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Summary

This thesis investigates the application of Bayesian hierarchical models and machine learning

methods, such as Bayesian Additive Regression Trees (BART) and Bayesian Neural Networks (BNNs),

to the modeling of distribution of firm size by employees, size classes, industries and countries. By

applying hierarchical Bayesianmodel this analysis uses granular socio­economic dataset of indicators

number of employees (EMP), turnover (TRN), and enterprise count (ENT) as these datasets exhibit

complex hierarchical dependencies, missing data, and diverse scales across groups of industries and

size classes. This thesis investigates the group effects on the hierarchical structure and models ca­

pability to capture the structure and estimate distribution of number of employees by different size

classes. Traditional linear models are not suitable for such complexity and structure of the data mo­

tivating the use of hierarchical Bayesian model and machine learning models that are capable of

incorporating prior knowledge and investigate complex data structures.

Keywords: Hierarchical Bayes model, BART, BNN, Industries.
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Santrauka

Šis darbas nagrinėja Bajeso hierarchiniomodeliavimo ir pažangiųmašininiomokymosi metodų,

tokių kaip Bajeso kombinuoti regresiniai medžiai (BART) ir Bajeso neuroniniai tinklai (BNN), taikymą

modeliuojant įmonių dydžio pasiskirstymą pagal darbuotojus, dydžio klases, pramonės šakas ir

šalis. Naudojant struktūrinius tikimybių metodus, tyrimo tikslas yra spręsti hierarchinių ir trūk­

stamų duomenų struktūrų, būdingų socioekonominiams duomenų rinkiniams, keliamus iššūkius.

Ekonominiai rodikliai, tokie kaip užimtumas (EMP), apyvarta (TRN) ir įmonių skaičius (ENT), atlieka

svarbų vaidmenį suprantant verslo dinamiką ir priimant politikos sprendimus. Tačiau šie duomenų

rinkiniai dažnai pasižymi sudėtingomis hierarchinėmis priklausomybėmis, reikšmingais trūkstamais

duomenimis ir įvairiu mastu įvairiose pramonės šakų grupėse ir dydžio kategorijose. Šiame darbe na­

grinėjamas grupės poveikis hierarchinei struktūrai irmodelių gebėjimui užfiksuoti struktūrą ir įvertinti

darbuotojų skaičiaus pasiskirstymą pagal skirtingas dydžio kategorijas. Tradiciniai tiesiniai modeliai

nėra tinkami dirbant su sudėtingom hierarchinėm struktūrom, dėl to atsiranda poreikis naudoti hier­

archinius Bajeso modelius pažangių mašininio mokymosi metodus kurie geba panaudoti ankstesnę

informaciją ir analizuoti sudėtingas duomenų struktūras.

Raktiniai žodžiai: Hierarchiniai, Bajeso, Įmonės, Duomenys
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Introduction

Distribution of number of employees in granular data together with number of enterprises

and its revenue by industry and size class provides insights and input for socio­economic analysis.

Understanding the distribution of data and factors that influence it is essential for parties using this

data. Firms, when looking at each one individually present different growth patterns. The number

of employees and number of enterprises growth should follow similar distribution with majority of

number of employees being in the beginning, meaning the most enterprises are clustered within the

smaller size class and there are fewer enterprises with more employees presenting heavy tails in the

data. This distribution also depends on the industry nature. Standard regression models, though

informative, often oversimplify the rich, hierarchical nature of firm data. Hierarchical Bayesian mod­

els, with their capacity to handle multilevel structures and account for uncertainty in a principled

manner, provide an advanced approach to modeling these distributions. This thesis investigates the

application of Bayesian hierarchical models and machine learning methods, such as Bayesian Addi­

tive Regression Trees (BART) and Bayesian Neural Networks (BNNs), to the modeling of distribution

of firm size by employees, size classes, industries and countries. The goal is to examine Bayesian

hierarchical models capability using Stan and Log­Normal distribution do model the distribution us­

ing 4 variables in 8 different countries, 96 industries and 6 different size classes and to see if model

manages to capture country and industry effects. Hierarchical Bayesian models are not very popular

in practical application however they can by applied in policy making to simulate the impact of policy

changes on firm size distribution and to identify which industries are most affected by specific policy

measures by analyzing group effects.
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1 Theory and Literature Review

1.1 Theory

Hierarchical Bayesian methods provide a statistical framework for analyzing data that exhibit

complex dependencies or multi­level structures by including priors to the model. These methods

extend traditional Bayesian techniques by incorporating additional layers of modeling to account for

the hierarchical or nested nature of the data. Bayesian methodology uses prior information about

unknown parameters using evidence from observed data. In contrast to classical statistical methods

that often rely on fixed­point estimates, Bayesian methods offer a full posterior distribution, captur­

ing the range of plausible values for the parameters.

Bayesian inference is a probabilistic approach that forms the foundation of the modeling

methodology employed in this thesis. It provides a systematic framework for updating prior beliefs

about parameters in light of observed data. This section outlines the mathematical formulation and

its application in the hierarchical Bayesian model used in this research.

The posterior distribution p(θ | y) is computed usingMarkov ChainMonte Carlo (MCMC)meth­

ods. Specifically, the No­U­Turn Sampler (NUTS), a variant of HamiltonianMonte Carlo (HMC), is used

to explore the posterior space efficiently. This approach is suited for hierarchical models due to their

high­dimensional parameter spaces and complex posterior geometries. Bayesian inference provides

a robust framework for modeling complex nested hierarchical structures in data. By combining prior

information with observed data, the hierarchical Bayesian model captures both global and group­

specific effects to a multi­level data analysis.

Hierarchical models in Stan have different statistical parameters to improve analysis. Partial

pooling allows for estimates to be influenced by group­level information to help avoid the extreme

cases of no pooling which produces independence and complete pooling with full aggregation. It

leads to more stable and interpretable results for the data that has groups with limited data. Hierar­

chical Bayesian framework is highly adaptable for various data and analysis. Probabilistic approach of

Bayesian models helps with uncertainty and to evaluate both individual and group­level parameters.

For data that presents uneven size classes across groups Bayesian approach is suitable as the hier­

archical structure allows small groups to benefit from information shared across the entire dataset

reducing the risk of over­fitting.

Despite advantages, hierarchical Bayesian models present certain challenges. The complex­

ity often needs advanced computational techniques, such as Markov Chain Monte Carlo (MCMC)

or variational inference, which can be computationally intensive. Additionally, the choice of prior

distributions requires careful consideration, as it can influence the results, particularly in cases with

limited data.

1.2 Background

Firm size distributions provide insights formarket analysis, business ­ to ­ business data analysis,

labour dynamics and economic growth. Data is usually skewed with many small firms and a few very
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large ones in most industries. Traditional models may struggle to capture the complex data with

industry and size class details [2]. Hierarchical Bayesianmodels offer a powerful alternative, enabling

nuanced and robust modeling of firm size distributions by incorporating multi­level structures and

probabilistic reasoning. The distribution of firm sizes is influenced by various factors, ranging from

individual firm characteristics to broader industry or regional contexts. For industries that do not

require highly expensive or specific inventory the distribution should be highly skewed with most

firms clusteringwithin the smaller size classes as these business require higher starting costs. Looking

at more macro ­ level external influences such as market conditions, regulatory frameworks, and

technological advancements play a significant role is the amount of firms in the market.

The study of firm size distributions has been a longstanding area of interest in economics, with

early contributions by Gibrat (1931) introducing the Law of Proportionate Effect, which posits that

firm growth is random and independent of size. While Gibrat’s law has been foundational, empirical

studies have revealed deviations, particularly at the tails of the distribution. These deviations under­

score the need for more sophisticatedmodeling approaches to better capture the nature of the data.

Hierarchical Bayesian methods have been applied to analysis for modeling of income distributions,

market shares, and organizational growth patterns. Application for firm size distribution is not well

researched area posing challenges to methodology creation and working on challenges of skewed

data, heterogeneity across industries, and dynamic changes over time.

Traditional econometric models frequently rely on fixed­effects or ordinary least squares (OLS)

regressions. These approaches assume homogeneity within groups or simplify the structure of vari­

ability by treating it as constant across hierarchical levels, while intuitively a lot of information is kept

in the hierarchical level, which then gets ignored and multi­level dependencies such as countries, in­

dustries, and firm size classes are not fully accounted. Manymodels assume normality in residuals or

random effects, which is often violated in firm size data due to skewness, heavy tails, or zero­inflated

observations. While the log­normal distribution offers an improvement, few studies explore its hi­

erarchical implementation and not on firm data. Although firm size is influenced by nested factors,

hierarchical models remain underutilized. A critical gap in the literature, together with lack of appli­

cation of hierarchical Bayesian models for firm data, is the insufficient emphasis on model validation

and diagnostics. Many studies fail to rigorously evaluate whether hierarchical models adequately fit

the data and compare its predictive performance against alternatives. While hierarchical Bayesian

models are theoretically well­suited for studying firm size, their application in real­world decision­

making remains limited.

This thesis shows and example on howhierarchical Bayesianmodels can informpolicy decisions

by identifying the drivers of firm size variability looking at the country­level effects that can highlight

the impact of national policies on firm growth and industry­specific effects that could inform sectoral

strategies to support employment growth. By including real­world categorical variables this thesis

gives practical results. Model is constructed to incorporate three levels of variability: country­level

effects, industry­level effects, and within­group variability. By modeling these layers, the framework

captures both global trends and local heterogeneity in firm size. Overall this thesis provides a new

approach for modeling employment using hierarchical Bayesian model and firm data.
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1.3 Literature analysis

In business, combined industries, employment and business performance data is utilized and

analyzed to derive insights and make decisions. Data modeling is researched using various meth­

ods and applications however application of hierarchical Bayesian methods is not deeply researched

method. In literature analysis, a number of different papers is analyzed to help derive amethodology

combining distribution application, constructing hierarchical Bayesian model and running ML model

for comparison.

Fox and Glas (2001) apply hierarchical Bayesian models in item response theory (IRT) using

Gibbs sampling. Although primarily focused on psychometrics, their methodology is directly trans­

ferable to firm size distribution modeling. The hierarchical structure accounts for variations across

firms within different industries or countries, providing insights into how these variables impact the

overall distribution. Bayesian hypothesis testing, as discussed by Aitkin (1991), further enhances the

ability to compare different hierarchical models or test specific assumptions about firm size distri­

butions, thereby strengthening the decision­making process in model selection. The work by Chib

and Greenberg (1995) explains the Metropolis­Hastings algorithm, a crucial MCMC method used for

Bayesian inference. This method is essential in the context of firm size distributionmodeling because

it allows the efficient estimation of posterior distributions when direct sampling is not feasible, mak­

ing it highly applicable in cases where data is complex or multi­level.

The theoretical foundations of firm size distributions firm size distribution and economic mod­

eling by Axtell (2001) provides empirical evidence that firm size distributions follow a Zipf law, which

is a power­law distribution. This finding is fundamental to understanding firm size dynamics because

it suggests that a small number of large firms dominate industries while many small firms co­exist.

This type of distribution needs to be modeled using advanced statistical techniques, such as hierar­

chical Bayesianmodels, to capture the underlying complexity. The presence of heavy tails in firm size

distribution, as suggested by Axtell, is a key characteristic that requires special attention in Bayesian

modeling. It should be noted that the paper overlooked only the total of economy and did not inves­

tigate different distribution in different industries.

Cabral and Mata (2003) offer additional empirical and theoretical insights by studying the evo­

lution of firm size distributions over time. Their findings highlight that young and small firms grow

differently compared to large and established firms. This evolution can be captured using hierarchi­

cal Bayesian models, where firm­specific characteristics such as age and size class can be included

as random effects to account for these varying growth patterns. Sutton (1997) revisits Gibrat’s Law,

which posits that firm growth is proportional to its current size. While Gibrat’s Law has been widely

applied in firm size analysis, Sutton’s work critically examines its limitations, particularly in explaining

deviations from the expected patterns of firm growth. Such deviations can be incorporated into a hi­

erarchical Bayesian framework by including additional covariates, such as industry­specific effects or

macroeconomic variables, to capture the heterogeneity in firm growth rates. Luttmer (2007) extends

this by modeling the growth and selection mechanisms that shape the distribution of firm sizes. His

work emphasizes the importance of understanding how firm­level growth dynamics influence the

overall distribution. The use of hierarchical Bayesian models allows for the incorporation of these
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dynamic factors, enabling a more robust understanding of how firm size distributions emerge and

evolve.

Clauset et al. (2009) contribute to the identification andmodeling of power­law distributions in

empirical data, a pattern commonly observed in firm size distributions. Theirmethodology for testing

whether firm size data follows a power­law distribution is crucial for determining the appropriate

statistical model. By using hierarchical Bayesian techniques, it is possible to account for different

power­law behaviors across industries or countries, thus refining the model’s accuracy.

For Alternative Approaches for Firm Size Modeling using Machine Learning and Econometric

Techniques, Andrieu et al. (2003) provide an overview of MCMC methods used in machine learn­

ing, which can be applied to the estimation of complex Bayesian models. Their work emphasizes

the computational aspects of Bayesian estimation, which is particularly relevant when handling large

firm­level datasets. By leveraging machine learning techniques, hierarchical Bayesian models can

be optimized for efficiency and scalability, allowing for more accurate predictions in firm size distri­

bution. Analyzing relevant Machine Learning models, applicable for modeling Hierarchal Bayesian

models, an introduction to BART models by Hill, Linero and Murray (2020) discusses Bayesian Addi­

tive Regression trees model, its application and theoretical understanding of models performance.

It highlights it advantages dealing with smaller data sets, debating various applications and differ­

ent parameters within the model that can be explored and applied dealing with different problems

appearing from the specific analysis.

The studies by Axtell (2001), Cabral and Mata (2003), and Sutton (1997) highlight the impor­

tance of understanding the underlying distributional characteristics of firm size, such as power­law

and heavy­tailed distributions. Hierarchical Bayesian models, as discussed by Fox and Glas (2001),

offer a robust framework for capturing the complexity of firm size data, particularly when incorpo­

rating industry and country­specific effects. Moreover, the insights from Clauset et al. (2009) on

power­law distributions provide valuable tools for refining the Bayesian models to better fit firm size

data. Finally, combining Bayesian methods with machine learning and econometric techniques, as

suggested by Andrieu et al. (2003) can enhance the scalability and predictive accuracy of themodels.
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2 Data and Methodology

2.1 Data

The dataset used for this thesis is from Eurostat, a leading statistical authority in the Euro­

pean Union, which consolidates data provided by national statistical offices of its member states.

Tables Annual enterprise statistics by size class for special aggregates of NACE Rev.2 activities (2005­

2020) and Enterprise statistics by size class and NACE Rev.2 activity (from 2021 onwards) were used.

Datasets provides historical data on enterprise­level metrics segmented by size class across various

sectors of economic activity. Data is detailed using NACE2 classification of economic activity and is

detailed to 3 digit level including industries like agriculture, mining, manufacturing and services. For

analysis, industries in 1­3 digit level were chosen.

Four variables were taken from the dataset for the analysis. Enterprises ­ number, represents

the count of firms operating within each industry and size class. This indicator provides insights into

the density and distribution of businesses across various economic activities. Turnover or Gross Pre­

miumsWritten (Million Euros) Measures the revenue generated by enterprises. For service­oriented

industries like insurance, ”gross premiums written” replaces turnover as a more representative met­

ric of financial activity. This indicator offers an understanding of economic productivity and sectoral

contribution. Wages and Salaries (Million Euros), captures the total compensationpaid to employees,

including salaries, bonuses, and other forms of remuneration. This serves as a proxy for labor cost

and an indicator of economic contribution by employees within firms and Employees (Number), that

quantifies the total number of employees working in enterprises within each size class and industry.

It is the central variable of interest for this thesis.

2.2 Descriptive statistics

To better understand the data descriptive statistics are presented in the tables below. The

first table summarizes the key statistical metrics for four indicators: EMP (Employment), ENT (Enter­

prises), TRN (Turnover), andWG (Wages). These metrics provide an overview of the distribution and

variability of these indicators across the dataset.

Data summary in Table 1 table. by indicator shows that employment levels are highly skewed

with a mean value of approximately 121,958 and a median of 15,975. The maximum value of

7,868,166 further highlights the presence of outliers or exceptionally large firms and standard de­

viation of over 406,595 suggests substantial variability in employment figures across entities. Sim­

ilarly, Number of enterprises exhibit a mean size of 18,771 with a median of only 443, indicating

a large number of smaller enterprises and a few significantly larger ones. Nr. of obs.in the table

shows the number of observations for each variable in the data set. For employment there are 4239

observations in the data set while for number of enterprises and turnover, respectively, 47505 and

44888 and wages, 869 observations. The maximum value of 1,174,254 and a standard deviation of

70,183 highlight the wide range of enterprise sizes. Turnover and wages support the assumption

of skewed data with substantial differences between mean and median. The summary in 1 table
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highlights the diversity and variability within the dataset, particularly for employment and enterprise

sizes. This variability underscores the need for robust statistical models, such as hierarchical Bayesian

approaches, to capture these complexities effectively.

1 table. Summary Statistics by Indicator

Indicator Nr. of obs. Mean Median Std. Dev. Min Max

EMP 4,239 121,958.24 15,975.0 406,595.00 0 7,868,166

ENT 47,505 18,771.40 443.0 70,183.89 0 1,174,254

TRN 44,888 23,638.25 2,781.0 97,865.32 0 2,842,707

WG 869 1,717.41 309.0 6,312.26 0 104,492

For data by industry analysis only the least aggregated industries were chosen. The Table 2

table. provides a detailed breakdown of employment statistics across different industries, showing

the variability and distribution of employment figures within each sector.

The average employment size varies significantly across industries, ranging from approximately

16,210 (Industry B (Mining and quarrying)) to over 2.69 million (Industry G (Wholesale and retail

trade; repair of motor vehicles and motorcycles)). The variability is particularly pronounced in indus­

tries such as C (Manufacturing), G , and Q (Human health and social work activities), which have the

highest standard deviations (over 1.4million, 1.7million, and 1.8million, respectively). Certain indus­

tries, such as C and G , have extremely highmaximum values (7,868,166 and 5,924,954, respectively),

indicating the presence of large firms that dominate employment figures in those sectors. Industries

with smaller mean values, such as B (Mining and quarrying), D (Electricity, gas, steam and air condi­

tioning supply), and L ( Real estate activities), have tighter distributions, as indicated by their lower

standard deviations. In most industries, the median is significantly lower than the mean, suggesting

a right­skewed distribution where a few large firms substantially increase the average employment

figures
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2 table. Summary Statistics of Employment by Industry

Industry Nr. of obs. Mean Median Std. Dev. Min Max

B 86 16,209.52 3,990.0 35,951.08 140 173,068

C 96 1,010,207.00 475,383.5 1,442,724.00 14,444 7,868,166

D 94 43,929.96 5,504.0 74,378.44 390 316,634

E 92 54,667.51 19,620.0 69,344.21 485 305,636

F 82 389,435.00 216,998.0 478,665.20 13,529 2,460,625

G 12 2,696,077.00 2,393,198.5 1,789,016.00 211,083 5,924,954

H 12 1,044,625.00 904,917.5 660,483.10 150,042 2,200,768

I 12 941,940.40 1,129,859.5 640,613.70 43,026 1,873,477

J 12 642,038.70 535,350.5 475,821.40 39,348 1,506,281

K 12 466,924.20 423,771.5 333,833.80 21,289 1,061,118

L 12 181,457.60 135,878.0 153,643.50 17,357 456,436

M 12 841,340.60 664,171.5 683,840.40 49,641 2,135,906

N 12 1,404,240.00 1,392,455.5 1,016,876.00 62,382 3,057,644

P 12 196,597.80 131,404.5 164,839.80 9,588 426,700

Q 12 1,282,876.00 694,597.0 1,897,274.00 30,172 5,304,710

R 12 157,347.80 130,220.5 131,494.60 7,957 369,973
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1 figure. Boxplot of values by indicator

Descriptive analysis of outliers showed that employment indicator presents significant number

of outliers and the spread compared with other variables emphasizes its variability. The employment

indicator is the most volatile and is likely influenced by industry­specific factors.

2.3 Distributions Fitted

For each combination of Unified Size Class, which represents different size classes for com­

parability, and indicator, EMP for the number of employees and ENT for the number of enterprises,

two distributions were fitted: Log­Normal and Poisson. The summary of parameter estimates, log­

likelihood values, and model selection criteria (AIC and BIC) for each class is presented below.
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3 table. Fitted distributions for Class 1 (0–9 employees).

Distribu­

tion

Parameter 1 Parameter 2 Log­likelihood AIC / BIC

Log­

Normal

(EMP)

meanlog = 5.00 sdlog = 2.20 ­351205.8 702415.7 / 702433.2

Poisson

(EMP)

lambda = 1587.79 N/A ­185345673 370691347 / 370691356

Log­

Normal

(ENT)

meanlog = 6.50 sdlog = 2.59 ­2804588 5609180 / 5609201

Poisson

(ENT)

lambda = 14363.89 N/A ­11840169769 23680339539 / 23680339550

Unified Size Class 2: 10–19 Employees

4 table. Fitted distributions for Class 2 (10–19 employees).

Distribu­

tion

Parameter 1 Parameter 2 Log­likelihood AIC / BIC

Log­Normal

(EMP)

meanlog = 6.34 sdlog = 1.84 ­55495.46 110994.9 / 111008.5

Poisson

(EMP)

lambda = 4358.98 N/A ­61386726 122773454 / 122773461

Log­Normal

(ENT)

meanlog = 5.22 sdlog = 2.62 ­2204905 4409813 / 4409834

Poisson

(ENT)

lambda = 8112.95 N/A ­7624993405 15249986813 / 15249986823

Unified Size Class 3: 20–49 Employees

5 table. Fitted distributions for Class 3 (20–49 employees).

Distribution Parameter 1 Parameter 2 Log­likelihood AIC / BIC

Log­Normal

(EMP)

meanlog = 6.94 sdlog = 1.70 ­60697.56 121399.1 / 121412.8

Poisson (EMP) lambda = 5460.92 N/A ­66315124 132630249 / 132630256

Log­Normal

(ENT)

meanlog = 4.14 sdlog = 2.07 ­1753168 3506341 / 3506362

Poisson (ENT) lambda = 832.86 N/A ­633231551 1266463105 / 1266463115

Unified Size Class 4: 50–249 Employees
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6 table. Fitted distributions for Class 4 (50–249 employees).

Distribu­

tion

Parameter 1 Parameter 2 Log­likelihood AIC / BIC

Log­Normal

(EMP)

meanlog = 5.29 sdlog = 2.46 ­146715.8 293435.6 / 293451.4

Poisson

(EMP)

lambda = 3380.62 N/A ­158951720 317903442 / 317903450

Log­Normal

(ENT)

meanlog = 4.65 sdlog = 2.57 ­3226536 6453076 / 6453098

Poisson

(ENT)

lambda = 6140.79 N/A ­10232691908 20465383819 / 20465383830

Unified Size Class 5: 250+ Employees

7 table. Fitted distributions for Class 5 (250+ employees).

Distribution Parameter 1 Parameter 2 Log­likelihood AIC / BIC

Log­Normal

(EMP)

meanlog = 6.50 sdlog = 2.67 ­99942.62 199889.2 / 199903.9

Poisson (EMP) lambda = 11101.95 N/A ­287251220 574502442 / 574502449

Log­Normal

(ENT)

meanlog = 2.41 sdlog = 1.55 ­489673.1 979350.3 / 979369.6

Poisson (ENT) lambda = 60.59 N/A ­14852427 N/A

Across all Unified_Size_Class and both number of employees and number of employees indica­

tors, the Log­normal distribution provides a better fit to the data than the Poisson distribution. This is

indicated by substantially lower AIC/BIC values and better loglikelihood values. Log­normal distribu­

tion is better suited to handle the large variability and positive skew typical of firm size distributions,

which is why it outperforms the Poisson distribution in terms of AIC, BIC, and loglikelihood as high

variability is presented due to different parameters and values for different industries.

2.4 Methodology

The methodological approach of this thesis involves fitting firm size distributions using Log­

normal models, handling heterogeneity across firm size classes and data sources, and addressing

missing values. The Two primary distributions were tested Log­Normal and Poisson, based on their

relevance to firm size and count data. Final choice in the analysis was to use the Zero­Adjusted

Poisson (ZAP) model to handle and impute missing values.

Modeling firm size distributions presents unique challenges due to the broad range of firm sizes

and their skewed distribution. Firm size data, which often exhibit a long tail due to a few large firms

amongmany small firms. However a different challenge becomes the dataset where within variables

negative values and high aptitude of values appear.
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For smaller firm sizes, which are typically count­based, the Poisson distribution is appropriate

due to its properties as a discrete count distribution. The Poisson distribution has been applied in

numerous studies to model count data, particularly when data are skewed toward lower values [1].

Using the fitdistrplus package in R, a Poisson distribution was fitted to firm sizes within each class,

applying it to integer count data where values were all non­negative. This approach aligns with the

practice of modeling small­scale business data as discrete occurrences [1].

The presence of missing values in the dataset posed a significant challenge, as their imputa­

tion needed to reflect both zero­inflation and the count nature of firm size data. Data is granular to

the industry level by number of employees including negative, zero and high values creating a wide

amplitude within the data. The Zero­Adjusted Poisson (ZAP) model, implemented using the gamlss

package in R, was selected due to its ability to handle excess zeros in count data [5]. The ZAP model

combines a zero component with a Poisson component, effectively capturing the distinct likelihood

of zeroes and positive counts in the data. This approach has been validated in studies involving zero­

inflated and count data, providing robust solutions for missing value imputation [5].

The ZAP family was used, specifying the Poisson distribution as the non­zero component. A

maximum iteration count of 20 was set to ensure that the model converged adequately, with global

deviancemonitored at each iteration. A steady decrease in deviancewas observed, confirmingmodel

improvement. Monitoring the global deviance values across iterations showed consistent reductions,

indicating successful optimization. After fitting, the ZAP model’s predicted mean values (λ) for each

missing entry were used to impute missing values, generating samples based on the Poisson com­

ponent’s expected counts. This approach to imputation aligns with methods for the structure of

zero­inflated count data [5].

Following the fitting of the ZAP model, missing values were imputed using the expected values

from the model’s Poisson component. For each missing value, a sample was drawn from the Poisson

distribution centered on the predicted mean (λ). This imputed dataset was then transformed using

a natural logarithm to facilitate hierarchical Bayesian modeling.

With the imputed data, a hierarchical Bayesian model was developed to capture firm size vari­

ations across levels of industry and country. This 3­level structure was designed to account for hier­

archical dependencies:

• Level 1: Firm size distribution within specific industry­country combinations, capturing within­

group variance.

• Level 2: Country­specific variations in firm size distribution, accounting for regional differences.

• Level 3: Industry­wide variations across countries, capturing cross­industry patterns.

The fitted hierarchical Bayesian model was implemented in Stan, using Markov Chain Monte

Carlo (MCMC) sampling to estimate parameters for each level. This approach has been validated in

previous research for its effectiveness in multi­level data contexts. Due to high computational costs,

only a sample of the data was chosen, analyzing 8 countries and industries at the highest industry

code level at 1 ­ 3 levels.
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In this thesis, observations were influenced by both global effects and group­specific effects

at multiple levels. The model incorporates global effects that represents overall population­level

parameters, group­specific effects that represents random effects for groups of countries, industries,

and indicators and measurement noise for within­group variability.

The hierarchical model is defined as:

yi ∼ N (µ+ ucountry[i] + vindustry[i] + windicator[i], σwithin)

where:

• yi: Observed response for observation i (e.g., log­transformed firm size).

• µ: Global mean across all observations.

• ucountry[i]: Random effect for the country associated with observation i.

• vindustry[i]: Random effect for the industry associated with observation i.

• windicator[i]: Random effect for the indicator associated with observation i.

• σwithin: Standard deviation of within­group noise.

To estimate the group­level random effects, hierarchical priors were imposed. These priors

allow partial pooling, which is particularly effective in managing the trade off between over­fitting

and under­fitting for groups with few observations.

Bayesian hierarchical model was employed using the Hamiltonian Monte Carlo (HMC) algo­

rithm with the No­U­Turn Sampler (NUTS).Higher delta and max_depth settings prioritize robust­

ness, while default adaptation settings ensure efficient tuning. Overall, these settingswere optimized

to handle the large parameter space and complex geometries typical of hierarchical Bayesian models

for firm data used for the model.

Global prior is defined as below:

µ ∼ N (0, 5)

Random Effects Priors:

ucountry[j] ∼ N (0, σcountry), j = 1, . . . , J

vindustry[k] ∼ N (0, σindustry), k = 1, . . . , K

windicator[l] ∼ N (0, σindicator), l = 1, . . . , L

Non­negative priors are applied to the standard deviations to ensure positivity:

σwithin, σcountry, σindustry, σindicator ∼ N+(0, 2)

The likelihood function is defined as:

yi ∼ LN (µ+ ucountry[i] + vindustry[i] + windicator[i], σwithin)
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where the components ucountry[i], vindustry[i], windicator[i] capture deviations specific to the hierar­

chical levels and to use Log­normal distribution following the nature of data not having naturally

negative values.

To assess model fit, posterior predictive checks were performed by generating replicated data

which was compared to the observed data to evaluate the model’s ability to capture key patterns.

Bayesian Hierarchical models combine information across groups to improve estimates with sparse

data, accommodating varying group sizes and nested structures, providing credible intervals and pos­

terior distributions for all parameters and allowing the inclusion of domain knowledge through infor­

mative priors.

8 table. Summary of Priors for the Hierarchical Bayesian Model

Parameter Prior Distribution Description

µ N (0, 5) Global mean across all observations

ucountry[j] N (0, σcountry) Random effect for country j

vindustry[k] N (0, σindustry) Random effect for industry k

windicator[l] N (0, σindicator) Random effect for indicator l

σwithin N+(0, 2) Standard deviation of within­group noise

σcountry N+(0, 2) Standard deviation of country­level random effects

σindustry N+(0, 2) Standard deviation of industry­level random effects

σindicator N+(0, 2) Standard deviation of indicator­level random effects

Number of Samples was set to 2000 and warmup iterations to 500. Warmup iterations were

discarded after calibration. The thinning parameter was set to 1, meaning all iterations after warmup

were retained. Thinning is not necessary for modern HMC samplers due to their efficient sampling

mechanisms. For target acceptance probability delta value of 0.99 was used to target a high ac­

ceptance probability. Delta was set in a conservative matter to reduce the likelihood of divergent

transitions, which are common in hierarchical models with complex posterior geometries which ap­

pears due to high variability of industries in this thesis.

TheNUTS­specific parameters for themaximumdepth for the binary tree in NUTSwas set to 12,

allowing up to 212 = 4096 leapfrog steps. Some transitions reached this limit, indicating challenging

regions of the posterior. The diagonal Euclideanmetric (diag_e) was used formassmatrix adaptation

to reduce computational complexity compared to a dense metric for high­dimensional hierarchical

models. Step size was initialized at 1, and subsequent adaptation during warmup to ensure optimal

performance.

As data shows outliers, regularization and random effects priors were applied in the model to

constrain parameter estimates to plausible ranges, improve sampler efficiency and mixing, reduce

over­fitting by penalizing extreme parameter values, and address high R­hat values by simplifying

the posterior distribution.

Proper initialization reduces the risk of divergent transitions and ensures faster convergence of

the chains, particularly in hierarchicalmodels with complex posterior geometries. For global parame­

ters initial values were set near the center of the prior distribution to align with prior beliefs. Random
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effects, ucountry, vindustry, and windicator were initialized using small random perturbations around zero,

reflecting the assumption of no strong prior bias. Standard deviations σwithin, σcountry, σindustry, σindicator

were initialized with positive values to respect the non­negativity constraint.

Effective Sample Size for key parameterswasmonitored to ensure sufficient sampling efficiency.

Low ESS values indicate slowmixing or high autocorrelation, suggesting the need for further regular­

ization or reparameterization. The split R̂ diagnostic was used to evaluate convergence. Parameters

with R̂ > 1.05 indicate incomplete mixing and may require stronger priors or simplified parame­

terizations. Approximately 5.5% of transitions exceeded the maximum treedepth of 12, highlighting

regions of high curvature in the posterior.

Cross validation and posterior check was conducted on the Log ­ Normal distribution likelihood

model. Training and validation data sets were splitted to calculate RMSE, log­likelihood and MAE.

The training model was done using 4 folds and validation using the remaining. Robustness check

was done to analyze the sensitivity of the model to different priors, posterior predictive check were

conducted and comparing of the slight perturbations in data.
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Results and conclusions

3 Results

The results of the Bayesian hierarchical model are summarized in Table 9 table.. The model

was constructed to estimate the relationship between firm size (log­transformed) and its underlying

structure across multiple levels: within countries, between countries, and within industries. Key

parameters such as the overall mean (µ) of firm size, the within­group standard deviation (σwithin),

and the between­country standard deviation (σcountry) are presented.

For a comparison, linear model is summarized in Table 10 table..

9 table. Bayesian Hierarchical Model Results (Log­Normal Distribution)

Parameter Mean Std. Dev. 50%

Overall Mean (µ) ­254548 7.446 ­254548

Within­Group SD (σwithin) 1.052 0.573 1.036

Between­Country SD (σcountry) 3.365 0.007 3.365

Industry Effect SD (σindustry) 0.434 0.393 0.446

Indicator Effect SD (σindicator) 0.416 0.395 0.423

10 table. Linear Model Results

Statistic Value

Dependent Variable (y) EMP (Firm Size by Employees)

R­squared 0.924

Adjusted R­squared 0.919

F­statistic 189.5

Prob (F­statistic) 0.000

Log­Likelihood ­10819

AIC 21740

BIC 22000

Number of Observations 867

Number of Predictors 52

Mean RMSE (Cross­Validation) 68613.73

3.1 Results analysis

When applying the Log­normal distribution, the estimated mean µ = −254548 appears im­

plausible and reflects numerical instability, likely caused by excessive influence of zero or near­zero

values in the data indicating a poor model fit for overall mean under the Log­normal assumption.

The variation within specific industry­country groups, σwithin = 1.052 indicates relatively low

variability within groups, reflecting a significant reduction in dispersion compared to other potential
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models. This aligns with expectations, as the Log­normal transformation often suppresses within­

group variability by shifting the distribution towards a more concentrated range. The posterior stan­

dard deviation (0.573) and credible intervals suggest this estimate is reasonably stable, though less

robust than expected in certain cases.

Variability in firm size attributable to differences across countries, σcountry = 3.365, demon­

strates increased sensitivity to country­level effects under model. The narrower credible interval

reflects a stronger differentiation between countries, potentially amplifying the influence of outliers

or skewed data. This suggests that the model effectively captures variations stemming from differ­

ences in national policies, economic conditions, or industrial structures. However, this amplification

also indicates that approach may be less resilient to data anomalies, requiring careful handling of

outliers.

Industry­specific random effects (vindustry) show considerable variability, with slightly tighter

credible intervals compared to othermodels. This reflects the ability of the log­normal distribution to

capture industry­level differences while still highlighting potential convergence challenges in param­

eter estimation. The hierarchical structure remains crucial for disentangling these effects, although

further re­evaluation of industry classifications or increased samplingmay help address issues related

to convergence.

While Bayesian model explicitly captures the nested structure of countries, industries, indi­

cators through group­level effects, the linear model assumes a single global linear relationship be­

tween predictors and the response variable, ignoring the hierarchical structure. It also assumes ho­

moscedasticity, which is clearly violated as is seen from Figure 2 figure.. The linear model doesn’t

account for the skewed distribution of firm size for employees. The residuals plot and large coeffi­

cients shows that the model struggles with these extreme values. With a large number of categorical

predictors countries, industries, size classes, the linear model is overfitting, as indicated by the high

(R2) but poor interpretability and the multicollinearity warnings. Mean RMSE for Cross­Validation is

also worse for linear model than for Hierarchical model.
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2 figure. Posterior Predictive Checks Plot for LogNormal Distribution

In conclusion, the Log­normal distribution provides a nuanced representation of variability

across countries and industries, particularly in amplifying the country­level effects. However, numer­

ical instability in the global mean estimate suggests that additional data preprocessing or transfor­

mations are necessary to improve model performance. The model captures the significant influence

of national policies, market conditions, and cultural differences on firm size but highlights the need

for careful consideration of data characteristics, such as skewness and structural zeros, in applying

Log­normal assumptions.
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3.2 Posterior Predictive Checks

3 figure. Posterior Predictive Checks Plot for Log­Normal Distribution

The posterior predictive plot of Log­Normal distribution Figure 3 figure. shows that the ob­

served data has a broader spread and a more moderate right­skew, with values extending further

along the positive axis. The Log­Normal distribution does not fully align with the empirical data be­

cause of the observed heavier tails and variability. While Log­Normal models are suitable for strictly

positive and skewed data, the observed dataset contains heavier tails that deviate from a strict Log­

Normal shape.
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4 figure. Observed vs. Predicted Plot Log­Normal Distribution

Scatter plot of observed values against predicted values with a red line denoting a perfect fit

(Observed = Predicted). Ideally the blue dots in the plot would follow the red line, which assumes

x = y. The blue points are heavily scattered and show a pattern of underestimation for larger observed

values. This indicates that the model predictions do not fully capture the variability in the observed

data, especially for higher values in Figure 4 figure.. This shows that the model is under­performing

and while capturing hierarchical structure of the data there are areas to enhance the results.
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5 figure. Parameter Pair Plot Log­Normal Distribution

Pairwise plots of posterior distributions for key parameters (mu, sigma_within,
sigma_country) show the density, marginal distributions, and joint distributions. In Log­Normal

distribution mu shows a well­defined central tendency with slight skewness, sigma withing indicates

the within­group standard deviation is estimated precisely and country indicates wider spread­out

showing uncertainty.
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6 figure. Q­Q Plot of Residuals

Quantile­Quantile plot compares residuals to a Log­Normal distribution. It shows a good overall

alignment in the middle however the tails are still not captured well.

7 figure. Residuals Distribution
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The distribution of residuals for Log­Normal distribution residuals are skewedmore to the pos­

itive side and have more variability indicating under­predictiness.

The posterior predictive check plots further explores and analyzesmodel’s capability to capture

central tendency and variability in firm size across industries and countries. These plots demonstrates

that the model performs and is able to capture the distribution however it fails to predict higher

values.

The results of Variance Decomposition and Intraclass Correlation Coefficients in Table 11 ta­

ble. show that the country­level effects explain the vast majority (89.7%) of the total variance in the

model.

Industry effects contribute only 1.5% to the overall variance. This suggests that, while some

industries may differ in firm size distribution, the variation within industries is relatively minor com­

pared to country­level effects. Additionally, it shows that model likely would perform better by re­

moving division by industry and using only the total values for the country.

The within­group, residual, variance accounts for 8.8% of the total variance, reflects firm­

specific characteristics or noise that cannot be attributed to either country or industry effects.

The caterpillar plot for country effects in Figure 8 figure. shows that country­level effects are

homogeneous, with narrow credible intervals across countries suggesting that the differences be­

tween countries are stable and predictable in the mode. While country effects dominate the overall

variance, they are relatively uniform across countries. It reflects consistentmacroeconomic or policy­

level impacts that apply similarly to firms across countries and as the analyzed countries are major

economies in EUplus Lithuania it reflects that overall employment follows similar distribution in these

countries.

In contrast caterpillar plot for industry effects in Figure 9 figure. shows much greater hetero­

geneity. There is a wider spread in the credible intervals across industries, indicating variability in

the influence of different industries aligning with the smaller industry­level variance (0.188), which

contributes less to the overall variability. Industries like H (Transportation and storage), G47 (Retail

trade, except of motor vehicles and motorcycles), E36 (Water collection, treatment and supply), C26

(Manufacture of computer, electronic and optical products) , C22 (Manufacture of rubber and plastic

products) show a larger industry effect, meaning that in real life these industries could be targeted

by policies to even further increase employment. However, it also highlights that industry­specific

effects are more dispersed than country­specific effects, implying significant differentiation between

industries in their contribution to firm size. It further proves that for better model fit detailed data

by industry should be removed.

11 table. Variance Decomposition and Intraclass Correlation Coefficients (ICC)

Component Variance Proportion of Total Variance (ICC)

Country 11.323 89.7%

Industry 0.188 1.5%

Within­group 1.107 8.8%
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8 figure. Caterpillar Plot for Country Effects
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9 figure. Caterpillar Plot for Industry Effects

3.3 Validation results

Validation combines cross­validation for predictive performance, PPCs for model fit, and diag­

nostics for convergence and stability. Regularization and hierarchical priors were used to address het­

erogeneity and over­fitting, while convergence diagnostics ensured robust sampling. Overall results

proves model’s ability to capture both global and group­specific effects, though challenges remain in

modeling data subsets with extreme variability. Future work could explore alternative approaches,

such as hierarchical shrinkage priors or grouping sparse industries into broader categories, to further

enhance model performance.

The cross­validation results in Table 12 table. reveal variability in model performance across

the five folds. Fold 3 and Fold 5 exhibit significantly higher RMSE values, reaching 2.00 and 2.79 mil­

lion, respectively, compared to the lower RMSE values of Folds 1, 2, and 4. This disparity comes from

heterogeneity in data driven by high variability of the data from industry level. The MAE values are

more consistent across folds, indicating that while large outliers may inflate RMSE, the average abso­

lute error is relatively stable. Fold 4 exhibits the lowest RMSE and MAE, suggesting better predictive

performance on this subset of data.

The inconsistency in folds performance and 3rd and 5th folds poor performance is likely caused
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by observations from countries or more likely industries with extreme values or lack of sufficient rep­

resentation of certain size classes, leading to under­ or overestimation in predictions. The hierarchical

Bayesian model, being a complex model, may over­fit to the training data in some folds, especially

when the data in those folds are small or do not provide enough diversity to constrain the model

parameters. [4]

12 table. Cross­Validation Results for RMSE and MAE

Fold RMSE (×107) MAE (×105)
1 1.11 8.06

2 0.94 7.06

3 2.00 8.02

4 0.84 9.22

5 2.79 8.54

The global mean (µ) andwithin­group variability (σwithin) are well­estimated, with low R­hat val­

ues (close to 1.00) indicating good convergence across chains as shown in Table 13 table.. Random

effects for countries (ucountry) and industries (vindustry) show variability as some country­level effects

have broader credible intervals, ucountry[1], reflecting uncertainty in their estimates. For industries,

there are clear deviations, such as vindustry[2], with a highly negative mean, suggesting that some in­

dustries substantially deviate from the overall mean which is expected looking at the nature of data.

Significant variability in industry­level randomeffects (vindustry) alignswith the observed heterogeneity

in cross­validation RMSE. Industries with limited data likely contribute to the high uncertainty. Tight

credible interval for σwithin ([4.10, 4.13]) indicates precise estimation of within­group noise, providing

confidence in the model’s ability to partition variability across hierarchical levels.

13 table. Posterior Summaries of Key Parameters

Parameter Mean Std. Dev. 94% HDI R­hat

µ 4.24 1.52 [1.48, 6.43] 1.01

σwithin 4.12 0.01 [4.10, 4.13] 1.00

ucountry[1] 1.90 0.81 [0.72, 3.49] 1.04

ucountry[2] 1.22 0.81 [0.05, 2.81] 1.04

vindustry[1] 1.30 0.47 [0.45, 2.10] 1.01

vindustry[2] ­20.0 0.10 [­20.2, ­19.8] 1.00

The density plots for the posterior distributions shows that themodel is capturing the structure

of the data well, particularly for the global parameters. Many of the random effects appear centered

around 0, which aligns well with the priors typically used for hierarchical models, mean­zero normal

priors for random effects. The plots show that the industry ­ level creates the highest uncertainty, an

insight that was already created by other checks and confirmed here further.
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4 Alternative methods

4.1 BART model

For additional comparison, Bayesian Additive Regression Treesmodel was applied. BARTmodel

is non ­ parametric model that provides flexibility by using sum­of­trees model withing Bayesian

framework using prior specification to control for uncertainty. [3]

The Bayesian Additive Regression Trees (BART) model was configured and evaluated with the

following key specifications andmetrics. The table below summarizes the essential details, while the

discussion highlights their implications and relevance to the analysis.

14 table. BART Model Key Metrics

Metric Value

Training Data Size (n, p) n = 12,190, p = 2 predictors

Number of Trees 50

Burn­in/Post­samples 100 / 500

Variance of y (Prior) 23,747,771,427.65

Posterior Variance (Avg.) 1,800,046,872.94

L1 (Mean Absolute Error) 165,480,410.85

RMSE (Root Mean Squared Error) 38,865.73

Pseudo­R2 0.994

The training dataset consists of n = 12,190 observations and p = 2 predictors (ENT and TRN).
This dataset size and dimensionality ensure sufficient variability for model estimation as Bayesian

model tend to perform well with smaller datasets. As BART is tree­ensemble model, in this model

an ensemble of 50 trees with 100 bur­in iterations and 500 post­samples is used. The variance of

the response variable (EMP) prior to model fitting (Sigsq) was 23,747,771,427.65, which significantly
reduced to an average posterior variance of 1,800,046,872.94 after burn­in. This reduction indicates

that the model explains a substantial portion of the variability in the response variable. The Mean

Absolute Error (L1) of 165,480,410.85 and the RMSE of 38,865.73 indicate that predictions on average

are close to the observed values. The high L2 (Sum of Squared Errors) emphasizes deviations from

the mean, particularly for outliers. The Pseudo­R2 value of 0.994 suggests an excellent in­sample fit,

explaining 99.4% of the variance in the data. While this reflects robust performance, further checks

are required for out­of­sample generalization to avoid overfitting. The Shapiro­Wilk test for residual

normality yielded p = 0, indicating significant deviations from normality which is not inconsistent

with results in complex models like BART. The zero­mean noise test resulted in p = 0.95501, confirm­

ing that residuals are centered around zero.

The Q­Q (Quantile­Quantile) plot of residuals in Figure 11 figure. visually compares the distri­

bution of the residuals from the model to a theoretical normal distribution. The extreme points in

the lower left of the plot deviate substantially below the line, suggesting extreme negative residuals
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and large underpredictions, indicating data following heavy ­ tailed distribution. Extreme positive

residuals indicate model overfitting.

BART model’s configuration and performance metrics shows its capability to capture the vari­

ability in firm sizeswith substantial reduction in variance after accounting for predictors (ENT and TRN)
to highlight model’s explanatory power. Despite deviations from normality in residuals, the results

suggest the ML Bayesian framework is suitable for analyzing firm size distributions across multiple

levels however hierarchical model proves to have better results.

4.2 Bayesian Neural Network

The Bayesian Neural Network incorporates both group­level effects (Industry and Size_Class)

and individual predictors (ENT and TRN) to analyze employment levels (EMP). Table 15 table. sum­

marizes the key parameters and their estimates.

15 table. Bayesian Neural Network Model Key Parameters

Parameter Estimate 95% Credible Interval

Industry Intercept Variance 1.03 (0.03, 3.86)

Size_Class Intercept Variance 1.00 (0.03, 3.59)

Intercept 0.18 (­20.29, 20.16)

ENT Coefficient 2.31 (­15.85, 21.45)

TRN Coefficient 2.39 (­16.88, 21.60)

Residual Std. Dev. (σ) 559,141.75 (552,988.08, 565,427.33)

The estimated Industry variance is 1.03, with a credible interval of (0.03, 3.86). This indicates

small­to­moderate variability in EMP across industries, with some industries potentially having no­

table effects. The variance across size classes is similar, estimated at 1.00 with a credible interval of

(0.03, 3.59). This aligns with the idea that company size impacts employment levels.

Intercept estimate (0.18) indicates a minimal baseline effect when all predictors are at their

mean values. However, the wide credible interval (­20.29, 20.16) reflects high uncertainty. The coef­

ficient for ENT (2.31) suggests a positive relationship with EMP, but the wide credible interval (­15.85,

21.45) indicates substantial uncertainty. This shows that further analysis should be conducted to de­

termine if the larger data set should be used or model creates weak associations. Hoverer this shows

that BNN creates higher uncertainty than expected and is not a good choice for estimation.

Overall, Bayesian Neural Network and BART model both performed worse than Hierarchical

Bayesian model BNN performing worse than BART, indicating that for estimating firm size by number

of employees ML model show poorer explain­ability and fails to capture intra­industry and hidden

architectures within the data.
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5 Discussion

Application of hierarchical Bayesian models to estimate the distribution of firm sizes by em­

ployees has revealed significant insights into the dynamics of economic activities across industries

and regions. First, analysis of raw data showed that firm size distributions were found to vary signif­

icantly between sectors, with services exhibiting a greater concentration of micro and small enter­

prises, while manufacturing and mining displayed a more balanced spread, including medium and

large firms. These findings align with economic intuition, as certain sectors, such as manufacturing,

often require substantial capital investment and workforce, leading to larger firm sizes. Further look­

ing at he model results, the multilevel structure of the Bayesian model revealed significant variability

in employment across industries and size classes. For example, the random effects for Industry and

Size_Class showed that the variability within these groups was larger than initially anticipated.

The posterior predictive checks demonstrated that model manages to capture the distribution

however it fails to capture high values of EMP and theses values are not explained well by the re­

maining variables. Model assumes a strong Log­Normal distribution while the observed data shows

more positively skewed distribution. Hierarchical model estimates both country and industry effect

showing a superior estimation compared to the simple linear model. The model proved effective in

capturing this distribution, providing interpretable estimates of variability across different levels.

Further decomposed of total variance in firm size into country­level, industry­level, and within­

group components, highlighted the hierarchical nature of the data. Country­level effects dominated

the total variance, accounting for 89.7% of the variability. This result underscores the influence of

national­level factors, such as economic policies, labor market conditions, and cultural contexts, on

firm size. The caterpillar plot for country effects revealed relatively homogeneous estimates, with

most countries clustered closely around their mean effects. Industry effects contributed 1.5% of the

total variance. While modest compared to country­level effects, this result highlights the hetero­

geneity across industries and from caterpillar plots of industry effects it’s clear that industry level

effect shows some industries have robust growth opportunities in certain sectors or industries that

could be targeted to address lower effects.

In comparison, ML model performed, the BNNs and BART incorporated multilevel random ef­

fects for Industry and Size_Class alongside key predictors (ENT and TRN). The results revealed that

regression coefficients for ENT and TRNwere positive but hadwide credible intervals, suggesting high

uncertainty in their contribution to predicting EMP. The multilevel hyperparameters showed consid­

erable variability across industries, emphasizing the importance of including random effects in the

model. The posterior distribution of residuals highlighted non­normality, whichwas further validated

by the Q­Q plots. It underscores the importance of incorporating flexible Bayesian frameworks for

such data. Additionally while BART showed high pseudo R value, Q­Q plot evaluated over­fitting.

Computational challenges could be solves using cloud based solutions or stronger computers. With

additional tuning and data mining techniques the results of ML models would improve however for

better comparability in this thesis the same dataset was used.

Overall, initial analysis showed high variability in data and that the data distribution varies
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across size classes. Further on hierarchical Bayesian model did not manage to fully capture Log ­

Normal distribution as the modelled values fitted poorly. Model managed to capture all three level

effects. Country effect proved to explain most of the overall variance and had a positive homoge­

neous effect. Industry effect was small and caterpillar plots showed more heterogeneous effect pro­

viding insight that industry variability was likely a problematic part of the model. Within group effect

has a small ICC value showing that most of the model explained firm data. ML models, while per­

forming worse than the hierarchical model, has better results than linear regression, proving that

these methods, for nested firms data are more superior than traditional linear models.
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6 Conclusions and Recommendations

6.1 Conclusions

The choice of Bayesian methods and machine learning models reflects the need for more com­

plex estimations and predictive accuracy in comparison with linear models. In literature review no

papers were find to apply Bayesian Hierarchical models to estimate employees data in size classes

proving the need for this analysis. While Bayesian models provided insights into the structure and

variability of the data, the computational demands were high particularly for large datasets.Ma­

chine Learning models, BART and BNN were chosen for their incorporation of Bayesiand interface

for comparability with Bayesian Hierarchical model providing predictive power but at the cost of in­

terpretability. Thesis investigated the use of Bayesian hierarchical models andmachine learning tech­

niques, including Bayesian Neural Networks (BNN) and Bayesian Additive Regression Trees (BART),

to analyze complex company hierarchical data. The goal was to estimate distribution of firm size by

employees and find group effects in the model and compare model results with ML models. The hi­

erarchical Bayesian model outperformed traditional linear models in capturing the nested structure

of the data and explaining variability across levels. While the linear model provided a simplistic view,

it failed to account for group­level dependencies and produced residual patterns indicative of model

mis­specification.

Hierarchical Bayesian model provided robust insights into the variability of employment across

different groups. By using random effects for industries and size classes, the models captured nu­

anced relationships in the data. Hierarchical Bayesian approach showed contributions of country­

level, industry­level, and within­group variability. The results showed that country­specific effects

account for the largest share of the total variance in firm size, highlighting the role of national­level

factors such as policies, market conditions, and economic environments. Industry­level effects, while

less pronounced, revealed meaningful heterogeneity across sectors, suggesting the need for tailored

policy interventions. The model did not fit data well and high heterogeneity, variability in Employ­

ment created by the industry were one of the main reasons for fitting difference.

The nature of the data proved to challenge the analysis and Bayesian approach leading to need

of further analysis on outliers that are present in the data and debate if the industries showing differ­

ent distributions or having 0 values should be excluded. While the Log­Normal approach was effec­

tive, it introduced additional uncertainty, particularly in groups with sparse data. Future work could

compare the robustness of results using alternative imputation methods, such as Bayesian imputa­

tion ormultiple imputation, to validate the finding. Numerical instability, caused by high variability in

Employment variable alongwith high variance introduced by incorporating industry level data proved

to be difficult for model to capture and fit distribution properly. This shows that more data modeling

and different assumptions should be employed in further testing and papers to enrich academical

background for estimating firm data. Based on these findings, decisions on small and medium busi­

ness strategies could be made and industries differentiated to identify potential improvements.

In conclusion, this thesis illustrates the use of hierarchical Bayesian models in analyzing the

distribution of firm size by employees. By providing a framework for Hierarchical Bayesian model to

38



estimate distribution and variance decomposition for group­specific effect estimation, the research

provides insights that thesemethods have potential and prove to be superior to linearmodeling. The

findings emphasize the importance of country­level policies, industry­specific strategies, and firm­

level initiatives in fostering business growth. This thesis demonstrates the potential of hierarchical

Bayesian models for analyzing complex, multi­level data not only for socio ­ economic data but also

for other domains. The results of industry­effect shows which industries are more influential for em­

ployment increase and policy makers should target these industries more. It includes Transportation

and storage industries and Manufacturing of computer, electronics and optical products. In other

domains a deeper analysis and practical application of hierarchical Bayesian models could be bene­

ficial, for healthcare this approach could be applied to modeling patient outcomes across hospitals,

regions, and demographics. In education, student performance could be analyzed across school,

regions, and socio­economic factors.

6.2 Recommendations

Future studies should explore the inclusion of macroeconomic and institutional variables to

enhance the predictive power of models. For example, incorporating GDP growth, labor market reg­

ulations, or international trade variables may provide additional insights into employment variability.

Combining the interpretability of hierarchical Bayesian models with the predictive power of machine

learning techniques like BART could yield a more comprehensive understanding of economic phe­

nomena. Developing hybrid Bayesian­tree­based models is a promising area for further exploration.

Bayesian methods, particularly those requiring large datasets, are computationally intensive. Ex­

ploring approximate Bayesian computation (ABC) or variational inference techniques could improve

scalability without sacrificing interpretability.

A better application of this model could also be removing different industries and looking only

at the total level of country as different industries do show different distributions and create high

variability within data further making the model to underfit values. The model assumes indepen­

dence between country­ and industry­level effects. Future work could explore interaction terms to

better capture the interplay between national and sectoral factors.

While the log­normal distribution was appropriate for capturing skewness in firm size, future

research could explore alternative distributions that may better handle extreme outliers or heavier

tails. This could include Student­t, Gamma orWeibull distributions that would be suitable for model­

ing positive, skewed data like firm sizes. Usage of large­scale hierarchical datasets, exploring parallel

computing or cloud­based solutions could reduce computational time and allow the use of larger

dataset and higher number of iterations.

Additionally, extending the static hierarchical model to dynamic Bayesian models that account

for temporal variation in firm sizes by using State­space models or time­varying random effects could

capture changes in country or industry effects due to evolving policies or economic conditions. This

would work on analyzing one country that had certain policies applied to model if the results indeed

can be captured.
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Appendix 1.

In the preparation of this thesis generative AI tools were employed as part of the research and

writing process. The following points outline the scope and nature of their usage:

Generative AI models, specifically ChatGPT by OpenAI, version 2025, knowledge cutoff of Jan­

uary 2025, were utilized to assist in drafting and refining the text of the thesis, provide statistical and

methodological insights, generate code examples for data analysis and visualization and review and

rewrite and fix text for academical style.
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Appendix 2.

10 figure. Density plot of Posterior Distribution
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11 figure. Q­Q Plot of Residuals of BART
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12 figure. Q­Q Plot of Residuals of BNN

Appendix 3.

Link to the code used for this analysis repository on GitHub: https://github.com/Kaiiiaa/
Hierarchical-Bayes-models.git.

stan_data = {
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'N': len(df_hierarchical),

'J': df_hierarchical['country'].nunique(),

'K': df_hierarchical['industry'].nunique(),

'L': df_hierarchical['indicator'].nunique(),

'country': df_hierarchical['country'].values ,

'industry': df_hierarchical['industry'].values ,

'indicator': df_hierarchical['indicator'].values ,

'log_size': np.log(df_hierarchical['values'].values)

}

stan_model_code = """

data {

int<lower=0> N; // Number of observations

int<lower=1> J; // Number of countries

int<lower=1> K; // Number of industries

int<lower=1> L; // Number of indicators

array[N] int<lower=1> country; // Country index for each

observation

array[N] int<lower=1> industry; // Industry index for each

observation

array[N] int<lower=1> indicator; // Indicator index for each

observation

vector[N] log_size; // Log-transformed firm size

}

parameters {

real mu; // Overall mean of log size

real<lower=0> sigma_within; // Standard deviation within

industry -country

vector[J] u_country; // Random effects for country

vector[K] v_industry; // Random effects for industry

vector[L] w_indicator; // Random effects for indicator

real<lower=0> sigma_country; // Standard deviation for country

effects

real<lower=0> sigma_industry; // Standard deviation for industry

effects

real<lower=0> sigma_indicator; // Standard deviation for indicator

effects

}

model {

// Regularization Priors

mu ~ normal(0, 2); // Weakly informative prior for

log-scale global mean
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sigma_within ~ gamma(2, 0.5); // Half-normal prior for within

-group SD (log scale)

sigma_country ~ exponential(1); // Regularization prior for

country -level SD

sigma_industry ~ exponential(1); // Regularization prior for

industry -level SD

sigma_indicator ~ exponential(1); // Regularization prior for

indicator -level SD

// Priors on Random Effects

u_country ~ normal(0, sigma_country); // Country -level variation

v_industry ~ normal(0, sigma_industry); // Industry -level variation

w_indicator ~ normal(0, sigma_indicator); // Indicator -level variation

// Likelihood

for (n in 1:N) {

log_size[n] ~ lognormal(mu + u_country[country[n]] + v_industry[

industry[n]] + w_indicator[indicator[n]], sigma_within);

}

}

generated quantities {

vector[N] log_size_rep; // Predicted log size for posterior predictive

checks

for (n in 1:N) {

log_size_rep[n] = lognormal_rng(mu + u_country[country[n]] +

v_industry[industry[n]] + w_indicator[indicator[n]], sigma_within)

;

}

}

"""

def init_values():

return {

"mu": np.mean(np.log(df_hierarchical['values'].values)),

"sigma_within": 1.0,

"sigma_country": 1.0,

"sigma_industry": 1.0,

"sigma_indicator": 1.0

}

for i in range(4):

init_file_path = f'C:/init_{i+1}.json'

with open(init_file_path , 'w') as f:

json.dump(init_values(), f)

48



init_files = [f'C:/init_{i+1}.json' for i in range(4)]

fit = model.sample(

data=stan_data ,

chains=2,

parallel_chains=2,

iter_warmup=500,

iter_sampling=2000,

seed=1234,

inits=[f'init_{i+1}.json' for i in range(4)],

adapt_delta=0.99,

max_treedepth=15,

show_console=True

)
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