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Summary

National Statistical Institutes (NSIs) face increasing pressure to streamline their data editing

processes, as detecting and correcting erroneous entries requires substantial time and resources.

This thesis investigates the application of a Random Forest based framework to automate two critical

tasks in the data editing workflow: identifying whether the reported value is erroneous, and then

imputation of these values.

The classification task demonstrated significant potential for accurately detecting erroneous

records, enabling NSIs to focus their human and financial resources on the most critical cases. How

ever, the imputation step faced challenges when predicting small or nearzero errors, particularly in

cases that were wrongly classified as erroneous. Although several alternative modeling strategies

were tested, none fully resolved these issues, aligning with findings from previous research.

Overall, the study highlights that complete automation of data editing using Random Forest

did not achieve desired results.

Keywords: Data Editing; Random Forest; Classification; Imputation; National Statistical Insti

tutes, Error Detection, Machine Learning
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Santrauka

Nacionalinės statistikos institucijos (NSI) susiduria su vis didėjančiu spaudimu efektyvinti

duomenų redagavimo procesus, nes galimai klaidingų įrašų nustatymas ir taisymas reikalauja didelių

išteklių bei papildomo ryšio su respondentais. Šiame darbe nagrinėjamas atsitiktinių miškųmetodas,

siekiant automatizuoti du esminius duomenų redagavimo uždavinius: nustatyti, ar pateikta apyvartos

reikšmė yra klaidinga, ir įrašyti reikšmes klaidingiems stebėjimams.

Pirmasis uždavinys (klasifikavimas) atskleidė reikšmingą potencialą tiksliau nustatyti klaidingas

reikšmes, kas itin aktualu NSI praktikoje. Geresnė klaidų identifikacija leidžia sutelkti žmogiškuosius

ir finansinius išteklius ten, kur jų tikrai reikia. Tačiau sprendžiant antrą uždavinį (reikšmių įrašymą)

susidurta su sunkumais vertinant nedideles klaidas, ypač neteisingai klasifikuoiems duomenims.

Apibendrinant galima teigti, kad visiškas duomenų redagavimo automatizavimas naudojant

atsitiktinių miškų metodą neužtikrina reikiamo tikslumo.

Raktiniai žodžiai: Duomenų redagavimas; Atsitiktiniai miškai; Klasifikavimas; Praleistų reikšmių

įrašymas; Nacionalinės statistikos institucijos; Klaidų aptikimas; Mašininis mokymasis
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1 Introduction

Data editing is essential for maintaining the accuracy and reliability of statistical data, which in

turn affects the credibility of datadriven analyses and the decisions that follow. Both national and in

ternational statistical agencies have acknowledged that incorrect data points can significantly distort

final parameters. To address this, there has been an increasing shift towards automated data edit

ing techniques. These methods offer a more targeted and efficient solution compared to traditional

manual approaches. They not only reduce the burden on respondents by minimizing the need for

followup contacts but also help prevent significant errors in published statistics, thereby making the

data processing workflow more costeffective and accurate as data volumes continue to grow [11].

Despite advancements in automated data editing techniques, many National Statistical Insti

tutes (NSIs) still rely heavily on laborintensive manual error correction processes. As such, there is

a need for scalable and efficient solutions to maintain and improve data quality. Endorsed by the

United Nations Economic Commission for Europe (UNECE) in 2019, the Generic Statistical Business

Process Model (GSBPM) outlines statistical processes into eight sequential phases: specification of

needs, design, build, collection, processing, analysis, dissemination, and evaluation [25]. The pro

cessing phase includes the revision of data, new variables creation, weights calibration, parameter

estimation, error detection, and error imputation. The latter two are the focus of this thesis.

Existing research has explored various automated data editing techniques. However, limited

research focuses on the application of machine learning models for error localization and imputation

for NSIs’ data editing workflows. This thesis aims to investigate the effectiveness of a Random Forest

model in automating two of the following tasks in the data editing workflow: identifying erroneous

reported values and imputation of those values. The data utilized consists of encrypted quarterly

statistical survey data on service enterprise activities provided by the State Data Agency, Statistics

Lithuania (SDA), spanning from 2017 to 2023. The scope is limited to the specific dataset and the

application of the Random Forest model; other machinelearning techniques are not explored in this

thesis.

This thesis contributes to the literature of statistical data editing by developing and implement

ing a Random Forest model specifically designed for error detection and imputation in statistical

quarterly survey data. Additionally, it presents empirical results derived from realworld data ob

tained from Statistics Lithuania, thereby demonstrating the practical applicability of machine learn

ing techniques within statistical methodologies. This thesis addresses the following primary research

questions:

1. How effective is the Random Forest in identifying erroneous reported values? (Evaluated by

sensitivity and balanced accuracy)

2. What is the effectiveness of Random Forest in imputing erroneous data? (Evaluated by Nor

malized Root Mean Square Error (RMSE) and R2)

The initial progress of this thesis was presented at the 2023 conference of the LithuanianMath

ematical Society (LMD). The theoretical part of this thesis was conducted using the R programming
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language. In addition, other software tools were employed; a comprehensive list of the software

used can be found in Appendix A.

The remainder of this thesis is organized as follows:

1. Literature Review: Reviews data editing practices at NSIs, emphasizing automation.

2. Nature of data at National Statistical Institutes: outlines types of errors and SDA’s current

practices for detecting erroneous values.

3. Theoretical Part: Random Forest: outlines the theoretical part of Ranfom Forest.

4. Dataset Description: Provides a detailed overview of the dataset used in this research.

5. Results & Discussion: Includes exploratory data analysis, findings from the proposed frame

work, along with a discussion of their implications, and limitations.

6. Conclusion: Summarizes the research outcomes and offers recommendations grounded in the

results.
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2 Literature Review

Accurate statistical data underpins reliable published results, informing decisionmaking, policy

development, and academic research. Because of that importance, NSIs focus on minimizing incon

sistencies and errors at every stage of the data editing cycle. Historically, manual editing methods

have been used to spot and correct survey data errors, often involving direct contact with respon

dents to address discrepancies. Although effective, these methods require significant time and re

sources, with estimates showing 20–40% of NSI resources devoted to data editing [11]. In response,

various strategies have emerged to automate parts of this workflow, reducing the burden of manual

editing while enhancing error detection and correction. This review examines statistical data editing

approaches, including soft and hardedit rules (topic of interest at initial stage of the thesis), as well

as methods that use machine learning.

2.1 Edit Rules

Edit rules are commonly used to detect errors by checking whether a given value is consistent

or not with certain conditions. An edit e can be expressed as:

e : x ∈ Sx,

where Sx represents the set of permissible values for x. The variable x may represent a single or

multiple values. If e evaluates to false, the edit is violated; if true, the edit is satisfied.

Hard edit rules impose strict constraints that define valid ranges or specific acceptable values

for data [23]. For instance, a hard edit might enforce that profit equals total turnover minus total

costs, flagging any failure to match this condition as an error. When all edits are satisfied, the record

is viewed as consistent and requires no modification. Hard edits function binary: data either pass or

fail them.

Soft edit rules, by contrast, are more adaptable, focusing on logical relationships among vari

ables [23]. Rather than using absolute limits, soft edits gauge the likelihood that a value is incorrect

by verifying plausible associations. One example is checking if profit is at most half of total turnover,

highlighting anomalies for further review rather than immediate fail.

If a record violates one or more edits, then following task is the identification of variables that

caused those failures (error localization problem). The generalized Fellegi and Holt (1976) method,

which uses confidence weights, has been broadly implemented at NSIs for error localization [23].

Such approaches are integrated into tools like SLICE and the editrules package in R [10].

However, such an approach treats all edits (even if they are soft edits) as hard edits [23]. Any

edit violation is automatically attributed as an inconsistent record. Recognizing the limitations of this

framework, Scholtus explored incorporating soft edits for automatic error localization [20, 21, 22,

23]. The proposed solution includes a cost function that looks at either which soft edits failed or a

cost function that would also look at the amount of soft edits that failed. More significant divergence

from these criteria increases the suspicion of the record to be erroneous.
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In a 2013 study, Scholtus [21] tested the proposed solution on a dataset derived from Dutch

Business Statistics 2007 (covering mediumsized wholesale firms of 10–100 employees). The dataset

wasmanually edited and treated as errorfree before introducing artificial errors. Fourmethodswere

assessed: (1) using only hard edits, (2) treating soft and hard edits alike, (3) assigning the same failure

weights to hard and soft edits, and (4) assigning different fixed failure weights to them. Strategy (4)

offered the best performance. Nevertheless, a 2015 replicationwith statistical datawithout synthetic

errors did not replicate these findings, leading Scholtus [22] to describe the outcomes as ”disappoint

ing.” Since then, this line of research has not seen any advancements, and further investigation into

balancing soft and hard edits in practical applications remains limited. As such, while this topic was

of interest at the initial stages of the thesis, it was not progressed.

2.2 Data Editing with Machine Learning

In recent years, machine learning (ML) has become a key resource for improving statistical

data editing in NSIs. By uncovering complex patterns in large datasets, ML algorithms have enabled

more accurate and efficient detection of data inconsistencies, complementing traditional data editing

techniques.

A prime example is the use of supervised learning models to classify entries as valid or erro

neous based on labeled training data. For instance, the National Statistics Institute of Spain (INE) has

successfully integrated Random Forest algorithms into their data editing framework by leveraging

auxiliary information. Bohnensteffen in her master thesis [2] utilized a Random Forest model within

a selective editing framework, focusing on data subsets most likely to affect overall data quality. Se

lective editing recognizes that not all data points influence dataset integrity to the same degree,

allowing NSIs to concentrate resources on the most critical or errorprone segments.

For the INE’s implementation, two separate models were created to improve data editing pro

cess [2]. The first model classified individual entries as erroneous or correct. Given a roughly 5% rate

of erroneous entries, SyntheticMinority Oversampling Technique (SMOTE) and undersampling were

tested to correct the class imbalance. The undersampling approach (splitting the dataset evenly) out

performed the SMOTEaugmented models, achieving a balanced accuracy of 0.771 and a sensitivity

of 0.824. Although the SMOTEaugmented models had comparable balanced accuracy, but they ex

hibited lower sensitivity (0.637–0.767). The second model estimated error magnitude but required

additional historical data to increase the number of erroneous instances for training. After expanding

the dataset, this model reached R2 of 0.57, indicating a moderate level of predictive accuracy. This

twotiered approach was deemed successful, leading to its adoption in the INE’s ongoing data editing

procedures.

Beyond classification and error detection, MLbased methods have also proven effective for

imputing missing data. Uogele [26] examined ML imputation methods for monthly statistical survey

of trade and catering enterprises at the SDA. Both MissForest and MissRanger demonstrated favor

able Normalized Root Mean Square Error (NRMSE) and Mean Absolute Error (MAE) under various

missingness levels, highlighting ML’s potential to boost data completeness and reliability.

Integrating machine learning into statistical data editing marks a substantial leap forward, al
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lowingNSIs tomaintain data qualitywith fewermanual edits. As datasets grow in size and complexity,

manual intervention becomes less practical because of rising resource demands. ML offers a scalable,

flexible solution, capable of handling complex, diverse data with minimal oversight.

Moreover, research on MLdriven data editing is advancing rapidly, targeting algorithmic ac

curacy, interpretability, and efficiency. Future progress is expected to widen the applicability of ML

methods to various data types and error patterns, making them even more valuable for NSIs.
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3 Nature of data at National Statistical Institutes

To understand the data editing process used by NSIs, this section first outlines the types of

errors encountered in statistical data. Following this, it introduces the current data editing method

ologies utilized by the SDA in its data editing process.

3.1 Error Types and Missing Values

Understanding the kind of errors helps to better prevent them and build appropriate data edit

ing process. Data errors are discrepancies where reported values diverge from their true values.

These errors can be broadly categorized by their type into systematic errors and random errors [11],

each originating from distinct sources and necessitating specific strategies for detection and correc

tion.

Systematic Errors are consistent and repeatable inaccuracies that stem from inherent flaws

in the data collection process or survey design. Common sources include poorly designed survey

questions that may be ambiguous or prone to misinterpretation by respondents. Additionally, incon

sistencies in terminology or definitions across various departments or sections of a survey can cause

discrepancies in the collected data. Unit measurement errors, such as reporting amounts in incor

rect units (e.g., euros instead of dollars), further contribute to systematic errors. Addressing these

requires revising survey instruments for clarity, standardizing definitions and units across all sections,

and conducting thorough pilot testing to identify and rectify potential biases before fullscale data

collection.

Random Errors are unpredictable and occur sporadically without a consistent pattern. They

arise from unforeseen factors that affect individual data points, such as typographical mistakes, mis

reporting, or accidental omissions. For example, a respondent might inadvertently enter an extra

digit in a numerical response or skip a question altogether. Detecting random errors often requires

robust statistical techniques, such as outlier detection methods, consistency checks, and validation

against additional data sources. Once identified, these errors can be corrected through methods like

data imputation or by crossverification.

Influential Errors are a subset of data inaccuracies that exert a disproportionate impact on the

final statistical outputs. Influential errors often result from erroneous data points that lie far from the

central tendency of the dataset or from data points that disproportionately affect model parameters

in statistical analyses. Identifying influential errors typically involves using selective editing methods

that incorporate score functions, which quantify the influence and error of data points. In some

cases, it may be appropriate to estimate the true value, while in others, if the error has a high score,

recollecting the data from the original respondentmay be necessary to obtain accurate information.

Missing Values also constitute a significant challenge in survey data collected by NSIs. Missing

data can occur when the true value is unknown, unavailable, or difficult for respondents to provide.

Common causes include nonresponse to specific survey questions, data collection errors, or the in

applicability of certain questions to particular respondents. Missing data can be categorized based

on the mechanism that leads to the absence of values, as defined by Rubin [19]. The categories in
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cludeMissing Completely at Random (MCAR),Missing at Random (MAR), andMissing Not at Random

(MNAR). Addressing missing data requires appropriate imputation techniques, ranging from simple

methods like mean imputation to advanced methods such as Multiple Imputation by Chained Equa

tions (MICE) and machine learningbased approaches like Random Forest Imputation.

3.2 Current Methods for Error Detection

The Editing and Imputation (E&I) process is designed to improve data quality by identifying and

correcting possibly erroneous or missing values [7]. The process begins with initial editing, which in

volves checking for errors related to specific domains and systematicmistakes in raw data. After this,

selective editing is applied to identify outliers in the data. The next phase, interactive editing, in

volves experts analyzing these outliers and making corrections either by recontacting data sources

or using more automated methods. In the final stage, macroediting, the focus shifts to examining

populationlevel aggregates and estimates for errors, utilizing additional information to ensure accu

racy. If the aggregated data do not meet the required standards after this stage, the E&I process is

repeated. Visualization of the process can be seen in Figure 1.

Figure 1 . Editing and Imputation Process Employed at SDA [7]

Currently, VDA employs logical, arithmetic andmathematical rules to detect errors [7]. Besides

those quartile, HidiroglouBerthelot, and selective editing methods are used, which are described in

more detailed below.

Quartile Method detects outliers based on the distribution of a given variable. This technique

utilizes quartiles to partition the data into four equal parts, emphasizing the first quartile (Q1) and

the third quartile (Q3), which represent the 25th and 75th percentiles, respectively. Outliers are

identified by calculating the interquartile range (IQR), defined as the difference betweenQ3 andQ1:

IQR = Q3 −Q1.

An observation x is considered an outlier if it falls outside the range defined by:

x < Q1 − k × IQR or x > Q3 + k × IQR,
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where k is a multiplier commonly set to 1.5 for mild outliers and 3 for extreme outliers. For instance,

in this study, a company’s quarterly total turnover that significantly deviates beyondQ3+3× IQR or

belowQ1 − 3× IQR would be flagged as an outlier, necessitating further review.

HidiroglouBerthelot compares current observations with historical data, using previous mea

surements as benchmarks to identify significant discrepancies that may indicate errors. Specifically,

the method calculates the ratio Rk for each unit k as:

Rk =
yk
xk

,

where yk is the current value of the variable of interest for unit k, and xk is the corresponding histori

cal value, serving as an auxiliary variable. In this research, the total turnover from the corresponding

quarter of the previous year (xk − 4) as well as last quarter (xk − 1). Outliers are detected by identi

fying ratios that significantly deviate from expected norms.

Selective editing is an error detection strategy that focuses on prioritizing data units with a

high probability of containing significant errors, thereby optimizing resource allocation for manual

verification. This approach targets subsets of data that are most influential on the final estimates or

that exhibit suspicious discrepancies when compared to reliable external sources.

In this study, Value Added Tax (VAT) data are used as auxiliary information within the selec

tive editing framework. VAT data are typically subject to stringent verification processes due to tax

compliance requirements, rendering them highly reliable for crossreferencing financial information.

The selective editing process involves comparing the reported values in the dataset with cor

responding VAT records. An example of such an approach defines the score sk as:

sk = E
[
dk · |Y raw

k − Y true
k |

∣∣∣∣xk] , (1)

where:

• E[· | xk] denotes the expected value conditioned on the auxiliary information xk.

• Y raw
k is the random variable representing the raw collected data for unit k.

• Y true
k is the random variable representing the true value for unit k.

• xk represents the auxiliary information available for unit k in this VAT variable.

Method TP FP TN FN Precision Sensitivity Accuracy Bal. Acc. Specificity

Quartile Method 21 795 6,302 121 0.026 0.148 0.873 0.518 0.888

HB with xk − 1 213 3,734 4,206 162 0.054 0.568 0.531 0.549 0.530

HB with with xk − 1 267 6,011 5,670 248 0.042 0.518 0.487 0.502 0.485

Selective Editing with VAT 320 3,600 6,040 175 0.082 0.646 0.627 0.636 0.626

Table 1 . Performance Metrics for Methods Currently Used by SDA to Detect Errors

16



Between 2017 and 2023, all three methods were applied to detect erroneous values as their

outputs were provided by SDA. The comparative analysis aimed to determine each method’s effec

tiveness in flagging incorrect entries and examining howmany of those flagged itemswere ultimately

corrected. Performancemetrics were then computed to evaluate howwell each technique identified

errors.

The Quartile Method achieved an accuracy of 0.873, largely because it accurately classified a

high number of true negatives. However, its sensitivity of 0.148 reveals major limitations in detecting

erroneous values, and its precision of 0.026 indicates a substantial number of false positives. As a

result, despite effectively confirming correct values, it remains suboptimal for uncovering errors.

The HidiroglouBerthelot method employing last year’s same quarter turnover produced a pre

cision of 0.054 and a sensitivity of 0.568, culminating in an accuracy of 0.531. These figures signal an

improved balance over the Quartile Method in locating incorrect entries, though a sizable count of

false positives persists. While its enhanced sensitivity reflects fewer overlooked errors, it still misses

a considerable portion of them.

When combined with last quarter’s turnover the HidiroglouBerthelot method attained a pre

cision of 0.042 and a sensitivity of 0.518, generating an accuracy of 0.487. This variant catches more

total outliers but also yields a high volume of false positives. Although it aims to reconcile thorough

detection with minimizing false alarms, numerous inaccuracies remain undiscovered.

Among all approaches, Selective Editing with VAT demonstrated the strongest results, marked

by a precision of 0.082 and a sensitivity of 0.646. With an accuracy of 0.627 and a balanced accu

racy of 0.636, this method excels at recognizing actual errors while keeping false positives in check.

Although some errors still evade detection, it outperforms the other techniques in this comparison.

Based on these metrics, Selective Editing with VAT presents the most favorable compromise

between identifying true errors and avoiding unnecessary edits. Its higher precision curtails unwar

ranted corrections, whereas its increased sensitivity means fewer undetected issues. Despite the

remaining gaps in overall recall, this method stands as the most balanced option.

Performance of these methods will be further considered in subsequent discussions, particu

larly regarding strategies to refine error detection.
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4 Random Forest: Theoretical Foundations

Why Random Forest for NSIs? Random Forest effectively handles large and diverse datasets.

Random Forest’s ensemble design and resilience to noise help detect genuine patterns amidst data

variability. Its feature importance measures can guide NSIs in identifying which variables most

strongly signal errors. Hyperparameter tuning, such as adjusting the number of trees or maximum

depth, further enhances the model’s ability to capture underlying error patterns. This blend of ro

bustness, interpretability, and flexibility makes Random Forest a valuable tool for improving data

quality and reliability in official statistics. This section goes more indepth of the theoretical under

pinnings of Random Forest.

4.1 Random Forest Algorithm

Random Forest is a nonparametric, supervised machine learning method recognized for its

strong predictive performance and resilience to overfitting. Originally introduced by Breiman [6], it

combines multiple decision trees through the bagging (Bootstrap Aggregation) technique to reduce

the variance of individual treeswithout substantially increasing their bias. Over the past twodecades,

Random Forest has gained significant traction in both academia and industry owing to its ease of

implementation, intrinsic feature importance metrics, and robustness in highdimensional settings.

Decision Trees as Building Blocks.

At the heart of Random Forest are decision trees. Each tree partitions the feature space into

regions intended to be as homogeneous as possible with respect to the target variable. For classifi

cation, commonly used splitting criteria include Gini impurity and entropy, whereas regression trees

frequently adopt Mean Squared Error (MSE) as an impurity measure [4]:

• Gini Impurity (Classification):

IGini(m) = 1−
K∑
k=1

p2mk,

where pmk denotes the proportion of samples belonging to class k within node m, and K is

the total number of classes. A lower impurity indicates a more “pure” node.

• MSE (Regression):

IMSE(m) =
1

|m|
∑

(xi,yi)∈m

(yi − ȳm)
2,

where ȳm is the mean response in node m. Minimizing MSE at each split yields partitions in

which data points exhibit relatively similar response values.

Although individual trees can be highly interpretable, they often overfit the training data by capturing

noise or anomalous patterns. This overfitting results in high variance, where the model performs

exceptionally well on training data but poorly on new, unseen datasets. Random Forest addresses

this limitation by creating an ensemble of diverse trees, thereby averaging out individual tree errors

and achieving a more stable and accurate prediction.
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Bagging for Variance Reduction. Bagging, short for Bootstrap Aggregating„ serves as the foun

dational ensemble technique in Random Forest to reduce the variance component of themodel error

[13]. The primary idea behind bagging is to train multiple models on different subsets of the training

data and then aggregate their predictions to form a final output. This process enhances the overall

stability and accuracy of the model. Given a dataset

D = {(xi, yi)}Ni=1,

multiple bootstrap samplesDb, each of sizeN , are drawn with replacement. Consequently, eachDb

includes a subset of unique observations (some repeated) from the original dataset. Each tree Tb is

trained on a distinct bootstrap sample, yielding a “forest” of trees that are diverse in their structure

and learned rules. By averaging (for regression) or voting (for classification) across these trees, the

ensemble demonstrates markedly lower variance than any single tree [13].

Random Subset of Features. In addition to bootstrapping the data, Random Forest introduces

another layer of randomness by selecting a random subset of features at each split in a decision tree.

This parameter, denoted asmtry, controls the number of features considered when determining the

best split at each node [6]. The selection ofmtry is critical for enhancing the diversity of the trees and

improving the overall performance of the ensemble.

By limiting the number of features evaluated at each split, mtry decreases the likelihood that

multiple trees will select the same dominant features. This reduction in correlation among trees

enhances the diversity of the ensemble, thereby amplifying the benefits of averaging or voting.

Evaluating a smaller subset of features at each split reduces the computational burden, particu

larly in highdimensional datasets where the number of features p is large. This efficiency gain allows

for faster tree construction and enables the handling of more complex datasets without prohibitive

computational costs.

Prediction Aggregation and OOB Error. Once all trees are built, Random Forest aggregates

their individual predictions to obtain a final output. In classification, the ensemble prediction is de

termined via majority vote:

ŷ = argmax
k

B∑
b=1

I
(
Tb(x) = k

)
,

while in regression, the average of all tree outputs is taken:

ŷ =
1

B

B∑
b=1

Tb(x).

This aggregation harnesses the “wisdom of the crowd,” typically resulting in higher accuracy and

stability compared to a single decision tree. Moreover, because each tree is trained on a distinct

bootstrap sample, the ∼ 1/3 of observations omitted from a particular tree’s training set (known

as outofbag samples) can be used to estimate performance without an external validation set [6].

This outofbag (OOB) error assessment provides a convenient and efficientmeasure of generalization

error.
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Variable Importance and Feature Selection. Beyondmaking predictions, Random Forest offers

valuable insights into the relative importance of input features, enhancingmodel interpretability and

aiding in feature selection. Two primary metrics for assessing feature importance:

• Mean Decrease in Impurity (MDI): This metric quantifies the total reduction in impurity (e.g.,

Gini impurity or MSE) contributed by each feature across all splits in all trees.

• Mean Decrease in Accuracy (MDA): Assesses how random permutation of a feature in the OOB

set degrades prediction accuracy. A larger drop indicates a more critical feature [6, 18].

These importance scores not only facilitate model interpretation but also help practitioners identify

the subset of features that most influence predictions.

4.2 Hyperparameter Tuning

Hyperparameter tuning in Random Forest centers on balancing predictive performance, bias

variance tradeoffs, and computational cost:

• Number of Trees: Increasing number of trees typically leads to a reduction in variance, as the

ensemble’s averaging effect becomes more pronounced. This means that the predictions be

come more stable and less sensitive to the fluctuations in the training data. However, the

relationship between number of trees and performance exhibits diminishing returns; beyond

a certain point, adding more trees yields minimal improvements in accuracy while significantly

increasing computational costs [9]. Practically, number of trees is often set to values ranging

from 100 to 1000, depending on the size and complexity of the dataset. Crossvalidation tech

niques can help identify an optimal number of trees by evaluating performance gains against

the associated computational overhead.

• Number of Features per Split (mtry): The parameter mtry determines the number of features

randomly selected at each split in a decision tree. For classification tasks, a common default

is mtry =
√
p, and for regression tasks, mtry = p/3, where p represents the total number of

features [6]. variance:

– Reduces Correlation: By limiting the number of features considered at each split, mtry

decreases the correlation between individual trees within the forest. Lower correlation

enhances the diversity of the ensemble, thereby improving its overall predictive power

and reducing variance.

– Increases Bias: Conversely, if mtry is set too low, the model may become too simplistic,

leading to higher bias as the trees may not capture all relevant patterns in the data.

Empirical tuning of mtry can yield significant performance improvements, especially in high

dimensional datasets where feature selection plays a pivotal role in model accuracy and effi

ciency.
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• Minimum Samples per Leaf (nmin): The hyperparameter nmin specifies the minimum number

of samples required to form a leaf node in each decision tree. Setting a higher nmin imposes

a constraint that prevents the tree from creating overly specific partitions that capture noise

in the training data [16]. This reduces the model’s propensity to overfit, as larger leaf sizes

promote more generalized rules. However, excessively large values of nmin can lead to under

fitting, where the model fails to capture important nuances in the data. Conversely, smaller

values of nmin allow for more detailed splits, potentially increasing accuracy on training data

but risking overfitting. Therefore, nmin must be tuned to strike an optimal balance between

capturing meaningful patterns and maintaining generalization capability.

• Maximum Tree Depth (dmax): The maximum depth of the trees, denoted by dmax, controls the

extent to which a tree can grow before ceasing to split further. Limiting dmax constrains the

complexity of each tree, thereby mitigating the risk of overfitting, especially in datasets with

significant noise or high dimensionality [16]. A deeper tree can model more intricate relation

ships within the data, potentially increasing accuracy but also elevating the risk of capturing

spurious patterns. On the other hand, a shallower tree may underfit by being too simplistic,

failing to capture essential data structures. Selecting an appropriate dmax is crucial for ensuring

that each tree contributes effectively to the ensemble without compromising its generalization

performance.

• ImpurityMeasure: Measure influences howsplits are evaluatedwithin eachdecision tree. Gini,

entropy, or MSE may be chosen depending on the task [4].

These methods are typically combined with crossvalidation techniques, such as kfold cross

validation, to ensure that the selected hyperparameters generalize well to unseen data. Common

strategies to identify optimal hyperparameter configurations are grid search, random search, or

Bayesian optimization [1].

When tuning hyperparameters, practitioners must consider the computational resources and

time constraints, especially with large datasets. Increasing the number of trees (B) or the depth

of trees (dmax) can exponentially increase training time and memory usage. Therefore, a pragmatic

approach often involves starting with default hyperparameter values and iteratively adjusting them

based on crossvalidated performance metrics. Additionally, leveraging parallel computing capabili

ties can significantly expedite the tuning process.

4.3 Theoretical Guarantees and Applications

Random Forest boasts several theoretical advantages that contribute to its empirical success.

Random Forest offers several theoretical advantages:

• Consistency: As B → ∞, the predictions converge to the true function under certain condi

tions [24].

• BiasVariance Reduction: By averaging many uncorrelated models, Random Forest reduces

variance substantially while only minimally increasing bias [5].
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• Robustness to Overfitting: The combination of bootstrap sampling, random feature selection,

and averaging makes Random Forest much less prone to overfitting than a single, uncon

strained decision tree. [9].

Numerous studies confirm these properties in practice, demonstrating Random Forest’s effec

tiveness across diverse fields [18]. Extensions and variants, such as Extra Trees [15], Weighted Ran

dom Forests [8], and Survival Random Forests [17], have further broadened its applicability.

For national statistical institutes, Random Forest provides a robust framework for identifying

and correcting potentially erroneous data points. By modeling complex interactions among fea

tures, outliers or inconsistencies can be flagged when they deviate from learned patterns. Variable

importancemetrics help detect which features best indicate data quality, guiding the definition or re

finement of hard and soft edit rules. Additionally, Random Forest is wellsuited to highdimensional,

heterogeneous data frequently encountered in administrative and survey settings [9], making it a

versatile option for modern statistical data editing workflows.
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5 Dataset

The dataset used in this study comprises quarterly data from a statistical survey on service

enterprise activities conducted by the SDA between 2017 and 2023. Data was provided as seven

Excel files, each corresponding to a different year, with three sheets: raw data, edited data, and an

”outliers” sheet indicating which values were flagged as outliers by currently used methods by thee

SDA (see section 3.2). This data then were merged based on ID; any ID inconsistencies (for example,

an ID present in the raw file but missing in the edited file) were removed. Variables not appearing in

all years were also excluded.

The primary variable of interest is total turnover for each accounting quarter. However, to

improve the robustness of error detection, several auxiliary variables have been included too, for

those see Table Table 2 .. These auxiliary variables are employedboth to predict potential errors in the

target variable (i.e., to identify whether a reported turnover is erroneous) and to assist in later stage

of imputation. For instance, turnover_y captures the turnover from the same quarter of the previous

year, providing a historical performance benchmark, while VAT adds additional financial information.

In addition to the original variables, a set of derived or composite predictorswere generated to enrich

the analytical space and enhance modeling performance. These newly created features include:

• rel_change_turnover – the relative change in turnover compared to a baseline (e.g., previous

quarter),

• val_VAT_interaction – val * VAT,

• turnover_pe – turnover per employee,

• change_turnover – an absolute or percentage change in turnover from current period to period

of last year’s same quarter.

A detailed description of all variables is provided in Table Table 2 .. Additional exploratory data

analysis is presented in the Results and Discussion section of this thesis.
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Variable Name Description

Survey Variables

turnover Total turnover of the current quarter.

turnoverR Edited total turnover of the current quarter.

turnover_y Total turnover for the same quarter of the previous year.

val Total hours worked by the employee(s).

VAT1m Valueadded tax for the first month of the quarter.

VAT2m Valueadded tax for the second month of the quarter.

VAT3m Valueadded tax for the third month of the quarter.

VAT Valueadded tax for the quarter.

DSK_SOD Number of employees employed by the company.

Identification and Additional Variables

ID Encrypted unique identifier assigned to each company.

quarter Fiscal quarter of the year, indicated as integers from 1 to 4.

status Indicator of the company’s active status, where 1 signifies active and 0 signifies

inactive.

comment Indicator of whether there was a comment left by an expert regarding the enter

prise.

EVRK2_perk Encrypted 4character code representing the company’s economic activity sector,

used for categorization.

inspected Indicator of whether the company was selected for inspection, where 1 indicates

selection and 0 indicates nonselection.

answered Indicator ofwhether the company submitted a completed report, where 1 indicates

submission and 0 indicates nonsubmission.

change_turnover Absolute difference in total turnover between the current quarter and the same

quarter in the previous year.

rel_change_turnover Relative difference in total turnover between the current quarter and the same

quarter in the previous year.

turnover_pe Turnover per employee for each quarter.

val_VAT_interaction Interaction between hours worked and VAT.

Table 2 . Variables and Their Descriptions
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6 Results & Discussion

This section begins with exploratory data analysis of the dataset, including correlation and vi

sualization analysis. Following this, the results of RF classification and RF regression models are dis

cussed, highlighting their performance metrics and the most significant predictors. Finally, the im

plications of these findings are evaluated in the context of the research objectives, providing insights

into the effectiveness of the models and potential areas for further investigation.

6.1 Exploratory Data Analysis

Before proceeding with model building, exploratory data analysis was performed, and missing

values were addressed.

Despite the original size of the dataset, the initial version contained missing values. Approx

imately 7.5% of the key variable of interest (turnover) was missing. Previous studies and internal

SDA practices indicate that advanced imputation techniques, such as missForest and missRanger,

are effective for detecting and imputing missing data [26]. However, in this thesis, these incomplete

turnover records were removed rather than imputed.

Figure 2 . Missing Data and its Patterns in Key Variables

Figure 2 illustrates the quantity and pattern ofmissing data. Notably, 47%of last year’s turnover

values weremissing. If an enterprise was not selected for the previous year’s subset, the correspond

ing turnover data point became unavailable. For this variable, missing values were imputed to match

turnover, while all other missing values were removed. After removing these incomplete records,

the dataset was reduced to approximately 80.6k observations, thereby retaining the most complete

and reliable subset of the original data.

After addressing missing values, a correlation analysis was undertaken to identify redundan

cies. Although monthly VAT data was provided in addition to quarterly VAT, these monthly variables
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Figure 3 . Variable Correlations

exhibited a high correlation with the quarterly totals. Consequently, the monthly VAT1m, VAT2m,

VAT3m variables were removed (see Figure 3 for correlations). By retaining only the quarterly totals,

excessive duplication of information is avoided. A strong correlation can be seen between turnover

and last year’s turnover (turnover_y) as the missing values for the latter variable were imputed to

equal (turnover).

The dataset also includes several categorical variables that offer insights into the classification

and activity of enterprises. Notably, EVRK2_perk specifies enterprise sectors. Scatter plots were

used for visual analysis to determine whether there are different relationships between turnover and

last year’s turnover, as well as between turnover and VAT variables, for the top four most frequent

enterprise sectors. Figure 4 includes data across all years and shows a strong linear relationship

between VAT and turnover. The ”EBca” enterprise sector has one outlier that was not edited (it is not

erroneous). Additionally, it can be observed that the turnover spread differs between groups; some

sectors have higher turnover than others. Figure 5 shows a more moderate relationship between

turnover and last year’s turnover (values that were missing and imputed were not included in the

visualization). Scatter plots suggest that VAT has a stronger relationship with the target variable.

Some of the scatter plots suggest the presence of outliers within certain economic sectors.

It is important to note that outliers in this context may not necessarily be erroneous values; they

may simply reflect atypical but valid enterprise performances. Since the primary aim of this thesis is

to detect erroneous data rather than strictly eliminate all outliers, these data points were retained
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Figure 4 . Scatter Plot of Turnover vs. VAT for the Top Four Enterprise Sectors

Figure 5 . Scatter Plot of Turnover vs. Last Year’s Turnover for the Top Four Enterprise Sectors
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to preserve the natural variability of the dataset. Furthermore, the RF algorithm selected for this

study is relatively robust to outliers. In particular, RF aggregates predictions over multiple decision

trees, thus mitigating the undue influence of a small number of extreme observations. As a result,

potential outliers that remain in the dataset are less likely to skew the model predictions, allowing

for a comprehensive detection of truly erroneous values without discarding data points that may

represent legitimate but uncommon behaviors.

Upon further investigation, it was found that the dataset encompassed a total of 306 differ

ent enterprise sectors. However, certain sectors were very sparsely represented, with fewer than six

observations recorded across all years. These minimally populated categories pose significant chal

lenges for model training and validation, especially for methods like RF, which rely on partitioning

data into multiple trees. Groups with extremely limited data points do not provide sufficient variety

for robust parameter estimation, often leading to unstable or biased predictions.

To address these challenges and maintain a more balanced distribution of observations per

category, enterprise sector groups with fewer than six observations were consolidated into a single

overarching category labeled “Other.” This aggregation ensures that each remaining classifier has

enough instances to support the modeling process while still retaining highlevel distinctions among

primary service enterprise types.

6.2 RF Model for Error Classification

A Random Forest classification model was developed to identify erroneous turnover values

in the dataset. The target variable, edited, was converted into a categorical factor with two levels:

Class1 and Class0. Subsequent analysis of class distributionswithin each subset revealed a significant

imbalance, with the majority class (Class0) dominating, and only 1.40% of the observations having

been edited from the original submitted value.

To ensure effective model training and evaluation, the dataset was divided into training and

testing subsets. The data was shuffled, and 85% was allocated to training. This stratified partitioning

was performed using the createDataPartition function from the caret package, ensuring the

distribution of the target variable (edited) remained consistent across both subsets. The training

subset contained 1.39% of the minority class, while the test subset contained 1.47%.

Class imbalance poses a substantial challenge in classification tasks, often leading to models

biased toward the majority class. Such disparities necessitate strategies to address class imbalance,

thereby enhancing the model’s ability to accurately predict the minority class. To mitigate this is

sue, both oversampling and undersampling techniques were employed to create balanced training

subsets with varying minorityclass proportions.

The Synthetic Minority Oversampling Technique (SMOTE) was utilized to generate synthetic

samples of the minority class (Class1). This method creates plausible synthetic instances by inter

polating between existing minority class observations, thereby enriching the feature space without

merely duplicating existing samples. Three oversampled training subsets were generated, targeting

minority class proportions of 40%, and 20%.

Conversely, undersampling was employed to reduce the number of majority class instances
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Table 3 . Class Distributions and Imbalance Ratios in Training Datasets

Name Class0 Class1 Imbalance Ratio

SMOTE_40 41021 27493 0.401

SMOTE_20 54772 13742 0.200

Under_60 633 950 0.600

Under_40 1425 950 0.400

Under_20 3800 950 0.200

Original 67564 950 0.014

(Class0) in the training data. This approach involved selectively sampling a subset of themajority class

to achieve desired minority class proportions of 60%, 40%, and 20%. By limiting the dominance of

the majority class, undersampling helps prevent the model from becoming biased toward predicting

the majority class, thereby improving its sensitivity to the minority class. The class distributions for

these datasets are shown in Table 3.

For each training dataset: original; oversampled (SMOTE_40, SMOTE_20); and undersampled

(Under_60, Under_40, Under_20), an RF classification model was trained. The training process in

volved the following steps:

1. Feature Selection: Relevant predictor variables were selected based on their potential influ

ence on the target edited variable. These included: quarter, EVRK2_perk, status, turnover,

turnover_y, val, VAT, DSK_SOD, change_turnover, rel_change_turnover, val_VAT_interaction,

and turnover_pe.

2. Hyperparameter Tuning: A grid search was conducted to optimize key RF hyperparameters,

including:

• the number of variables randomly sampled at each split (mtry), tested from 1 to 13,

• the split rule (splitrule), set to "gini",

• the minimum node size (min.node.size), tested from 1 to 10.

The objective was to find a configuration that maximizes the model’s sensitivity, thereby en

hancing its capacity to detect erroneous values.

3. CrossValidation: Fivefold crossvalidationwas employed to assessmodel performance during

training.

4. ClassWeights: Although class imbalance was addressed through oversampling and undersam

pling, class weights were also computed (inversely proportional to class frequencies) for each

dataset. These weights further balanced the influence of each class during model training.

6.2.1 Model Evaluation

Posttraining, each RF classifier was evaluated on crossvalidation and test dataset to assess its

generalizability. The evaluation metrics included:
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• Confusion Matrix: Provides a summary of prediction results, highlighting true positives, true

negatives, false positives, and false negatives.

• Sensitivity (Recall): Measures the proportion of actual erroneous values correctly identified

by the model.

• Specificity: Assesses the proportion of nonerroneous values correctly identified.

• Balanced Accuracy: Represents the average of sensitivity and specificity, offering a more bal

anced measure of model performance, particularly in datasets with class imbalance.

• Area Under the Curve (AUC): Quantifies the overall discriminative ability of the model.

Original Data Under_60 Under_40 Under_20 SMOTE_40 SMOTE_20

min.node.size 1 8 4 3 2 3

mtry 13 8 8 8 8 8

Accuracy 0.960 0.657 0.736 0.816 0.984 0.985

Sensitivity 0.348 0.713 0.713 0.567 0.011 0.011

Specificity 0.969 0.657 0.886 0.820 0.990 0.999

AUC 0.811 0.762 0.794 0.803 0.674 0.674

Bal. Accuracy 0.659 0.685 0.725 0.694 0.505 0.505

Table 4 . Model Performance on Test Data for Different Training Datasets

When interpreting the hyperparameter settings seen in Table 4, it is useful to consider how

each parameter (min.node.size and mtry) influences the complexity and generalization of the Ran

dom Forest (RF) model. Specifically,mtry (the number of predictors randomly sampled at each split)

determines howmany features are considered at each node, whilemin.node.size (theminimumnum

ber of observations allowed in a leaf node) regulates the depth of each decision tree.

For the original dataset, the bestperforming configuration used an mtry of 13 and a

min.node.size of 1. This essentially gave the model full access to all features at each split, al

lowing very deep trees. Because the original dataset is the largest and has the highest number of

examples, it can tolerate this greater complexity without immediately succumbing to overfitting.

In contrast, the undersampled datasets, which reduce the size of the majority class, performed

best with a consistent mtry of 8 but varied min.node.size values (3, 4, or 8). Larger min.node.size

values generally make trees shallower, serving as a safeguard against overfitting to the smaller,

undersampled training set.

For SMOTEbased datasets, an mtry of 8 also emerged as optimal, but with moderate

min.node.size values (2 or 3). Because SMOTE introduces synthetic instances to expand the minority

class, a balance is needed between deep trees (lower min.node.size) and avoiding overfitting to ar

tificially generated samples. While SMOTE helps to address class imbalance, the model still benefits

from not considering all features at once (i.e., mtry < total number of predictors), likely because it

reduces the risk of spurious splits.
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Figure 6 . Top 20 Features for the Under_20 Model on the Test Dataset

Image 5 illustrates the top 20 features contributing to the model trained on the Under_40

dataset. These rankings provide insight into which variables most strongly influence the classifier’s

decisions once undersampling has balanced the classes. Turnover per employee, turnover and rela

tive change of turnover rank as top three features. Enterprise sector classifiers (EVRK_perk) did not

rank in top 10, which is expected as not all sectors groups had many observations.

Table 4 presents the performancemetrics of models performance. The classifier trained on the

original dataset achieved a high overall accuracy of 0.960 but exhibited a notably low sensitivity of

0.348, indicating poor performance in identifying the minority class (Class1, erroneous turnover val

ues). In contrast, undersampling methods (Under_60, Under_40, Under_20) substantially improved

sensitivity, with Under_40 and Under_20 both achieving the highest sensitivity score of 0.713. This

suggests that reducing the majority class instances helped the model detect erroneous entries more

effectively.

Meanwhile, oversampling approaches (SMOTE_40, SMOTE_20) did not yield similar improve

ments in sensitivity; oversampledmodels scored as low as 0.011. Although oversamplingmaintained

high accuracy, its low sensitivity indicates that simply augmenting the minority class did not en

hance error detection. Additionally, the AUC values for oversampled models were lower than those

achieved by undersamplingbased models, further highlighting the limited efficacy of oversampling

in this setting (see Figure 6).

While oversampling techniques like SMOTE are recognized for their ability to address class im

balance by generating synthetic minority class instances [3], their application in this study yielded

limited improvements in sensitivity and overall model performance. Several limitations inherent to

SMOTE likely contributed to its underperformance in enhancing error detection.

SMOTE generates synthetic instances by interpolating between existingminority class samples.

However, if the minority class is extremely sparse or lacks sufficient variability, the synthetic samples

may not capture the true underlying distribution of the minority class [14, 27]. This can result in
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Figure 7 . Models’ ROC Cruves and AUC Values on Test Data

synthetic instances that are not representative, thereby providing little to no benefit in improving

model sensitivity. In scenarios where the feature space of the majority and minority classes over

laps significantly, SMOTE may inadvertently create synthetic samples that lie in regions where the

classes are not wellseparated. This can lead to confusion within the classifier, diminishing its abil

ity to accurately distinguish between classes. Given that the original dataset exhibited strong class

imbalance (1.40% minority class), SMOTE’s effectiveness may be constrained. In cases of strong im

balance, oversampling alone may not suffice to significantly improve model sensitivity. In this study,

the minimal gains in sensitivity and AUC observed in oversampledmodels indicate that SMOTE alone

was insufficient to overcome the challenges posed by the class imbalance.

Models trained on undersampled datasets demonstrated superior performance, a finding that

aligns with existing research. For instance, the bestperforming RF classification model for statistical

data performed by Bohnensteffen [2] also incorporated undersampling.

6.3 Regression Forest for Error Imputation

The second stage of this thesis involves imputing values that were classified as erroneous in

the previous stage. To accomplish this, a RF regression model was developed using the subset of the

training dataset flagged for erroneous turnover values (Class1). The primary objective was to predict

corrected turnover values, represented by the turnoverR variable.

The training dataset consisted solely of observations edited in the SDA’s data editing process,

totaling 950 records. For testing, 3,264 instances labeled as erroneous by the best classification

model from the previous stage (trained on the 20% undersampled dataset) were used.

Some predictors, notably EVRK2_perk and status, were excluded from the regression analysis.

EVRK2_perk was removed due to its limited levels, which necessitated consolidating categories into
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an “Other” label. Similarly, status was excluded for the same reason, as it contributed little informa

tive value to the regression process.

6.3.1 Model Evaluation

To validate the model’s effectiveness, a custom summary function was developed to compute

key performance metrics: Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and R2.

Hyperparameter tuning was conducted via grid search, considering both extratrees and variance as

potential split rules. A 10fold crossvalidation procedure was applied to refine and select the final

model.

Initially, only erroneous turnover observations were used for training. However, the results

revealed a systematic overestimation of turnover. To address this, nonerroneous values were in

troduced using different ratios, aiming to find the optimal balance of erroneous and correct entries.

Three splits were tested:

• 0.5 split: Half as many correct entries (turnover_correct = 0.5× turnover_error).

• 1.0 split: Equal numbers of correct and erroneous entries (turnover_correct =

turnover_error).

• 2.0 split: Twice as many correct entries (turnover_correct = 2× turnover_error).

As a baseline, a benchmark model used only the raw turnover value as a sole predictor, serv

ing as a simple reference point. The performance metrics (RMSE, R2, MAE) were then computed by

comparing the predicted turnoverR with the true edited turnover. Among the evaluated configura

tions, the 2.0 ratio of correct to erroneous entries produced the most favorable results, improving

theR2 value from 0.674 (when only erroneous values were included) to 0.810 (see Table 5). Despite

this substantial gain, the baseline model continued to deliver superior performance, implying that

adjustments of training dataset were not enough an further enhancements are needed to improve

the regression model’s accuracy. For all models, the best performing split rule was extratrees.

Metric Benchmark ErrorsOnly Split 0.5 Split 1.0 Split 2.0 Split

mtry NA 1 2 3 4

min.node.size NA 1 1 1 1

RMSE 3,480,299 6,930,039 5,855,146 5,016,681 4,500,000

R2 0.898 0.674 0.731 0.786 0.810

MAE 123,579 958,746 742,506 586,808 550,000

Table 5 . Regression Forest Performance on Test Data for Different Training Splits
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Figure 9 . Density Plot of Imputed vs. Edited Turnover

(a) Scatter Plot of Imputed vs. Edited Turnover

(b) Scatter Plot of Imputed vs. Edited Turnover

(Axes Limited to 100k)

Figure 8 . Comparison of Scatter Plots: Imputed vs. Edited Turnover

Closer examination of the imputed turnover values compared to the target values reveals that

the model unperformed to accurately predict cases where turnover was zero (see Figure 8(b)). One

possible reason is that zero turnover events are inherently sparse and may differ substantially from

nonzero data points in terms of underlying business or economic drivers. This scarcity of training

samples with zero turnover can limit the model’s ability to learn the distinct factors that characterize

such instances.

In addition, extreme turnover values tended to be underestimated. Although the regression

approach capturedmoderate turnover patterns, it appears less effective for outliers at the higher end

of the distribution. Such understimations might stem from the relatively low frequency of extreme

observations, which can lead the model to generalize poorly in regions where limited data exist. Fig
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ure 9 provides a more detailed view through a density plot, highlighting how the predicted turnover

values deviate most noticeably at the zero.

Despite efforts to refine the training data composition by introducing nonerroneous obser

vations at various ratios, the proposed Random Forest regression model consistently underper

formed relative to the simple benchmark. While expanding the training set to include more correct

entries significantly improved R2 from 0.674 to 0.810, further enhancements remain necessary to

close the gap with the benchmark.

Closer examination of prediction errors highlights two key challenges. First, the model strug

gled to handle zeroturnover cases, likely due to the scarcity of such observations, which impedes

the learning of a distinct rule for zero. Second, extreme turnover values were underestimated. Ad

dressing these challenges may require additional feature engineering.
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7 Conclusion

Data editing is a fundamental process for NSIs, yet it demands substantial resources, particu

larly when additional followup with respondents is required. This thesis explored the application

of RF techniques to automate two critical editing tasks: identifying erroneous turnover records and

imputing accurate values for those flagged as errors.

From a classification perspective, the RF model demonstrated significant potential to improve

or work as addition to currently used method at SDA, Lithuania. By incorporating undersampling

techniques, the model achieved a balanced accuracy of 0.725, compared to the 0.636 balanced ac

curacy attained by the currently employed selective editing approach at the SDA. Additionally, the

RF model exhibited higher sensitivity in detecting genuinely erroneous values (true positives) and

reduced the incidence of false positives. This improvement is particularly valuable for NSIs, as more

precise identification of erroneous records enables more efficient allocation of resources for manual

error correction.

Conversely, the RF regression model designed to impute corrected turnover values encoun

tered notable challenges, especially in cases where the true turnover was zero. Even after expanding

the training dataset to include additional nonerroneous observations, the model continued to over

estimate these zero turnover values. These findings align with those reported by Bohnensteffen [2],

who also observed difficulties with RF regression in accurately predicting nearzero values. Further

more, the limited auxiliary information—such as relying on only a single historical data point with

substantial missingness—likely constrained themodel’s ability to generalize effectively. This suggests

that integrating more comprehensive longitudinal and contextual data is necessary to enhance im

putation accuracy.

Looking ahead, future research could build upon these insights by:

1. Incorporating a broader range of historical and contextual features to further improve both

classification and regression performance.

2. Investigating advancedmodeling techniques specifically designed to handle zeroinflated data,

which could mitigate issues associated with predicting zero and nearzero turnover cases.

Overall, this thesis concludes that while Random Forests offer a promising solution for enhanc

ing error detection in data editing processes, accurately imputing true values remains challenging

without more extensive data and refined feature engineering. The complete automation of the

statistical editing process continues to be a difficult goal, as also noted by De Waal, Quéré [12].

However, with the increasing focus on the application of machine learning within NSIs, ongoing im

provements are being made. A hybrid or selective editing approach appears more feasible, wherein

modelderived error estimates are used to prioritize observations for manual review. This ensures

that human expertise is reserved for the most suspicious or influential cases, while relatively minor

or unambiguous instances can be addressed algorithmically.

In summary, the integration of machine learning techniques like Random Forests into NSI data

editing workflows has the potential to enhance both efficiency and accuracy. Continued research
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and the incorporation of richer datasets will be essential to overcoming the current limitations and

achieving more robust automation in data editing processes.
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9 Appendix

A: Software and Tools Utilized

In the development and execution of this thesis, several software applications and artificial

intelligence tools were utilized.

The theoretical part of this thesis was conducted using R, a statistical programming language.

As English is not the author’s native language, it was essential to ensure that the thesis met

the required academic standards for language and presentation. To assist in refining the written

material, ChatGPT4, an artificial intelligence language model developed by OpenAI, was employed.

ChatGPT4 was used to ensure that the writing was suitable for academic purposes, as well as to

troubleshoot and resolve issues encountered during the implementation of theoretical aspects in R
and the creation of LATEX tables.

The following prompt was used:

"You are a data scientist writing an article for an academic journal
on statistical data editing. Your article will be read by experts in
the field, and no mistakes or inconsistencies should be present in
your text. You write in North American English, clearly and with no
grammatical mistakes. Edit the following for clarity:.."

The author acknowledges that AI can produce errors and assumes full responsibility for all con

tent presented in this thesis.
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B: R Code for Classification and Regression Tasks

1

2 # -----------------------------

3 # Data Processing

4 # -----------------------------

5

6 data_2017 <- import_list("Duomenys/Duomenys2017.xlsx")

7 data_2018 <- import_list("Duomenys/Duomenys2018.xlsx")

8 data_2019 <- import_list("Duomenys/Duomenys2019.xlsx")

9 data_2020 <- import_list("Duomenys/Duomenys2020.xlsx")

10 data_2021 <- import_list("Duomenys/Duomenys2021.xlsx")

11 data_2022 <- import_list("Duomenys/Duomenys2022.xlsx")

12 data_2023 <- import_list("Duomenys/Duomenys2023.xlsx")

13

14

15 # Removing F1_600

16 process_data <- function(data_year) {

17 data_year$pradiniai <- data_year$pradiniai %>%

18 select(-starts_with("F1_600")) %>%

19 arrange(ID)

20

21 data_year$isskirtys <- data_year$isskirtys %>%

22 select(-starts_with("F1_600")) %>%

23 arrange(ID)

24

25 data_year$redaguoti <- data_year$redaguoti %>%

26 select(-starts_with("F1_600")) %>%

27 arrange(ID)

28

29 data_year$pradiniai <- data_year$pradiniai %>%

30 group_by(ID) %>%

31 summarise(across(everything(), ~ .x[1]), .groups = 'drop')

32

33 return(data_year)

34 }

35

36 data_2017 <- process_data(data_2017)

37 data_2018 <- process_data(data_2018)

38 data_2019 <- process_data(data_2019)

39 data_2020 <- process_data(data_2020)

40 data_2021 <- process_data(data_2021)

41 data_2022 <- process_data(data_2022)
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42 data_2023 <- process_data(data_2023)

43

44

45 # Removing some other variables that are not consistent

46 data_2017$pradiniai <- data_2017$pradiniai %>%

47 select(-c("EVRK2_perk_20172","EVRK2_perk_20173","EVRK2_perk_20174","

PASTABOS2_20171","PASTABOS2_20172","PASTABOS2_20173","PASTABOS2_

20174"))

48 data_2017$redaguoti <- data_2017$redaguoti %>%

49 select(-c("EVRK2_perk_20172","EVRK2_perk_20173","EVRK2_perk_20174","

PASTABOS2_20171","PASTABOS2_20172","PASTABOS2_20173","PASTABOS2_

20174"))

50 data_2017$isskirtys <- data_2017$isskirtys %>%

51 select(-c("sel_F01_20171","sel_F01_20172","sel_F01_20173","sel_F01_

20174"))

52

53 data_2018$pradiniai <- data_2018$pradiniai %>%

54 select(-c("EVRK2_perk_20182","EVRK2_perk_20183","EVRK2_perk_20184","

PASTABOS2_20181","PASTABOS2_20182","PASTABOS2_20183","PASTABOS2_

20184"))

55 data_2018$redaguoti <- data_2018$redaguoti %>%

56 select(-c("EVRK2_perk_20182","EVRK2_perk_20183","EVRK2_perk_20184","

PASTABOS2_20181","PASTABOS2_20182","PASTABOS2_20183","PASTABOS2_

20184"))

57 data_2018$isskirtys <- data_2018$isskirtys %>%

58 select(-c("sel_F01_20181","sel_F01_20182","sel_F01_20183","sel_F01_

20184"))

59

60 data_2019$pradiniai <- data_2019$pradiniai %>%

61 select(-c("EVRK2_perk_20192","EVRK2_perk_20193","EVRK2_perk_20194","

PASTABOS2_20191","PASTABOS2_20192","PASTABOS2_20193","PASTABOS2_

20194"))

62 data_2019$redaguoti <- data_2019$redaguoti %>%

63 select(-c("EVRK2_perk_20192","EVRK2_perk_20193","EVRK2_perk_20194","

PASTABOS2_20191","PASTABOS2_20192","PASTABOS2_20193","PASTABOS2_

20194"))

64 data_2019$isskirtys <- data_2019$isskirtys %>%

65 select(-c("sel_F01_20191","sel_F01_20192","sel_F01_20193","sel_F01_

20194"))

66

67 data_2020$pradiniai <- data_2020$pradiniai %>%
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68 select(-c("EVRK2_perk_20202","EVRK2_perk_20203","EVRK2_perk_20204","

PASTABOS2_20201","PASTABOS2_20202","PASTABOS2_20203","PASTABOS2_

20204"))

69 data_2020$redaguoti <- data_2020$redaguoti %>%

70 select(-c("EVRK2_perk_20202","EVRK2_perk_20203","EVRK2_perk_20204","

PASTABOS2_20201","PASTABOS2_20202","PASTABOS2_20203","PASTABOS2_

20204"))

71 data_2020$isskirtys <- data_2020$isskirtys %>%

72 select(-c("sel_F01_20201","sel_F01_20202","sel_F01_20203","sel_F01_

20204"))

73

74 data_2021$pradiniai <- data_2021$pradiniai %>%

75 select(-c("DPS_PASTABOS_20211","DPS_PASTABOS_20212","DPS_PASTABOS_20213

","DPS_PASTABOS_20214"))

76 data_2021$redaguoti <- data_2021$redaguoti %>%

77 select(-c("DPS_PASTABOS_20211","DPS_PASTABOS_20212","DPS_PASTABOS_20213

","DPS_PASTABOS_20214"))

78

79 data_2022$pradiniai <- data_2022$pradiniai %>%

80 select(-c("DPS_PASTABOS_20221","DPS_PASTABOS_20222","DPS_PASTABOS_20223

","DPS_PASTABOS_20224"))

81 data_2022$redaguoti <- data_2022$redaguoti %>%

82 select(-c("DPS_PASTABOS_20221","DPS_PASTABOS_20222","DPS_PASTABOS_20223

","DPS_PASTABOS_20224"))

83

84 # removing unmatched IDs

85 ids_2018 <- data_2018$pradiniai[!data_2018$pradiniai$ID %in% data_2018$

redaguoti$ID, ]

86 data_2018$pradiniai <- data_2018$pradiniai %>%

87 filter(!ID %in% ids_2018$ID)

88 data_2018$isskirtys <- data_2018$isskirtys %>%

89 filter(!ID %in% ids_2018$ID)

90

91 ids_2019 <- data_2019$pradiniai[!data_2019$pradiniai$ID %in% data_2019$

redaguoti$ID, ]

92 data_2019$pradiniai <- data_2019$pradiniai %>%

93 filter(!ID %in% ids_2019$ID)

94 data_2019$isskirtys <- data_2019$isskirtys %>%

95 filter(!ID %in% ids_2019$ID)

96

97 # Define the standard column names

98 standard_colnames <- c("ID", "EVRK2_perk", "BUKLE_1", "PASTABA_1",

99 "viso_1", "viso_y1","val_1", "pvm_m1",
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100 "pvm_m2", "pvm_m3", "pvm_1", "DSK_SOD_1",

101 "BUKLE_2", "PASTABA_2","viso_2", "viso_y2",

102 "val_2", "pvm_m4", "pvm_m5", "pvm_m6",

103 "pvm_2", "DSK_SOD_2", "BUKLE_3", "PASTABA_3",

104 "viso_3", "viso_y3", "val_3", "pvm_m7",

105 "pvm_m8", "pvm_m9", "pvm_3", "DSK_SOD_3",

106 "BUKLE_4", "PASTABA_4","viso_4", "viso_y4",

107 "val_4", "pvm_m10", "pvm_m11", "pvm_m12",

108 "pvm_4", "DSK_SOD_4", "imtyje_1", "atsake_1",

109 "svoriai_1", "svoriai_kalibr_1", "imtyje_2", "

atsake_2",

110 "svoriai_2", "svoriai_kalibr_2", "imtyje_3", "

atsake_3",

111 "svoriai_3","svoriai_kalibr_3", "imtyje_4", "

atsake_4",

112 "svoriai_4", "svoriai_kalibr_4", "tikrinti_1","

tikrinti_2",

113 "tikrinti_3", "tikrinti_4")

114

115 colnames(data_2017$pradiniai) <- standard_colnames

116 colnames(data_2018$pradiniai) <- standard_colnames

117 colnames(data_2019$pradiniai) <- standard_colnames

118 colnames(data_2020$pradiniai) <- standard_colnames

119 colnames(data_2021$pradiniai) <- standard_colnames

120 colnames(data_2022$pradiniai) <- standard_colnames

121

122 # tikrinti_1 is missing in 2023

123 standard_colnames <- c("ID", "EVRK2_perk", "BUKLE_1", "PASTABA_1",

124 "viso_1", "viso_y1","val_1", "pvm_m1",

125 "pvm_m2", "pvm_m3", "pvm_1", "DSK_SOD_1",

126 "BUKLE_2", "PASTABA_2","viso_2", "viso_y2",

127 "val_2", "pvm_m4", "pvm_m5", "pvm_m6",

128 "pvm_2", "DSK_SOD_2", "BUKLE_3", "PASTABA_3",

129 "viso_3", "viso_y3", "val_3", "pvm_m7",

130 "pvm_m8", "pvm_m9", "pvm_3", "DSK_SOD_3",

131 "BUKLE_4", "PASTABA_4","viso_4", "viso_y4",

132 "val_4", "pvm_m10", "pvm_m11", "pvm_m12",

133 "pvm_4", "DSK_SOD_4", "imtyje_1", "atsake_1",

134 "svoriai_1", "svoriai_kalibr_1", "imtyje_2", "

atsake_2",

135 "svoriai_2", "svoriai_kalibr_2", "imtyje_3", "

atsake_3",
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136 "svoriai_3","svoriai_kalibr_3", "imtyje_4", "

atsake_4",

137 "svoriai_4", "svoriai_kalibr_4", "tikrinti_2",

138 "tikrinti_3", "tikrinti_4")

139

140

141 colnames(data_2023$pradiniai) <- standard_colnames

142

143 standard_colnames <- c("ID", "EVRK2_perk", "BUKLE_1", "PASTABA_1",

144 "viso_1", "viso_y1","val_1", "pvm_m1",

145 "pvm_m2", "pvm_m3", "pvm_1", "DSK_SOD_1",

146 "BUKLE_2", "PASTABA_2","viso_2", "viso_y2",

147 "val_2", "pvm_m4", "pvm_m5", "pvm_m6",

148 "pvm_2", "DSK_SOD_2", "BUKLE_3", "PASTABA_3",

149 "viso_3", "viso_y3", "val_3", "pvm_m7",

150 "pvm_m8", "pvm_m9", "pvm_3", "DSK_SOD_3",

151 "BUKLE_4", "PASTABA_4","viso_4", "viso_y4",

152 "val_4", "pvm_m10", "pvm_m11", "pvm_m12",

153 "pvm_4", "DSK_SOD_4", "imtyje_1", "atsake_1",

154 "svoriai_1", "svoriai_kalibr_1", "imtyje_2", "

atsake_2",

155 "svoriai_2", "svoriai_kalibr_2", "imtyje_3", "

atsake_3",

156 "svoriai_3","svoriai_kalibr_3", "imtyje_4", "

atsake_4",

157 "svoriai_4", "svoriai_kalibr_4")

158

159 colnames(data_2017$redaguoti) <- standard_colnames

160 colnames(data_2018$redaguoti) <- standard_colnames

161 colnames(data_2019$redaguoti) <- standard_colnames

162 colnames(data_2020$redaguoti) <- standard_colnames

163 colnames(data_2021$redaguoti) <- standard_colnames

164 colnames(data_2022$redaguoti) <- standard_colnames

165 colnames(data_2023$redaguoti) <- standard_colnames

166

167 # Define the standard column names

168 standard_colnames <- c(

169 "ID", "sel_pvm_1", "HB_prm_1", "HB_prk_1", "kvartiliai_1", "tikrinti_1

",

170 "sel_pvm_2", "HB_prm_2", "HB_prk_2", "kvartiliai_2", "tikrinti_2",

171 "sel_pvm_3", "HB_prm_3", "HB_prk_3", "kvartiliai_3", "tikrinti_3",

172 "sel_pvm_4", "HB_prm_4", "HB_prk_4", "kvartiliai_4", "tikrinti_4"

173 )
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174

175 colnames(data_2017$isskirtys) <- standard_colnames

176 colnames(data_2018$isskirtys) <- standard_colnames

177 colnames(data_2019$isskirtys) <- standard_colnames

178 colnames(data_2020$isskirtys) <- standard_colnames

179 colnames(data_2021$isskirtys) <- standard_colnames

180 colnames(data_2022$isskirtys) <- standard_colnames

181

182 # Q1 is missing

183 standard_colnames <- c(

184 "ID",

185 "sel_pvm_2", "HB_prm_2", "HB_prk_2", "kvartiliai_2", "tikrinti_2",

186 "sel_pvm_3", "HB_prm_3", "HB_prk_3", "kvartiliai_3", "tikrinti_3",

187 "sel_pvm_4", "HB_prm_4", "HB_prk_4", "kvartiliai_4", "tikrinti_4"

188 )

189

190 colnames(data_2023$isskirtys) <- standard_colnames

191

192

193 # combining data

194 years <- 2018:2023

195

196 numeric_columns <- c(

197 paste0("viso_", 1:4, "_pradiniai"),

198 paste0("viso_", 1:4, "_redaguoti"),

199 paste0("viso_y", 1:4, "_pradiniai"),

200 paste0("viso_y", 1:4, "_redaguoti"),

201 paste0("val_", 1:4, "_pradiniai"),

202 paste0("val_", 1:4, "_redaguoti"),

203 paste0("pvm_", 1:4, "_pradiniai"),

204 paste0("pvm_", 1:4, "_redaguoti"),

205 paste0("DSK_SOD_", 1:4, "_pradiniai"),

206 paste0("DSK_SOD_", 1:4, "_redaguoti"),

207 paste0("diff_", 1:4)

208 )

209

210 character_columns <- c(

211 "ID",

212 "EVRK2_perk_pradiniai",

213 "EVRK2_perk_redaguoti",

214 paste0("BUKLE_", 1:4, "_pradiniai"),

215 paste0("BUKLE_", 1:4, "_redaguoti"),

216 paste0("edited_", 1:4),

46



217 paste0("sel_pvm_", 1:4, "_isskirtys"),

218 paste0("HB_prm_", 1:4, "_isskirtys"),

219 paste0("HB_prk_", 1:4, "_isskirtys"),

220 paste0("kvartiliai_", 1:4, "_isskirtys"),

221 paste0("tikrinti_", 1:4, "_isskirtys")

222 )

223

224 # Data is cleaned now, merging section

225 # Loop over the years 2017 to 2023

226 for (year in 2017:2023) {

227

228 data_year <- get(paste0("data_", year))

229

230 pradiniai_data <- data_year$pradiniai

231 redaguoti_data <- data_year$redaguoti

232 isskirtys_data <- data_year$isskirtys

233

234 pradiniai_data$ID <- as.character(pradiniai_data$ID)

235 redaguoti_data$ID <- as.character(redaguoti_data$ID)

236 isskirtys_data$ID <- as.character(isskirtys_data$ID)

237

238 pradiniai_data <- pradiniai_data %>%

239 rename_with(~ paste0(., "_pradiniai"), -ID)

240

241 redaguoti_data <- redaguoti_data %>%

242 rename_with(~ paste0(., "_redaguoti"), -ID)

243

244 merged_data <- full_join(pradiniai_data, redaguoti_data, by = "ID")

245

246 merged_data <- left_join(merged_data, isskirtys_data, by = "ID")

247

248 assign(paste0("merged_data_", year), merged_data)

249 }

250

251

252 # Adressing NAs

253 cleaned_data_list <- list()

254

255 for (year in years) {

256 df_name <- paste0("merged_data_", year)

257 merged_data <- get(df_name)

258

259 merged_data$year <- year
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260

261 merged_data[merged_data == ""] <- NA

262 merged_data[merged_data == "NA"] <- NA

263 merged_data[merged_data == "NaN"] <- NA

264 merged_data[merged_data == "<NA>"] <- NA

265

266 for (col in numeric_columns) {

267 if (col %in% names(merged_data)) {

268 merged_data[[col]] <- gsub(",", "", merged_data[[col]])

269 merged_data[[col]] <- gsub("[^0-9\\.\\-]", "", merged_data[[col]])

270 merged_data[[col]] <- as.numeric(merged_data[[col]])

271 }

272 }

273

274 for (col in character_columns) {

275 if (col %in% names(merged_data)) {

276 merged_data[[col]] <- as.character(merged_data[[col]])

277 }

278 }

279

280 cleaned_data_list[[as.character(year)]] <- merged_data

281

282 assign(df_name, merged_data)

283 }

284

285 cleaned_data_list <- convert_columns_to_logical(cleaned_data_list,

columns_to_convert)

286 combined_data_3 <- bind_rows(cleaned_data_list)

287

288 # Selecting only columns that will be used for RF

289 selected_columns <- c("ID", "year", "EVRK2_perk_pradiniai",

290 "BUKLE_1_pradiniai", "PASTABA_1_pradiniai", "viso_1

_pradiniai", "viso_y1_redaguoti", "val_1_

redaguoti", "pvm_m1_pradiniai", "pvm_m2_

pradiniai", "pvm_m3_pradiniai","pvm_1_redaguoti"

, "DSK_SOD_1_pradiniai", "edited_1", "diff_y1",

291 "BUKLE_2_pradiniai", "PASTABA_2_pradiniai","viso_2_

pradiniai", "viso_y2_redaguoti", "val_2_

redaguoti", "pvm_2_redaguoti","pvm_m4_pradiniai"

, "pvm_m5_pradiniai","pvm_m6_pradiniai","DSK_SOD

_2_pradiniai", "edited_2", "diff_y2",

292 "BUKLE_3_pradiniai", "PASTABA_3_pradiniai","viso_3_

pradiniai", "viso_y3_redaguoti", "val_3_
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redaguoti", "pvm_3_redaguoti", "pvm_m7_pradiniai

","pvm_m8_pradiniai","pvm_m9_pradiniai","DSK_SOD

_3_pradiniai", "edited_3", "diff_y3",

293 "BUKLE_4_pradiniai", "PASTABA_4_pradiniai","viso_4_

pradiniai", "viso_y4_redaguoti", "val_4_

redaguoti", "pvm_4_redaguoti","pvm_m10_pradiniai

", "pvm_m11_pradiniai","pvm_m12_pradiniai","DSK_

SOD_4_pradiniai", "edited_4","diff_y4", "atsake_

1_pradiniai", "atsake_2_pradiniai","atsake_3_

pradiniai","atsake_4_pradiniai", "viso_1_

redaguoti","viso_2_redaguoti","viso_3_redaguoti"

,"viso_4_redaguoti", "diff_abs_1", "diff_abs_2",

"diff_abs_3", "diff_abs_4", "diff_rel_y1", "

diff_rel_y2", "diff_rel_y3", "diff_rel_y4", "

svoriai_1_pradiniai", "svoriai_kalibr_1_

pradiniai", "svoriai_2_pradiniai", "svoriai_

kalibr_2_pradiniai", "svoriai_3_pradiniai", "

svoriai_kalibr_3_pradiniai", "svoriai_4_

pradiniai", "svoriai_kalibr_4_pradiniai", "

tikrinti_1_pradiniai","tikrinti_2_pradiniai","

tikrinti_3_pradiniai","tikrinti_4_pradiniai", "

imtyje_1_pradiniai", "imtyje_2_pradiniai", "

imtyje_3_pradiniai", "imtyje_4_pradiniai")

294

295 pradiniai_df <- combined_data_3[, c(selected_columns)]

296

297 column_names <- c("ID", "year", "EVRK2_perk_pradiniai",

298 "BUKLE_1_pradiniai", "PASTABA_1_pradiniai", "viso_1_

pradiniai", "viso_y1_pradiniai", "val_1_pradiniai",

"pvm1m_1_pradiniai", "pvm2m_1_pradiniai", "pvm3m_1

_pradiniai","pvm_1_pradiniai", "DSK_SOD_1_pradiniai

", "edited_1", "diff_y1",

299 "BUKLE_2_pradiniai", "PASTABA_2_pradiniai","viso_2_

pradiniai", "viso_y2_pradiniai", "val_2_pradiniai",

"pvm_2_pradiniai","pvm1m_2_pradiniai", "pvm2m_2_

pradiniai","pvm3m_2_pradiniai","DSK_SOD_2_pradiniai

", "edited_2", "diff_y2",

300 "BUKLE_3_pradiniai", "PASTABA_3_pradiniai","viso_3_

pradiniai", "viso_y3_pradiniai", "val_3_pradiniai",

"pvm_3_pradiniai", "pvm1m_3_pradiniai","pvm2m_3_

pradiniai","pvm3m_3_pradiniai","DSK_SOD_3_pradiniai

", "edited_3", "diff_y3",
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301 "BUKLE_4_pradiniai", "PASTABA_4_pradiniai","viso_4_

pradiniai", "viso_y4_pradiniai", "val_4_pradiniai",

"pvm_4_pradiniai","pvm1m_4_pradiniai", "pvm2m_4_

pradiniai","pvm3m_4_pradiniai","DSK_SOD_4_pradiniai

", "edited_4","diff_y4", "atsake_1_pradiniai", "

atsake_2_pradiniai","atsake_3_pradiniai","atsake_4_

pradiniai", "visoR_1_pradiniai","visoR_2_pradiniai"

,"visoR_3_pradiniai","visoR_4_pradiniai", "diff_abs

_1", "diff_abs_2", "diff_abs_3", "diff_abs_4","diff

_rel_y1", "diff_rel_y2", "diff_rel_y3", "diff_rel_

y4", "svoriai_1_pradiniai", "svoriai_kalibr_1_

pradiniai", "svoriai_2_pradiniai", "svoriai_kalibr_

2_pradiniai", "svoriai_3_pradiniai", "svoriai_

kalibr_3_pradiniai", "svoriai_4_pradiniai", "

svoriai_kalibr_4_pradiniai","tikrinti_1_pradiniai",

"tikrinti_2_pradiniai","tikrinti_3_pradiniai","

tikrinti_4_pradiniai", "imtyje_1_pradiniai", "

imtyje_2_pradiniai", "imtyje_3_pradiniai", "imtyje_

4_pradiniai")

302

303 names(pradiniai_df) <- column_names

304

305 pradiniai_df <- pradiniai_df %>%

306 rename(EVRK2_perk_1_pradiniai = EVRK2_perk_pradiniai) %>%

307 mutate(EVRK2_perk_2_pradiniai = EVRK2_perk_1_pradiniai ,

308 EVRK2_perk_3_pradiniai = EVRK2_perk_1_pradiniai ,

309 EVRK2_perk_4_pradiniai = EVRK2_perk_1_pradiniai)

310

311 pradiniai_df <- pradiniai_df %>%

312 rename(year_1 = year) %>%

313 mutate(year_2 = year_1,

314 year_3 = year_1,

315 year_4 = year_1)

316

317 colnames(pradiniai_df) <- gsub("_pradiniai$", "", colnames(pradiniai_df))

318

319 colnames(pradiniai_df) <- sub("^(.*[a-zA-Z])([1-4])$", "\\1_\\2",

colnames(pradiniai_df))

320 pradiniai_df$ID.1 <- NULL

321

322 reshaped_pradiniai <- pradiniai_df %>%

323 pivot_longer(

324 cols = -c(ID),
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325 names_to = c(".value", "quarter"),

326 names_pattern = "(.*)_(\\d+)$"

327 ) %>%

328 mutate(quarter = as.integer(quarter))

329

330 # -----------------------------

331 # Classification Forrest

332 # -----------------------------

333

334 data <- reshaped_pradiniai %>%

335 select(-ID, -year, -svoriai_kalibr)

336 #data <- data_no_missing

337 data <- data %>%

338 mutate(

339 turnover_pe = ifelse(DSK_SOD == 0 | is.na(DSK_SOD), 0, viso / DSK_SOD

),

340 rel_change_turnover = ifelse(viso == 0 | is.na(viso_y), 0, (viso_y -

viso) / viso),

341 val_VAT_interaction = val * pvm,

342 change_turnover = viso - viso_y

343 ) %>%

344 rename(

345 turnover = viso,

346 turnover_y = viso_y,

347 VAT1m = pvm1m,

348 VAT2m = pvm2m,

349 VAT3m = pvm3m,

350 VAT = pvm,

351 turnoverR = visoR

352 )

353

354 data <- data %>%

355 mutate(

356 BUKLE = as.factor(BUKLE),

357 quarter = as.factor(quarter),

358 edited = as.factor(edited),

359 PASTABA = as.factor(PASTABA),

360 atsake = as.factor(atsake)

361 )

362

363 EVRK2_perk_counts <- edited_final_data %>%

364 group_by(EVRK2_perk) %>%

365 summarise(count = n()) %>%

51



366 arrange(desc(count))

367

368 # Replace rare EVRK2_perk levels with 'Other'

369 rare_threshold <- 6

370 evrk2_counts <- data %>%

371 group_by(EVRK2_perk) %>%

372 tally()

373 rare_levels <- evrk2_counts %>%

374 filter(n <= rare_threshold) %>%

375 pull(EVRK2_perk)

376 data <- data %>%

377 mutate(

378 EVRK2_perk = as.character(EVRK2_perk),

379 EVRK2_perk = ifelse(EVRK2_perk %in% rare_levels, "Other", EVRK2_perk)

,

380 EVRK2_perk = as.factor(EVRK2_perk)

381 )

382 print(table(data$EVRK2_perk))

383

384 # Splitting data

385 set.seed(666)

386 split <- initial_split(data, prop = 0.85, strata = edited)

387 train_data <- training(split)

388 test_data <- testing(split)

389 cat("Training Set Class Distribution:\n")

390 print(prop.table(table(train_data$edited)))

391 cat("\nTesting Set Class Distribution:\n")

392 print(prop.table(table(test_data$edited)))

393

394 # Ensuring levels in both train_data and test_data

395 train_levels <- levels(train_data2[[EVRK2_perk]])

396 test_levels <- levels(test_final2[[EVRK2_perkr]])

397 test_not_in_train <- setdiff(test_levels, train_levels)

398 if(length(test_not_in_train) > 0){

399 cat("\nLevels in test_data$EVRK2_perk not present in train_data$EVRK2_

perk:\n")

400 print(test_not_in_train)

401 } else {

402 cat("\nAll EVRK2_perk levels in test_data are present in train_data.\n"

)

403

404

405 # CREATING SMOTE and UNDERSAMPLING TRAIN_DATA
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406 create_smote_data <- function(train_data, minority_perc) {

407 N_total <- nrow(train_data)

408 smote_data <- ROSE(edited ~ ., data = train_data, N = N_total, p =

minority_perc, seed = 1)$data

409 return(smote_data)

410 }

411 train_data_smote2 <- create_smote_data(train_data, 0.40) # 25% minority

412 train_data_smote3 <- create_smote_data(train_data, 0.20) # 15% minority

413

414 # Undersampling datasets

415 create_undersample_data <- function(train_data, minority_perc) {

416 minority_class <- train_data[train_data$edited == "Class1", ]

417 majority_class <- train_data[train_data$edited == "Class0", ]

418 N1 <- nrow(minority_class)

419 N0_desired <- round(N1 * (1 - minority_perc) / minority_perc)

420 set.seed(1)

421 majority_class_under <- majority_class[sample(nrow(majority_class), N0_

desired), ]

422 under_data <- rbind(minority_class, majority_class_under)

423 return(under_data)

424 }

425 train_data_under1 <- create_undersample_data(train_data, 0.60) # 25%

minority

426 train_data_under2 <- create_undersample_data(train_data, 0.40) # 15%

minority

427 train_data_under3 <- create_undersample_data(train_data, 0.20) # 15%

minority

428

429 datasets <- list(

430 Original = train_data,

431 Under_60 = train_data_under1,

432 Under_40 = train_data_under2,

433 Under_20 = train_data_under3,

434 Over_40 = train_data_smote2,

435 Over_20 = train_data_smote3

436 )

437 table(train_data_smote1$edited)

438 table(train_data_smote2$edited)

439 table(train_data_smote3$edited)

440 table(train_data_under1$edited)

441 table(train_data_under2$edited)

442 table(train_data$edited)

443
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444 # -----------------------------

445 # MODEL TRAINING

446 # -----------------------------

447

448 datasets <- list(

449 Original = train_data,

450 Under_60 = train_data_under1,

451 Under_40 = train_data_under2,

452 Under_20 = train_data_under3,

453 Over_40 = train_data_smote2,

454 Over_20 = train_data_smote3

455 )

456

457 # Initialize lists to store results

458 models_list <- list()

459 best_tunes <- list()

460 confusion_matrices_test <- list()

461 roc_test_list <- list()

462 auc_test_list <- list()

463 test_predictions <- list()

464

465 # Loop over each dataset

466 for (dataset_name in names(datasets)) {

467

468 cat("Processing dataset:", dataset_name, "\n")

469

470 tryCatch({

471 train_data <- datasets[[dataset_name]] %>%

472 select(

473 edited, quarter, EVRK2_perk, BUKLE, PASTABA,

474 viso, viso_y, val,

475 pvm, DSK_SOD, change_viso, rel_change_viso, val_pvm_

interaction , viso_pe

476 ) %>%

477 na.omit()

478

479 train_data$edited <- factor(train_data$edited, levels = c("Class1", "

Class0"))

480 test_data$edited <- factor(test_data$edited, levels = c("Class1", "

Class0"))

481

482 # Compute class weights

483 class_counts <- table(train_data$edited)
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484 class_weights <- 1 / class_counts

485 obs_weights <- class_weights[as.character(train_data$edited)]

486

487 if (any(is.na(obs_weights))) {

488 stop(paste("Missing weights in dataset:", dataset_name))

489 }

490

491 custom_summary <- function(data, lev = NULL, model = NULL) {

492 sensitivity_val <- caret::sensitivity(data$obs, data$pred, positive

= "Class1")

493 specificity_val <- caret::specificity(data$obs, data$pred, positive

= "Class1")

494 roc_obj <- pROC::roc(response = data$obs, predictor = data$Class1,

levels = c("Class1", "Class0"))

495 roc_auc <- pROC::auc(roc_obj)

496 c(Sens = sensitivity_val, Spec = specificity_val, ROC = roc_auc)

497 }

498

499

500 formula <- edited ~ quarter + EVRK2_perk + BUKLE + PASTABA +

501 viso + viso_y + val +

502 pvm + DSK_SOD + change_viso + rel_change_viso + val_pvm_

interaction + viso_pe

503

504 predictor_names <- all.vars(formula)[-1]

505 num_predictors <- length(predictor_names)

506 mtry_max <- num_predictors

507 grid <- expand.grid(

508 mtry = 1:13,

509 splitrule = "gini",

510 min.node.size = seq(1, 10, by = 1)

511 )

512

513 control <- caret::trainControl(

514 method = "cv",

515 number = 5,

516 verboseIter = TRUE,

517 classProbs = TRUE,

518 summaryFunction = custom_summary,

519 savePredictions = TRUE,

520 allowParallel = FALSE

521 )

522
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523 set.seed(123)

524 model <- caret::train(

525 formula,

526 data = train_data,

527 method = "ranger",

528 tuneGrid = grid,

529 trControl = control,

530 metric = "Sens",

531 importance = 'impurity',

532 num.trees = 750,

533 weights = obs_weights

534 )

535

536 models_list[[dataset_name]] <- model

537 best_tunes[[dataset_name]] <- model$bestTune

538

539 test_probs <- predict(model, newdata = test_data, type = "prob")

540 test_preds <- predict(model, newdata = test_data)

541

542 test_predictions[[dataset_name]] <- test_data %>%

543 mutate(

544 Predicted_Class = test_preds,

545 Probability_Class1 = test_probs$Class1,

546 visoR = test_data$visoR

547 )

548

549 roc_test <- pROC::roc(response = test_data$edited, predictor = test_

probs$Class1, levels = c("Class1", "Class0"))

550 roc_test_list[[dataset_name]] <- roc_test

551 auc_test_list[[dataset_name]] <- pROC::auc(roc_test)

552

553 confusion_matrices_test[[dataset_name]] <- caret::confusionMatrix(

554 test_preds,

555 test_data$edited,

556 positive = "Class1"

557 )

558

559 cat("Completed dataset:", dataset_name, "\n\n")

560

561 }, error = function(e) {

562 cat("Error processing dataset:", dataset_name, "\n")

563 cat("Error message:", e$message, "\n\n")

564
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565 models_list[[dataset_name]] <- NULL

566 best_tunes[[dataset_name]] <- NA

567 confusion_matrices_test[[dataset_name]] <- NA

568 roc_test_list[[dataset_name]] <- NA

569 auc_test_list[[dataset_name]] <- NA

570 test_predictions[[dataset_name]] <- NA

571 })

572 }

573

574 # -----------------------------

575 # MODEL RESULTS

576 # -----------------------------

577 for (dataset_name in names(best_tunes)) {

578 cat("Best hyperparameters for", dataset_name, ":\n")

579 print(best_tunes[[dataset_name]])

580 cat("\n")

581 }

582

583 # Test dataset

584 for (dataset_name in names(confusion_matrices_test)) {

585 cat("Confusion Matrix for", dataset_name, "on Test Data:\n")

586 print(confusion_matrices_test[[dataset_name]])

587 cat("\n")

588 }

589

590 #Var Importance

591 var_imp <- varImp(model, scale = FALSE)

592 print(var_imp)

593 plot(var_imp, top = 10, main = "Top 10 Variable Importances")

594

595

596 # -----------------------------

597 # Regression forest

598 # -----------------------------

599 data$edited <- factor(data$edited, levels = c(1, 0), labels = c("Class1",

"Class0"))

600 data$edited <- factor(data$edited, levels = c(1, 0), labels = c("Class1",

"Class0"))

601

602 train_data2 <- train_data %>% filter(edited == 'Class1')

603 train_data2 <- train_data2 %>%

604 rename(

605 comment = PASTABA,
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606 status = BUKLE

607 )

608 train_data2 <- train_data2 %>%

609 mutate(

610 diff_R = turnover - turnoverR ,

611 VAT_turnover = ifelse(turnover == 0 | is.na(VAT), 0, (VAT - turnover)

/ turnover),

612 val_VAT_interaction = val * VAT,

613 turnover_VAT_interaction = turnover * VAT,

614 turnovery_VAT_interaction = turnover_y * VAT,

615 turnover_sq = turnover^2,

616 change_turnover_y = turnover - turnover_y,

617 turnover_DSK_ratio = ifelse(DSK_SOD == 0, turnover , (turnover / DSK_

SOD)),

618 VAT_DSK_ratio = ifelse(DSK_SOD == 0, VAT, (VAT / DSK_SOD))

619 ) %>% select(everything())

620

621

622 train_data_Class0 <- train_data %>% filter(edited == 'Class0')

623 train_data_Class0 <- train_data_Class0 %>% mutate(

624 diff_R = turnover - turnoverR ,

625 VAT_turnover = ifelse(turnover == 0 | is.na(VAT), 0, (VAT - turnover)

/ turnover),

626 val_VAT_interaction = val * VAT,

627 turnover_VAT_interaction = turnover * VAT,

628 turnovery_VAT_interaction = turnover_y * VAT,

629 turnover_sq = turnover^2,

630 change_turnover_y = turnover - turnover_y,

631 turnover_DSK_ratio = ifelse(DSK_SOD == 0, turnover , (turnover / DSK_

SOD)),

632 VAT_DSK_ratio = ifelse(DSK_SOD == 0, VAT, (VAT / DSK_SOD))

633 ) %>% select(everything())

634 train_data_Class0 <- train_data_Class0 %>% rename(

635 comment = PASTABA,

636 status = BUKLE

637 )

638

639 test_final2 <- original_predictions %>% filter(Predicted_Class == '

Class1')

640 test_final2 <- test_final2 %>% mutate(

641 diff_R = turnover - turnoverR ,

642 VAT_turnover = ifelse(turnover == 0 | is.na(VAT), 0, (VAT - turnover)

/ turnover),
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643 val_VAT_interaction = val * VAT,

644 turnover_VAT_interaction = turnover * VAT,

645 turnovery_VAT_interaction = turnover_y * VAT,

646 turnover_sq = turnover^2,

647 change_turnover_y = turnover - turnover_y,

648 turnover_DSK_ratio = ifelse(DSK_SOD == 0, turnover , (turnover / DSK_

SOD)),

649 VAT_DSK_ratio = ifelse(DSK_SOD == 0, VAT, (VAT / DSK_SOD)),

650 quarter = as.factor(quarter)

651 ) %>% select(everything())

652

653 # Benchmark

654 rmse <- sqrt(mean((test_final2$turnover - test_final2$turnoverR)^2))

655 r2 <- cor(test_final2$turnover, test_final2$turnoverR)^2

656 mae <- mean(abs(test_final2$turnover - test_final2$turnoverR))

657 # Print the results

658 cat("Model Performance Metrics:\n")

659 cat("--------------------------\n")

660 cat(sprintf("RMSE: %.4f\n", rmse))

661 cat(sprintf("R²  : %.4f\n", r2))

662 cat(sprintf("MAE : %.4f\n", mae))

663

664 # Additing Class0 to training

665 num_train <- nrow(train_data2)

666 num_to_sample <- floor(2 * num_train)

667

668 set.seed(123)

669 replace_flag <- ifelse(num_to_sample > nrow(train_data_Class0), TRUE,

FALSE)

670

671 sampled_Class0 <- train_data_Class0[sample(

672 nrow(train_data_Class0),

673 size = num_to_sample,

674 replace = replace_flag

675 ), ]

676

677 # Code was done manually rather than function

678 train_data_0.5 <- rbind(train_data2, sampled_Class0)

679 train_data_1 <- rbind(train_data2, sampled_Class0)

680 train_data_1.5 <- rbind(train_data2, sampled_Class0)

681 train_data_2 <- rbind(train_data2, sampled_Class0)

682 train_data_3 <- rbind(train_data2, sampled_Class0)

683
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684 shuffled_train_data <- train_data_2[sample(nrow(train_data_2)), ]

685 rownames(shuffled_train_data) <- NULL

686 shuffled_train_data

687

688 # -----------------------------

689 # TRAINING

690 # -----------------------------

691

692 formula <- turnoverR ~ turnover + turnover_y + val + VAT + DSK_SOD +

val_VAT_interaction + VAT_turnover

693

694

695 selected_columns <- c("turnoverR", "turnover", "turnover_y", "val", "VAT"

, "DSK_SOD", "val_VAT_interaction", "VAT_turnover")

696 shuffled_train_data_subset <- shuffled_train_data[, selected_columns]

697 shuffled_train_data_subset <- na.omit(shuffled_train_data_subset)

698

699

700 custom_summary_regression <- function(data, lev = NULL, model = NULL) {

701 RMSE_val <- RMSE(data$pred, data$obs)

702 R2_val <- R2(data$pred, data$obs)

703 MAE_val <- MAE(data$pred, data$obs)

704

705 out <- c(RMSE = RMSE_val, R2 = R2_val, MAE = MAE_val)

706 return(out)

707 }

708

709 num_predictors <- length(all.vars(formula)) - 1

710

711 grid <- expand.grid(

712 mtry = 1:7, # Adjust based on number of predictors

713 splitrule = c("variance", "extratrees"),

714 min.node.size = seq(1, 5, by = 1)

715 )

716

717 control <- trainControl(

718 method = "cv",

719 number = 10,

720 verboseIter = TRUE,

721 summaryFunction = custom_summary_regression ,

722 savePredictions = "final",

723 allowParallel = FALSE

724 )
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725

726 model <- tryCatch({

727 train(

728 formula,

729 data = shuffled_train_data_subset,

730 method = "ranger",

731 tuneGrid = grid,

732 preProcess = c("center", "scale"),

733 trControl = control,

734 metric = "RMSE",

735 importance = 'impurity',

736 num.trees = 1000,

737 verbose = TRUE

738 )

739 }, error = function(e) {

740 cat("Error during model training:\n")

741 print(e$message)

742 NULL

743 })

744

745 print(model$resample)

746 model$results[model$results$mtry == model$bestTune$mtry &

747 + model$results$min.node.size == model$bestTune$min.

node.size, ]

748

749 # TEST DATYA

750 predictions_test_pred <- predict(model, newdata = test_final2)

751

752 metrics_test_pred <- data.frame(

753 RMSE = RMSE(predictions_test_pred, test_final2$turnoverR),

754 R2 = R2(predictions_test_pred, test_final2$turnoverR),

755 MAE = MAE(predictions_test_pred, test_final2$turnoverR)

756 )

757 cat("\nTest_Pred Data Metrics:\n")

758 print(metrics_test_pred)

759 } else {

760 cat("\nModel training was unsuccessful. Please check the errors above.\

n")

761 }

762

763

764 # Var Impr.

765 var_imp <- varImp(model, scale = FALSE)
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766 print(var_imp)

767 plot(var_imp, top = 10, main = "Top 10 Variable Importances")

768

769 # Plot min node. size

770 plot(model)

771

772 # Scatter Plots

773 plot_data_test <- data.frame(

774 Actual = test_final2$turnoverR ,

775 Predicted = predictions_test_pred

776 )

777

778 ggplot(plot_data_test, aes(x = Actual, y = Predicted)) +

779 geom_point(alpha = 0.6, color = "blue") +

780 geom_abline(intercept = 0, slope = 1, linetype = "dashed", color = "red

") +

781 theme_minimal() +

782

783 labs(

784 title = "TurnoverR vs. Turnover Imputation (Test Data)",

785 x = "TurnoverR",

786 y = "Imputed Turnover"

787 ) +

788 theme(

789 plot.title = element_text(hjust = 0.5, size = 16, face = "bold"),

790 axis.title = element_text(size = 14)

791 )

Listing 1: Full Code
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