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Summary

This thesis focused on one-class classification of actions video records. The thesis covers
developing a framework for analyzing snatch lifts in CrossFit, utilizing skeleton data and
Dynamic Time Warping (DTW) to assess the quality of the lift. The objective was to provide
a data driven evaluation of the movement, complementing traditional coaching methods.
The study began with skeleton data extraction, followed by data normalization techniques,
including scaling, centering, rotation, and smoothing. A golden standard was created and
the performance of other lifts was compared against this standard using DTW. Outliers were
detected to identify lifts with significant deviations from optimal form. The results demonst-
rated that the proposed framework identifies deviations from the golden standard, offering a
promising tool. This study contributes to the growing body of research in sports performance
analysis, particularly in the context of CrossFit.

Keywords: Video classification, One-Class clasification, Snatch lift, CrossFit,
Movement analysis, Skeleton data, Dynamic Time Warping (DTW), Outlier de-
tection
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Santrauka

Šis darbas buvo orientuotas į vienos klasės veiksmų vaizdo įrašų klasifikaciją. Baigiamasis
darbas apima proceso, skirto rovimo technikos analyzei, kūrimą. Jame pasitelkiama skeleto
struktūros duomenys bei dinaminis laiko skalės iškraipymo (DTW) metodas. Darbo tikslas
buvo pateikti duomenimis grįstą judesių vertinimą, papildant tradicines treniravimo metodikas.
Buvo sukurtas auksinis standartas - etaloninis kėlimas, su kuriuo buvo lyginami kiti kėlimai.
Darbas buvo pradėtas skeleto duomenų išgavimu, po kurio sekė duomenų normalizavimas, įskai-
tant mastelio keitimą, centravimą, rotaciją ir glotninimą. Siekiant nustatyti, ar kėlimų technika
nukrypsta nuo optimalios atlikimo techikos, buvo identifikuotos išskirtys. Resultatai parodė,
kad siūlomas procesas leidžia identifikuoti nukrypimus nuo auksinio standarto. Šiuo darbu
prisidedama prie didėjančio sporto rezultatų analyzės tyrimų skaičiaus, ypač krosfito kontekste.

Raktiniai žodžiai: Vaizdo įrašų klasifikavimas, Vienos klasės klasifikavimas,
Rovimo veiksmas, Krosfitas, Judesių analyzė, Skeleto duomenys, Dinaminis laiko
skalės iškraipymas (DTW), Išskirčių identifikavimas

4



Contents

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Santrauka . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.1 Human Pose Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2 Dynamic Time Warping (DTW) for Motion Analysis . . . . . . . . . . . . . . . 11
1.3 Normalization Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1 Overview of the Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Data collection and Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Data source and collections . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Skeleton data extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.3 Data normalization steps . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.4 Trajectory smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Golden Standard Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 Lift Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5 Outliers detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1 Data Source and collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Algorithm of the workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Skeleton data extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 Data normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.5 Golden Standard Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.6 Lift Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.7 Outliers Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.8 Error analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Appendix 1. List of key joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5



List of Figures

Figure 1. Example of the DTW Alignment for the Illustrative Time Series Data . . 12
Figure 2. Example of the Bezier curve for the time moments t0 = 0, t1 = 0.3, t2 =

0.6, t3 = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 3. Samples of snatch lifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 4. Extracted skeletons for sample lifts. Videos recorded from front or angle

of athlete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 5. Normalized skeleton data from two sides . . . . . . . . . . . . . . . . . . . 18
Figure 6. Stacked graph for right wrist joint for x, y, z coordinate . . . . . . . . . . 18
Figure 7. Two-way comparison of the left wrist x-coordinate for good (left) and bad

(right) lifts, highlighting differences in movement patterns. . . . . . . . . . 25
Figure 8. Three-way comparison of the left wrist x-coordinate for good (left) and

bad (right) lifts, highlighting differences in movement patterns. . . . . . . 25
Figure 9. Distribution of Normalized Distances by Coordinate . . . . . . . . . . . . 26
Figure 10. Plotted potential outliers . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 11. Two-way graph illustrating the right hip’s z-coordinate trajectory for a

true positive lift. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 12. Two-way graph illustrating the left ankle’s z-coordinate trajectory for a

false negative lift. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 13. Two-way graph illustrating the left wrist’s z-coordinate trajectory for a

true negative lift. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 14. Two-way graph illustrating the left wrist’s z-coordinate trajectory for a

false positive lift. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

List of Tables

Table 1.Detected potential outliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 2.Confusion matrix of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 3.17 joints which are used in the mpi_inf_3dhp_17 skeleton format . . . . . . 35

6



Introduction

Background and context
CrossFit has seen a rapid increase in popularity, with millions of participants worldwide em-
bracing its high-intensity and varied training methodology. Among the numerous exercises
performed in Crossfit, the snatch lift stands out for its technical complexity [8] and demand for
precise coordination. It is frequently included in Crossfit competitions and training programs,
making it a critical movement for athletes to master.

Despite its significance, the snatch lift is challenging to execute correctly. Errors in tech-
nique not only reduce performance, but also increase the risk of injury [7]. Traditional coaching
methods often rely on subjective observation, which can be limited in providing detailed feed-
back.

This has led to an interest in the application of technology for movement analysis. Skeleton
data, which represents human motion through key-points, provides an efficient and precise
method for quantifying and analyzing complex movements. By leveraging such data, this study
aims to provide a framework for evaluating the quality of snatch lifts, identifying deviations
from optimal execution, and offering actionable insights for athletes and coaches alike.

Problem statement
Video classification of complex athletic movements, such as the snatch lift, presents a significant
challenge in sports performance evaluation. The analysis of complex athletic movements such
as the snatch lift poses significant challenges in sports performance evaluation. This move-
ment, central to Olympic weightlifting and Crossfit, requires precise coordination and technical
skill. Currently, the assessment of snatch lifts relies heavily on the subjective judgment of
coaches, which can vary and lead to inconsistencies, especially for athletes training without
direct supervision. Without an objective and standardized approach, athletes may develop
flawed techniques, potentially resulting in performance decline and increased risk of injury.

There is a critical need for reliable, data-driven tools to assess the technical quality of
snatch lifts, particularly for athletes who do not have access to immediate coach feedback.

Aim of the thesis
The aim of the thesis is propose and develop one-class correct snatch lift classification method
for video records.

Research Objectives
The primary objective of this research is to develop a methodology for analyzing snatch lifts
using skeleton data. Specifically, the study aims to:

1. Research and identify the most suitable skeleton recognition method for analyzing the
snatch lift;
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2. Process video data through the selected skeleton recognition model and normalize it for
consistent scale, alignment, and smoothness;

3. Create a golden standard for technically correct snatch lifts using average aggregation
methods;

4. Compare lifts against the golden standard using Dynamic Time Warping;

5. Detect and analyze outliers by identifying significant deviations from the golden standard.

Significance of the Study
The significance of this study lies in its contribution to improving the accuracy and objectivity
of motion analysis in sports, specifically in evaluating snatch lift. Using skeleton-based action
recognition and dynamic time warping, this research offers a novel framework to objectively
assess the technical quality of snatch lifts, addressing the limitations of current methods, which
are often subjective and inconsistent.

The proposed framework provides athlete with an innovative tool to independently eval-
uate their lifts, ensuring more consistent technique over time, even in the absence of real-time
supervision. Ultimately, this approach helps to minimize the risk of injury and enhance per-
formance by offering a standardized method for comparing lifts against a ’golden standard’ of
correct movement.

Beyond individual performance enhancement, the findings of this research have broader
implications for sports analytics. The methods developed here can be applied to other complex
movements in various sports, advancing the field of action recognition and offering new oppor-
tunities for research in motion analysis. This work also contributes to the growing body of
knowledge in automated performance evaluation, potentially influencing future developments
in sports technology and biomechanics.

Overview of the Thesis
This thesis is structured into five chapters, each addressing a key component of the research
process, from theory and methodology to analysis and conclusions.

• Chapter 1: Introduction - The introductory chapter provides an overview of the research
problem, the significance of the study, and the objectives to be achived. It sets the stage
for understanding the challenges in analyzing snatch lifts and introduces the framework
developed in this research.

• Chapter 2: Literature Review - This chapter reviews existing research on motion analysis
techniques and skeleton-based models in sports performance evaluation. The literature
review establishes the theoretical foundation for the proposed research.

• Chapter 3: Methodology - The methodology chapter outlines the research design, including
the data collection process, the skeleton recognition models used, and the techniques for
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normalizing and comparing snatch lifts using dynamic time warping. This chapter details
how the golden standard is created and how lifts are analyzed against it.

• Chapter 4: Experiment - The experiment chapter demonstrates the practical application
of the methodology, detailing each step performed in a Google Colab environment. It
highlights the implementation of skeleton data extraction, normalization, golden standard
creation and DTW-based comparison.

• Chapter 5: Results - The results chapter presents the findings from applying the pro-
posed framework to the snatch lift data, including comparisons of multiple lifts and the
identification of outliers.

• Chapter 6: Conclusions - The final chapter reflects on the achievements of the study,
summarizing key findings and their relevance. It discusses the study’s limitations and
provides recommendations for future research, along with practical applications of the
developed framework.
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1 Literature Review

In recent years, there has been significant progress in the development of techniques for
human pose estimation, which are critical for evaluating comlpex physical activities such as
snatch lift in weightlifting. This chapter reviews the existing literature on key technologies
relevant to this study, including pose estimation models and time series analysis techniques
such as Dynamic Time Warping (DTW).

1.1 Human Pose Estimation

Human pose estimation is a vital task in motion analysis, as it enables the tracking of key
points or joints on the human body in order to capture and evaluate human motion. A variety
of methods and models have been developed for both 2D and 3D pose estimation, each offering
distinct advantages and challenges.

One of the models in this domain is UniPose [1], a unified framework designed to perform
human pose estimation in both single image and videos. This model focuses on extracting
accurate 2D and 3D human pose information, making it suitable for complex real-time appli-
cations, including sports performance analysis. The model’s ability to work with both images
and videos is especially useful in this research, where high-quality video data is used to ex-
tract pose information for analyzing snatch lifts. Unipose+ [3] enhances the original UniPose
model by introducing multi-scale feature extraction, refined heat-map modulation, support for
3D pose estimation, compatibility with multiple backbone networks, and improved overall per-
formances. These models provide a strong foundation for extracting skeleton data in human
movement analysis, making them particularly relevan for evaluating the technical execution of
weightlifting techniques like the snatch lift.

Another notable approach for human pose estimation is OmniPose [2], a multi-scale frame-
work designed for multi-person pose estimation. While this model is primarily intended for sce-
narios involving multiple individuals, its ability to handle multiple scales and occlusions allows
for better performance in complex environments where various body parts may be partially
obscured. For this study, the insights provided by OmniPose are useful in understanding how
different pose models can be adapted to various video environments, ensuring accurate skeleton
extraction even under challenging conditions.

In addition to these frameworks, recent advancements in pose estimation have incorpo-
rated deep learning techniques and multi-source datasets. For instance, Sarandi, A. Hermans
and B. Leibe[9] introduced a geometry-aware autoencoder that bridges multiple skeleton for-
mats for 3D human pose estimation. This model learns from a large number of datasets to
accurately predict 3D human poses, even in scenarios with challengig data. This model’s ability
to handle different skeleton formats is particularly relevant for this research. This model, which
serves as the backbone of the skeleton extraction process in this thesis, was crucial in ensuring
that the snatch lift data could be accurately analyzed from different video sources.
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1.2 Dynamic Time Warping (DTW) for Motion Analysis

Dynamic Time Warping (DTW) is a time series analysis technique that measures the
similarity between two sequences by aligning them optimally, even if they are of different
lengths or occur at different speeds. DTW has been widely used in various applications, from
speech recognition to motion analysis, due to its robustness in handling time-series data with
varying temporal properties.

Giorgino[6] provides a comprehensive overview of DTW and its implementation in R, with
a particular focus on the dtw package, which is commonly used for visualizing and computing
DTW alignments. The ability to compute DTW distances between time series sequences makes
it an ideal technique for comparing the trajectories of joint movements in weightlifting, where
the execution of the snatch lift can vary across lifters. By using DTW, this research can compare
the skeletal trajectories of key joints during the snatch lift and assess deviations from an optimal
execution. The normalized distance computed by DTW enables the identification of lifts that
deviate significantly from the golden standard, offering a quantitative basis for evaluating lift
quality.The DTW process consists of the following steps:

1. Input Sequences:
Two sequences of joint coordinates serve as input:

• Q = [q1, q2, . . . , qn]: The query sequence, representing the skeleton data of the lift
under evaluation.

• R = [r1, r2, . . . , rm]: The reference sequence, representing the skeleton data of the
"golden standard" lift.

2. Cost Matrix Calculation:
A cost matrix C of dimensions n × m is constructed, where each entry C(i, j) represents
the distance between the i-th point of sequence Q and the j-th point of sequence R. Here,
the Euclidean distance between joint coordinates is used:

C(i, j) = ∥qi − rj∥ (1)

where qi and rj are vectors representing joint coordinates (e.g., 2D or 3D).

3. Accumulated Cost Matrix:
An accumulated cost matrix D is computed iteratively to store the minimum cost required
to align the first i-th points of Q with the first j-th points of R. The recurrence relation
is:

D(i, j) = C(i, j) + min


D(i − 1, j) (insertion)

D(i, j − 1) (deletion)

D(i − 1, j − 1) (match)

(2)
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with the following initial conditions:

D(0, 0) = C(0, 0), D(0, j) =
j∑

k=1
C(0, k), D(i, 0) =

i∑
k=1

C(k, 0) (3)

4. Optimal Warping Path:
The optimal warping path W is determined by tracing back from D(n, m) (top-right
corner) to D(0, 0) (bottom-left corner), following the path of minimal cumulative cost.

5. Normalized Distance:
To account for differences in sequence lengths, the DTW distance is normalized by the
number of steps in the warping path |W |:

Normalized Distance = DTW Distance
|W |

(4)

This normalization ensures comparability between sequences of varying lengths.

6. Visualization and Analysis:
The alignment results are visualized to verify that similar phases of the lift are matched
correctly. This step is critical for assessing the practical utility of the DTW algorithm in
evaluating motion. This step is illustrated in the Figure 2.

0 20 40 60 80 100
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0.0

0.5

1.0
Illustrative Time Series Data

Query Sequence
Reference Sequence

0 20 40 60 80 100
1.0

0.5

0.0

0.5

1.0
DTW Alignment

Query Sequence
Reference Sequence

Figure 1. Example of the DTW Alignment for the Illustrative Time Series Data

1.3 Normalization Techniques

In this study, normalization of the skeleton data is performed using Bezier curves and
rotation matrices to standardize and align the data for comparison. Bezier curves are com-
monly employed in motion analysis for their ability to smooth and interpolate between key
points, ensuring that motion trajectories are continuous and free from abrupt fluctuations. A

12



Bezier curves are parametric curves based on n-th order Bernstein polynomial, where the time
argument t belongs to the interval [0;1] [4].

B(t) =
n∑

i=0

(
n

i

)
ti(1 − t)n−i, 0 ≤ t ≤ 1 (5)

or
Bn(t) =

n∑
i=0

Bn
i (t) (6)

Figure 2. illustrates an example with control points P0, P1, ...Pn, where n = 3. The
product of these points with the corresponding Bernstein polynomial terms represents the
value of the Bezier cureve for the parameter t:

B(t) =
n∑

i=0

(
n

i

)
ti(1 − t)n−iPi, 0 ≤ t ≤ 1 (7)

t0 t1 t2 t3
t

0.0

0.2

0.4

0.6

0.8

1.0

1.2

B(
t)

Bézier curve
Control points

Figure 2. Example of the Bezier curve for the time moments t0 = 0, t1 = 0.3, t2 = 0.6, t3 = 1

These curves have been widely used in fields such as animation and biomechanics to refine
movement data [5].

Rotation matrices, which are fundamental in spatial transformations, are utilized here to
align the joint data in a consistent orientation. By applying rotation matrices, the variability
introduced by different angles of capture is minimized, allowing for more accurate compar-
isons between lifts. This technique has been extensively used in computer vision and sports
biomechanics [10].
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2 Methodology

2.1 Overview of the Methodology

This chapter present the methodological framework adopted to analyze snatch lifts using
skeleton-based motion data. The approach is designed to address the research objectives by
ensuring accurate data collection, preprocessing and analysis. Specifically, the methodology
focuses on extracting skeleton data from video recordings, normalizing and smoothing this
data for consistency, and comparing individual lifts agains a golden standard using advance
techniques.

The process begins with sourcing video data and using a pre-trained skeleton recognition
model, which incorporates a geometry-aware autoencoder, to extract skeleton representations.
The data is then normalized in terms of scale, alignment and smoothness to prepare it for anal-
ysis. Successful lifts are aggregated to create a golden standard representing optimal technique.
Using Dynamic Time Warping, individual lifts are compared to this standard, and deviations
are analyzed to identify outliers.

This methodological framework was chosen for its ability to combine advance motion
recognition with systematic analysis, providing a robust and objective tool for assessing snatch
lift quality. The following sections provide a detailed account for each step in this process.

2.2 Data collection and Preprocessing

2.2.1 Data source and collections

The dataset used in this study consists of 26 snatch lift videos sourced from the YouTube
channel "Jėgos portas tiesiogiai", which provides live streams of the Lietuvos sunkiosios atletikos
čempionatas (Lithuanian Weightlifting Championship). These videos feature athletes perform-
ing Olympic lifts under competetive conditions. Additionally, 20 videos were extracted from
full competition videos on the "Weightlifting House" Youtube channel, specifically from the
following events:

• Men’s + 109 | World Weightlifting Championships 2023

• Women’s -71kg Snatch | World Weightlifting Championships 2023

• Men’s - 109 Snatch | World Weightlifting Championships 2023

• Women’s +87 Snatch | World Weightlifting Championships 2023

14



Figure 3. Samples of snatch lifts

The dataset as showed in Figure 3. includes lifts from athletes of varying skill levels,
ranging from local competitive lifters to top-tier international competitors, providing a diverse
representation of techniques. All videos were downloaded from YouTube and trimmed to isolate
the snatch lifts using the video editing software Shortcut. The trimmed video files were then
uploaded to Google Drive, where they were made publicly accessible via specific links to ensure
ease of access and sharing for analysis purposes. Majority of the videos were recorded in high
definition (1080) at 25 fps to ensure visual clarity and consistency across the dataset.

2.2.2 Skeleton data extraction

To extract the skeleton data for analysis, a skeleton recognition model was applied to
the preprocessed video footage. The model used in this study was based on a geometry-
aware autoencoder as described in the article [9]. The model, which was downloaded from
Tensorflow Hub, was applied to each frame of the video to detect human poses. Specifically,
the "mpi_inf_3dhp_17" skeleton format was used, which tracks 17 key points, including joints
such as the shoulders, elbows, hips and knees. The model outputs the 3D coordinates (x,y,z)
of each keypoint, providing a comprehensive representation of the human body’s movements.
The choice of this model was based on its high accuracy in 3D pose estimation and its training
on multiple validation datasets, which provided access to various skeleton formats, enhancing
its suitability for analyzing weightlifting movements.

The extracted skeleton data utilized the "mpi_inf_3dhp_17" skeleton format, as showed
in Figure 4., which derived from the MPI-INF-3DHP dataset, captures a total of 17 key points
corresponding to major human joints. The MPI-INF-3DHP dataset itself was developed in
a controlled lab environment using multiple cameras, offering high-quality annotations and
comprehensive coverage of human motion. Additionally, the dataset includes both indoor and
outdoor scenarios with varying degrees of occlusion, ensuring the model’s adaptability to dif-
ferent conditions.
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Figure 4. Extracted skeletons for sample lifts. Videos recorded from front or angle of athlete
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While this skeleton format provides sufficient detail for analyzing complex movements
like the snatch lift, it balances the inclusion of key points with the noise introduced during
estimation. Incorporating more key points can lead to higher levels of uncertainty, particularly
in challenging frames, making the "mpi_inf_3dhp_17" format an optimal choice for this study.

The skeleton extraction process was implemented using a python-based pipeline, leverag-
ing a pose estimation model to process video frames iteratively. Each video was loaded and
split into individual frames using OpenCV. For each frame, the model detected the positions
of 17 key joints according to the "mpi_inf_3dhp_17" skeleton format. The detected joint
coordinates - represented as (x,y,z) values - were saved frame by frame into JSON file for sub-
sequent analysis. To ensure a consistent output, the pipeline also annotated frames. This lead
to original data vectors for each video i ∈ {1, .., N} and frame f ∈ {1, .., Fi}:

X⃗orig,f,i = (x1,f,i, y1,f,i, z1,f,i, .., x17,f,i, y17,f,i, z17,f,i)T (8)

The pipeline automatically handled multiple video samples by iterating through each
video file, generating a dictionary of results where each frame was associated with its detected
key points. These results were serialized and stored, forming a structured dataset representing
the sequential motion of each lift. This automated approach facilitated efficient preprocessing
of the video data, ensuring that the extracted skeleton data was well-organized and ready for
further analysis.

2.2.3 Data normalization steps

The normalization process for the extracted skeleton data involved several key steps to
ensure consistency and accuracy across all video. One of the first challenges encountered was
the presence of missing data points in certain frames, which is common in pose estimation
tasks, especially when joints are occluded or not detected clearly. To address this, the missing
joint positions were interpolated using the previous frame’s data, ensuring smooth continuity of
the motion. This approach helped to avoid gaps in the movement data, which could negatively
impact the analysis.

After addressing the missing data through interpolation, the next step in the normalization
process was to scale and center the skeleton data to a consistent range. To achieve this, a
custom function was implemented to first center the data by subtracting the mean of each
joint’s coordinates (x, y, z). This ensured that the data was aligned relative to the center of
the body, making it independent of the specific position of the person in the video frame.

Next, the data was scaled to the range of [-1, 1]. This was done by calculating the
minimum and maximum values for each joint’s coordinates and dividing the centered data by
the range. This scaling process ensured that all the movements across different frames and
videos were normalized, allowing for consistent comparisons between them.

The scaling and centering process was applied to all frames in the dataset. The loop
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iterated over each video sample, extracting the 3D poses and applying the scaling and centering
function.

To ensure consistent alignment of the skeleton data across different videos, a rotation
matrix was applied to standardize the orientation of the skeletons. Given the varying camera
angles in the sourced videos, it was crucial to rotate the skeletons such that all poses faced the
same directions for accurate analysis. A rotation matrix was used to rotate the 3D pose data
around Y-axis. The angle of rotation was manually adjusted for each frame to align the skeleton
to a forward-facing position. This step was performed to eliminate any discrepancies caused
by varying body orientations or camera perspectives, ensuring that comparisons between lifts
were based on consistent reference frames.

The rotation matrix for the Y-axis was calculated as follows:

Ry(θ) =


cos(θ) 0 sin(θ)

0 1 0
− sin(θ) 0 cos(θ)

 (9)

where θ is the angle of rotation in degrees. This transformation was applied to each
frame’s skeleton data, which was then visually validated by plotting the rotated and original
poses side by side. The rotation process helped in aligning the skeletons in a uniform manner,
facilitating more accurate movement comparisons across different athletes and lifts.This lead
to rotated data vectors for each video i ∈ {1, .., N} and frame f ∈ {1, .., Fi}:


x∗

new

y∗
new

z∗
new

 = Ry(θ)


xold

yold

zold

 (10)

X⃗rot,f,i = (x∗
1,f,i, y∗

1,f,i, z∗
1,f,i, .., x∗

17,f,i, y∗
17,f,i, z∗

17,f,i)T (11)

2.2.4 Trajectory smoothing

To mitigate noise and enhance the clarity of motion data, Bezier curve smoothing was
applied in two stages. First, the spine line - comprising the pelvis, spine and neck joints - was
smoothed to minimize extraneous depth-related fluctuations. This was achieved by treating
the spine coordinates as control nodes for a Bezier curve, which generated a smooth trajectory
while preserving the natural curvature of the spine. The smoothing operation was conducted
frame by frame using a function that iteratively updated the spine joints with the smoothed
coordinates.

Subsequently, the entire skeleton was smoothed across the temporal dimension. For each
joint, its trajectory over all frames was treated as a series of control points and a Bezier curve
was fitted to capture the underlying motion pattern. This temporal smoothing ensured that
joint movements remained continuous and fluid across consecutive frames, reducing abrupt
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positional changes caused by noise. The combined approach enhanced the dataset’s quality,
providing a more accurate representation of the lifters’ movements for subsequent analysis.
Figure 5. illustrates frame skeleton data which went through the normalization process.
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Figure 5. Normalized skeleton data from two sides

2.3 Golden Standard Creation

To establish the golden standard for an optimal snatch lift, the process began with visu-
ally comparing the trajectories of key joints across multiple lifts. For this, the trajectories of
individual joints were analyzed in 3D space. The x, y, and z coordinates of each joint, such
as the right wrist, were separated and plotted on three distinct graphs as showed in Figure 6.
These coordinate-specific trajectories from multiple lifts were superimposed on the respective
graphs, enabling a visual comparison of movement patterns across lifts. From this comparison,
a subset of lifts that exhibited similar movement patterns was selected.

0 20 40 60 80 100 120 140 160

0.75

0.70

0.65

0.60

0.55

0.50

0.45

0.40

All Series on One Plot for rwri and coordinate x
Other lifts
Golden standart lifts
Golden standart

0 20 40 60 80 100 120 140 160
0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5
All Series on One Plot for rwri and coordinate y

Other lifts
Golden standart lifts
Golden standart

0 20 40 60 80 100 120 140 160

0.6

0.4

0.2

0.0

0.2

0.4

All Series on One Plot for rwri and coordinate z
Other lifts
Golden standart lifts
Golden standart

Figure 6. Stacked graph for right wrist joint for x, y, z coordinate

Subsequently, the selected lifts were used to calculate an average trajectory, providing a
representative benchmark for the golden standard. Average trajectory was determined by using
the standard average formula:
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p̄i(f) = 1
N

N∑
j=1


xi,j,f

yi,j,f

zi,j,f

 (12)

Where:

• p̄i(f) =


x̄i(f)
ȳi(f)
z̄i(f)

 is the average position vector of the i-th joint at frame k,

• N is the total number of high-quality lifts considered, and

• f is the index of the frame for which the average position is calculated.

To account for variations in the number of frames across different samples, shorter samples
were padded with NaNs (Not a Number) to align them with longest trajectory. The average
trajectory was then computed by ignoring the NaN values, ensuring that the resulting standard
captures the central tendency of the selected lifts without being skewed by variable frame
lengths. This golden standard serves as a benchmark for analyzing and comparing other lifts
in the dataset.

2.4 Lift Comparison

For the lift comparison, Dynamic Time Warping (DTW) was employed to assess the
similarity between individual snatch lifts and the golden standard. DTW is a powerful technique
for measuring similarity between time series, even when they are out of phase or have different
lengths. The comparison focused on the 17 key joints of the body, with each joint having 3
coordinates (x, y, z), resulting in 51 observations for each lift.

Each sample’s trajectory was compared to the golden standard by calculating normalized
distance between their corresponding joint coordinates (x, y, z) using the DTW method. The
normalized distance is calculated for each coordinate of the joints using the formula:

Normalized Distance = DTW Distance
|W |

(13)

This formula ensures that the distance calculation is independent of the scale of the coor-
dinates, allowing for consistent comparison across lifts, regardless of the actual joint position.

The DTW method aligns the sequences by adjusting for any temporal shifts or variations
in the speed of the movement, enabling a more accurate comparison even when the samples
differ in length or timing. Once the distance for all 51 columns (representing the 17 joints and 3
coordinates per joint) were calculated, the results were stored in a data frame with 53 columns
(51 columns for the joint coordinates, 1 for the sample ID and 1 for metadata indicating if lift
was technical correct or data contains a lot of noise). Each column represents the normalized
distance for a specific joint and coordinate in a given sample.
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A smaller distance indicates that the sample’s trajectory is more similar to the golden
standard, while a large distance suggests greater deviation from the optimal technique. This
enables the identification of the lifts that are mostly outliers compared with the golden standard.

2.5 Outliers detection

In this study, we constructing the one-class classifier from good lifts as maon class, and
all outlying observations are named as not correct lifts also known as outliers. Outliers were
defined as lifts with deviations from the golden standard that exceeded a pre-defined thresh-
old, representing lifts with potentially poor technique. The identification process focused on
detecting the largest 5% of normalized distances, under the hypothesis that these correspond
to lifts with significant deviations in joint trajectories.

The dataset consisted of 2,346 normalized DTW distances (46 samples x 51 joint-
coordinate features). To identify outliers, the distances were aggregated and a threshold was
set at the 5th percentile. This approach assumes that the largest distances, representing the
top 5% of deviations, correspond to lifts with poorest technique.

By examining the distribution of distances across all features and samples, a cutoff value
was established for the 95th percentile. Lifts with one or more distances exceeding this threshold
were flagged as potential outliers. These outliers were not excluded but were instead analyzed
further to provide insights into common technical issues and deviations from the golden stan-
dard.

This method ensures that the outliers reflect lifts with potential technical deficiencies,
offering a data-driven basis for analyzing and improving lift quality.
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3 Experiments

The experimental framework was implemented entirely using Google Colab, a cloud-
based Python environment that facilitated seamless integration of data processing, analysis
and visualization tools. To ensure reproducibility all the code used in this research are made
available on GitHub1.

The workflow was divided into four primary stages, each handled by separate notebook:

• Stage 1: Data sourcing

• Stage 2: Skeleton data extraction from video footage.

• Stage 3: Normalization of skeleton data and creation of the golden standard.

• Stage 4 : Application of Dynamic Time Warping (DTW) for lift comparison and outlier
detection.

This modular structure ensured efficient development and testing, allowing for easy trou-
bleshooting and scalability. Each notebook focused on specific aspects of the analysis, stream-
lining the overall experiment and maintaining a clear separation on tasks.

3.1 Data Source and collection

A dataset of 46 snatch lift videos was constructed to provide a representation of athlete
performance. Videos were sourced from two YouTube channels: Jėgos Sportas Tiesiogiai and
Weightlifting House. The selection aimed to balance variety in skill levels, encompassing both
national and international competitors.

Implementation of Video Collection The video preparation process was carried out with
Shortcut software. Each video was trimmed to isolate the snatch lift execution phase. This
step was done manually using timestamps annotated during video review.

Dataset Properties Videos included lifts recorded under varying conditions, such as differ-
ent camera angles, lighting and resolutions. This variety added robustness to the analysis by
introducing natural variability. All processed videos were stored on Google Drive, ensuring ac-
cessibility and centralized storage. To integrate these files into the Google Colab environment,
public links were generated for each video.

3.2 Algorithm of the workflow

The proposed algorithm is designed to evaluate the quality of snatch lift using skeleton
data extracted from video footage. Each step of the process is essential for ensuring accurate
and meaningful analysis. Below, Algorithm 1 is outlined along with justification for each step:

1https://github.com/hermanas0vait/master_thesis
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Algorithm 1
1: Input: Collected data: Raw video footage, serve as the primary data source for analysis.
2: Step 1: Skeleton Data Extraction. Use a pre-trained pose estimation model to extract

skeleton key-points, converting video frames into structured motion data.
3: Step 2: Normalization. Scaling and Centering. Adjust the skeletons to a uniform scale and

center them to eliminate size and positional variance.
4: Step 3: Normalization. Rotation. Use rotation matrix to align the skeleton data consis-

tently.
5: Step 4: Normalization. Smoothing. Apply Bezier curve smoothing to minimize noise in the

extracted data.
6: Step 5: Golden Standard creation. Construct a template from an ideal lift to serve as the

benchmark for evaluation.
7: Step 6: Comparison via DTW. Utilize Dynamic Time Warping to align and compare each

lift to the golden standard, ensuring flexibility in timing differences.
8: Step 7: Outlier Detection. Identify lifts that deviate significantly from the standard, high-

lighting errors in execution.
9: Output: Technical incorrect lifts. List of lifts with wrong technical execution.

By breaking down the algorithm into these well-defined steps, the process ensures robust-
ness, accuracy and interpretability for analyzing snatch lifts.

3.3 Skeleton data extraction

The process of extracting skeleton data from the collected video footage was carried out
in three main stages using Google Colab:

1. Data Loading:

Video files were initially stored on Google Drive and made publicly accessible via shared
link. Using the wget command, these videos were downloaded directly into the Colab
environment for prepocessing. This approach streamlined data handling and ensured all
files were readily available for further stages.

2. Model Loading:

A pre-trained pose estimation model ’metrabs_xl’, based on a geometry-aware autoen-
coder and hosted on TensorFlow Hub, was employed for skeleton data extraction. The
model was specifically chosen for its ability to accurately estimate 3D poses in various
conditions, including competitive sports scenarios. Once the model was loaded into the
Colab environment, it was prepared to process video frames and output skeleton keypoints
in the ’mpi_inf_3dhp_17’ format.

3. Frame-by-Frame Processing:

Each video was processed frame by frame, with the model extracting the 3D coordinates
of 17 key joints (e.g., shoulders, elbows, knees) from each frame. The outputs were saved
as JSON files, with one file generated per video, containing the sequential motion data
for the respective lift.
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3.4 Data normalization

The data normalization process, conducted in Google Colab, was a critical step to ensure
consistency and accuracy across all skeleton data. This phase focused on resolving inconsisten-
cies introduced during skeleton extraction and preparing the data for analysis.

Key steps in normalization:

1. Handling Missing Data:

During skeleton extraction, some frames contained missing joint data, particularly when
joints were occluded or undetected. A linear interpolation approach was applied to fill
gaps, using values from adjacent frames to estimate missing positions. This ensured
smooth and continuous motion data across all frames.

2. Scale and Center Adjustment:

Skeletons extracted from videos varied in scale and positioning due to differences in athlete
size and camera angles. To standardize this:

• The mean of each joint’s 3D coordinates was subtracted to center the data around
the body.

• Coordinates were then scaled to a consistent range of [-1, 1], ensuring comparability
across videos.

3. Rotation for Alignment:

Since the videos were recorded from varying camera perspectives, it was necessary to align
the skeletons to a common forward-facing orientation. Using a rotation matrix applied to
the Y-axis, the skeletons were reoriented. The angle for rotation was determined manually
for each video to archive consistent alignment.

4. Visualization with GIFs:

GIFs were generated for each lift using scaled, centered and rotated skeleton data. These
visualizations provided an intuitive way to observe the joint trajectories frame by frame.
It was noted that certain joints exhibited ’jumping’ behavior, where their positions fluc-
tuated erratically between frames, likely due to noise in the pose estimation process. This
observation reinforced the need for a robust smoothing process.

5. Bezier Curve Smoothing:

To reduce noise in the skeleton data, a two-step Bezier curve smoothing approach was
applied:

• First, the spine line (pelvis, spine and neck joints) was smoothed to minimize fluc-
tuations.
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• Next, temporal smoothing was performed across all joints to ensure fluid transitions
between frames.

The normalization pipeline successfully transformed raw skeleton data into a standardized
and smooth dataset. The generation of GIFs early in the process provided critical insights into
the initial quality of the data, ensuring that the normalization steps effectively addressed the
identified issues.

3.5 Golden Standard Creation

The creation of a golden standard was a pivotal step in the experiment, providing a bench-
mark for comparing individual snatch lifts. This process focused on extracting the ’optimal’
movement patterns from a subset of the data and generating a reference trajectory for further
analysis.

Key steps in golden standard creation:

1. Trajectory Comparison and Filtering: The trajectories of the lifts were compared across
the key joints. The x, y and z coordinates of each joint for every frame were plotted to
visualize the movements. A set of lifts that exhibited similar patterns in joint trajectories
was chosen to construct the golden standard. By aggregating the most consistent lifts,
the resulting golden standard would represent an ’ideal’ snatch lift.

2. Handing Variable Frame Lengths: Since the videos varied in length (due to differences
in the duration of the lifts), it was necessary to handle the mismatch in frame numbers.
Shorter lifts were padded with NaN (Not a Number) values to align their length with the
longest lift in the selected subset. This ensured that all lifts used in the golden standard
had the same number of frames, allowing for fair averaging. During the averageing process,
the NaN values were excluded, so they did not affect the final trajectory.

3. Calculation of the Average Trajectory: The average trajectory was computed by combin-
ing the x, y and z coordinates of the selected lifts. The joint positions across all selected
lifts were averaged frame-by-frame, and this resulted in a reference trajectoy for each
key joint. This process was repeated for all 17 key joints to produce a complete golden
standard representing the optimal snatch lift technique.

It can be observed, that identifying the ’ideal’ lifts for the golden standard was a subjec-
tive process, relying heavily on visual inspection. Although this provided an effective way to
select representative lifts, there was an element of human judgment involved. This could intro-
duce some bias, though the approach was based on clear visual cues, such as joint trajectory
consistency and fluid motion.
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3.6 Lift Comparison

Once the golden standard was established, the next step in the experiment was to compare
the individual snatch lifts to the golden standard using Dynamic Time Warping (DTW). This
comparison allowed us to assess how closely each lift aligned with the ideal movement pattern,
enabling the identification of deviations and potential areas for improvement.

The key steps in lift comparison:

1. DTW Implementation: Dynamic Time Warping (DTW) from the package dtw-python[6]
was employed as the primary technique for comparing each individual lift to the golden
standard. In this study, the joint trajectories of each lift were treated as time series,
where each joint’s position (x, y, z) over time was analyzed.

Figure 7. illustrates good and bad samples comparison to the golden standard in a
sense of the trajectory. Additionally alignment path between points of two sequances are
visulaized.
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Figure 7. Two-way comparison of the left wrist x-coordinate for good (left) and bad (right)
lifts, highlighting differences in movement patterns.

Figure 8. illustrates good and bad samples comparison to the golden standard. It shows
the differences in the cost matrices and warping paths.

0.5250.550
0

20

40

60

80

100

Re
fe

re
nc

e 
in

de
x

0 20 40 60 80 100
0

20

40

60

80

100

0 20 40 60 80 100
Query index

0.52

0.54

0.5250.550
0

20

40

60

80

100

Re
fe

re
nc

e 
in

de
x

0 10 20 30 40 50
0

20

40

60

80

100

0 10 20 30 40 50
Query index

0.6

0.7

Figure 8. Three-way comparison of the left wrist x-coordinate for good (left) and bad (right)
lifts, highlighting differences in movement patterns.
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2. Distance Calculation: For each lift, the DTW algorithm compared the coordinates of
17 key joints (each with x, y and z coordinates, resulting 51 features per lift) to the
corresponding coordinates in the golden standard. DTW calculated the optimal alignment
between the sequences, allowing us to determine how similar or different each lift was
compared to the golden standard. The results were then stored in a data frame, which
contained the normalized distances for all 51 features, as well as metadata indicating
whether the lift was technically correct/incorrect or contained a lot of noise.

Figure 9. illustrates the distribution of generated normalized distances for each coordi-
nate. This visualization helps identify which coordinate contributes most to potential outliers.
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Figure 9. Distribution of Normalized Distances by Coordinate

3.7 Outliers Detection

The final stage of the experiment involved identifying lifts with significant deviations
from the golden standard. The deviations, represented by unusually high normalized DTW
distances, were classified as outliers. The goal of this phase was to systematically detect lifts
that demonstrated technical flaws or irregularities in their execution.

Key steps in outliers detection:

1. Threshold Definition: To establish a threshold for identifying outliers, the distribution of
normalized DTW distances was analyzed across all lifts and features. Using a percentile-
based approach, the threshold was set at the 95th percentile of the distance distribution.
This threshold captured the largest 5% of normalized distances, corresponding to the lifts
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with the most significant deviations from the golden standard. This approach ensured
that outliers were defined based on the data’s natural variation, proving an objective basis
for their detection.

2. Outliers Identification: For each lift, the normalized DTW distances of all 51 joint-
coordinate features were compared against the threshold. Lifts with one or more dis-
tances exceeding the threshold were flagged as potential outliers. This method allowed
for the identification of lifts with specific joint deviations as well as those with overall
poor alignment to the golden standard.

3. Visualization of Outliers: To better understand the nature of the detected outliers, vi-
sualizations of normalized distances were generated as showed in Figure 10. These vi-
sualizations provided insights into the specific areas of deviation, such as irregular arm
movement or improper hip alignment, offering a clearer understanding of the technical
issues present in each flagged lift.

Figure 10. Plotted potential outliers

4. Documentation and Analysis: All flagged lifts were stored in a results table, which in-
cluded:

• The sample ID of the lift.

• Outlier indicator in meta data.

• The joints and coordinates with distances exceeding the threshold.

• The maximum normalized DTW distance for each flagged feature.
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This systematic table Table 1. allowed for a structured review of the flagged lifts, ensuring
that the results could be easily interpreted.

Lift ID Outlier indicator Number of outliers Maximum distance Outlier coordinates
0 1 6 0.1381 z-6
1 1 8 0.1549 x-3; z-5
2 1 3 0.2371 z-3
3 1 5 0.1093 z-5
4 1 11 0.2042 x-5; z-6
5 1 4 0.2358 z-4
6 1 5 0.2691 z-5
7 1 6 0.1506 x-5; z-1
8 1 3 0.1826 z-3
9 1 11 0.1937 x-4;z-8
10 1 11 0.4062 x-3;z-8
17 0 3 0.1223 z-3
18 0 3 0.2562 z-3
19 0 1 0.0713 z-1
20 0 4 0.2186 z-4
21 0 11 0.4743 x-4; z-7
22 0 4 0.2072 z-4
23 0 6 0.1946 z-6
24 0 3 0.1281 z-3
25 0 3 0.3472 z-3
29 0 2 0.1017 z-2
31 0 2 0.115 4 z-2
39 0 2 0.0815 z-2
45 0 1 0.0726 z-1

Table 1. Detected potential outliers

3.8 Error analysis

The error analysis provides insights into the performance and reliability of the proposed
one-class classification framework. The dataset consisted of 46 observations, with 16 classified
as having a bad technique and 26 classified as having a good technique. This distribution
highlights the inherent imbalance in the dataset, reflecting the real-world tendency for athletes
to exhibit varied levels of technical proficiency.

Classification table
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A confusion matrix summarizing the classification results is presented in Table 2. It
outlines the true positives, false positives, true negatives, and false negatives, providing a
comprehensive view of the classifier’s performance.

Actual/Predicted Good Lift Bad lift
Good lift (29) 16 13
Bad lift (16) 6 10

Table 2. Confusion matrix of results

From the table

• True Positives (Good Lifts Correctly Classified): 16

• False Negatives (Good lifts Misclassified as Bad): 13

• True Negative (Bad lifts Correctly Classified): 10

• False Positives (Bad Lifts Misclassified as Good): 6

The results demonstrate that the classifier shows moderate accuracy in identifying lifts
with proper technique but faces challenges in consistently distinguishing between good and bad
lifts. A significant number of good lifts were misclassified as bad, and some flawed lifts were
identified as good, highlighting areas for potential improvement.

Figure 11. illustrates true positive lift. As expected visualized trajectories of the right
hip movement in z-coordinate aligns with golden standard.

0 20 40 60 80 100
Index

0.2

0.3

0.4

0.5

0.6

Qu
er

y 
va

lu
e

Figure 11. Two-way graph illustrating the right hip’s z-coordinate trajectory for a true
positive lift.

29



Figure 12. illustrates false negative lift. From the figure we can see that this could be
caused by the DTW algorithm, which didn’t noticed the correct alignment path between points.
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Figure 12. Two-way graph illustrating the left ankle’s z-coordinate trajectory for a false
negative lift.

Figure 13. illustrates true negative lift. It correctly indicated the error in the left wrist
movement in the lift.
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Figure 13. Two-way graph illustrating the left wrist’s z-coordinate trajectory for a true
negative lift.

30



Figure 14. illustrates false positive lift. It was indicated this way due to the fact, that
the error, during a lift, was not accurately observed in the z-coordinate.
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Figure 14. Two-way graph illustrating the left wrist’s z-coordinate trajectory for a false
positive lift.

Future directions and improvements:

• Expanded Dataset: Increasing the dataset size, particularly for bad lifts, would improve
the classifier’s robustness and reduce potential bias from data imbalance.

• Multiview Analysis: Incorporating additional camera angles would enhance the accuracy
of skeleton data extraction, mitigating the impact of noisy depth coordinates and occlu-
sions.

• Advanced Techniques: Experimenting with advanced methods for golden standard cre-
ation might enhance the classification capabilities.
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4 Results

The outcome of this research, aligned with the defined objectives, are as follows:

1. Skeleton data was extracted using the 3D pose estimation model presented in Learning 3D
Humna Pose Estimation From Dozens of Datasets Using a Geometry-Aware Autoencoder
To Bridge Between Skeleton Formats. This model successfully extracted skeleton data
from video recordings of snatch lifts, achieving accurate joint detection even in dynamic
movements.

2. A combination of scaling, rotation matrix adjustments, and Bezier curve smoothing was
applied to normalize the extracted skeleton data. This process effectively removed incon-
sistencies caused by frame-by-frame variations, resulting smooth and standardized motion
trajectories across lifts.

3. The golden standard lift was created by averaging the joint coordinates across high-quality
lifts. The golden standard represents a clear benchmark for optimal technique.

4. The DTW algorithm successfully compared individual snatch lifts to the golden standard.
The normalized DTW distance values provided a quantitative metric for assessing lift
quality.

• High-quality lifts showed minimal deviations, with normalized distances consistently
below a set threshold.

• Poorer lifts exhibited larger distances, identifying deviations in technique.

5. Using DTW distance thresholds, lifts with significant deviations from the golden standard
were flagged as outliers. When tested on 16 unseen videos, the method achieved and
accuracy of 62%.
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5 Conclusions

1. This study successfully proposed and developed a one-class correct snatch lift classification
method for video records.

2. Normalization techniques, including scaling, centering, rotation, and smoothing, were
crucial for ensuring consistent alignment of joint data across different lifts.

3. The creation of a "golden standard" was effective in establishing a reference for optimal
snatch lift execution.

4. Dynamic Time Warping (DTW) proved to be reliable method for handling temporal
variations in lift execution, aligning key phases of the lift despite differences in speed or
duration between the query and reference sequences.

5. The proposed framework demonstrated the ability to identify outliers effectively, which
can be used for detecting irregular lifts or potential errors. However, its accuracy is highly
dependent on the quality and diversity of the data used to establish the golden standard,
underscoring the need for further validation with more extensive and varied datasets.

6. The depth (z-axis) coordinate of the skeleton data was notably noisy, due to reliance
on single-camera video recordings. This highlights the potential benefit of multi-camera
setups or depth sensors to improve 3D pose accuracy and framework precision.
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Appendix 1. List of key joints

Joint label Joint name
htop Head top (the highest point on the head)
neck Neck (the connection point between the head and torso)
rsho Right shoulder
relb Right elbow
rwri Right wrist
lsho Left shoulder
lelb Left elbow
lwri Left wrist
rhip Right hip
rkne Right knee
rank Right ankle
lhip Left hip
lkne Left knee
lank Left ankle
pelv Pelvis (the center point of the hips)
spin Spine (the center point of the torso)
head Head (the center point of the head)

Table 3. 17 joints which are used in the mpi_inf_3dhp_17 skeleton format
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