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Summary

The goal of this thesis is to estimate the proportion of e­commerce enterprises in Lithua­

nia using machine learning methods. In the process, enterprises were manually classified into

e­commerce and non­e­commerce to have actual values of enterprises’ e­commerce status for mod­

els training and performance testing. Companies’ websites were scraped to collect the text from

them. Machine learning algorithms were combined with NLPmethods for classification task. Logistic

regression, Naïve Bayes, Support Vector Machines, Extreme Gradient Boosting, and BERT models

were used to classify enterprises as e­commerce and non­e­commerce based on the extracted

text from their websites. The inverse probability weighting estimator was applied to estimate the

proportion of e­commerce enterprises in Lithuania. The estimated proportion of e­commerce en­

terprises in Lithuania is 0.25. The BERTmodel achieved the best performance classifying enterprises.

Keywords: e­commerce, machine learning, text classification, natural language processing, en­

terprises classification.
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Santrauka

Šio darbo tikslas yra įvertinti e­komercijos įmonių proporciją Lietuvoje, naudojant mašininio

mokymosi metodus. Proceso metu įmonės buvo rankiniu būdu klasifikuotos į e­komercijos ir ne

e­komercijos įmones, kad turėti realius duomenis apie įmonių e­komercijos statusą modelių moky­

mui ir testavimui. Įmonių interneto svetainės buvo nuskaitytos ir jose esantis teksas buvo surinktas.

Mašininio mokymosi algoritmai buvo derinami su natūralios kalbos apdorojimo metodais klasi­

fikavimo užduočiai atlikti. Logistinės regresijos, Naiviojo Bajeso klasifikatoriaus, atraminių vektorių

mašinų, ekstremalaus gradientų didinimo ir BERT modeliai buvo naudojami klasifikuoti įmones į

e­komercijos ir ne e­komercijos įmones, remiantis jų interneto svetainėse esančiais tekstais. Atvirkš­

tinis tikimybinis svertinis įvertinys buvo taikomas, siekiant įvertinti e­komercijos įmonių proporciją

Lietuvoje. Apskaičiuota, kad e­komercijos įmonių proporcijos Lietuvoje įvertis yra 0.25. Geriausią

rezultatą klasifikuojant įmones pasiekė BERT modelis.

Raktiniai žodžiai: e­komercija, mašininis mokymasis, teksto klasifikavimas, natūralios kalbos

apdorojimas, įmonių klasifikavimas.
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Introduction

In recent years, e­commerce has become a significant sector of the global economy. The on­

line shopping is transforming the commerce sector and the global economy. In Lithuania, as in many

other countries, the number of e­commerce enterprises has grown rapidly in recent years due to

technological advances, the expansion of digital payment systems, increased internet access, and

evolving consumer preferences toward online shopping. Due to the growing sales and the number

of e­commerce enterprises, the government needs accurate and efficient methods to distinguish e­

commerce enterprises from other enterprises. This is beneficial for policymakers and businesses

because they need reliable statistics to make data­driven decisions. Traditional methods of identify­

ing e­commerce enterprises are based on sample surveys, industry reports and financial data. These

methods are costly and time­consuming and may not always provide up­to­date information. These

methods fail to keep the pace with the changing landscape of online commerce. It is challenging

to develop a consistent and scalable classification system because physical commerce companies

tomorrow can become e­commerce companies. An automated approach based on machine learn­

ing application is an innovative solution to this problem. Machine learning combined with Natural

Language Processing (NLP) methods is a powerful tool for text classification. By analyzing patterns,

keywords, and linguistic features found in the text on companies’ websites, machine learningmodels

can be trained to classify companies as e­shops or non­e­shops with high accuracy. It is a scalable,

data­driven solution for estimating the proportion of E­commerce enterprises in Lithuania.

The main goal of this thesis is to estimate the proportion of e­commerce enterprises in Lithua­

nia using machine learning methods. This study aims to classify companies based on textual pat­

terns extracted from their websites by applying various machine learning models, including Logistic

regression, Naïve Bayes, Support Vector Machines, Extreme Gradient Boosting and deep learning

BERT model. Natural Language Processing (NLP) techniques will be utilized to preprocess and ana­

lyze the textual data, enabling the models to classify companies as e­commerce or non­e­commerce.

As data of scraped websites is a non­probability sample of the survey population, the proportion of

e­commerce enterprises in Lithuania will be estimated by applying the inverse probability weighting

estimator. The estimated proportion will be compared with statistics by the survey of usage of infor­

mation technologies in enterprises, which is conducted by the State Data Agency. The objectives of

this thesis are:

• Conduct the literature review.

• Train machine learning models to classify enterprises as e­commerce and non­e­commerce

based on the text extracted from their websites.

• Compare the performance of machine learning models classifying enterprises as e­commerce

and non­e­commerce.

• Estimate the proportion of e­commerce enterprises in Lithuania.
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The findings of this research have the potential to significantly contribute to the understanding

of Lithuania’s E­commerce sector. This study can contribute to the academic literature on applying

machine learning to real­world classification problems by estimating the proportion of e­commerce

enterprises. Additionally, the approach developed in this thesis could be applied to other countries

or industries to classify businesses as e­shops or not e­shops based on the content of their websites.

The thesis is structured as follows: a comprehensive review of the literature is presented in

Section 1. Section 2 describes the methodology. The results are presented in Section 3. Finally,

conclusions and recommendations for further work are presented in Section 4.
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1 Literature review

In this section, a definition of e­commerce will be described, and the trends of the e­commerce

sector in Lithuania will be analyzed by reports of global institutions. Related works about websites

and text classification using machine learning methods will be reviewed in this section.

1.1 E­commerce description

According to Eurostat [10], an e­commerce company is defined as an enterprise that sells goods

or services electronically via the internet or other online platforms. Specifically, Eurostat refers to an

e­commerce company as one that conducts transactions through a website, mobile app, or auto­

mated data exchange, where orders are made electronically but payments and delivery can occur of­

fline. In its surveys and reports, Eurostat [11]measures e­commerce activity based on the percentage

of businesses that have made online sales during a given period. Typically, e­commerce companies

sell to individuals (B2C), other businesses (B2B) and public institutions through electronic channels.

Eurostat’s e­commerce statistics helps to track markets trends and notice changes and differences

in e­commerce sector in European Union. According to Eurostat’s methodology [10], e­commerce

sales are classified based on whether they occur through websites or apps (web sales) or Electronic

Data Interchange (EDI) for more structured and automated business transactions. Companies are

considered e­commerce businesses if they generate revenue through these digital sales.

1.2 E­commerce in Lithuania

According to the Eurostat database, in 2023, 39% of businesses were engaged in e­commerce,

i.e. selling goods or services over computer networks, in Lithuania. Lithuania has the highest number

of e­commerce enterprises in European Union (EU) countries in 2023, higher than Sweden (38%) and

Denmark (37%). As Figure 1 shows, the proportion of e­commerce companies in Lithuania increased

from 19% in 2014 to 39% in 2023. According to the Figure 1, the percentage of e­commerce com­

panies in Lithuania is steadily higher than in the EU. For example, in 2023, 39% of businesses were

engaged in e­commerce in Lithuania, while in the EU, only 29% of companies were e­commerce.
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1 figure. The proportion of E­commerce enterprises in Lithuania and EU 2014­2023. Source: Eurostat

According to the Portal for Official Statistics [31], 61% of large enterprises, 46% of medium­

sized enterprises and 35% of small enterprises were engaged in e­commerce in Lithuania in 2023.

The largest share of e­commerce enterprises was in information and communication (50%), trade

(48%) and professional, scientific and technical activities (39%).

The rise of e­commerce enterprises in recent years has transformed customers purchasing be­

haviour. According to a report by Eurostat [9], in 2023, 70% of individuals aged 16 to 74 in the Euro­

pean Union (EU) reported ordering goods or services online in the previous 12 months. This metric

increased from 60% in 2019 to 70% in 2023 in the EU.Most of the population is online shoppers in the

Netherlands, Denmark, and Sweden, where over 89% of individuals in these countries make online

purchases. Lithuania has also experienced significant e­commerce growth. The percentage of indi­

viduals making online purchases in Lithuania increased from 48% in 2019 to 61% in 2023. The main

reasons for this growth are improved digital infrastructure, including e­logistics and digital payment

systems and the COVID­19 pandemic’s impact on purchasing products online.

According to the report by Mordor Intelligence [24], the future of e­commerce in Lithuania is

very optimistic. The e­commerce market is forecasted to grow significantly in Lithuania. According

to the forecast, the compound annual growth rate (CAGR) will be 18% in 2024­2029. This growth

is driven by increased internet and smartphone usage, improved 5G infrastructure, and a more sig­

nificant consumer shift towards online shopping. Lithuania is positioned as a leading e­commerce

market in the Baltic region. In the retail market, the online sales share is 7.2% and will increase by

8.7% (pessimistic scenario) or 10.1% (optimistic scenario) by 2029 in Lithuania. According to the fore­

cast, the e­commerce sector will become a more important part of retail and Lithuania’s economy.

1.3 Related works

Enterprises classification into e­commerce and non­e­commerce based on their websites is a

challenging and essential task for policymakers and national statistics departments. The article by

De Fausti, Pugliese and Zardetto [7] from the Italian National Institute of Statistics shows how deep

learning can help accurately identify e­commerce websites from their web content. The study is es­

11



pecially relevant to this master’s thesis as it aims to differentiate e­commerce businesses from other

companies by analysingweb­scraped text. The authors describe the challenges of using unstructured

data for text classification tasks. Unstructured data does not have a predefinedmanner. Unlike struc­

tured data, which fits easily into tables or relational databases, unstructured data is more complex

due to its lack of a specific format or structure. Scraped data from websites is unstructured data.

Unstructured data often contains detailed information that is unavailable through structured data.

Unstructured data can potentially have very beneficial subtle details. For example, terms like ’shop­

ping cart,’ ’checkout,’ and ’online store’ could indicate that the company is e­commerce. The authors

developed a sophisticated deep learning model that uses convolutional neural networks (CNNs) with

word embeddings to process and classify large volumes of textual data extracted from companies’

websites. Typically, web­scraped texts are enormous and have a very low signal­to­noise ratio. The

researchers used an innovative False Positive Reduction (FPR) framework to increasemodel accuracy

by systematically increasing the signal­to­noise ratio. The authors constructed a multi­layer process­

ing pipeline that begins with transforming text into a grayscale image format using word embeddings

method. According to the results, the most accurate model achieved F1 score of 0.72, precision

of 0.73, recall of 0.72, and an accuracy of 0.89. This CNN model outperformed all the alternative

machine learning models already tested in the Italian National Institute of Statistics for the same en­

terprises classification task. The researches emphasize that websites scrapping andmachine learning

application to classify companies as e­commerce and non­e­commerce is a scalable and autonomous

method. Websites scrapping and classification algorithms can be repeated more frequently than the

surveys about companies could be done. Therefore, it allows the national statistics departments to

have more reliable and up­to­date statistics, enabling policymakers to make data­driven decisions.

Before De Fausti, Pugliese and Zardetto’s publication, the other researchers, Barcaroli et al. [1]

from the Italian National Institute of Statistics, published an article in 2016 about companies classifi­

cation as e­commerce and non­e­commerce using web scraping and machine learning models. This

study focuses on the dual aspects of improving data collection and processing. Themethodology sec­

tion outlines the combination of web scraping and machine learning processes to convert unstruc­

tured web data into structured formats that would be appropriate for classification models. In this

research, companies were included which answered the Italian National Institute of Statistics’ survey

about e­commerce status. Websites of these companies were scraped and textual data was used

to train classification models. It is a significant step forward for web scraping and machine learning

applications to get needed information instead of yearly surveys of companies. Logistic regression,

Naïve Bayes, Random Forest and SVMmodels were trained to classify companies as e­commerce and

non­e­commerce in this research. According to the results, SVM showed the best performance with

accuracy of 84% and F1 score of 59%. SVM was followed by Random Forest, which achieved an 83%

accuracy and an F1 score of 55%.

Mirończuk and Protasiewicz [23] provide an extensive overview of text classification method­

ologies using machine learning algorithms. The authors describe the steps of the text classification

pipeline, including data acquisition, data preprocessing, feature extraction, model training, and per­

formance evaluation. They discuss various feature extraction techniques, such as bag­of­words and
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TF­IDF. Thesemethods are essential for relevant features extraction, which can significantly influence

the accuracy of classification models. The review also explores several machine learning methods

for text classification, such as Support Vector Machines, Decision Trees, and Neural Networks. The

researchers compare these techniques and evaluate their suitability for different text classification

tasks. Mirończuk and Protasiewicz describe various performance evaluation metrics for text classi­

fication, such as accuracy, precision, recall, and F1 score. They suggest a nuanced model evaluation

method for text classification task, which includes the micro and macro averaging methods. Using

this approach, scientists can get a more comprehensive understanding of model performance across

multiple classes. The authors also highlight several challenges facing the field of text classification,

such as the need formodels to adapt dynamically to new, unseen data and the integration of domain­

specific knowledge into the classification process.

In the comprehensive study by Somesha et al. [29], the authors focused on the application

of deep learning techniques for effectively classifying websites as either phishing or non­phishing.

Three types of deep learning models were utilised in the study: Deep Neural Network (DNN), Long

Short­Term Memory (LSTM), and Convolutional Neural Network (CNN). Each model was chosen for

their specific capabilities in handling different data processing and pattern recognition aspects. The

DNN model was designed with multiple hidden layers. As a result of multiple hidden layers, the

model is able to learn from the complex and non­linear relationships in the data. Themain feature of

LSTM networks is capturing temporal dependencies and retaining information over long periods. It

was applied to recognise patterns in sequential data. The CNN model was creatively used to analyse

website text and structure. By viewing website data like an image, where text and HTML tags form

visual­like patterns, CNNs use their ability to process spatial data hierarchies to detect subtle signs

of phishing. According to the performance results, the DNN model achieved an accuracy of 99.52%,

LSTM reached 99.57%, and CNN reached 99.43%. The researchers emphasize the efficiency of using

deep learning in phishing detection and state that their trained models outperformmany traditional

machine learning algorithms.

Matoševic et al. [22] explore machine learning techniques to classify web pages based on their

search engine optimization (SEO) levels. The research shows how learning algorithms can effectively

assist in the SEO process, which is critical for improving web page visibility and ranking in search

engines. Traditional machine learning models, such as Logistic Regression, Decision Trees, Support

VectorMachines, Naïve Bayes, and K­nearest Neighbours (kNN), were trained and tested on a dataset

of 6000 web pages. SEO experts manually classified these web pages into three categories: low,

medium, and high level. It is a multi­class supervised classification task. The aim of this research

is to create a scalable SEO evaluation tool based on machine learning models. The features used

for training included both on­page elements like meta tags, keyword density, and structural HTML

features, which are essential in determining a page’s SEO score. According to the results, the accuracy

of models is between 55% and 70%. KNN model achieved the highest accuracy at 70%, followed by

Decision Trees at 68%.

Shaffi andMuthulakshmi [28] analyzemachine learning techniques to classify web pages based

on their SEO levels. The authors manually categorized web pages into three groups – low, medium,
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and high – based on SEO levels. The researchers combined expert knowledge with machine learning

algorithms to solve a multi­label supervised classification task. Decision Trees, Naive Bayes, KNN,

SVM, and Logistic Regression models were used in the research. The authors used the ensemble

approach, combining these models to maximize their strengths while reducing their weaknesses.

For example, the main advantage of decision trees is transparency, SVM offers robustness, Naïve

Bayes offers speed, as a result, combining them ensures that the classification system is accurate and

efficient. The results showed that the accuracy of models is between 57% and 68%.

Markkandeyan and Indra Devi [21] explore advanced feature selectionmethods to achieve high

accuracy and efficiency of machine learning algorithms for web page classification. The authors de­

veloped a technique which effectively reduces the negative impact of high dimensionality of web

page data. Web scraped data is usually high dimensional, and its preprocessing is a challenging task.

The authors evaluate several machine learning models, their advantages and their capabilities for

web page classification. Support Vector Machines, K­Nearest Neighbors, Naïve Bayes and Decision

Trees models were trained to classify web pages. This paper provides a comprehensive methodol­

ogy for applying machine learning to solve real­world problems in web classification. The advanced

feature selection and machine learning techniques explored in this study directly apply to classifying

e­commerce enterprises. Thismethodological approach improves the speed and accuracy of the clas­

sification and offers scalable solutions that can adapt to the dynamic nature of e­commerce content

on the web.

Gupta and Bhatia [13] describe a detailed design of an ensemble model that combines the

strengths of advanced neural network models to classify web pages. The authors introduced an

innovativemodel that combines the Bidirectional Encoder Representations fromTransformers (BERT)

model and a deep inceptionnetworkwith residual connections. This advanced architecture is created

to maximize the performance of supervised text classification task. The BERT model is selected for

its capability to understand the context of every word in a sentence by looking at the words that

come before and after it. This ability is beneficial for categorizing web pages, where the context of

words is essential. BERT is the first layer in this ensemble model, processing the text to a vector and

transforming the text into a more appropriate data type for classification. After the BERT model, the

inception network with residual connections is used to extract complex features. This network works

simultaneously on multiple scales, extracting minor and significant features, which is essential for

analyzing web pages with different layouts and structures. The training process involved fine­tuning

the BERT layer with web­specific data to adapt its pre­trained general language understanding to the

specialized supervised task of web page classification. The model was optimized using regularization

and batch normalization to improve training dynamics andminimize the risk of overfitting. According

to the results, the accuracy of the ensemble model is 95%, while standalone deep learning models

like CNNs and traditional machine learning models like SVM and Random Forest achieve 86­90%

accuracy. In conclusion, this ensemble model, constructed of the BERT model and deep inception

network with residual connections, significantly outperformed traditional machine learning models

and standalone deep learning models.

González­Carvajal and Garrido­Merchán [12] analyze the effectiveness of the BERTmodel com­
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pared to traditional machine learning methods for text classification. The authors focused on sen­

timent analysis, classifying consumers’ reviews into positive, negative, and neutral categories. The

dataset of 50000 reviews was used in the sentiment analysis, where 80% of cases were split for train­

ing and 20% for testing. The researchers used a standard data preprocessing methodology, where all

text was converted to lowercase, and punctuationmarks were removed. TF­IDF method was applied

for features extraction. In the sentiment analysis, Bert model and traditional machine learning mod­

els, such as Logistic regression, Naïve Bayes and Support Vector Machines were trained to classify

customers’ reviews. According to the results, the BERT model achievied 94% accuracy and signifi­

cantly outperformed traditional machine learning models across various metrics, including accuracy,

precision, recall, and F1 score. The researchers emphasize that the main reason why BERT model

achieved better performance resuls is BERTmodel’s ability to understand complex language nuances

better than traditional methods, which is a crucial advantage for sentiment analysis where the con­

text can significantly influences classification accuracy.

Roumeliotis et al. [27], in their article, solve binary supervised text classification task by cat­

egorizing articles as genuine and fake news. The dataset, used in a research, contains 72134 news

articles, where 48% of them are labeled as real and 52% as fake. 80% of articles were split for train­

ing and 20% for testing. Data preprocessing includes text normalization, stemming, lemmatization

and tokenization. The advanced machine learning models were applied for classification task, such

as Convolutional Neural Networks (CNN), BERT, and Generative Pre­trained Transformers (GPT). Each

model was selected for specific features. According to the results, the BERT model showed the best

performance in classifying articles into genuine and fake news. Pre­trained and fine­tuned for this

task, the BERT model achieved higher results in accuracy, precision, recall, and F1 score than CNNs

and GPT models.
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2 Estimation of the proportion of e­commerce enterprises

The main goal of the analytical part is to train machine learning models to classify companies

as e­commerce and non­e­commerce based on the text extracted from companies’ websites and

estimate the proportion of e­commerce enterprises in Lithuania. The objectives of the analytical

part are:

1. Manually classify enterprises as e­commerce and non­e­commerce enterprises.

2. Web scrape enterprises’ websites to extract the text from their main pages of websites.

3. Train machine learning models to classify enterprises as e­commerce and non­e­commerce

enterprises based on the text extracted from their websites.

4. Compare the performance of machine learning models.

5. Estimate the proportion of e­commerce enterprises in Lithuania.

2.1 Data

In this section, the structure of the data and the data collection process are described, in­

cluding the web scrapping process and manual companies’ classification as e­commerce and non­e­

commerce companies based on their websites. The State Data Agency (Statistics Lithuania) provided

a list of 10830 companies which operate in Lithuania and have websites.

All enterprises from the list were manually classified as e­commerce and non­e­commerce to

have actual values (or labels) of e­commerce status. Enterprises were manually classified to know

the real proportion of e­commerce enterprises in a population of scraped websites. Actual values of

e­commerce status are also needed to train machine learning models because supervised learning

models must know which enterprises are e­commerce and which are non­e­commerce enterprises.

In that way, models try to learn different patterns from the text, which are attributes of e­commerce

or non­e­commerce companies. Actual values of companies’ e­commerce status are also needed for

testing models to check how accurately models predict which companies are e­commerce compa­

nies and which are not. Companies has been classified according to Eurostat e­commerce enterprise

definition that e­commerce enterprise is defined as an enterprise that sells goods or services elec­

tronically via the internet or other online platforms. Themanual classification involved systematically

examining each enterprise’s website to determine whether it engaged in e­commerce according to

the definition provided. Each website was visited directly to determine whether it offers an online

ordering system. Key indicators of an e­commerce company are a shopping cart, product catalogs

and a checkout.

Web scrapping methods were used to extract text from companies’ websites. As it is defined

by Barcaroli et al. [2], “Web scraping is the process of automatically collecting information from the

WorldWideWeb based on tools (called scrapers, internet robots, bots, etc.) that navigate and extract

a website’s content and store scraped data in local databases.” Websites were scrapped using the
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Python programming language and the Beautiful Soup library, which is dedicated to web scrapping.

This Python library was selected because of its ability to parse hypertext markup language (HTML)

and extensible markup language (XML) documents. 7381 websites were scrapped and the text from

their main pages was collected. According to Barcaroli et al. [1], the main reasons for not scraping

all the websites are:

• Website system restrictions on web scraping: websites implement anti­scraping tools, such as

the completely automated public turing test to tell computers and humans apart (CAPTCHA),

IP bans, or user­agent verification, which block automated scraping tools.

• The incorrect URLs: If the URLs in a list were incorrect or outdated, the scraper did not scrape

these websites.

• Errors with website servers: the most frequently occurring issues are temporary server issues,

slowwebsite response time, server overloads, connectivity issues, or incorrect request format­

ting.

• Technologies not supported by the parser: If a website uses technologies like ADOBE Flash

technology, which is not typically supported by standard HTML parsers, a scrapping tool cannot

scrape such a website.

After web scraping and manual websites classification, a dataset contains the text from a web­

site and a label of e­commerce status. Each row represents a particular company in the dataset. As a

result, the dataset contains information of 7381 scraped companies. According to themanual inspec­

tion, 15% of the companies are e­commerce companies, and 85% are non­e­commerce companies.

Data was split into training and testing sets: 80% of enterprises were split into training set and 20%

of them into testing set.

2.2 Data preprocessing

Text pre­processing and feature extraction are crucial steps for text classification. Web­scraped

text fromwebsites is noisy, and the data is unstructured. Most extracted text hasmany spaces, empty

lines, and unnecessary words such as stop words, misspellings, slang, etc. Noise and unnecessary

features can negatively impact the performance of text classification models. In this section, the

data preprocessing is described.

2.2.1 Text normalization

Web­scraped text data comes from different sources and contains inconsistent capitalization.

All characters in a text were converted to lowercase. This standardization method is performed to

reduce the complexity of the data and to treat words with the same alphabetic characters as iden­

tical regardless of how they appear in the original text [19]. For example, the words ”Checkout”,

“CHECKOUT” and ”checkout” would all be converted to ”checkout”.

17



Removing stop words and punctuation is a critical preprocessing step in text analytics. Stop

words are common words that carry minimal useful information for text classification. Stop words

in the Lithuanian language typically are pronouns and prepositions, such as: and, or, but, if, that,

because. In many related works about text classification, pronouns and prepositions are removed

because they appear frequently in the language but do not significantly contribute to the under­

standing of the text’s content [19]. Punctuation does not have significant information by itself and

is just noise for text classification algorithms. Therefore, all punctuation marks, such as commas,

periods, exclamation marks, and question marks, are removed from the text [2].

The literature on text classification using NLP methods recommends removing numbers from

the text. Removing numbers from text data in the context of classifying websites as e­commerce

and non­e­commerce can be both useful and not. There are arguments for numbers removing and

against it. The main reason to keep numbers is that numbers could have the important information,

for example, prices and quantities, which could be highly relevant for distinguishing e­commerce

from non­e­commerce sites. The main reasons to remove numbers are:

• Noise and dimensionality reduction: On e­shop websites, there are many different prices, but

the prices are different between e­shops. Every unique price would be treated as a unique

token. Therefore, numbers would increase the dimensionality of the feature space. This would

lead to a sparse matrix with many features without significant value [16].

• Faster computations: removing numbers from the text reduces the number of features, which

leads to faster computation. Computation time and the computational resources needed to

accomplish a task are crucial when dealing with large datasets [26].

• Higher accuracy of an experiment: an experiment was accomplished with a smaller sample.

Machine learningmodels were trained to classify websites as e­commerce or non­e­commerce

on two data samples, excluding and including numbers in a text. The experiment results

showed higher accuracy and F1 score of models trained on the data sample with removed

numbers.

For these reasons, the final decision was to remove numbers from the data. This reduces noise and

dimensionality and improves the speed of computations.

2.2.2 Tokenization

After removing stop words, numbers, and punctuation, the other step in text preprocessing

is tokenization. Unstructured text data, such as text on a website, lacks a predefined structure that

machines can easily interpret. Tokenization breaks down the text into smaller units called tokens

[17]. For this classification task, tokens are words, and the text is split into words. For example, the

text from awebsite is “products categories discounts recommendations cart”. In this case, the tokens

are as follows:

{”products”, ”categories”, ”discounts”, ”recommendations”, ”cart”}
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One primary reason for tokenization is to convert textual data into a numerical representation

that can be processed by machine learning algorithms. Tokens serve as numeric representations

of text and are used as features in machine learning pipelines. These features capture important

linguistic information [17]. For example, in text classification, the presence or absence of specific

tokens can influence the prediction of a particular class, e­commerce or non­e­commerce.

2.2.3 Term Frequency­Inverse Document Frequency

The Term Frequency­Inverse Document Frequency (TF­IDF) method is one of the most widely

used techniques in NLP for converting textual data into numerical features. It transforms text into a

format that machine learning models can effectively use, making it particularly useful for text classi­

fication tasks [20].

The TF­IDFweightingmethod has twomain components: Term Frequency (TF) and InverseDoc­

ument Frequency (IDF). TF measures how often a term t appears in a document d in equation (1). TF

value increases with the frequency of the term t within a document d, emphasizing commonly used

words. IDF measures the frequency of a term t across a collection of documents D. It is calculated

as the logarithm of the ratio of the total number of documents to the number of documents contain­

ing the term in equation (2). The IDF value decreases for common terms across many documents,

giving higher weight to less frequent but more meaningful words. The TF­IDF weight for a term t in

a document d is calculated by multiplying TF and IDF scores, as in equation (3) [20].

TF(t,d) =
Number of times term t appears in document d

Total number of terms in document d
(1)

IDF(t,D) = log

(
Total number of documents

Number of documents containing term t

)
(2)

TF­IDF(t,d,D) = TF(t,d)× IDF(t,D) (3)

TF­IDF is the essential method for text classification tasks because it helps to identify terms that

are more relevant to individual documents while filtering out common words that are less informa­

tive. The TF­IDFmethod, whichweights terms based on their importance, improves the performance

of machine learning models, making them more accurate and efficient in processing large amounts

of textual data.

In data preprocessing, the TF­IDF method transforms the text from company websites into nu­

merical features. TF­IDF method is beneficial for features extraction. The text of each company web­

site, such as product descriptions and general business information, is analyzed to calculate TF­IDF

scores for each word. For example, words like “shopping cart,” “checkout,” and “delivery”might have

high TF­IDF scores in e­commerce websites but low scores in non­e­commerce sites [20]. Words that

are common across all websites, like “about” or “contact,” will have low IDF values and thus receive

lower weights. This helps in reducing the noise in the dataset and ensures that the model focuses on

terms that are more relevant to classifying websites as e­commerce or non­e­commerce [17]). The

TF­IDF scores are stored in a sparsematrix format, where each row corresponds to a single document
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(In this case, a text from a website) and each column corresponds to unique term (word) from the

vocabulary of all scrapped websites. The values in the matrix are the TF­IDF scores for each word in

each document. These scores indicate the importance of each word within a particular document

relative to all documents. This sparse matrix is used for training machine learning models.

2.3 Models for websites classification

A task to classify companies as e­commerce and non­e­commerce based on scraped text from

their websites is a supervised binary text classification task. As Jurafsky and Martin [17] wrote: “in

supervised machine learning, there is a data set of input observations, each associated with some

correct output (a ‘supervision signal’). The goal of the algorithm is to learn how to map from a new

observation to a correct output.” In this section, themethodology of appliedmachine learningmeth­

ods are provided.

2.3.1 Logistic Regression

Logistic regression is one of the simplest algorithms used for text classification. Despite this

fact, it is one of the most widely used methods in related works about text classification. Logistic re­

gression is a probabilistic model used for supervised machine learning. Logistic regression estimates

the probability of a given input belonging to one of two classes, based on a set of features extracted

from the input data [17].

According to the methodology of James et al. [16], the independent variables are linearly re­

lated to the logarithmic of odds (log odds), which is the dependent variable of logistic regression, as

defined in the following equation:

log(odds) = log

(
P

1− P

)
(4)

The linear relationship between independent variables and log odds can be expanded and defined

as:

log

(
P

1− P

)
= β0 + β1x1 + · · ·+ βnxn (5)

where P is the probability of specific event happening, β0 is the intercept, βi is the coefficient associ­

ated with the independent variable xi. By exponentiating both sides of the equation (5), we obtain:(
P

1− P

)
= eβ0+β1x1+···+βnxn (6)

By converting odds to a simple probability function, finally, the logistic regression is defined as fol­

lows:

P =
eβ0+β1x1+···+βnxn

1 + eβ0+β1x1+···+βnxn
(7)
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The maximum likelihood estimation is usually used to estimate logistic regression coefficients. The

likelihood function is defined as follows:

l(β0, βi) =
n∏

i=1

p(xi)
yi(1− p(xi))

1−yi (8)

where xi is the value of independent variable, yi is the binary outcome for observation i, n is a num­

ber of total observations, and p(x) is the probability of the dependent variable. The estimates of

coefficients are chosen to maximize this likelihood function.

According to James et al. [16], logistic regression, for text classification task, estimates the

probability that a target variable belongs to a particular category. For binary classification, such as

distinguishing e­commerce from non­e­commerce enterprises, the model predicts the probability

P (Y = 1|X) where Y is a dependent variable andX are independent variables.

The final classification decision [17] using logistic regression is made according to algorithm in

equation (9). The threshold is set at 0.5. For a given x, the predicted class is 1 (e­commerce) if the

probability P (y = 1|x) is more than 0.5, and class 0 (non­e­commerce) otherwise.

decision(X) =

1 if P (Y = 1|X) > 0.5

0 otherwise
(9)

Logistic regression algorithm is discussed in more detail by Jurafsky and Martin [17], James et

al. [16]. The features derived from TF­IDF were used for the logistic regression classification model.

Python’s sklearn library has been used for the logistic regression implementation.

2.3.2 Naïve Bayes

The Naïve Bayes classifier is a fundamental statistical approach in machine learning. The Naïve

Bayes classifier is a probabilistic model based on Bayes’ theorem. This method is effective for text

categorization tasks due to its simplicity and effectiveness, even with large feature spaces in text data

[20].

According to a methodology by Jurafsky and Martin [17], for text classification using Naïve

Bayes algorithm, a class is defined as c, instead of y as output variable and d is defined as docu­

ment instead of x as input variable. In this case, document di is a vector of website i from TF­IDF.

There is a training set of N documents that each is with a class {(d1, c1), . . . , (dN , cN)}. Naïve Bayes
[17] is a probabilistic classifier, meaning that for a document d, the classifier returns the class ĉwhich

has the maximum posterior probability given the document. In equation (10) ĉmeans the estimate

of class and argmax mean an operation that selects class c that maximizes a function (in this case

the probability P (c | d)).

ĉ = argmax
c∈C

P (c | d) (10)

The framework of Naïve Bayes classification method [17] is to use Bayes’ rule to transform equation
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(10) into other probabilities that have some useful properties. By applying Bayes’ theorem, equation

(10) can be defined as in equation (11):

ĉ = argmax
c∈C

P (c | d) = argmax
c∈C

P (d | c)P (c)

P (d)
(11)

According to Jurafsky and Martin [17], equation (11) can be simplified by dropping the denominator

P (d). This is possible because we will be computing
P (d|c)P (c)

P (d)
for each possible class. But P (d) does

not change for each class. Therefore, we can choose the class that maximizes this simpler formula:

ĉ = argmax
c∈C

P (c | d) = argmax
c∈C

P (d | c)P (c) (12)

As Jurafsky and Martin described [17], we compute the most probable class ĉ given some document

d by choosing the class which has the highest product of two probabilities: the prior probability of

the class P (c) and the likelihood of the document P (d | c), as in the following equation:

ĉ = argmax
c∈C

P (d | c)︸ ︷︷ ︸
likelihood

P (c)︸︷︷︸
prior

(13)

To apply the Naïve Bayes classifier to text [17], we use each word in the documents as a feature.

The features derived from TF­IDF were used for the classification model. Naïve Bayes algorithm is

discussed in more detail by Jurafsky and Martin [17]. Python’s sklearn library has been used for the

Naïve Bayes implementation.

2.3.3 Support Vector Machines

Support Vector Machines (SVM) are a powerful and robust supervised classification algorithm.

Vapnik [34] introduced SVM as a kernel­based machine learning model. SVM algorithm is based on

finding an optimal line called hyperplane that maximizes the distance between classes.

According to a methodology by Cervantes et al. [4], the hyperplane that separates classes with

maximum distance between them is defined in equation.

wTxi + b = 0 (14)

where w is the weight vector, x is the vector of features, and b is the bias. In an example of linear

classification, as 2 figure. shows, there are data points of positive class (in this case e­commerce

companies, depicted as red circles) and negative class (in this case non­e­commerce companies, de­

picted as yellow cubes). The hyperplane with the maximummargin between classes is depicted as H

in 2 figure. The lines that are adjacent to the optimal hyperplane (H1 and H2 in 2 figure.) are known

as support vectors, as these vectors run through the data points that determine the maximal mar­

gin [14]. The distance between the hyperplane and closest data points from different classes to the

hyperplane is called margin.
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2 figure. Optimal SVM classifier [4]

According to a methodology by Cervantes et al. [4], the geometric margin of x+ and x− is

defined as in following equation:

γi =
1

2

(
〈w, x+〉
‖w‖

− 〈w, x−〉
‖w‖

)
(15)

where:

• x+ refers to the data point on the positive side of the hyperplane, which is closest to the hy­

perplane.

• x− refers to the data point on the negative side of the hyperplane, which is closest to the

hyperplane.

Simplifying this expression, we have:

γi =
1

2‖w‖
(
〈w, x+〉 − 〈w, x−〉

)
(16)

Thus, the margin can be expressed as:

γi =
1

‖w‖
(17)

According to a methodology by Cervantes et al. [4], the objective of the SVM is to maximize the

geometric margin while ensuring that all samples are correctly classified. This leads to the following

optimization problem:

min
w,b

‖w‖2

subject to:

yi((w, xi) + b) ≥ 1, ∀i

(18)
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where yi is the actual value of class. We change (18) to the problem using the Lagrange formulation.

The conditions given in equation (18) will be replaced by Lagrangemultipliers, which aremuch easier

to handle [4]. In this way, the Lagrangian is defined as following:

L(w, b, α) =
1

2
‖w‖2 −

l∑
i=1

αiyi((w · xi) + b− 1) (19)

where αi are the Lagrange’s multipliers.

The SVM algorithm can be applied to both linear and nonlinear classification tasks. Much of

the data in real­world scenarios is not linearly separable, and that is where nonlinear SVMs are use­

ful. When data is not linearly separable, kernel functions are used. The kernel helps to reduce the

complexity, making the computation more efficient [14]. When data is not linearly separable, kernel

functions transform it to a higher­dimensional space to enable linear separation [4]. In this case, clas­

sifying companies as e­commerce and non­e­commerce, the algorithm tries to find the hyperplane

in N­dimensional space. Several different kernels can be applied to classify data, such as the linear

kernel, the Polynomial kernel, the Radial Basis Function (RBF) kernel and the Sigmoid kernel. The

best accuracy results of website classification were achieved using the RBF kernel, which is defined

as:

K(x, x′) = exp
(
−γ‖x− x′‖2

)
(20)

where the kernel’s parameter γ is responsible for overfitting. When the value of γ increases, the

probability of overfitting increases and vice versa. In this case, SVM uses the feature vectors derived

from the TF­IDF representation ofwebsite texts to classify enterprises’ websites into e­commerce and

non­e­commerce. The SVM model’s ability to handle large and sparse datasets and its effectiveness

in high­dimensional spaces makes it suitable for websites classification task. The kernels allows to

SVM to reduce the complexity, which provides flexibility and robustness to the model.

SVM algorithm is discussed in more detail by Cervantes et al. [4]. Python’s sklearn library has

been used for the SVM implementation. The features derived from TF­IDF were used for the clas­

sification model. Hyperparameters were fine­tuned to improve the performance of an SVM model.

Optimal hyperparameters were found using grid search and cross­validation methods [4, 14].

2.3.4 Extreme Gradient Boosting

Extreme Gradient Boosting (XGBoost) is an efficient and scalable machine learning method

which is suitable for text classification task like websites classification as e­commerce and non­e­

commerce. Developed by Chen and Guestrin [6], XGBoost is an advanced method of gradient boost­

ing with the same general framework. It combines weak learner trees into strong learners by adding

up residuals. It is known for its speed, efficiency and ability to scale well with large datasets.

As Figure 3 shows, XGBoost, like other boosting methodologies, starts with a weak learner to

make predictions. The first decision tree in gradient boosting is called the base learner. Next, new

trees are created additively based on the base learner’s mistakes. The algorithm then calculates the

residuals (errors in a Figure 3) of each tree’s predictions to determine how far themodel’s predictions
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were from reality. Residuals are the difference between themodel’s predicted and actual values. The

residuals are then aggregated to score the model with a loss function [15].

3 figure. Extreme gradient boosting model schema

According to Chen and Guestrin [6], XGBoost operates by iteratively training decision trees,

where each subsequent tree minimizes the residual errors of its previous tree. The optimization

objective for XGBoost includes a regularized loss function as follows:

L(φ) =
n∑

i=1

l(yi, ŷi) +
K∑
k=1

Ω(fk) (21)

where:

• l(yi, ŷi) is the loss function;

• Ω(fk) is the regularization term to penalize model complexity;

• ŷi represents predictions;

• fk denotes the k­th decision tree.

The regularization term is defined as:

Ω(f) = γT +
1

2
λ

T∑
j=1

‖w‖2 (22)

where γ is complexity term, T is the classification’s tree number of leaves, λ is penalty parameter

and ‖w‖2 is the output of each leaf node.

Hyperparameters tuning is the optimization process of machine learning algorithms. Grid

search and cross­validation methods are used to find the best hyperparameters training XGBoost

model. Here is a description of hyperparameters for XGBoost decision trees:

• Learning rate determines how the boosting algorithm learns from each iteration. A lower value

of learning rate means slower learning, as it scales down the contribution of each tree in the

ensemble, therefore it helps prevent overfitting. A higher value of learning rate speeds up

learning, but it may lead to overfitting. A value of learning rate should be between 0 and 1

[15].
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• The number of trees to be built in the ensemble: each boosting round adds a new tree to the

ensemble and themodel slowly learns to correct the errorsmade by the previous trees. It spec­

ifies the complexity of the model and influences both the training time and the model’s ability

to perform on unseen data. Increasing the value of the number of trees typically increases the

complexity of the model, as it allows the model to capture more sophisticated patterns in the

data. However, adding too many trees can lead to overfitting [15].

• Gamma (also known as Lagrange multiplier) controls the minimum amount of loss reduction

required to make a further split on a leaf node of the tree. A lower value means XGBoost

stops earlier but may not find the best solution, while a higher valuemeans XGBoost continues

training longer, potentially finding better solutions, but with a higher risk of overfitting. There

is no upper limit for gamma, but the values of gamma over 10 are considered high [15].

• Maximum depth represents how deeply each tree in the boosting process can grow during

training. A tree’s depth refers to the number of levels or splits it has from the root node to the

leaf nodes. Increasing this value will make the model more complex and more likely to overfit

[15].

XGBoost model is discussed in more detail by Chen and Guestrin [6]. The sparse matrix gen­

erated using the TF­IDF preprocessing method was used in XGBoost model training and testing.

Python’s xgboost library has been used for the XGBoost implementation.

2.3.5 BERT model

Bidirectional Encoder Representations from Transformers (BERT), is a powerful natural lan­

guage processing (NLP) model developed by Google that uses a deep neural network architecture

[25]. The BERT model architecture is based on a deep neural network called a transformer, which

is different from traditional NLP models that process one word at a time. Transformers can process

the entire text input all at once, which helps them to capture the relationships between words and

phrasesmore effectively [25]. BERT uses amulti­layer bidirectional transformer encoder to represent

the input text in a high­dimensional space [25]. Differently from other machine learning models in

this thesis, BERT also looks at the words that come before and after for each word and this is the

essence of bidirectional training. This context­awareness is a key aspect of why BERT usually out­

performs traditional machine learning models [12]. BERT is a pre­trained model, which means it can

be trained on massive amounts of text data, such as books, articles, and websites. BERT model can

develop a deep understanding of the underlying structure and meaning of language. A pre­trained

BERT can be fine­tuned for specific tasks, which allows it to adapt to the specific nuances of the task

and improve its accuracy [25].

The overall structure of the BERT model is shown in Figure 4. According to the methodology of

Pham [25], firstly, the text is being preprocessed and tokenized. The sparse matrix generated using

TF­IDF is not used for BERTmodel, opposite as for othermachine learningsmodels used in this thesis.

Despite that, the text was normalized, stop words, numbers and punctuation marks were removed
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from the text. Text should be tokenized specifically for BERTmodel. BERT requires specific formatting

inputs, including special tokens CLS, which is added at the beginning of the text, and SEP, which is

added at the end of the text for classification tasks [32]. After tokenization, features are extracted,

BERT transforms tokens into embeddings. This process involves converting each token into a vector

that represents both the token itself and its context within the sentence. These embeddings are

dynamically refined through the layers of the BERT model [18]. When the text is converted into

embeddings by the BERT encoder, these embeddings are passed to a classification layer. This layer

typically consists of a few additional neural network layers. For text classification tasks, BERT model

has the final hidden layer h [32]. A softmax classifier is added to the top of BERT to predict the

probability of class c, as follows:

P (c|h) = softmax(Wh) (23)

where:

• P is the probability of the class c given the hidden state h;

• c is the class;

• h is the final hidden layer output of the BERT model;

• W is the task­specific parameter matrix;

• softmax function transforms a previous layer’s output into a probability.

4 figure. The structure of BERT model [33]

A pre­trained Bert model has been fine­tuned to classify websites as e­commerce or non­e­

commerce companies. The base Bertmodelwas usedwhich contains an encoderwith 12 transformer
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blocks, 12 self­attention heads, and the hidden size of 768. The model was fine­tuned using the text

scraped from the companies’ websites. Fine­tuning allowed the model to learn the unique language

patterns and features of these e­commerce and non­e­commerce categories, increasing classification

accuracy. To find the best hyperparameters for Bertmodel, grid search, and cross­validationmethods

are used. Here is a description of hyperparameters for Bert model:

• Learning rate: a lower value of learning rate means slower learning, therefore it helps prevent

overfitting. A higher value of learning rate speeds up learning, but it may lead to overfitting

[8].

• Epochs–the number of times themodel has seen the entire dataset. If the number of epochs is

too small, themodelmay not learn the underlying patterns in the data, resulting in underfitting.

If the number of epochs is too large, the model may overfit the training data, leading to poor

generalization performance on unseen data [8].

• Batch size–the number of training examples utilized in one iteration of model training. The

batch size is a trade­offbetween accuracy and speed. Large batch size can lead to faster training

times but may result in lower accuracy and overfitting, while smaller batch sizes can provide

better accuracy, but can be computationally expensive and time­consuming [8].

• Warmup steps–the learning rate gradually increases to the initial specified learning rate over

a number of warmup steps. This approach can help stabilize the model’s training [35].

• Weight decay adds a regularization term to the loss function to prevent theweights from grow­

ing too large, which helps in controlling overfitting [35].

The methodology of the BERT model is presented by Pham [25] and Devlin [8]. Python’s trans­

formers library and PyTorch library were used for the BERT model implementation. Google Colab’s

GPU resources were utilized for Bert model training.

2.4 Performance evaluation metrics

This section describes metrics commonly used to evaluate the performance of text classifica­

tion models. Performance measures generally evaluate specific aspects of classification task perfor­

mance. Therefore, understanding what exactly each of these metrics represents and what kind of

information they are trying to convey is crucial for comparability [19]. The performance of models

will be evaluated and compared using the most common performance metrics in the analyzed re­

lated works, including accuracy, precision, recall, and F1 score. Confusion matrix, shown in Figure

5, is a performance measurement for machine learning classification. Let TP, FP, TN, FN denote true

positive, false positive, true negative, and false negative, respectively.
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5 figure. Confusion matrix

Accuracy is the most used performance metric for evaluating a binary classification model. It

measures the proportion of correct predictions made by the model out of all the predictions, as de­

noted in equation (24). A high accuracy score indicates that themodel is making a large proportion of

correct predictions, while a low accuracy score indicates that themodel is making toomany incorrect

predictions [19].

Precision is a metric that measures the proportion of true positive (TP) instances among the

instances that are predicted as positive by the model, as denoted in equation (25). In other words,

precision measures the accuracy of the positive predictions made by the model. In this case, a high

precision score indicates that the model accurately identifies e­commerce enterprises. In contrast, a

low precision score indicates that the model is making too many false positive (FP) predictions [19].

Recall, also known as sensitivity, is a performance metric that measures the proportion of pos­

itive instances that a model correctly identifies out of all the actual positive instances, as denoted in

equation (26). Recall measures the proportion of true positive (TP) instances among all the actual

positive instances. In this case, recall measures the model’s ability to correctly identify e­commerce

enterprises among all the actual e­commerce enterprises. A high recall score indicates that themodel

accurately identifies a large proportion of e­commerce enterprises [19].

F1 score is a performance metric that combines precision and recall, providing a comprehen­

sive evaluation of a binary classification model’s performance. It measures the harmonic mean of

precision and recall, giving equal importance to both metrics, as denoted in equation (27). This met­

ric balances the importance of precision and recall, and is preferable to accuracy for class­imbalanced

datasets. The dataset of websites is unbalanced, because only 15% of enterprises are identified as

e­commerce. Therefore, the F1 score is especially useful for model evaluation in this master’s thesis

[19].

accuracy =
TP + TN

N
(24)

precision =
TP

TP + FP
(25)
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recall =
TP

TP + FN
(26)

F1score = 2× Precision×Recall

Precision+Recall
(27)

whereN is the total number of cases.

Performance evaluation metrics are calculated on testing set, when machine learning models

are already trained. Thesemetrics are crucial for evaluating the performance of classificationmodels.

Performance measures help to understand their strengths and weaknesses in classifying websites

into e­commerce and non­e­commerce enterprises.

2.5 The Inverse Probability Weighting Estimator

Machine learning models have been trained to classify enterprises as e­commerce and non­

e­commerce based on the text from their websites. However, the proportion of e­commerce en­

terprises in Lithuania cannot be calculated just by applying the trained models and classifying all

enterprises in a dataset because not all enterprises’ websites were scraped. We do not have scraped

data on the whole population of enterprises in Lithuania. That is, there is only a non­probability sam­

ple, which has been used to estimate the proportion of e­commerce enterprises in Lithuania. It is a

non­probability sample because the mechanism of how enterprises are included in a sample is un­

known. According to Burakauskaitė and Čiginas [3], the inverse probability weighting (IPW) estimator

has been applied to estimate the population proportion of e­commerce enterprises in Lithuania.

Let sA be the non­probability sample and Rk = I(k ∈ sA) be the indicator variable for a unit

k ∈ U selected to the sample sA. The probabilities in equation (28) are called the propensity scores,

where the subscript q refers to the propensity score model.

πA
k = Eq(Rk | xk) = Pq(Rk = 1 | xk), k ∈ U , (28)

where xk represents the set of independent variables used in the logistic regression model to esti­

mate propensity scores.

According to [3, 5], the non­probability sample itself does not represent the target population,

and naive estimators based on it are typically biased. The main problem is the unknown selection

mechanism for a unit to be included in the sample. Probabilities (28) are analogous to the inclusion

into the sample probabilities πk (for probability samples) since they describe the inclusion into the

sample sA. The propensity scores π
A
k , k ∈ sA, need to be estimated before using them to weigh the

units of the non­probability sample. In this case, the propensity score is the probability for a certain

enterprise to be included in the sample. This approach allows to make more accurate inferences

about the population based on the non­probability sample. IPW estimator can correct the sample

selection bias efficiently if the propensity score model is well­specified.

We model the propensity scores πA
k = Pq(Rk = 1 | xk) parametrically using the inverse logit

function
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πA
k = π(xk, θ) =

exp(x′
kθ)

1 + exp(x′
kθ)

, (29)

where θ is the model parameter with the unknown true value θ0. The propensity scores π̂A
k are

modeled by the logistic regressionmodel and obtained using themaximum likelihoodmethod, where

θ̂ maximizes the log­likelihood function

l(θ) =
∑
k∈sA

log

(
π(xk, θ)

1− π(xk, θ)

)
+
∑
k∈U

log(1− π(xk, θ)) =
∑
k∈sA

x′
kθ −

∑
k∈U

log(1 + exp(x′
kθ)).

where sA represents a non­probability sample from the population U . The maximum likelihood es­

timator θ̂ is found by solving the score equations as follows

U(θ) =
∂

∂θ
l(θ) =

∑
k∈U

(Rk − π(xk, θ))xk = 0.

The estimated propensity scores are given by

π̂A
k = π(xk, θ̂), k ∈ SA (30)

The known population size isN . According to [3], the population parameter is computed using IPW

estimator of the population proportion µ, which is given by

µ̂IPW =
1

N̂A

∑
k∈sA

yk
π̂A
k

, where N̂A =
∑
k∈sA

1

π̂A
k

. (31)

where yk is the indicator of e­commerce, N̂A
k is the estimated size of population. The variance of

the estimator can be estimated by

v̂IPW =
1

(N̂A)2

∑
k∈sA

(
1− π̂A

k

)(yk − µ̂IPW

π̂A
k

− b̂′xk

)2

, (32)

where

b̂′ =

{∑
k∈sA

(
1

π̂A
k

− 1

)
(yk − µ̂IPW )x′

k

}{∑
k∈U

π̂A
k (1− π̂A

k )xkx
′
k

}−1

,

given the non­probability sample sA.
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3 Results

In this section, the performance of classification models will be evaluated, including a discus­

sion of the optimal hyperparameters for each model. Secondly, the application of the logistic regres­

sion model for propensity scores will be reviewed. Finally, the estimated proportion of e­commerce

enterprises in Lithuania will be presented.

3.1 Hyperparameters

Machine learning models were trained to classify companies into e­commerce and non­e­

commerce categories based on text data from their websites. Classification was coded in Python

3 programming language using Jupyter Notebook. Codes were run on Google Colab environment.

Cross­validation and Grid search methods were used for hyperparameters optimization. The optimal

hyperparameters were found for SVM, XGBoost and BERT models. Optimal hyperparameters are

presented in Table 1.

SVM was fine­tuned using The Radial basis kernel function. According to the results, the most

optimal parameters of SVMare gamma set to 0.05 and cost set to 10. These hyperparameters of SVM

control the trade­off between the accuracy on the training data and the risk of overfitting. The best

performance of XGBoost model was achieved when learning rate was 0.1, the number of trees was

200, maximum depth was set to 5 and gammawas at 0.1. Adam optimization algorithmwas selected

for BERT hyperparameters fine­tuning. The best performance of BERTmodel was achieved when the

learning rate was set to 0.00002, the number of epochs was set to 5 with batches of 32. During the

best performance of Bert model, warmup steps was 500 and weight decay was set to 0.05.

1 table. Optimal hyperparameters

Model Hyperparameters Optimal parameter

SVM Gamma 0.05

Cost 10

XGBoost Learning rate 0.1

Number of trees 200

Maximum depth 5

Gamma 0.1

BERT Learning rate 0.00002

Epochs 5

Batch size 32

Warmup steps 500

Weight decay 0.05
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3.2 Performance of classification models

Data was split into training and testing sets: 80% of enterprises were split into training set and

20% of them into testing set. Logistic regression, Naïve bayes, Support Vector Machines, Extreme

Gradient Boosting and BERT models were trained on testing set and applied for a binary text clas­

sification task to categorize companies into e­commerce and non e­commerce companies. In this

section, the performance of machine learning models is compared and the main findings are made.

Table 2 provides a summary of each model’s performance evaluation by essential metrics such as

accuracy, precision, recall, and F1 score.

According to the results in Table 2, all models demonstrated high accuracy, but notable dif­

ferences are in precision, recall and F1 score metrics. These differences are significant because the

dataset is unbalanced. Only 15% of enterprises are e­commerce in a sample. This imbalance influ­

ences the models’ performance, especially regarding recall and precision. High accuracy across all

models might be misleading.

According to the results, BERT model showed the best performance among all applied models,

achieving the highest recall (0.89), F1 score (0.89), accuracy (0.97) and the second best precision

(0.90) after XGBoost. BERT shows exceptional balance across all metrics, making it highly reliable

for both identifying e­commerce sites correctly and minimizing false positives. Its high recall and

accuracy suggest that it effectively captures contextual nuances in text data. XGBoost model showed

the second best performance, achieving the highest precision (0.93) among all trainedmodels, which

indicates its strength in correctly labeling true e­commerce sites. XGBoost showed the second best

recall (0.81), F1 score (0.87) after BERT model and the same accuracy as Bert model (0.97). Naïve

Bayes model showed better performance than SVM and logistic regression. According to the results,

Naïve Bayesmodel achieved the precision of 0.89, recall of 0.78, F1 score of 0.83 and accuracy of 0.96.

SVM showed the same accuracy (0.95) and precision (0.86) as logistic regression, but better recall

(0.71) and F1 score (0.78) than logistic regression. Logistic regression showed the worst performance

among all the models, struggling with recall (0.66) and F1 score (0.75).

2 table. Performance of classification models

Model Precision Recall F1 score Accuracy

BERT 0.90 0.89 0.89 0.97

XGBoost 0.93 0.81 0.87 0.97

Naïve Bayes 0.89 0.78 0.83 0.96

SVM 0.86 0.71 0.78 0.95

Logistic regression 0.86 0.66 0.75 0.95

According to the results, models performbetter in classifying non­e­commerce companies than

e­commerce companies, as seen by lower precision, recall, and F1 scores compared to accuracy

across themodels. BERTmodel is themost effectivemodel for identifying enterprises as e­commerce

and non­e­commerce companies.
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3.3 Propensity scores

The logistic regression for propensity scores models the probability that an enterprise is in­

cluded in a sample based on the enterprise’s characteristics. The explanatory variables in the logistic

regression are:

• Big city: enterprises located in Vilnius, Kaunas and Klaipėda are defined as enterprises from a

big city.

• Income: enterprises are categorized by income into five equal size groups, where fifth group

identifies the highest income level and first group identifies the lowest income level.

• Economic activity: enterprises are categorized into three different economic activities: IT, retail

and other activity.

• Employees: enterprises are categorized by the number of employees into five equal size

groups.

Two different logistic regressions were estimated for propensity scores model. These logistic

regression models are given in Table 3. According to the results of the second model, if we make an

assumption that the significance level is 0.05, enterprises located in not big cities are statistically sig­

nificantly more likely to be scraped and included in the sample than companies located in big cities.

Income level, from the second to the fourth group, excluding the highest income level, has a positive

statistically significant impact on an enterprise to be scraped and included in a sample. Retail en­

terprises and enterprises from other economic activity are statistically significantly more likely to be

included in a sample. The results showed that the number of employees does not significantly affect

the likelihood of an enterprise being included in a sample. Therefore, this categorical explanatory

variable was not included in the second model.

3 table. Logistic regression models for propensity scores model

Variable
Model 1 Model 2

Coefficient P­value Coefficient P­value

Intercept ­0.317 0.015* ­0.285 0.025*

Big city: No 0.0834 0.059 0.084 0.048*

Income: group 2 0.1664 0.021* 0.185 0.008*

Income: group 3 0.1524 0.043* 0.185 0.007*

Income: group 4 0.2391 0.003* 0.277 0.000*

Income: group 5 0.0859 0.338 0.114 0.089

Economic activity: Retail 1.099 0.000* 1.098 0.000*

Economic activity: Other 0.8433 0.000* 0.846 0.000*

Employees: 10­19 0.0861 0.225

Employees: 20­49 0.0391 0.592

Employees: 50­249 0.1079 0.167

Employees: >250 0.0536 0.542
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According to the performance results in Table 4, the second model showed significantly bet­

ter performance than the first model, achieving higher precision (0.77), recall (0.87), F1 score (0.82)

and accuracy (0.85), classifying which companies are included into a sample and which are not. Per­

formance results in Table 4 were used only to evaluate the performance of logistic regressions and

decide which of them to apply in further work on the propensity scores model. The performance of

logistic regressions for the propensity scoresmodel in Table 4 is not related to enterprise classification

models, whose performance results are presented in Table 2.

4 table. Performance of logistic regression models for propensity scores model

Model Precision Recall F1 score Accuracy

Model 1 0.64 0.69 0.66 0.69

Model 2 0.77 0.87 0.82 0.87

The propensity scores are calculated by equation (30) applying the second logistic regression

model. The second logistic regressionmodel was selected because it showed the better performance

than thefirstmodel. Figure 6 shows thedistributionof propensity scores. According to the histogram,

87% of companies have a propensity score between 0.6 and 0.8. The remaining part of enterprises

has a propensity score between 0.3 and 0.6. As a conclusion, most enterprises tend to be scraped

and included in the sample.

6 figure. Propensity scores

3.4 The proportion of e­commerce enterprises

According to the methodology, when enterprises are classified as e­commerce and non­e­

commerce and propensity scores are calculated, the proportion of e­commerce enterprises in Lithua­

nia can be estimated. IPW estimator has been applied to estimate the proportion of e­commerce en­

terprises in Lithuania. The estimated population proportion of e­commerce enterprises in Lithuania
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is 0.25, and the estimate of standard deviation is 0.16. This estimated proportion is higher than the

naive estimate of 15% calculated from only scraped enterprises.

In contrast, the StateData Agency [30] reports that 39%of Lithuanian enterpriseswere engaged

in e­commerce in 2023. This higher result comes from a survey asking businesses about their online

sales. According to the survey of usage of information technologies in enterprises, an e­commerce

company has sales via the company’s website, online stores, the company’s internal website or mo­

bile applications. My estimate that 25% of enterprises in Lithuania are e­commerce businesses is

significantly lower than the 39% reported by Lithuania’s official statistics. The main reason for the

different statistics is the different definitions of e­commerce enterprises. In this master’s thesis, an

enterprise is considered e­commerce only if it has an e­shop on its main website. The definition of

e­commerce company by the survey methodology is broader, including sales of any form of online

sales, not only via the website but also online stores, the company’s internal website or mobile ap­

plications. This difference in definitions explains why study’s findings show a lower proportion of

e­commerce enterprises compared to the official statistics.
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4 Conclusions and recommendations

The main goal of this master’s thesis to estimate the proportion of e­commerce enterprises in

Lithuania was achieved. In the process, all companies were manually classified as e­commerce and

non­e­commerce based on their websites to have actual values of companies’ e­commerce status for

models training and performance testing. Companies’ websites were scraped to collect the text from

them. Logistic regression, Naïve Bayes, Support Vector Machines, Extreme Gradient Boosting, and

BERTmodelswere trained on training set to classify enterprises as e­commerce and non­e­commerce

based on the extracted text from their websites. The inverse probability weighting estimator was ap­

plied to adjust for non­random sampling of the websites and estimate the proportion of e­commerce

enterprises in Lithuania. The following conclusions were made:

• The estimated proportion of e­commerce enterprises in Lithuania is 25%, which is higher than

the naive estimate of 15% calculated from only scraped enterprises. The estimated propor­

tion of e­commerce enterprises significantly differs from 39% reported by Lithuania’s official

statistics. Themain reason for that discrepancy is the different definitions of e­commerce com­

panies. In this study, an e­commerce company was defined as a company that has an e­shop

on its main website, while the methodology of the survey also includes companies which sell

via online stores, the company’s internal website ormobile applications. The application of the

inverse probability weighting estimator helped to solve the problems of non­random sampling

and estimate the population proportion of e­commerce enterprises in Lithuania.

• The BERTmodel showed the best performance classifying enterprises as e­commerce and non­

e­commerce enterprises, achieving the highest recall, F1 score and accuracy among all trained

models. The ExtremeGradient Boostingmodel showed the second­best performance after the

BERT model. Machine learning algorithms combined with NLP methods are a powerful and

scalable tool for companies classification as e­commerce and non­e­commerce companies.

The recommendations for future research are:

• Train models and classify enterprises using data not only from enterprises’ websites but also

from online stores and mobile applications.

• Apply additional statistical methods alongside the inverse probability weighting estimator.

Comparing various estimators can provide a deeper understanding of how different ap­

proaches impact the outcomes. It can help identify the most accurate and reliable method

for estimating the proportion of e­commerce enterprises.

This thesis contributes to the academic literature on applying machine learning to real­world

classification problems, specifically in the context of e­commerce companies identification. The de­

velopedmethodology, which integrates web scraping, machine learning models, and the adjustment

of the non­probability sample, could serve as a framework for other countries or regions, estimating

the proportion of e­commerce enterprises.
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Appendix 1. Python code

# packages

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.linear_model import LogisticRegression

from sklearn.metrics import accuracy_score, classification_report

#import data

df = pd.read_csv("df_websites.csv")

### Data preprocessing

# Cleaning function

def clean_text(text):

# Convert to lowercase

text = text.lower()

# Remove punctuations and numbers

text = ''.join(e for e in text if e.isalnum() or e.isspace())

return text

# Clean the text column

df['text'] = df['text'].apply(clean_text)

# Splitting data into training and testing sets

X = df['text']

y = df['label']

X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size=0.2, random_state=42)

### Features extraction using TF-IDF

vectorizer = TfidfVectorizer(stop_words='english',

max_features=5000)

X_train_vec = vectorizer.fit_transform(X_train)

X_test_vec = vectorizer.transform(X_test)

### Models training

## Logistic Regression

clf = LogisticRegression()

clf.fit(X_train_vec, y_train)

y_pred = clf.predict(X_test_vec)

print("Accuracy:", accuracy_score(y_test, y_pred))

print("\nClassification Report:\n",
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classification_report(y_test, y_pred))

## Naive Bayes

from sklearn.model_selection import GridSearchCV, StratifiedKFold

from sklearn.naive_bayes import MultinomialNB

# K-Fold cross-validation

cv = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)

# Model Training & Hyperparameter Tuning

param_grid = {

'alpha': [0.01, 0.1, 1.0, 10.0] # Smoothness parameter

}

nb = MultinomialNB()

grid_search = GridSearchCV(estimator=nb, param_grid=param_grid,

cv=cv, n_jobs=-1, verbose=2, scoring='accuracy')

grid_search.fit(X_train_vec, y_train)

# Best parameters

best_params = grid_search.best_params_

print(f"Best Parameters: {best_params}")

# Evaluation

best_nb = grid_search.best_estimator_

y_pred = best_nb.predict(X_test_vec)

print("Classification Report:")

print(classification_report(y_test, y_pred))

print(f"Accuracy: {accuracy_score(y_test, y_pred)}")

## Support vector machine

from sklearn.svm import SVC

# Training and Hyperparameter Tuning

param_grid = {

'C': [0.1, 1, 10],

'kernel': ['linear', 'rbf', 'poly'],

'degree': [1, 2, 3, 4],

'gamma': ['scale', 'auto']

}

svc = SVC(random_state=42)

grid_search = GridSearchCV(estimator=svc, param_grid=param_grid,

cv=3, n_jobs=-1, verbose=2, scoring='accuracy')
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grid_search.fit(X_train_vec, y_train)

# Best parameters

best_params = grid_search.best_params_

print(f"Best Parameters: {best_params}")

# Evaluation

best_svc = grid_search.best_estimator_

y_pred = best_svc.predict(X_test_vec)

print("Classification Report:")

print(classification_report(y_test, y_pred))

print(f"Accuracy: {accuracy_score(y_test, y_pred)}")

## XGBoost

import xgboost as xgb

# Training and Hyperparameter Tuning

param_grid = {

'learning_rate': [0.01, 0.1],

'max_depth': [3, 5, 7],

'n_estimators': [100, 200],

'subsample': [0.7, 0.9],

'colsample_bytree': [0.6, 0.8]

}

xgb_model = xgb.XGBClassifier(use_label_encoder=False,

eval_metric='logloss', random_state=42)

grid_search = GridSearchCV(estimator=xgb_model,

param_grid=param_grid, cv=3, n_jobs=-1,

verbose=2, scoring='accuracy')

grid_search.fit(X_train_vec, y_train)

# Best parameters

best_params = grid_search.best_params_

print(f"Best Parameters: {best_params}")

# Evaluation

best_xgb = grid_search.best_estimator_

y_pred = best_xgb.predict(X_test_vec)

print("Classification Report:")

print(classification_report(y_test, y_pred))

print(f"Accuracy: {accuracy_score(y_test, y_pred)}")
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## BERT model

from transformers import BertTokenizer,

from transformers import BertForSequenceClassification

from transformers import Trainer, TrainingArguments

import torch

from torch.utils.data import Dataset

import numpy as np

from transformers import EarlyStoppingCallback

# Split data into training and validation sets

train_df, val_df = train_test_split(df, test_size=0.2, random_state=42)

# Initialize the tokenizer

tokenizer = BertTokenizer.from_pretrained(

'bert-base-multilingual-cased')

# Tokenization function

#def tokenize_function(examples):

# return tokenizer(examples['text'], padding="max_length",

truncation=True,

return_tensors="pt")

# Tokenization function that receives a series of text

def tokenize_function(text_series):

return tokenizer(text_series.tolist(),

padding="max_length", truncation=True,

return_tensors="pt")

# Tokenize the text column of the DataFrame

train_encodings = tokenize_function(train_df['text'])

val_encodings = tokenize_function(val_df['text'])

# Convert labels to tensors

train_labels = torch.tensor(train_df['label'].values)

val_labels = torch.tensor(val_df['label'].values)

# Dataset class

class LithuanianTextDataset(Dataset):

def __init__(self, encodings, labels):

self.encodings = encodings

self.labels = labels

def __getitem__(self, idx):
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item = {key: val[idx] for key, val

in self.encodings.items()}

item['labels'] = self.labels[idx]

return item

def __len__(self):

return len(self.labels)

# Create datasets

train_dataset = LithuanianTextDataset(train_encodings,

train_labels)

val_dataset = LithuanianTextDataset(val_encodings, val_labels)

# Load a pre-trained BERT model and run it on GPU

model = BertForSequenceClassification.from_pretrained(

'bert-base-multilingual-cased')

model.to(torch.device('cuda' if torch.cuda.is_available()

else 'cpu'))

# Training arguments

training_args = TrainingArguments(

output_dir='./results',

num_train_epochs=5,

per_device_train_batch_size=16,

per_device_eval_batch_size=64,

warmup_steps=500,

weight_decay=0.01,

logging_dir='./logs',

logging_steps=10,

evaluation_strategy="steps",

eval_steps=500,

save_strategy="steps",

save_steps=500,

load_best_model_at_end=True,

metric_for_best_model='loss',

greater_is_better=False,

)

# Initialize Trainer with EarlyStoppingCallback

trainer = Trainer(

model=model,

args=training_args,

train_dataset=train_dataset,
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eval_dataset=val_dataset,

callbacks=[EarlyStoppingCallback(early_stopping_patience=3)]

# stop if no improvement after 3 evals

)

# Train the model

trainer.train()

# Save the model

model.save_pretrained('bert-finetuned-lithuanian')

# Make predictions on the validation set

predictions = trainer.predict(val_dataset)

pred_labels = np.argmax(predictions.predictions, axis=1)

# Generate a classification report

report = classification_report(val_df['label'],

pred_labels, target_names=['Not Eshop', 'Eshop'])

print(report)

### IPV estimator

## Logistic regression for propensity scores

import statsmodels.api as sm

from sklearn.compose import ColumnTransformer

from sklearn.preprocessing import OneHotEncoder

# Prepare the feature matrix and target vector

X = df[['city_region','income', 'sector']]

y = df['scraped']

# Create dummy variables

column_transformer = ColumnTransformer(

[('cat', OneHotEncoder(drop='first'), ['city_region','income', 'sector'])],

remainder='passthrough'

)

# Apply the transformer to the feature matrix

X_transformed = column_transformer.fit_transform(X)

# Convert the transformed features into a dataframe

if hasattr(X_transformed, 'toarray'):

X_transformed_df = pd.DataFrame(X_transformed.toarray(),

columns=column_transformer.get_feature_names_out())
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else:

X_transformed_df = pd.DataFrame(X_transformed,

columns=column_transformer.get_feature_names_out())

X_transformed_df = sm.add_constant(X_transformed_df)

# Logistic regression

model = sm.Logit(y, X_transformed_df)

result = model.fit()

print(result.summary())

# Split data into training and testing sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,

random_state=42)

# Apply the transformer to the training feature matrix

X_train_transformed = column_transformer.fit_transform(X_train)

X_test_transformed = column_transformer.transform(X_test)

# Convert the transformed features into a dataframe

if hasattr(X_train_transformed , 'toarray '):

X_train_transformed_df = pd.DataFrame(X_train_transformed.toarray(),

columns=column_transformer.get_feature_names_out())

else:

X_train_transformed_df = pd.DataFrame(X_train_transformed , columns=

column_transformer.get_feature_names_out())

# Reset indices for both X and y to ensure alignment

X_train_transformed_df = X_train_transformed_df.reset_index(drop=True)

y_train = y_train.reset_index(drop=True)

# Add a constant to the model

X_train_transformed_df = sm.add_constant(X_train_transformed_df)

# Initialize and fit the Logistic Regression model using statsmodels

model = sm.Logit(y_train, X_train_transformed_df)

result = model.fit()

# Prepare the test data (adding a constant column)

\begin{lstlisting}

if hasattr(X_test_transformed , 'toarray '):

X_test_transformed_df = pd.DataFrame(X_test_transformed.toarray(),

columns=column_transformer.get_feature_names_out())
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else:

X_test_transformed_df = pd.DataFrame(X_test_transformed , columns=

column_transformer.get_feature_names_out())

X_test_transformed_df = sm.add_constant(X_test_transformed_df)

X_test_transformed_df = X_test_transformed_df.reset_index(drop=True)

# Predicting on testing data

y_pred = result.predict(X_test_transformed_df)

y_pred_class = (y_pred > 0.5).astype(int)

# Model evaluation

accuracy = accuracy_score(y_test, y_pred_class)

conf_matrix = confusion_matrix(y_test, y_pred_class)

report = classification_report(y_test, y_pred_class)

print("Accuracy:", accuracy)

print("Confusion Matrix:\n", conf_matrix)

print("Classification Report:\n", report)

## Propoensity scores

results = model.fit()

# Model parameters

params = results.params

intercept = params[0]

coefficients = params[1:]

logit_scores = np.dot(X_dense, coefficients) + intercept

propensity_scores = np.exp(logit_scores) / (1 + np.exp(logit_scores))

df['propensity_scores '] = propensity_scores

## Population parameter

# Calculate the weights for each observation

weights = 1 / df['propensity_scores ']

# The weighted sum of y_k

weighted_sum = np.sum(df['ecommerce '] / df['propensity_scores '])

# The total weight for normalization

total_weight = np.sum(weights)

# Calculate the IPW estimator

mu_ipw = weighted_sum / total_weight
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print("Estimated population mean (mu^IPW):", mu_ipw)

## Variance of estimator

# Sample data extraction

S = df[df['scraped '] == 1]

S = S[S['ecommerce ','city_region ','income', 'sector','propensity_scores

']]

S_encoded = pd.get_dummies(S, columns=['city_region ','income', 'sector '])

x_columns = [col for col in S_encoded.columns if col not in ['ecommerce

','city_region ','income', 'sector','propensity_scores ']]

x = S_encoded[x_columns].values

x = np.array(x, dtype=float)

weights_diff = np.array(1 / S['propensity_scores '] - 1)

ecommerce_diff = np.array(S['ecommerce '] - mu_ipw)

# Reshape data

weights_diff = weights_diff[:, np.newaxis]

ecommerce_diff = ecommerce_diff[:, np.newaxis]

# Calculating weighted residuals

weighted_residuals = weights_diff * ecommerce_diff * x

# Sum of weighted residuals

sum_weighted_residuals = np.sum(weighted_residuals , axis=0)

# Calculating the sum of covariance

propensity_scores = np.array(S['propensity_scores '])

sum_covariance = x.T @ (propensity_scores[:, np.newaxis]

* (1 - propensity_scores[:, np.newaxis]) * x) # Matrix multiplication

# Invert the sum covariance matrix and multiply by the sum of weighted

residuals

b_prime = np.linalg.inv(sum_covariance) @ sum_weighted_residuals

# Calculate residuals and variance

residuals = (ecommerce_diff.flatten() / propensity_scores) - x @ b_prime

V_ipw = np.sum((1 - propensity_scores) * residuals**2)

/ (np.sum(1 / propensity_scores)**2)

print(V_ipw)
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Appendix 2. Usage of AI

Grammarly program was used to check spelling, punctuation and increase readability.
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