans­

forming the data, and finally replacing the missing values with the generated imputations.

Scikit­learn’s IterativeImputer() refines the imputed values iteratively, using regression mod­

els to capture relationships between features, with each iteration refining the imputed values until

convergence or a specified maximum number of iterations is reached.

The IterativeImputer() is especially useful where missing values are strongly related to other

features in the data. By using the available information in the other features, it often achieves more

accurate and meaningful imputations compared to univariate methods like mean or median imputa­

tion.

While MICE is a flexible and robust method for handling missing data, it can also be computa­

tionally intensive, especially for large datasets and with more computationally expensive, complex

estimators.

A more detailed explanation of how MICE algorithm works:

• Themissing values are replacedwith initial estimates, such as themean,modeormedian of the

observed data, which is a temporary replacement to provide a starting point for the iterative

process.

• For the specific column in which values are being imputed, the initially imputed values are

changed back to missing.

• Regression model predicts column’s values. A variable with missing values is temporarily

treated as the target variable, the other variables are used as predictors. The missing values

are then replaced with predictions generated by the model.

• The process repeats for the k iterations.

• The process repeats for each variable with missing data.

• Multiple Imputation: To account for the uncertainty in the imputations, the above process

might be repeatedm times, resulting inm complete datasets with slightly varying imputations.

This approach is not implemented in sklearn’s IterativeImputer(), so the process should be

12

repeated with a loop. R functionmice() frommice package has a parameterm which you can

change according to the need, standard values usually vary from 5 to 20.

• Once the m complete datasets are created, statistical analyses are performed separately on

each dataset. The results are then combined.

In MICE algorithm we have both ­ the number of iterations, which ensures stability, and the

number of imputations, which capture variability and account for uncertainty. Even when starting

with the same initial imputed values, we get slightly different results due to the addition of residuals

(randomerror) to the predicted values. Furthermore, inmany implementations ofMICE, imputations

are drawn from a posterior predictive distribution, additionally, when generating multiple datasets,

MICE uses different random seeds for each imputation which gives different results due to random­

ness.

5.2 Linear Regression Estimator

Linear Regression is a simple and widely used algorithm that assumes a linear relationship. The

method is modeling the relationship between dependent and independent variables. It minimizes

the residual sumof squares to find the best­fit line. Linear Regression is efficient, suitable for datasets

with linear relationships, and is easy to interpret [11]. In the thesis, linear regression is used as an

estimator in IterativeImputer() function.

5.3 Lasso Estimator

Lasso (Least Absolute Shrinkage and Selection Operator) is a linear regression technique that

adds an L1 penalty term to the loss function. This regularization penalizes the absolute values of

coefficients, encouraging sparsity by shrinking some coefficients to exactly zero. As a result, Lasso

performs variable selection and reduces model complexity, which makes it more effective for high­

dimensional datasets and prevents overfitting [11]. When used as the estimator in the IterativeIm­

puter() function, Lasso regression predicts missing values by modeling the variable with missing data

as a linear combination of other features and L1 penalty helps to reduce multicollinearity and over­

fitting by selecting the most relevant predictors. The iterative process updates missing values and

refines the imputation until convergence.

5.4 Desicion Trees

A Decision Tree is a supervised machine learning algorithm used for classification and regres­

sion tasks. It splits the dataset into subsets based on feature values, creating a tree­like structure

of decision rules. Each internal node represents a feature split, branches represent outcomes, and

leaf nodes represent predictions. Decision Trees are intuitive, easy to interpret, and handle both

numerical and categorical data ??. The method is used as the estimator in the IterativeImputer()

function.

13

5.5 Random Forest

Random Forest is an ensemble learning algorithm used for classification and regression tasks.

It builds multiple decision trees during training and aggregates their predictions through majority

voting (for classification) or averaging (for regression). By using bootstrap sampling and random fea­

ture selection at each split, Random Forest reduces overfitting and improves model generalization. It

is well­suited for modeling non­linear relationships and handling complex interactions between vari­

ables and also provides insights into feature importance [7]. When used as the estimator in the Iter­

ativeImputer() function, Random Forest predicts missing values by treating each feature withmissing

data as a dependent variable and using the other features as predictors. The ensemble nature of Ran­

dom Forest helps capture non­linear relationships and reduces the risk of overfitting. This iterative

process continues until the imputed values stabilize, ensuring robust and accurate imputations for

datasets with complex structures. Additionally, a simple custom approach was created to implement

the Random Forest method by creating a class. Themethod identifies rows with and without missing

values, uses rows without missing values to train a model, predicts the column based on the others

and finally applies the model to rows with missing values to generate predictions and the output is

the complete dataset.

5.6 XGBoost

XGBoost (Extreme Gradient Boosting) is a powerful machine learning algorithm based on the

gradient boosting framework. It builds an ensemble of decision trees sequentially, where each tree

corrects the errors of its predecessor by minimizing a specified loss function using gradient descent.

XGBoost incorporates advanced features like regularization, tree pruning, and parallel processing,

making it highly efficient and capable of handling large datasets with speed and high accuracy. XG­

Boost is known for its efficiency and ability to model complex, non­linear relationships making it

widely used in machine learning tasks and practical applications [5]. In the thesis, XGBoost is used as

the estimator in the IterativeImputer() function, additionally, a simple custom approach was created

to implement the XGBoost method by creating a class. Similar to the implementation of Random

Forest, this method also firstly identifies rows with and without missing values, on non­missing rows

XGBoost models are trained and, finally, rows with missing values are predicted using this model.

5.7 Light GBM

LightGBM (Light Gradient BoostingMachine) is a gradient boosting framework designed for ef­

ficiency and speed. The method is known for its exceptional performance in managing large­scale

datasets and high­dimensional features. LightGBM incorporates learning techniques and feature dis­

cretization to improvemodel robustness, reducememory usage, speed up training, and performwell

in classification, regression, and ranking tasks ??. The method is used as the estimator in the Itera­

tiveImputer() function.

14

5.8 Gradient Boosting Trees

Gradient Boosting is an ensemble learning technique that builds a series of decision trees,

where each tree is trained to correct the errors of the previous ones. Itminimizes a specified loss func­

tion in a gradient descent framework. Each tree is trained on the residual errors of the prior model,

improving overall accuracy [11]. Gradient Boosting is highly effective and can capture complex, non­

linear relationships between features. The method is used as the estimator in the IterativeImputer()

function.

5.9 KNN

K­Nearest Neighbors (KNN) is a non­parametric method that imputes missing values by identi­

fying the k most similar observations (neighbors) in the dataset based on a distance metric, such as

Euclidean distance [16]. It assumes that similar observations have similar values for the feature with

missing data. The KNN imputation method has been extensively studied for data imputation, with

literature demonstrating its high performance compared to other imputation techniques [6]. KNN

is simple to implement, effective for smaller datasets but can be computationally intensive for large

datasets. The method is used with KNN() function.

15

6 Multiple Imputation process

Multiple imputation is a flexible and robust approach for addressing missing data. It creates

several different plausible imputed datasets to account for the uncertainty introduced by missing

values, thereby minimizing biases that simpler methods introduce. The imputed values are drawn

from a distribution that is specifically modeled for each missing entry and this ensures that the im­

putations reflect the variability in the data. Each dataset is analysed individually, and the results are

pooled to produce estimates [15].

The process consists of three main steps:

• Create imputed datasets: In the first step,multiple datasets are generated by replacingmissing

values with imputed values. These imputations rely on statistical models to provide plausible

replacements for the missing data.

• Analyse imputed datasets: The second step includes estimating the parameters of interest for

each of the imputed datasets. The results differ in each of the imputed datasets because of

the variation caused because of the uncertainty about what value to impute.

• Pool the results: The last step combines or pools the results from all imputed datasets to

produce a single set of parameter estimates. The pooling step typically involves calculating the

overall variance, which accounts for bothwithin­dataset variability (arising from the data itself)

and between­dataset variability (arising from the imputation process). It is done to ensure that

the final results reflect the uncertainty caused by missing values. Greater variability across the

imputed datasets indicates greater uncertainty due to missing data.

In 1 figure. multiple imputation process is presented.

1 figure. Multiple Imputation process

16

7 Simulation study

Data simulations and statistical analyses were conducted using Python. The simulation consists

of four sequential stages:

1. Data generation: simulate complete datasets with different scenarios and sizes.

2. Amputation: introduce missing values to complete datasets according to specific rules to gen­

erate missing values.

3. Imputation: fill in the missing values of the simulated incomplete datasets by different impu­

tation methods.

4. Analysis and evaluation: perform statistical analysis, calculate evaluation metrics to estimate

accuracy of imputation and regression accuracy.

Experiments were executed/repeated 10 times, to get more robust results, however, the per­

formance of each experiment was not significantly different, and the average performance is re­

ported.

Data was generated using function make_regression from sklearn.datasets. Data were gener­

ated with all three missingness types ­ MCAR, MAR and MNAR changing missingness rate.

Six different sizes datasets (100, 300, 500, 700, 1000, 5000) with five different missingness

ratios (10 %, 15 %, 20 %, 25 %, 30 %) in each dataset with different missingness types were analysed.

A total of 9900 experiments were conducted: three missingness types × five missingness rates × six

dataset sizes × eleven imputation methods x repeated 10 times.

In 2 figure. experimentations framework is presented.

2 figure. Experimentations framework

17

8 Evaluation indicators

The main approach to test the accuracy between methods was calculating the error between

the imputed and actual data. Mean Square Error (MSE): MSE is the average squared difference be­

tween the estimated and true values, defined as:

MSE =
1

m

m∑
i=1

(yi − ŷi)
2

where m is the number of missing values in the dataset, yi is the true value, and ŷi is the

estimated value. The lower the value, the more accurate the imputation to the true value.

Additionally, simple linear regression models were built and the coefficient of determination,

denoted R2 was calculated to test the model’s accuracy. R2 is a number that tells how well the

independent variable(s) in a statistical model explains the variation in the dependent variable. A

higherR2 score shows smaller differences between the observed data and the fitted values, it ranges

from 0 to 1. The formula for calculating R2 is:

R2 = 1− SSresidual

SStotal

, (4)

where

• SSresidual is the sum of squared differences between the observed and predicted values:

SSresidual =
n∑

i=1

(yi − ŷi)
2 (5)

here yi is observed value and ŷi is predicted value.

• SStotal is the total sum of squares:

SStotal =
n∑

i=1

(yi − yi)
2 (6)

here yi is a mean of the observed values.

18

9 Software

To conduct experiments I decided to use Python due to its ease of integration and the ability to

create custommethods, while R focusesmore on statistical analysis. However, during the experimen­

tation process, I found out that Rmight be a better choice since it offers awider range of implemented

methods, also more information about how to apply multiple imputations techniques. Python, on

the other hand, is more focused on using machine learning algorithms for missing value imputations.

To apply imputation methods I mostly used IterativeImputer() function, which is an analog to R’s

mice() function from themice library. The main difference, and a key limitation of IterativeImputer()

function in Python, is that it lacks a parameter to directly specify the number ofmultiple imputations.

So to apply multiple imputations in Python, you need to manually loop through the processm times

to generatem complete dataset which can then be used for further analysis or modeling.

19

10 Results

An experimental study was conducted to evaluate the performance of different imputation

methods, with a focus on their suitability for different data scenarios. The goal was to determine

which methods work the best under specific conditions with various missingness rates and dataset

sizes. In the 3 table. all results are presented across these dataset specifications. The study re­

vealed that while the most effective and optimal imputation method varies slightly depending on

the specific parameters and scenario, certain methods consistently outperformed others across all

the conditions. Specifically, MICE with linear regression, Lasso, and the default ­ Bayesian Ridge es­

timator were found as the most effective and accurate approaches. These methods demonstrated

the ability to handle a wide range of cases effectively because they were achieving the best results

not only with the lowest MSE, and the highestR2 scores but also by their efficient imputation times,

which makes them a good practical choices for diverse datasets.

Despite its limited application in existing literature, Lasso estimator within the MICE method

proved to be the most effective for the largest datasets, consistently delivering good results, regard­

less of what missingness rates they had.

0.100 0.125 0.150 0.175 0.200 0.225 0.250 0.275 0.300
Missingness Rate

0.5

0.6

0.7

0.8

0.9

R
2-

sc
or

e

R2-score vs Missingness Rate

Imputer
Decision Tree Estimator (MICE)
Gradient Boosting Estimator (MICE)
Iterative Imputer Default (MICE)
KNN Imputation
LGBM Estimator (MICE)
Lasso Estimator (MICE)
Linear Regression Estimator (MICE)
Random Forest Estimator (MICE)
Random Forest Imputer
XGBoost Estimator (MICE)
XGBoost Imputer

3 figure. Missingness rate and R2 ­ score

For smaller datasets, Random Forest imputation method could also be the one to think about

while choosing an imputation method. Since all tree­based algorithms can capture complex, nonlin­

ear relationships between variables, this characteristic is a significant advantage in scenarios where

traditional linear assumptions may not hold. However, Random Forest had a slower computation

time compared to other methods, which might limit its usage in time­sensitive applications or with

larger datasets.

For cases with a high missingness rate, the MICE method with Lasso or the default ­ Bayesian

20

Ridge estimator proved to be the most robust, maintaining higher accuracy and reliability compared

to other methods.

After conducting multiple experiments to test how different methods and estimators work on

different data scenarios, I found that imputation accuracy, particularly measured by MSE is mostly

impacted by the missingness rate. In contrast, the size of the dataset was found less significant on

both MSE and R2 scores.

After conducting a more detailed analysis using a simple linear regression model on simulated

data I found a clear pattern: with increasing missingness rate, we see a rapid decrease in the R2

score. For example, models that achieved R2 ≥ 0.9 with a missingness rate of 0.1 decreased to less

than 0.7 when the missingness rate was 0.3. This trend illustrates the profound challenges posed by

missing data, even when advanced imputation techniques are applied.

0 1000 2000 3000 4000 5000
Dataset Size

0

50

100

150

200

250

Im
pu

ta
tio

n
Ti

m
e

(s
ec

on
ds

)

Imputation Time vs Dataset Size
Imputer

Iterative Imputer Default (MICE)
Decision Tree Estimator (MICE)
Gradient Boosting Estimator (MICE)
Random Forest Estimator (MICE)
XGBoost Estimator (MICE)
Linear Regression Estimator (MICE)
Lasso Estimator (MICE)
LGBM Estimator (MICE)
KNN Imputation
Random Forest Imputer
XGBoost Imputer

4 figure. Dataset Size and Imputation Time

As we can see in 4 figure., imputation time increases significantly with dataset size. The biggest

increase can be seen for the Random Forest Estimator. However, all tree­based estimators for MICE

method seems to be computationally expensive. CustomRandomForest and XGBoost imputers show

much better results regarding imputation time, also similar accuracy as in IterativeImputer() function

with those estimators. So in those caseswhere youwant to apply the tree­based imputationmethod,

you need to think about implementing it by yourself rather than using IterativeImputer().

In summary, the experimentation study demonstrated that currently choosing MICE with such

estimator as Linear Regression, Bayesian Ridge (default) or Lasso would be the most effective ap­

proach regardless of the missingness rate, type, or dataset size.

21

11 Case study

The data was collected using a web­scraping method from one of Lithuania’s most popular car

listing websites, https://autogidas.lt.
Due to the large number of different groups of categorical variables, some groups have been

combined according to their similarity to avoid those groups with a very small number of obser­

vations. Categorical variables were encoded because most imputation methods can handle only nu­

merical variables.

Also, only records where the steering position is on the left were included in the dataset. The

final dataset contains 7246 observations and has 14 features.

Descriptive statistics andmissingness rates are summarized in 1 table. Four variables ­ mileage,

power, weight and the number of doors ­ contain missing values, each with a different missingness

rate. VariableWeight has the highest proportion of missing values, reaching 80 %.

1 table. Descriptive statistics of case study data

Variable
Mean (SD) /

No. of categories

No. of observations

with missing data

Percentage of

missing data

Make ­ categorical 72 categories 0 0 %

Model ­ categorical 756 categories 0 0 %

Year ­ numerical 15.96 (6.64) 0 0 %

Fuel Type ­ categorical 4 0 0 %

Mileage ­ numerical 257775.95 (286207.74) 1994 27.52 %

Defects ­ categorical 2 categories 0 0 %

Gearbox ­ categorical 3 categories 0 0 %

Engine (l) ­ numerical 2.14 (0.65) 0 0 %

Power (kW) ­ numerical 110.53 (45.06) 1253 17.29 %

Body Type ­ categorical 10 categories 0 0 %

Weight ­ numerical 2028.95 (396.22) 5982 82.56 %

Driven Wheels ­ categorical 3 categories 0 0 %

Doors ­ numerical 3.84 (0.56) 518 7.15 %

Price ­ numerical 5408.15 (7598.97) 0 0 %

The variablesMake andModel of the car did not have missing values and were excluded, due

to their large number of classes, which makes it difficult to estimate and analyse them properly,

especially for rare types.

To determine the type of missingness in the dataset ­ MCAR, MAR or MNAR ­ I applied Little’s

MCAR test. This testwas recommended in the literature [8], and it assesseswhether the data isMCAR

or not. Since Python is not so advanced for statistical analysis, R package naniar and its function

mcar_test() were used to conduct Little’s test to test if data is MCAR or not. The results of Little’s

MCAR test showed that data is not MCAR with significance level α = 0.05 as the p­value was less

than α.

For imputation evaluation, I developed a simple linear regression model to predict the price

of a car and evaluate the accuracy of the prediction using various imputation approaches. Given the

22

https://autogidas.lt

0 200 400 600 800 1000 1200
Imputation time (s)

Linear Regression Estimator (MICE)

Lasso (MICE)

Iterative Imputer (MICE)

XGBoost Imputer

Decision Tree Estimator (MICE)

Random Forest Imputer

KNN Imputation

XGBoost Estimator (MICE)

LGBM Estimator (MICE)

Gradient Boosting Estimator (MICE)

Random Forest Estimator (MICE)
Im

pu
te

r

0.79

1.28

1.46

2.88

13.62

22.54

35.98

131.72

193.90

384.76

1050.72

Imputation Time by Imputer

5 figure. Imputation time by imputation method

incomplete dataset, it is not possible tomeasure the error between imputed and actual observations,

so the imputation evaluation process consisted only of model creation and accuracy comparison.

The linear regression model predicts the price of a car, and to improve the performance, the target

variable ­ price ­ is log­transformed to address its right­skewed distribution.

Even though testing imputation by creating a simple model to identify the most effective impu­

tation method is not an ideal approach for imputation evaluation, the absence of actual values limits

us and we can’t compare actual and imputed values and calculate error between them.

As shown in 5 figure., MICEmethod with a Random Forest estimator required the longest time.

MICE method with a simple Linear Regression estimator was the fastest.

2 table. Model evaluation using different imputation methods

Method MSE R2 score Imputation time

Iterative Imputer (MICE) 0.12 0.90 1.46

Linear Regression Estimator (MICE) 0.11 0.90 0.79

Lasso Estimator (MICE) 0.12 0.89 1.28

Decision Tree Estimator (MICE) 0.26 0.77 13.62

KNN Imputation 0.25 0.78 35.98

Random Forest Imputer 0.26 0.77 22.54

Random Forest Estimator (MICE) 0.26 0.77 1050.72

XGBoost Estimator (MICE) 0.26 0.76 131.72

XGBoost Imputer 0.27 0.76 2.88

Gradient Boosting Estimator (MICE) 0.26 0.76 384.76

LGBM Estimator (MICE) 0.27 0.75 193.90

The 2 table. shows the results, including MSE, R2 score and imputation time for each imputa­

tion method used. Once again, the default MICE method with a Bayesian Ridge regression estimator

showed one of the best results. However, MICE method with a Linear Regression estimator achieved

even better results and was also the fastest approach.

23

In MICE, tree­based regressor estimators required significantly more time to impute values,

with Random Forest estimator (MICE) imputation taking 1050.72 seconds. The custom Random For­

est method showed the same level of accuracy, but completed the imputation much faster, in only

22.54 seconds, which is more than 46 times less.

The worst accuracy was observed for the LGBM regressor estimator in MICE, which achieved

an R2 score of only 0.75.

To highlight the importance of imputation, additionally, model evaluations were conducted

using complete dataset and dataset without columns containing missing values. Since the Weight

column has more than 82 % missing values, only the remaining 18 % of the dataset could be used.

Also, a dataset with columns that do not have missing values was tested. A linear regression model

was applied, and the results showed, that accuracy decreased significantly. The dataset without

columns containing missing values had an R2 score = 0.625002, while the dataset with complete

data hadR2 score= 0.721228. Both values are considerably lower than those obtainedwith imputed

data, underscoring that imputation is highly beneficial and can improve prediction significantly.

As recommended in various research, data was scaled with Python’s function StandardScaler()

from sklearn, and also min­max normalization was applied x−xmin

xmax−xmin
, where xmin is minimum value

of variable and xmax is maximum value. However, an increase in accuracy was not seen. On the other

hand, results might vary because of the specifics of the dataset.

In summary, since the type of missingness was determined to be not MCAR, it is usually more

challenging to impute values since there might be unobserved factors that may influence the miss­

ingness. Nevertheless, imputation proved to be highly effective in reaching better accuracy for pre­

dicting a car’s price on real­world data, with the best methods achieving a R2 score of 0.9. and an

imputation time of around one second.

24

12 Conclusions

The results of the simulation experiments and case study demonstrate that while tree­based

algorithms are beneficial in finding complex and nonlinear relationships between variables, but well­

knownMICE algorithm currently stands out as the best approach for imputing values, including accu­

racy, implementationprocess, and computational time. MICEmethod is a powerful approach for han­

dling missing data, with flexibility for using various estimators makes it suitable for diverse datasets

and could help to achieve better model accuracy in those cases where missing data is observed. This

is especially critical in contexts such as medical experiments or other cases where data collection

is expensive, and every data point is crucial. MICE method implemented with IterativeImputation()

function from sklearn shows a good performance, especially with such estimators as Linear Regres­

sion, Bayesian Ridge (default) and Lasso. These estimators demonstrated good performance in both

small and large datasets, regardless of the missingness rate. Currently, Random Forest may be used

for smaller datasets because of the computation time and because only for smaller datasets accuracy

seemed to be better compared to othermethods. As recommended in the literature, standardization

did not show a significant advantage in this study and it did not improve the accuracy. However, this

outcome may vary across different data scenarios.

As highlighted in the simulation study, the missingness rate has a huge impact on the model’s

accuracy, so selecting the most suitable approach for addressing missing values are very important

step in preparing data for analysis.

25

13 Limitations and Future work

While this study provided valuable insights about multiple imputation process and different

estimators that could be implemented and used in Python’s IterativeImputer() function or made by

custom classes and functions, several limitations remain, that could be analysed in future research.

One area that requires further exploration is the impact of the number of imputations on ac­

curacy, as this study did not evaluate how this parameter might influence the results across different

datasets and scenarios.

Another limitation is that this study focuses on numerical data, leaving handling categorical

values unexplored. Expanding the analysis to include categorical data would give a wider range of

insights and provide practitioners with better guidance while choosing between imputation tech­

niques, particularly since real­world datasets usually contain mixed data types.

26

References and sources

[1] A. Aleryani, W. Wang, B. de la Iglesia. “Multiple imputation ensembles (MIE) for dealing with

missing data.” In: SN Computer Science 1.3 (2020). url: https://link.springer.com/
article/10.1007/s42979-020-00131-0.

[2] P. C. Austin, I. R. White, D. S. Lee, S. van Buuren. “Missing Data in Clinical Research: A Tu­

torial on Multiple Imputation.” In: Canadian Journal of Cardiology 37.9 (2021), pages 1322–

1331. issn: 0828­282X. url: https://www.sciencedirect.com/science/article/pii/
S0828282X20311119.

[3] S. van Buuren. Flexible Imputation of Missing Data. A Chapman & Hall book. CRC Press, Taylor

& Francis Group, 2018. isbn: 9781138588318. url: https://books.google.lt/books?id=
bLmItgEACAAJ.

[4] J. R. Carpenter, M. Smuk. “Missing data: A statistical framework for practice.” In: Biometrical

Journal 63.5 (2021), pages 915–947. url: https://onlinelibrary.wiley.com/doi/abs/
10.1002/bimj.202000196.

[5] Y. Deng, T. Lumley. “Multiple Imputation Through XGBoost.” In: Journal of Computational and

Graphical Statistics 33.2 (2024), pages 352–363. url: https : / / doi . org / 10 . 1080 /
10618600.2023.2252501.

[6] T. Emmanuel, T. Maupong, D. Mpoeleng, T. Semong, B. Mphago, O. Tabona. “A survey onmiss­

ing data in machine learning.” In: Journal of Big Data 8 (2021). https://doi.org/https:
//doi.org/10.1186/s40537-021-00516-9.

[7] R. Feng, D. Grana, N. Balling. “Imputation of missing well log data by random forest and its

uncertainty analysis.” In: Computers Geosciences 152 (2021), page 104763. issn: 0098­3004.

https://doi.org/https://doi.org/10.1016/j.cageo.2021.104763. url: https:
//www.sciencedirect.com/science/article/pii/S0098300421000704.

[8] S. Fielding, P. M. Fayers, C. R. Ramsay. “Investigating the missing data mechanism in quality of

life outcomes: a comparison of approaches.” In:Health andQuality of Life Outcomes 17 (2009).

url: https://hqlo.biomedcentral.com/articles/10.1186/1477-7525-7-57.

[9] U. Garciarena, R. Santana. “An extensive analysis of the interaction between missing data

types, imputation methods, and supervised classifiers.” In: Expert Systems with Applications

89 (2017), pages 52–65. issn: 0957­4174. https://doi.org/https://doi.org/10.1016/
j.eswa.2017.07.026. url: https://www.sciencedirect.com/science/article/pii/
S095741741730502X.

[10] M. K. Hasan,M. A. Alam, S. Roy, A. Dutta,M. T. Jawad, S. Das. “Missing value imputation affects

the performance of machine learning: A review and analysis of the literature (2010–2021).” In:

Informatics in Medicine Unlocked 27 (2021), page 100799.

27

https://link.springer.com/article/10.1007/s42979-020-00131-0
https://link.springer.com/article/10.1007/s42979-020-00131-0
https://www.sciencedirect.com/science/article/pii/S0828282X20311119
https://www.sciencedirect.com/science/article/pii/S0828282X20311119
https://books.google.lt/books?id=bLmItgEACAAJ
https://books.google.lt/books?id=bLmItgEACAAJ
https://onlinelibrary.wiley.com/doi/abs/10.1002/bimj.202000196
https://onlinelibrary.wiley.com/doi/abs/10.1002/bimj.202000196
https://doi.org/10.1080/10618600.2023.2252501
https://doi.org/10.1080/10618600.2023.2252501
https://doi.org/https://doi.org/10.1186/s40537-021-00516-9
https://doi.org/https://doi.org/10.1186/s40537-021-00516-9
https://doi.org/https://doi.org/10.1016/j.cageo.2021.104763
https://www.sciencedirect.com/science/article/pii/S0098300421000704
https://www.sciencedirect.com/science/article/pii/S0098300421000704
https://hqlo.biomedcentral.com/articles/10.1186/1477-7525-7-57
https://doi.org/https://doi.org/10.1016/j.eswa.2017.07.026
https://doi.org/https://doi.org/10.1016/j.eswa.2017.07.026
https://www.sciencedirect.com/science/article/pii/S095741741730502X
https://www.sciencedirect.com/science/article/pii/S095741741730502X

[11] T. Hastie, R. Tibshirani, J. Friedman. The Elements of Statistical Learning: Data Mining, Infer­

ence, and Prediction (2nd ed.) 2009. url: https://link.springer.com/book/10.1007/
978-0-387-84858-7.

[12] C. Li. “Little’s Test of Missing Completely at Random.” In: The Stata Journal 13.4 (2013),

pages 795–809. https://doi.org/10.1177/1536867X1301300407. url: https://doi.
org/10.1177/1536867X1301300407.

[13] C.­H. Liu, C.­F. Tsai, K.­L. Sue, M.­W. Huang. “The Feature Selection Effect on Missing Value

Imputation of Medical Datasets.” In: Applied Sciences 10.7 (2020). issn: 2076­3417. https://
doi.org/10.3390/app10072344. url: https://www.mdpi.com/2076-3417/10/7/2344.

[14] D. B. Rubin. “Inference and missing data.” In: Biometrika 63 (3 1976), pages 581–592. https:
//doi.org/https://doi.org/10.1093/biomet/63.3.581.

[15] J. A. C. Sterne, I. R. White, J. B. Carlin, M. Spratt, P. Royston, M. G. Kenward, A. M. Wood,

J. R. Carpenter. “Multiple imputation for missing data in epidemiological and clinical research:

potential and pitfalls.” In: BMJ 338 (2009). issn: 0959­8138. https://doi.org/10.1136/
bmj.b2393. url: https://www.bmj.com/content/338/bmj.b2393.

[16] Y. Sun, J. Li, Y. Xu, T. Zhang, X. Wang. “Deep learning versus conventional methods for missing

data imputation: A review and comparative study.” In: Expert Systems with Applications 227

(2023), page 120201. issn: 0957­4174. url: https://www.sciencedirect.com/science/
article/pii/S0957417423007030.

[17] A. D. Woods, D. Gerasimova, B. Van Dusen, J. Nissen, et al. “Best practices for addressing miss­

ing data through multiple imputation.” In: Infant and Child Development 33.1 (2024), e2407.

url: https://onlinelibrary.wiley.com/doi/abs/10.1002/icd.2407.

28

https://link.springer.com/book/10.1007/978-0-387-84858-7
https://link.springer.com/book/10.1007/978-0-387-84858-7
https://doi.org/10.1177/1536867X1301300407
https://doi.org/10.1177/1536867X1301300407
https://doi.org/10.1177/1536867X1301300407
https://doi.org/10.3390/app10072344
https://doi.org/10.3390/app10072344
https://www.mdpi.com/2076-3417/10/7/2344
https://doi.org/https://doi.org/10.1093/biomet/63.3.581
https://doi.org/https://doi.org/10.1093/biomet/63.3.581
https://doi.org/10.1136/bmj.b2393
https://doi.org/10.1136/bmj.b2393
https://www.bmj.com/content/338/bmj.b2393
https://www.sciencedirect.com/science/article/pii/S0957417423007030
https://www.sciencedirect.com/science/article/pii/S0957417423007030
https://onlinelibrary.wiley.com/doi/abs/10.1002/icd.2407

Appendix 1. Simulation Results

3 table. Simulation Results (sorted descending by R2 score)

Missingness

Rate
Size Method MSE R2 score

Imputation

Time

0.1 100 Linear Regression Estimator (MICE) 1.05328 0.89940 0.07362

0.1 100 Iterative Imputer Default (MICE) 1.02204 0.89800 0.11423

0.1 100 Random Forest Imputer 1.17197 0.89619 1.78684

0.1 100 Lasso Estimator (MICE) 1.00429 0.89608 0.01748

0.1 100 KNN Imputation 1.31250 0.89058 0.02854

0.1 100 Random Forest Estimator (MICE) 1.18961 0.88939 16.86466

0.1 100 XGBoost Imputer 1.41189 0.88323 1.04204

0.1 100 LGBM Estimator (MICE) 1.19360 0.87542 2.47558

0.1 100 Gradient Boosting Estimator (MICE) 1.35827 0.86288 3.86389

0.1 100 XGBoost Estimator (MICE) 1.44570 0.86268 8.55955

0.1 100 Decision Tree Estimator (MICE) 2.10776 0.80705 0.17651

0.1 300 Lasso Estimator (MICE) 1.05952 0.87974 0.02186

0.1 300 Iterative Imputer Default (MICE) 1.05941 0.87834 0.09883

0.1 300 Linear Regression Estimator (MICE) 1.06699 0.87373 0.07179

0.1 300 Random Forest Imputer 1.16223 0.85900 2.62961

0.1 300 KNN Imputation 1.37895 0.85587 0.10187

0.1 300 LGBM Estimator (MICE) 1.33397 0.85144 4.33043

0.1 300 Random Forest Estimator (MICE) 1.16893 0.85080 24.92505

0.1 300 Gradient Boosting Estimator (MICE) 1.20380 0.84879 6.91103

0.1 300 XGBoost Imputer 1.34919 0.84292 2.39344

0.1 300 XGBoost Estimator (MICE) 1.37550 0.82290 24.91805

0.1 300 Decision Tree Estimator (MICE) 2.02367 0.77041 0.36426

0.1 500 Iterative Imputer Default (MICE) 1.03783 0.88196 0.10166

0.1 500 Lasso Estimator (MICE) 1.03712 0.88195 0.02296

0.1 500 Linear Regression Estimator (MICE) 1.04860 0.88010 0.07023

0.1 500 Random Forest Estimator (MICE) 1.16709 0.86365 34.70784

0.1 500 Random Forest Imputer 1.16379 0.86064 3.50760

0.1 500 Gradient Boosting Estimator (MICE) 1.18949 0.85770 10.06729

0.1 500 LGBM Estimator (MICE) 1.32340 0.84446 6.37174

0.1 500 KNN Imputation 1.47384 0.83560 0.22703

0.1 500 XGBoost Estimator (MICE) 1.40667 0.83297 25.74441

0.1 500 XGBoost Imputer 1.39985 0.82970 2.25004

0.1 500 Decision Tree Estimator (MICE) 2.15060 0.75923 0.52397

Continued on next page

29

Table 3 table. – continued from previous page

Missingness

Rate
Size Method MSE R2 score

Imputation

Time

0.1 700 Lasso Estimator (MICE) 1.03383 0.88615 0.02321

0.1 700 Iterative Imputer Default (MICE) 1.03481 0.88602 0.10611

0.1 700 Linear Regression Estimator (MICE) 1.04198 0.88531 0.07226

0.1 700 Gradient Boosting Estimator (MICE) 1.15302 0.87690 13.11093

0.1 700 Random Forest Imputer 1.16057 0.87472 4.23685

0.1 700 Random Forest Estimator (MICE) 1.17108 0.87451 42.78030

0.1 700 LGBM Estimator (MICE) 1.31198 0.85897 8.27952

0.1 700 KNN Imputation 1.45066 0.85327 0.36751

0.1 700 XGBoost Estimator (MICE) 1.41098 0.84897 26.84449

0.1 700 XGBoost Imputer 1.41439 0.84465 2.20397

0.1 700 Decision Tree Estimator (MICE) 2.10951 0.79234 0.70549

0.1 1000 Lasso Estimator (MICE) 1.05936 0.89786 0.02045

0.1 1000 Iterative Imputer Default (MICE) 1.06006 0.89751 0.10595

0.1 1000 Linear Regression Estimator (MICE) 1.06259 0.89671 0.07156

0.1 1000 Gradient Boosting Estimator (MICE) 1.13855 0.88796 18.01281

0.1 1000 Random Forest Estimator (MICE) 1.17140 0.88708 58.98410

0.1 1000 Random Forest Imputer 1.16642 0.88624 5.75414

0.1 1000 LGBM Estimator (MICE) 1.31534 0.86955 10.10703

0.1 1000 XGBoost Imputer 1.37412 0.86264 1.69774

0.1 1000 XGBoost Estimator (MICE) 1.39167 0.85468 20.62727

0.1 1000 KNN Imputation 1.51832 0.84474 0.65974

0.1 1000 Decision Tree Estimator (MICE) 2.14501 0.78715 1.00582

0.1 5000 Lasso Estimator (MICE) 1.05599 0.89005 0.08657

0.1 5000 Iterative Imputer Default (MICE) 1.05616 0.89004 0.26926

0.1 5000 Linear Regression Estimator (MICE) 1.05729 0.88999 0.22430

0.1 5000 Gradient Boosting Estimator (MICE) 1.07858 0.88749 92.20181

0.1 5000 LGBM Estimator (MICE) 1.13552 0.88226 12.00807

0.1 5000 Random Forest Imputer 1.13210 0.88208 31.54711

0.1 5000 Random Forest Estimator (MICE) 1.13883 0.88101 329.01047

0.1 5000 XGBoost Imputer 1.24979 0.86874 2.95727

0.1 5000 XGBoost Estimator (MICE) 1.26910 0.86694 40.97241

0.1 5000 KNN Imputation 1.55633 0.83966 17.46148

0.1 5000 Decision Tree Estimator (MICE) 2.12810 0.79033 6.30269

0.2 100 Iterative Imputer Default (MICE) 1.11190 0.79846 0.10305

0.2 100 Linear Regression Estimator (MICE) 1.17112 0.79810 0.08935

0.2 100 Lasso Estimator (MICE) 1.10093 0.79042 0.01833

Continued on next page

30

Table 3 table. – continued from previous page

Missingness

Rate
Size Method MSE R2 score

Imputation

Time

0.2 100 Random Forest Imputer 1.32088 0.78567 1.74351

0.2 100 LGBM Estimator (MICE) 1.34872 0.77562 2.35197

0.2 100 Random Forest Estimator (MICE) 1.38041 0.77015 16.29360

0.2 100 XGBoost Imputer 1.60580 0.74601 0.99532

0.2 100 Gradient Boosting Estimator (MICE) 1.57073 0.73897 3.78220

0.2 100 XGBoost Estimator (MICE) 1.60525 0.72918 7.84696

0.2 100 KNN Imputation 1.60026 0.69700 0.03246

0.2 100 Decision Tree Estimator (MICE) 2.14697 0.61718 0.16297

0.2 300 Iterative Imputer Default (MICE) 1.13785 0.79375 0.10590

0.2 300 Lasso Estimator (MICE) 1.12939 0.79340 0.02134

0.2 300 Linear Regression Estimator (MICE) 1.16416 0.78828 0.08357

0.2 300 Random Forest Imputer 1.28256 0.76913 2.52382

0.2 300 Random Forest Estimator (MICE) 1.32365 0.75544 24.21167

0.2 300 Gradient Boosting Estimator (MICE) 1.36083 0.74244 6.21212

0.2 300 LGBM Estimator (MICE) 1.48562 0.72009 4.09439

0.2 300 XGBoost Imputer 1.48053 0.71612 2.68732

0.2 300 KNN Imputation 1.61655 0.69538 0.12331

0.2 300 XGBoost Estimator (MICE) 1.54211 0.69454 27.25270

0.2 300 Decision Tree Estimator (MICE) 2.18305 0.59279 0.29227

0.2 500 Iterative Imputer Default (MICE) 1.14572 0.75699 0.10733

0.2 500 Lasso Estimator (MICE) 1.14289 0.75665 0.02302

0.2 500 Linear Regression Estimator (MICE) 1.15842 0.75619 0.08317

0.2 500 Random Forest Imputer 1.27598 0.71960 3.06139

0.2 500 Gradient Boosting Estimator (MICE) 1.32620 0.71925 8.94570

0.2 500 Random Forest Estimator (MICE) 1.33145 0.71818 29.19397

0.2 500 XGBoost Estimator (MICE) 1.55241 0.67891 24.53625

0.2 500 LGBM Estimator (MICE) 1.48502 0.66760 5.62833

0.2 500 XGBoost Imputer 1.55559 0.66245 2.15609

0.2 500 KNN Imputation 1.66720 0.63719 0.25548

0.2 500 Decision Tree Estimator (MICE) 2.21025 0.56373 0.41672

0.2 700 Linear Regression Estimator (MICE) 1.12888 0.77588 0.08169

0.2 700 Iterative Imputer Default (MICE) 1.12024 0.77551 0.10770

0.2 700 Lasso Estimator (MICE) 1.11825 0.77529 0.02262

0.2 700 Random Forest Imputer 1.25252 0.75042 3.93619

0.2 700 Gradient Boosting Estimator (MICE) 1.25017 0.74917 11.58522

0.2 700 Random Forest Estimator (MICE) 1.28071 0.74627 39.04982

Continued on next page

31

Table 3 table. – continued from previous page

Missingness

Rate
Size Method MSE R2 score

Imputation

Time

0.2 700 LGBM Estimator (MICE) 1.46242 0.71825 7.51746

0.2 700 XGBoost Imputer 1.51117 0.70492 2.04225

0.2 700 XGBoost Estimator (MICE) 1.50443 0.70413 23.56137

0.2 700 KNN Imputation 1.66587 0.68001 0.40824

0.2 700 Decision Tree Estimator (MICE) 2.15651 0.60803 0.57368

0.2 1000 Lasso Estimator (MICE) 1.12090 0.78781 0.02588

0.2 1000 Iterative Imputer Default (MICE) 1.12203 0.78769 0.09777

0.2 1000 Linear Regression Estimator (MICE) 1.12733 0.78651 0.09094

0.2 1000 Gradient Boosting Estimator (MICE) 1.21703 0.76523 16.11457

0.2 1000 Random Forest Imputer 1.23312 0.76450 4.86844

0.2 1000 Random Forest Estimator (MICE) 1.26665 0.75506 49.42384

0.2 1000 LGBM Estimator (MICE) 1.42520 0.72176 9.81714

0.2 1000 XGBoost Estimator (MICE) 1.47178 0.72076 24.41583

0.2 1000 XGBoost Imputer 1.46557 0.71575 1.89283

0.2 1000 KNN Imputation 1.67308 0.68066 0.81570

0.2 1000 Decision Tree Estimator (MICE) 2.17118 0.60283 0.80209

0.2 5000 Lasso Estimator (MICE) 1.12557 0.77006 0.08469

0.2 5000 Iterative Imputer Default (MICE) 1.12582 0.77002 0.27680

0.2 5000 Linear Regression Estimator (MICE) 1.12719 0.76979 0.23229

0.2 5000 Gradient Boosting Estimator (MICE) 1.19355 0.75771 79.36056

0.2 5000 Random Forest Imputer 1.22398 0.75170 26.37992

0.2 5000 Random Forest Estimator (MICE) 1.29951 0.73664 264.60414

0.2 5000 LGBM Estimator (MICE) 1.29480 0.73632 12.02624

0.2 5000 XGBoost Imputer 1.31567 0.73524 2.58428

0.2 5000 XGBoost Estimator (MICE) 1.39266 0.71948 38.95492

0.2 5000 KNN Imputation 1.62167 0.67680 19.08751

0.2 5000 Decision Tree Estimator (MICE) 2.17673 0.59310 5.28863

0.3 100 Lasso Estimator (MICE) 1.16854 0.67998 0.01743

0.3 100 Iterative Imputer Default (MICE) 1.20788 0.67580 0.16094

0.3 100 Random Forest Imputer 1.36451 0.66197 1.71814

0.3 100 Linear Regression Estimator (MICE) 1.35839 0.63041 0.11861

0.3 100 XGBoost Imputer 1.67529 0.61722 0.98904

0.3 100 Gradient Boosting Estimator (MICE) 1.61171 0.60611 3.56872

0.3 100 LGBM Estimator (MICE) 1.44190 0.60460 2.28376

0.3 100 KNN Imputation 1.60055 0.57865 0.03624

0.3 100 Random Forest Estimator (MICE) 1.46515 0.57841 15.98084

Continued on next page

32

Table 3 table. – continued from previous page

Missingness

Rate
Size Method MSE R2 score

Imputation

Time

0.3 100 XGBoost Estimator (MICE) 1.67685 0.55502 7.31852

0.3 100 Decision Tree Estimator (MICE) 2.18322 0.47150 0.15372

0.3 300 Iterative Imputer Default (MICE) 1.19095 0.64111 0.14665

0.3 300 Lasso Estimator (MICE) 1.18804 0.64066 0.02311

0.3 300 Linear Regression Estimator (MICE) 1.22434 0.63998 0.11691

0.3 300 Random Forest Estimator (MICE) 1.42070 0.58644 22.08065

0.3 300 Random Forest Imputer 1.37196 0.58302 2.33755

0.3 300 LGBM Estimator (MICE) 1.56853 0.55942 3.85296

0.3 300 Gradient Boosting Estimator (MICE) 1.47110 0.54369 5.79184

0.3 300 XGBoost Estimator (MICE) 1.58709 0.54105 24.94014

0.3 300 XGBoost Imputer 1.65794 0.52073 2.31913

0.3 300 KNN Imputation 1.74430 0.50919 0.14405

0.3 300 Decision Tree Estimator (MICE) 2.20543 0.42646 0.28171

0.3 500 Lasso Estimator (MICE) 1.25349 0.63390 0.02313

0.3 500 Iterative Imputer Default (MICE) 1.26208 0.63172 0.13518

0.3 500 Linear Regression Estimator (MICE) 1.28521 0.62495 0.10704

0.3 500 Random Forest Imputer 1.42496 0.57600 2.82059

0.3 500 Random Forest Estimator (MICE) 1.50303 0.56402 27.43830

0.3 500 Gradient Boosting Estimator (MICE) 1.48113 0.55897 8.06137

0.3 500 XGBoost Imputer 1.68990 0.52755 2.27754

0.3 500 LGBM Estimator (MICE) 1.70217 0.51904 5.08670

0.3 500 XGBoost Estimator (MICE) 1.68636 0.51395 24.74103

0.3 500 KNN Imputation 1.77518 0.49531 0.28411

0.3 500 Decision Tree Estimator (MICE) 2.29013 0.42137 0.38883

0.3 700 Lasso Estimator (MICE) 1.20672 0.65340 0.02104

0.3 700 Iterative Imputer Default (MICE) 1.21337 0.65251 0.13443

0.3 700 Linear Regression Estimator (MICE) 1.22746 0.65061 0.09725

0.3 700 Random Forest Imputer 1.37085 0.61940 3.52695

0.3 700 Gradient Boosting Estimator (MICE) 1.39797 0.61469 10.45766

0.3 700 Random Forest Estimator (MICE) 1.44135 0.60369 35.17978

0.3 700 LGBM Estimator (MICE) 1.59601 0.57141 6.70783

0.3 700 XGBoost Imputer 1.61993 0.56863 1.77213

0.3 700 XGBoost Estimator (MICE) 1.59846 0.56782 20.88564

0.3 700 KNN Imputation 1.70401 0.52605 0.45259

0.3 700 Decision Tree Estimator (MICE) 2.21047 0.45975 0.49880

0.3 1000 Iterative Imputer Default (MICE) 1.22895 0.68164 0.13432

Continued on next page

33

Table 3 table. – continued from previous page

Missingness

Rate
Size Method MSE R2 score

Imputation

Time

0.3 1000 Lasso Estimator (MICE) 1.22705 0.68120 0.02796

0.3 1000 Linear Regression Estimator (MICE) 1.24017 0.68070 0.11005

0.3 1000 Random Forest Imputer 1.38601 0.63882 4.34155

0.3 1000 Gradient Boosting Estimator (MICE) 1.41260 0.62981 14.24822

0.3 1000 Random Forest Estimator (MICE) 1.48474 0.61687 44.20826

0.3 1000 XGBoost Estimator (MICE) 1.60492 0.59805 25.63662

0.3 1000 LGBM Estimator (MICE) 1.62922 0.58674 8.91731

0.3 1000 XGBoost Imputer 1.61276 0.58114 1.98166

0.3 1000 KNN Imputation 1.74469 0.54594 0.94198

0.3 1000 Decision Tree Estimator (MICE) 2.22682 0.46219 0.69175

0.3 5000 Lasso Estimator (MICE) 1.22330 0.64413 0.07514

0.3 5000 Iterative Imputer Default (MICE) 1.22418 0.64401 0.29105

0.3 5000 Linear Regression Estimator (MICE) 1.22637 0.64394 0.25227

0.3 5000 Gradient Boosting Estimator (MICE) 1.38934 0.60003 67.15375

0.3 5000 Random Forest Imputer 1.37130 0.59695 21.70527

0.3 5000 XGBoost Imputer 1.40821 0.58688 3.08761

0.3 5000 Random Forest Estimator (MICE) 1.53912 0.57013 211.76849

0.3 5000 LGBM Estimator (MICE) 1.54462 0.56889 11.92893

0.3 5000 XGBoost Estimator (MICE) 1.57671 0.55071 49.22171

0.3 5000 KNN Imputation 1.67830 0.52590 18.97883

0.3 5000 Decision Tree Estimator (MICE) 2.22454 0.43648 4.33380

34

Appendix 2. Python code ­ Simulation study

Random Forest
class RandomForestImputer:

def __init__(self, n_estimators=100):
self.models = {}
self.n_estimators = n_estimators

def fit_transform(self, X):
random_state = random.randint(1, 1000)
X = np.array(X, dtype=float)
X_imputed = np.copy(X)
for col in range(X.shape[1]):

missing = np.isnan(X[:, col])
if np.any(missing):

not_missing = ~missing
y = X[not_missing, col]
X_train = X[not_missing, :]
X_test = X[missing, :]

X_train = np.delete(X_train, col, axis=1)
X_test = np.delete(X_test, col, axis=1)

Handle NaN in predictors
imputer = SimpleImputer(strategy="mean")
X_train = imputer.fit_transform(X_train)
X_test = imputer.transform(X_test)

Train Random Forest
model = RandomForestRegressor(

n_estimators=self.n_estimators,
random_state=random_state
)

model.fit(X_train, y)
X_imputed[missing, col] = model.predict(X_test)
self.models[col] = model

return X_imputed

XGBoost
class XGBoostImputer:

def __init__(self, n_estimators=100):
self.models = {}
self.n_estimators = n_estimators

def fit_transform(self, X):
random_state = random.randint(1, 1000)

35

X = np.array(X, dtype=float)
X_imputed = np.copy(X)
for col in range(X.shape[1]):

missing = np.isnan(X[:, col])
if np.any(missing):

not_missing = ~missing
y = X[not_missing, col]
X_train = X[not_missing, :]
X_test = X[missing, :]

X_train = np.delete(X_train, col, axis=1)
X_test = np.delete(X_test, col, axis=1)

Handle NaN in predictors
imputer = SimpleImputer(strategy="mean")
X_train = imputer.fit_transform(X_train)
X_test = imputer.transform(X_test)

Train XGBoost
model = XGBRegressor(

n_estimators=self.n_estimators,
random_state=random_state,
use_label_encoder=False,
eval_metric='rmse'
)

model.fit(X_train, y)
X_imputed[missing, col] = model.predict(X_test)
self.models[col] = model

return X_imputed

def introduce_missingness(df, missing_rate=0.1, mechanism="MCAR"):

if isinstance(df, np.ndarray):
df = pd.DataFrame(df)

np.random.seed(random.randint(1, 1000))
df_missing = pd.DataFrame(df.copy())
n_samples, n_features = df_missing.shape

total number of missing cells
total_cells = n_samples * n_features
total_missing = int(np.round(missing_rate * total_cells))

missing_count = 0

if mechanism == "MCAR":

36

randomly choose missing cells
while missing_count < total_missing:

row = np.random.randint(0, n_samples)
col = np.random.randint(0, n_features)
if pd.isna(df_missing.iloc[row, col]):

continue
df_missing.iloc[row, col] = np.nan
missing_count += 1

elif mechanism == "MAR":
set threshold as the mean of the first column
threshold = df.iloc[:, 0].mean()

set missingness based on the threshold, but not in first column
valid_cols = [col for col in df_missing.columns if col != df.columns[0]]
while missing_count < total_missing:

row_candidates = df_missing[df_missing.iloc[:, 0] > threshold].index
if len(row_candidates) == 0:

break
row = np.random.choice(row_candidates)
col = np.random.choice(valid_cols)
if pd.isna(df_missing.loc[row, col]):

continue
df_missing.loc[row, col] = np.nan
missing_count += 1

elif mechanism == "MNAR":
set missingness based on the values of each feature itself
valid_cols = list(df_missing.columns)
while missing_count < total_missing:

col = np.random.choice(valid_cols)
threshold = df[col].mean() # threshold is the mean of the column itself
row_candidates = df_missing[df_missing[col] > threshold].index
if len(row_candidates) == 0:

break
row = np.random.choice(row_candidates)
if pd.isna(df_missing.loc[row, col]):

continue
df_missing.loc[row, col] = np.nan
missing_count += 1

else:
raise ValueError("Invalid missingness mechanism")

return df_missing

perform multiple imputation
def perform_multiple_imputation(missing_data, imputer, n_imputations=5):

start_time = time.time()

37

imputed_datasets = []

for _ in range(n_imputations):
imputed_data = imputer.fit_transform(missing_data)
imputed_datasets.append(imputed_data)

end_time = time.time()
duration = end_time - start_time
return imputed_datasets, duration

combine multiple imputations results
def combine_imputation_results(imputed_datasets, original_data, missing_mask):

scores = []

for imputed_data in imputed_datasets:
score = mean_squared_error(

original_data[missing_mask], imputed_data[missing_mask]
)

scores.append(score)
return scores, np.mean(scores), np.var(scores)

evaluate regression model
def evaluate_regression_model(imputed_data, target_data):

X = imputed_data
y = target_data

Split data into train and test sets
X_train, X_test, y_train, y_test = train_test_split(

X, y, test_size=0.2, random_state=42
)

train a simple linear regression model
model = LinearRegression()
model.fit(X_train, y_train)

evaluate with cross-validation and test set
cross_val_scores = cross_val_score(model, X_train, y_train, cv=5,

scoring='mean_squared_error')
test_score = mean_squared_error(y_test, model.predict(X_test))
test_r2 = r2_score(y_test, model.predict(X_test))

return {
"cross_val_mean_mse": np.mean(cross_val_scores),
"test_mse": test_score,
"test_r2": test_r2

}

Experiment
def run_experiment(

missingness_types, missing_rates, sizes,

38

imputers, n_imputations=5, n_repeats=5
):

all_results = []

for repeat in range(n_repeats):
print(f"Starting repeat {repeat + 1}/{n_repeats}...")
results = []

for size in sizes:
X, y = make_regression(n_samples=size, n_features=5, noise=0.1)

for missingness_type in missingness_types:
print(f"Starting missingness type {missingness_type}...")
for missing_rate in missing_rates:

ampute dataset
start_missingness = time.time()
missing_data = introduce_missingness(X, missing_rate, missingness_type)

end_missingness = time.time()
missingness_duration = end_missingness - start_missingness

missing_mask = np.isnan(missing_data)

for imputer_name, imputer in imputers.items():
perform multiple imputations
imputed_datasets, imputation_duration = perform_multiple_imputation(

missing_data, imputer, n_imputations
)

evaluate imputations
start_evaluation = time.time()
scores, mean_score, variance_score = combine_imputation_results(

imputed_datasets, X, missing_mask
)

end_evaluation = time.time()
evaluation_duration = end_evaluation - start_evaluation

train and test regression model for each imputed dataset
regression_results = []
for imputed_data in imputed_datasets:

regression_result = evaluate_regression_model(imputed_data, y)
regression_results.append(regression_result)

aggregate results
mean_cross_val_mse = np.mean(

[res["cross_val_mean_mse"] for res in regression_results]
)

mean_test_mse = np.mean(
[res["test_mse"] for res in regression_results]

39

)
mean_test_r2 = np.mean(

[res["test_r2"] for res in regression_results]
)

Results
results.append({

"repeat": repeat + 1,
"size": size,
"missingness_type": missingness_type,
"missing_rate": missing_rate,
"imputer": imputer_name,
'scores': scores,
"mean_score": mean_score,
"variance_score": variance_score,
"mean_cross_val_mse": mean_cross_val_mse,
"mean_test_mse": mean_test_mse,
"mean_test_r2": mean_test_r2,
"missingness_time": missingness_duration,
"imputation_time": imputation_duration,
"evaluation_time": evaluation_duration,
"total_time": missingness_duration +
imputation_duration + evaluation_duration

})

all_results.extend(results)

results_df = pd.DataFrame(all_results)
return results_df

imputers = {
"Iterative Imputer Default (MICE)":
IterativeImputer(max_iter=10),
"Decision Tree Estimator (MICE)":
IterativeImputer(estimator=DecisionTreeRegressor(), max_iter=10),
"Gradient Boosting Estimator (MICE)":
IterativeImputer(estimator=GradientBoostingRegressor(), max_iter=10),
"Random Forest Estimator (MICE)":
IterativeImputer(estimator=RandomForestRegressor(), max_iter=10),
"XGBoost Estimator (MICE)":
IterativeImputer(estimator=XGBRegressor(), max_iter=10),
"Linear Regression Estimator (MICE)":
IterativeImputer(estimator=LinearRegression(), max_iter=10),
"Lasso Estimator (MICE)":
IterativeImputer(estimator=Lasso(), max_iter=10),
"LGBM Estimator (MICE)":
IterativeImputer(estimator=LGBMRegressor(), max_iter=10),
"KNN Imputation":
KNN(k=5),

40

"Random Forest Imputer":
RandomForestImputer(),
"XGBoost Imputer":
XGBoostImputer(),

}

Parameters
missingness_types = ["MCAR", "MAR", "MNAR"]
missing_rates = [0.1, 0.15, 0.2, 0.25, 0.3]
sizes = [100, 300, 500, 700, 1000, 5000]
n_imputations = 5
n_repeats = 10 # Number of repeats for accuracy

experiment_results = run_experiment(
missingness_types, missing_rates, sizes, imputers, n_imputations, n_repeats
)

save results
experiment_results.to_csv("imputation_experiment_results.csv", index=False)

41

Appendix 3. Python code ­ Case Study

import numpy as np
import pandas as pd
import random
import time
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor
from xgboost import XGBRegressor
from sklearn.impute import SimpleImputer
from sklearn.metrics import mean_squared_error, r2_score
from fancyimpute import KNN, IterativeImputer
from sklearn.tree import DecisionTreeRegressor
from sklearn.linear_model import Lasso
from lightgbm import LGBMRegressor
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split, cross_val_score

data = pd.read_csv('cars.csv')
from sklearn.preprocessing import OrdinalEncoder
Encode categorical values
encoder = OrdinalEncoder()
categorical_cols = ['make', 'fuel', 'body_type', 'gearbox', 'defects']
data[categorical_cols] = encoder.fit_transform(data[categorical_cols])

Random Forest
class RandomForestImputer:

def __init__(self, n_estimators=100):
self.models = {}
self.n_estimators = n_estimators

def fit_transform(self, X):
random_state = random.randint(1, 1000)
X = np.array(X, dtype=float)
X_imputed = np.copy(X)
for col in range(X.shape[1]):

missing = np.isnan(X[:, col])
if np.any(missing):

not_missing = ~missing
y = X[not_missing, col]
X_train = X[not_missing, :]
X_test = X[missing, :]

X_train = np.delete(X_train, col, axis=1)
X_test = np.delete(X_test, col, axis=1)

42

Handle NaN in predictors
imputer = SimpleImputer(strategy="mean")
X_train = imputer.fit_transform(X_train)
X_test = imputer.transform(X_test)

Train Random Forest
model = RandomForestRegressor(

n_estimators=self.n_estimators,
random_state=random_state
)

model.fit(X_train, y)
X_imputed[missing, col] = model.predict(X_test)
self.models[col] = model

return X_imputed

XGBoost
class XGBoostImputer:

def __init__(self, n_estimators=100):
self.models = {}
self.n_estimators = n_estimators

def fit_transform(self, X):
random_state = random.randint(1, 1000)
X = np.array(X, dtype=float)
X_imputed = np.copy(X)
for col in range(X.shape[1]):

missing = np.isnan(X[:, col])
if np.any(missing):

not_missing = ~missing
y = X[not_missing, col]
X_train = X[not_missing, :]
X_test = X[missing, :]

X_train = np.delete(X_train, col, axis=1)
X_test = np.delete(X_test, col, axis=1)

Handle NaN in predictors
imputer = SimpleImputer(strategy="mean")
X_train = imputer.fit_transform(X_train)
X_test = imputer.transform(X_test)

Train XGBoost
model = XGBRegressor(

n_estimators=self.n_estimators,
random_state=random_state,
use_label_encoder=False,
eval_metric='rmse'

43

)
model.fit(X_train, y)
X_imputed[missing, col] = model.predict(X_test)
self.models[col] = model

return X_imputed

perform multiple imputations
def perform_multiple_imputation(missing_data, imputer, n_imputations=5):

imputed_datasets = []

for _ in range(n_imputations):
imputed_data = imputer.fit_transform(missing_data)
imputed_datasets.append(imputed_data)

return imputed_datasets

evaluate regression model
def evaluate_regression_model(imputed_data, target_column):

X = imputed_data.drop(columns=[target_column])
y = imputed_data[target_column]

pplit data into train and test sets
X_train, X_test, y_train, y_test = train_test_split(

X, y, test_size=0.2, random_state=42
)

train a simple linear regression model
model = LinearRegression()
model.fit(X_train, y_train)

evaluate
cross_val_scores = cross_val_score(

model, X_train, y_train, cv=5, scoring='root_mean_squared_error'
)

test_score = mean_squared_error(y_test, model.predict(X_test))
test_r2 = r2_score(y_test, model.predict(X_test))

return {
"cross_val_mean_mse": -np.mean(cross_val_scores),
"test_mse": test_score,
"test_r2": test_r2

}

experiment
def run_experiment_2(original_data, imputers, target_column, n_imputations=5):

data = original_data.to_numpy()

results = []

44

for imputer_name, imputer in imputers.items():

perform multiple imputations
start_imputation = time.time()
imputed_datasets = perform_multiple_imputation(data, imputer, n_imputations)
end_imputation = time.time()
imputation_duration = end_imputation - start_imputation

train and test regression model for each imputed dataset
regression_results = []
for imputed_data in imputed_datasets:

imputed_df = pd.DataFrame(imputed_data, columns=original_data.columns)
regression_result = evaluate_regression_model(imputed_df, target_column)
regression_results.append(regression_result)

aggregate results
mean_cross_val_mse = np.mean(

[res["cross_val_mean_mse"] for res in regression_results]
)

mean_test_mse = np.mean(
[res["test_mse"] for res in regression_results]
)

mean_test_r2 = np.mean(
[res["test_r2"] for res in regression_results]
)

results
results.append({

"imputer": imputer_name,
"imputation_time": imputation_duration,
"mean_cross_val_mse": mean_cross_val_mse,
"mean_test_mse": mean_test_mse,
"mean_test_r2": mean_test_r2

})

results_df = pd.DataFrame(results)
return results_df

Imputers
imputers = {

"Iterative Imputer Default (MICE)":
IterativeImputer(max_iter=10),
"Decision Tree Estimator (MICE)":
IterativeImputer(estimator=DecisionTreeRegressor(), max_iter=10),
"Gradient Boosting Estimator (MICE)":
IterativeImputer(estimator=GradientBoostingRegressor(), max_iter=10),
"Random Forest Estimator (MICE)":
IterativeImputer(estimator=RandomForestRegressor(), max_iter=10),
"XGBoost Estimator (MICE)":

45

IterativeImputer(estimator=XGBRegressor(), max_iter=10),
"Linear Regression Estimator (MICE)":
IterativeImputer(estimator=LinearRegression(), max_iter=10),
"Lasso Estimator (MICE)":
IterativeImputer(estimator=Lasso(), max_iter=10),
"LGBM Estimator (MICE)":
IterativeImputer(estimator=LGBMRegressor(), max_iter=10),
"KNN Imputation":
KNN(k=5),
"Random Forest Imputer":
RandomForestImputer(),
"XGBoost Imputer":
XGBoostImputer(),

}

data['price_log'] = np.log(data['price'])
data = data[['fuel', 'body_type', 'gearbox', 'mileage', 'defects', 'doors',

'price_log', 'weight', 'years', 'engine_size', 'power']]
run experiment
experiment_results = run_experiment_2(

data, imputers, target_column="price_log", n_imputations=5
)

print(experiment_results)

46

Appendix 4. R code ­ Little’s MCAR test

library(naniar)

Load data
data <- read.csv("cars.csv")

Perform Little's MCAR test
result <- mcar_test(data)
print(result)

if (result$p.value > 0.05) {
cat("Fail to reject null hypothesis - data is MCAR")

} else {
cat("Reject null hypothesis - data is not MCAR")

}

47

	Summary
	Santrauka
	1 Introduction
	2 Goal and Objectives
	3 Literature review
	4 Missing data mechanisms
	4.1 Missing Completely at Random (MCAR)
	4.2 Missing at Random (MAR)
	4.3 Missing Not at Random (MNAR)
	4.4 Little's MCAR test

	5 Methods
	5.1 MICE
	5.2 Linear Regression Estimator
	5.3 Lasso Estimator
	5.4 Desicion Trees
	5.5 Random Forest
	5.6 XGBoost
	5.7 Light GBM
	5.8 Gradient Boosting Trees
	5.9 KNN

	6 Multiple Imputation process
	7 Simulation study
	8 Evaluation indicators
	9 Software
	10 Results
	11 Case study
	12 Conclusions
	13 Limitations and Future work
	Appendix 1. Simulation Results
	Appendix 2. Python code - Simulation study
	Appendix 3. Python code - Case Study
	Appendix 4. R code - Little's MCAR test

