
VILNIUS UNIVERSITY
FACULTY OF MATHEMATICS AND INFORMATICS

INSTITUTE OF COMPUTER SCIENCE
CYBERSECURITY LABORATORY

Masters Thesis

Evaluation of vulnerability inventories using a classification
algorithm

Pažeidžiamumo aprašų vertinimas naudojant klasifikavimo algoritmą

Done by:
Arnas Čižikovas

Supervisor:
dr. Linas Bukauskas

Vilnius
2025

Contents
Abstract 3

Santrauka 4

Introduction 5

1 Related work 7
1.1 Meaning of CVE . 7
1.2 A brief history of CVE . 7
1.3 CVE usability and performance . 8
1.4 CVE compatibility . 9
1.5 Comparison between CWE, CVE and CVSS . 10
1.6 CVSS calculation metrics and values . 13

1.6.1 Base metrics . 13
1.6.2 Temporal metrics . 16
1.6.3 Environmental Metrics . 18
1.6.4 Comparison of CVSS v4 and CVSS v3.1 Calculations. 19

1.7 CVE classification methods and tools . 19
2 Implementation 22

2.1 Data description . 22
2.2 Data preparation for CWE classification . 24
2.3 Data preparation for CVSS classification . 27
2.4 Pseudocode of an algorithm . 28

3 Experiments 30
3.1 CWE experiments . 30
3.2 CVSS Experiments . 33

Conclusions 37

References 39

Abstract
Cybersecurity vulnerabilities pose a significant threat to organisations, so it is essential to iden-

tify and prioritise them to mitigate potential risks. Newly emerging breaches are classified slowly,
yet they keep increasing every year. Treat assessment is an extraordinarily long and complex pro-
cess, and it can take months to start taking adequate measures to protect against cyber attacks.

This study compares classification algorithms for vulnerability inventories using the Common
Vulnerabilities and Exposures (CVE), the Common Weakness Enumeration (CWE), and the Com-
mon Vulnerability Scoring System (CVSS). We compare and contrast the CVEs, CWEs, and CVSSs
to evaluate the performance of different classification algorithms in classifying CVEs by their CWE
mapping and their Common Vulnerability Scoring System (CVSS) vectors. The research provides
a broader overview of the fundamental concepts of CVE, CWE, and CVSS, their differences and
applicability, how they relate, and how they are interrelated. The analysis aims to identify the
optimal methods for developing a new classification algorithm faster and more accurately than ex-
isting algorithms and methodologies. This study contributes to developing automated vulnerability
assessment and prioritisation methods to help organisations improve their cybersecurity posture.

Key words: CVE, CWE, CVSS, Random Forest Classifier, SVC, Logistic Regression Classi-
fier.

3

Santrauka
Pažeidžiamumo aprašų vertinimas naudojant klasifikavimo algoritmą

Kibernetinio saugumo pažeidžiamosios vietos kelia didelę grėsmę organizacijoms, todėl labai
svarbu jas nustatyti ir nustatyti prioritetus, kad būtų sumažinta galima rizika. Naujai atsirandantys
pažeidimai klasifikuojami lėtai, tačiau jų kasmet vis daugėja. Apsaugos vertinimas yra nepaprastai
ilgas ir sudėtingas procesas, todėl gali prireikti kelių mėnesių, kad būtų galima pradėti imtis tinkamų
priemonių apsisaugoti nuo kibernetinių išpuolių.

Šiame tyrime lyginami pažeidžiamumų aprašų klasifikavimo algoritmai, naudojami pagal Ben-
drą pažeidžiamumų ir rizikų sąrašą (angl. Common Vulnerabilities and Exposures, CVE), Bendrą
silpnybių sąrašą (angl. Common Weakness Enumeration, CWE) ir Bendrą pažeidžiamumų vertin-
imo sistemą (angl. Common Vulnerability Scoring System, CVSS). Lyginame ir sugretiname CVE,
CWE ir CVSS, kad įvertintume skirtingų klasifikavimo algoritmų efektyvumą klasifikuojant CVE
pagal jų CWE atvaizdavimą ir jų Bendrosios pažeidžiamumų vertinimo sistemos (CVSS) vektorius.
Tyrime plačiau apžvelgiamos pagrindinės CVE, CWE ir CVSS sąvokos, jų skirtumai ir pritaiko-
mumas, jų sąsajos ir tarpusavio ryšiai. Analizės tikslas - nustatyti optimalius metodus, leidžiančius
greičiau ir tiksliau identifikuoti aprašus, nei esami algoritmai ir metodikos kuriant naują klasifikav-
imo algoritmą. Šis tyrimas prisideda prie automatizuotų pažeidžiamumų vertinimo ir prioritetų
nustatymo metodų, padedančių organizacijoms gerinti kibernetinio saugumo būklę, kūrimo.

Raktiniai žodžiai: CVE, CWE, CVSS, Atsitiktinių miškų klasifikavimas, Palaikomųjų vektorių
klasifikatorius, Logistinės regresijos klasifikatorius.

4

Introduction
Cybersecurity vulnerabilities represent critical weaknesses in software or hardware systems that
malicious actors can exploit to gain unauthorized access, disrupt services, or inflict damage. The
identification and prioritization of these vulnerabilities are paramount for organizations aiming to
manage cybersecurity risks effectively and safeguard their digital assets. However, traditional meth-
ods of conducting manual vulnerability assessments can be labor-intensive, time-consuming, and
susceptible to human error, which can lead to overlooked vulnerabilities and increased risk expo-
sure

This study aims to enhance the vulnerability assessment process by comparing existing vulner-
ability descriptions with their corresponding Common Weakness Enumeration (CWE) references
and Common Vulnerability Scoring System (CVSS) vectors. By doing so, we seek to provide po-
tential values for newly created Common Vulnerabilities and Exposures (CVE) cases. Our approach
categorizes vulnerabilities based on their CVSS vectors, utilizing CVE and CWE as the primary
sources of information to ensure a comprehensive analysis.

The Common Vulnerability Scoring System (CVSS) is a widely recognized standard for mea-
suring the severity of vulnerabilities. It employs a scoring system that takes into account various
factors, including the attack vector, the complexity of the attack, and the potential impact on the
system. The Common Vulnerabilities and Exposures (CVE) database lists publicly disclosed cy-
bersecurity vulnerabilities, serving as a critical resource for organizations to stay informed about
known threats. In parallel, the Common Weakness Enumeration (CWE) is a community-driven
standard that aids in identifying and categorizing software weaknesses, allowing organizations to
prioritize vulnerabilities even if they have not yet been publicly disclosed.

Threat modeling is an essential component of cybersecurity that involves identifying poten-
tial threats and vulnerabilities within a system and assessing their likelihood and potential impact.
Attack graphs are valuable tools in this context, as they illustrate possible attack paths within a
system, helping security professionals identify the most vulnerable components and prioritize their
remediation efforts.

In recent years, machine learning techniques have emerged as powerful tools for analyzing vul-
nerability data. These techniques apply algorithms to learn patterns and relationships within the
data, enabling the prediction of the likelihood and impact of new vulnerabilities. However, de-
spite their potential, these methods also face limitations, including subjectivity in feature selection,
complexity in model training, and challenges related to scalability when applied to large datasets.

In this study, we will conduct a thorough analysis of classification algorithms designed to assess
vulnerability inventories based on criteria such as severity, exploitability, and potential impact.
We will evaluate the effectiveness of these algorithms using a comprehensive dataset of known
vulnerabilities, comparing our results with those obtained from existing methods. By doing so, we
aim to contribute to the ongoing efforts to improve vulnerability management practices and enhance
the overall security posture of organizations in an increasingly complex threat landscape.

The tasks to achieve the aim are:
• Analyze the state of the art in the vulnerability definition inventories and classification meth-

ods;
• Understand CWE, CVE and CVSS differences;
• Compare classification methods for CVSS and CWE;

5

• Evaluate vulnerability inventory using a classification algorithm.
The Common Vulnerabilities and Exposures (CVE) system provides a standardized method for

documenting publicly known information security vulnerabilities and exposures, serving as a com-
prehensive database of cyber threats. Each CVE entry is assigned a unique identifier and includes
attributes such as a description, potential impact, affected software or hardware, and links to re-
mediation resources. This structured information helps organizations assess risks and implement
appropriate measures to mitigate vulnerabilities.

However, there is currently no efficient method for automatically classifying new CVE records
into specific attack categories. The existing manual classification process is time-consuming and
prone to human error, making it challenging for organizations to prioritize their response to emerg-
ing threats effectively. This gap can lead to critical vulnerabilities being overlooked.

To address these challenges, there is a need for advanced methodologies that leverage machine
learning and natural language processing to automate the classification of CVE records. Such so-
lutions would enhance vulnerability management, improve response times, and strengthen overall
cybersecurity posture by providing a consistent framework for understanding and addressing vul-
nerabilities in a complex cyber landscape.

6

1 Related work

1.1 Meaning of CVE
Common Vulnerabilities and Exposures, commonly known as CVE, is a publicly available list of
security vulnerabilities in computer systems. This list aids IT teams in prioritising security, sharing
information, and proactively addressing problem areas. Thus, it enhances the security of systems
and networks and helps prevent harmful cyberattacks. [1]

CVE entries include a description, an identification number, and a public link. Each CVE details
a specific vulnerability or impact. According to the CVE website [4], a vulnerability is a software
code error that allows hackers direct access to a system or network. Conversely, an exposure refers
to an error that gives an attacker indirect access. [1]

In general, the CVE project creates a system of vulnerabilities and organisation. To make a
list of CVEs, several steps must be followed. The first step in creating a CVE list is identifying
the vulnerability or impact. In the second step, the computer network attack (CNN) [13] assigns a
CVE identification number to the vulnerability. Afterwards, the CNA records a description of the
problem and provides links. In the final step, the completed CVE entry is added to the CVE list
and published on the CVE website. [1]

CVE provides a single and unique identifier for each individual vulnerability. In general, CVE
is more like a dictionary than a database. The description of each entry should be brief and shall
not include technical data, information on specific effects or corrective information.

To summarise and accurately identify the concept of CVE, it is best to create a list of key
components and advantages of the CVE:

• Single naming for a single vulnerability or exposure to be described;
• Single standardised description of each vulnerability or exposure;
• It is more of a dictionary than a database;
• A way to unite different databases and tools in the same language;
• A way to ensure interoperability and better security;
• The basis for evaluating tools and databases.
The main purpose of the catalogue is to standardise the method of identifying each known

vulnerability or exposure. This is important because standard identifiers allow security adminis-
trators to quickly obtain technical information about a specific threat from many CVE-compatible
information sources. [1]

Information technology and cyber-security professionals can use the CVE and its records to
understand, prioritise, and address vulnerabilities in their organisations. They can also use the
CVE to engage in useful discussions with colleagues and coordinate their vulnerability mitigation
efforts.

1.2 A brief history of CVE
The CVE standard [12] was launched in 1999 when most cyber-security measures used their databases
with the names of their security vulnerabilities. At that time, there were no significant differences

7

between products and no easy way to determine when different databases indicated the same prob-
lem. The consequences were possible gaps in the security coverage and effective interactions be-
tween different databases. In addition, the seller of each instrument used different indicators to
indicate the names of the vulnerabilities detected, which means there was no standardised basis for
evaluating the measures. [12]

The CVE common and standardised identifiers provided an opportunity to solve these prob-
lems. CVE is now a tool and a standard for naming some vulnerabilities. CVE identifiers provide
reference points for data exchange so that cyber-security products and services can communicate
with each other. They also provide a basis for assessing the coverage of tools and services so that
users can determine which tools are most appropriate, effective, and suitable for their organisation’s
needs. In short, CVE-compatible products and services provide better coverage, easier interaction,
and better quality and security. [12].

1.3 CVE usability and performance
As an industry standard, CVE identifiers are used in many cyber-security products and services
worldwide. These CVE products include vulnerability databases, security tips and archives, vul-
nerability reporting, evaluation and remediation products, intrusion detection, management, moni-
toring and response products, incident management products, data and event correlation products,
firewalls, patch management products, policy compliance products and security information man-
agement tools.

When a vulnerability is detected, the standardised life cycle [23] of the CVE must be passed
before it is published. Each step and sequence are shown in the Figure 1.

• Discover: The process begins when a person or organisation detects a vulnerability;
• Inform: Vulnerability discovered person or organisation submits a report to the CVE num-

bering authorities;
• Fill out an application: CVE numbering authorities (CNA) issues a vulnerability ID;
• Reserve: The ID is reserved for that specific vulnerability and is used in the early stages of

the CVE assessment and in all relevant cross-country relationships;
• Submit: The CVE numbering authorities evaluate the vulnerability documentation provided,

which should contain all the information necessary to prove the existence, root cause, threat
type, and impact of the vulnerability or impact;

• Publish: After checking all the information in the documents, the CNA publishes the CVE,
thus making it publicly available.

Figure 1. CVE lifecycle

8

1.4 CVE compatibility
The basic premise of the CVE list is that vulnerability or impact must be identified in one name. A
CVE-compatible product or service must understand the CVE vulnerability names and allow users
to interact with the product/service under these CVE names. Support for the following CVE names
is at the heart of the CVE compatibility concept. CVE-compatible tools, websites, databases or
services must use CVE names in such a way that users can associate their information with other
repositories, tools, and services that also use CVE names, such as shown in Figure 2 [23].

Figure 2. Cross linking

Integrating vulnerability services, databases, websites, and tools that include CVE titles will
provide the organisation with more comprehensive and effective coverage of security issues. For
example, a vulnerability scanning tool report using CVE names will allow an organisation to quickly
and accurately find patch information in one or more CVE-compliant databases and websites [7]. It
can also pinpoint which vulnerabilities and exposures are covered by each CVE-related compliant
tool or service, as the CVE list provides a basis for comparison. Identifying which CVE entries
apply to platforms, operating systems, and commercial software packages allows the organisation
to compare this subset of the CVE list with the coverage of any specific tool or service. Network
and security logs already mention that support for CVE names is a desirable feature. The National
Institute of Science and Technology (NIST) has issued a recommendation to all federal government
agencies and services to use CVE-compatible products and services whenever possible [16] [15].

CVE compatibility [16] includes four main requirements:
• Customers can use CVE names to learn about scope, content or coverage and then get any

relevant information;
• Clients can receive output that includes all relevant CVE names;

9

• The owner of an element shall make a good faith effort to ensure that the mapping from its
own elements to the CVE names remains accurate as the CVE list and the compatible element
are updated over time;

• The standard documentation shall provide a description and details of CVE compatibility,
how customers can access the CVE-related elements of their instrument, database, website,
or service features.

Vendors are generally given the flexibility to implement the requirements in different ways.
Users may determine which features or implementations best meet their needs [8].

1.5 Comparison between CWE, CVE and CVSS
To protect your digital infrastructure from threats, it is important to be familiar with security stan-
dards such as CWE, CVE, and CVSS. These terms are developed and maintained by MITRE, a
non-profit organisation that manages U.S. government-sponsored research and development (R&D)
centres.

Several methods have been proposed for vulnerability assessment and prioritisation. CWE is
often used with CVSS to provide a more comprehensive view of vulnerabilities. CVSS provides
a common language for describing vulnerabilities and helps organisations prioritise their efforts to
address the most critical ones. CWE provides a common language for describing software weak-
nesses and helps organisations prioritise their efforts to address the most critical ones. CWE has
several categories: input validation, authentication, and authorisation.

Threat modelling can be performed using various methods, such as attack trees, graphs, and
misuse cases. Threat modelling can help organisations identify potential threats and vulnerabilities
and prioritise their efforts to address them.

Attack graphs can be generated using various methods, such as model checking, graph theory,
and machine learning. Attack graphs can help organisations identify potential attack paths and
prioritise their efforts to address them.

Machine learning techniques can be supervised, unsupervised, or semi-supervised. Machine
learning techniques can handle large datasets and complex relationships between features. How-
ever, they may be more difficult to interpret and require more computational resources.

CWE stands for "Common Weakness Enumeration," a community-developed tool that has be-
come a standard for describing and categorizing weaknesses that can lead to vulnerabilities. These
vulnerabilities may include system misconfiguration and code bugs that have not yet been exploited.
CWE facilitates the identification and remediation of software vulnerabilities, design flaws, pro-
gramming errors, and configuration problems. Each vulnerability on the CWE list is assigned a
unique 3–4 digit identifier to each vulnerability and provides detailed descriptions, examples, and
recommendations on how to reduce or avoid the vulnerability. [11].

The following are some examples of CWEs related to web-oriented systems that can extend the
external attack surface. [11].

• CWE-200: Disclosure of information: this deficiency occurs when personal information,
systems data, network configurations, and other sensitive information is inadvertently dis-
closed or disclosed in error messages, logs, or other system outputs, resulting in potential
hackers gain valuable information that can be used to exploit the system.

10

• CWE-326: Insufficient encryption strength: CWE-326 is associated with weak encryption
algorithms or insufficient key length on external resources.

• CWE-346: Origin CWE-346: Origin Validation Error: This error can occur when the
network validation is not properly validated.

• CWE-434: Unrestricted upload of a dangerous file type: This vulnerability occurs when
an application allows users to upload files without proper authentication, which could lead
to malicious code, file overwriting, or other security vulnerabilities.

• CWE-601: URL redirection to an untrusted website ("Open Redirect"): This vulnera-
bility weakness occurs when an application redirects users to another website or URL without
confirming the target. This can lead to phishing attacks, malware downloads or other mali-
cious activities.

The above are just a few examples. There are currently more than a thousand CWEs.
CVE, abbreviated as "Common Vulnerabilities and Exposures," is also a standardised method

for identifying and monitoring publicly known vulnerabilities in systems. However, unlike CWEs,
which focus on vulnerability or deficiency at a higher level, CVE analyses vulnerabilities in the
context of a specific product or system. Each CVE has a unique CVE ID of 8 or more digits and
follows the syntax CVE-YYYYY-NNNN, where ’YYYYY’ stands for the year and ’NNNN’ repre-
sents freely chosen digits. CVE is a generic reference to a specific system, platform, or technology-
level vulnerability. Hence, security practitioners, researchers, and organisations make it easier for
security organisations to collaborate and share much-needed information. [1].

Here are some examples of CVEs.
• CVE-2021-34523: This vulnerability in Microsoft Exchange Server can be exploited to ac-

cess the victim’s SSL/TLS keys, allowing attackers to intercept and modify encrypted data
during transmission secretly.

• CVE-2020-1350: This CVE, known as "SIGRed", affects Windows DNS servers. It allows
hackers to remotely execute their own code on the server to compromise the DNS service’s
reliability and security.

• CVE-2018-6789: This vulnerability affects Exim mail servers and is called the "Exim Mail
Server" vulnerability. It allows remote attackers to execute commands on the server, poten-
tially gaining unauthorised access or malicious actions.

There are currently more than 240,000 CVEs, and the list continues to grow as new ones are
discovered and added vulnerabilities.

The Common Vulnerability Scoring System (CVSS) is a standardised framework for assessing
the severity and impact of vulnerabilities in cyber security. It classifies vulnerabilities as digital
scores based on indicators such as the impact on the availability and integrity of the affected system,
the ease of access, and the ease with which attackers can exploit it. CVSS scores range from 0 to
10, with 10 being the most severe. This The system is useful for the cybersecurity community and
security teams [9] [5]:

11

1. They can prioritise responses to vulnerability.
2. Make vulnerability assessments objective and consistent.
3. Enable effective communication and cooperation between different stakeholders.
From 13 July 2022, NVD will no longer generate vector strings of qualitative severity ratings

or CVSS v2 severity scores. The existing CVSS v2 information will remain in the database, but
the NVD will no longer actively populate the CVSS v2 for the newly created CVEs. The change
has been issued due to the CISA policy that after the full transition from CVSS v2, it will be fully
dependent on the NVD data [14].

The NVD analysts will continue to use the reference information provided with the CVE and
any publicly available information to reference tags for CWE, CVSS v3.1 and CPE Applicability
statements [14].

CVSS v2 has been included in the NVD since 2007, and v3 and v3.1 have been included since
their release in 2015 and 2019, respectively. Led by FIRST’s CVSS-SIG team, CVSS v4 develop-
ment is underway. NVD expects to introduce CVSS v4 components from 2023 [14].

When comparing CWE with CVE and CVSS, it is important to note that although they are
vulnerability management tools and can appear similar, they have different objectives and purposes.
The table below highlights some key differences between CWE, CVS and CVSS [5] Table 1.

Table 1. Differences between CWE, CVS and CVSS
Deadline Purpose Focus Representations

Overall vulnera-
bilities (CWE)

To provide a standard-
ised method for iden-
tifying and classifying
weaknesses.

To identify weaknesses
or vulnerabilities. Iden-
tification of vulnerabili-
ties.

3-4 digit ID (e.g.,
CWE-200)

General Vulnera-
bilities and risk
factors (CVE)

Facilitate communica-
tion, tracking and ref-
erencing vulnerabilities
of each product or sys-
tem level.

For specific vulnerabili-
ties that have been pub-
licly disclosed. Identi-
fication of vulnerabili-
ties that have been iden-
tified.

IDs with 8 or
more digits (e.g.,
CVE-2021-
34523)

Common Vulner-
abilities Assess-
ment Framework
(CVSS)

To provide a stan-
dardised vulnerability
assessment method to
enable accurate priori-
tisation.

Quantitative vul-
nerability severity
assessment includes
exploitation potential,
impact, and exploita-
tion complexity.

Score range 0 to
10

They may vary, but CWE, CVE, and CVSS all contribute to better vulnerability management,
secure coding practices, risk prioritisation, and information sharing, ultimately improving overall
performance.

The security posture of software and systems supports the overall cybersecurity community
efforts.

12

1.6 CVSS calculation metrics and values
In subsection 1.5, there was a slight hint of CVSS and its different versions. The entire meaning of
the CVSS score is to determine the criticality of the vulnerability. As of the writing of this thesis,
CVSS v2 is no longer applicable to the new CVE appearances since version 2 was discontinued in
2022, and it is no longer used for further research. Version 3.1 is the current standard applicable for
the new CVE entries. Additionally, version 4 has appeared since 2023 and provided some changes
that overhauled the calculation of the metrics.

The current standard CVSS v3.1 scoring system consists of Base, Temporal, and Environmental
metrics, Scoring range, and multiple metric categories such as attack vector (AV) or scope (S). The
new metric system added sub-metrics to the base metrics to improve the contextual scoring. Intro-
duced new impact metrics for refined confidentiality, integrity and availability impact assessments.
Incorporated optional and supplemental metrics designed to support automation and improve the
scoring accuracy for diverse contexts. Refined attack complexity and added more nuance to the
likelihood of success of an attack, adapting to more complex environments. It was also designed
with modern technology in mind, offering stronger support for IoT, cloud, and distributed networks.
Both versions of CVSS calculate three main metrics: basic, temporal, and environmental.

1.6.1 Base metrics

The Base Metrics represent the core characteristics of a vulnerability that remain constant over time
and across environments. They are used to calculate the Base Score, which reflects the severity of
the vulnerability, independent of any specific organisation’s environment. The Base Metrics are
divided into two main categories Exploitability and Impact Metrics.

The Exploitability Metrics describe the characteristics of the vulnerable thing, formally called
the vulnerable component. When scoring Base metrics, it should be assumed that the attacker has
advanced knowledge of the target system’s weaknesses, including general configuration and default
defence mechanisms.

Attack Vector (AV) described in Table 2 provides the context by which vulnerability exploita-
tion is possible. This metric value will be larger the more remote (logically, and physically) an
attacker can be in exploiting the vulnerable component

Metric Value Description Numerical Value
Network (N) The vulnerability can be exploited remotely over

a network.
0.85

Adjacent (A) The attack requires access within the same local
network.

0.62

Local (L) The attacker must have local access to the sys-
tem.

0.55

Physical (P) Physical access to the device is required. 0.2
Table 2. Attack Vector (AV)

Attack Complexity (AC) in Table 3 describes the conditions beyond the attacker’s control that
must exist to exploit the vulnerability.

13

Metric Value Description Numerical Value
Low (L) The attack does not require specific conditions

or is easily repeatable.
0.77

High (H) The attack requires access within the same local
network.

0.44

Table 3. Attack Complexity (AC)

Privileges Required (PR) in Table 4 describes the level of privileges an attacker must possess
before successfully exploiting the vulnerability.

Metric Value Description Numerical Value
None (N) No privileges are required; any user can exploit

the vulnerability.
0.85

Low (L) Low-level privileges are needed (e.g., a standard
user).

0.62 (S:C 0.68)

High (H) High-level privileges are required (e.g., admin-
istrator access).

0.27 (S:C 0.5)

Table 4. Privileges Required (PR)

User Interaction (UI) in Table 5 describes the requirement for a human user, other than the
attacker, to participate in the successful compromise of the vulnerable component.

Metric Value Description Numerical Value
None (N) No user interaction is needed; the attacker can

exploit the vulnerability without user action.
0.85

Required (R) User action (e.g., clicking a link or opening a
file) is required for exploitation.

0.62

Table 5. User Interaction (UI)

Scope (S) in Table 6 captures whether a vulnerability in one vulnerable component impacts
resources in components beyond its security scope.

Metric Value Description Numerical Value
Unchanged (U) The exploit only affects the vulnerable compo-

nent.
1

Changed (C) The exploit can extend beyond the vulnerable
component, impacting other systems or compo-
nents.

1.08

Table 6. Scope (S)

Impact Metrics describe the effects of a successfully exploited vulnerability on the component
that suffers the worst outcome that is most directly and predictably associated with the attack. Only

14

the increase in access, privileges gained, or another negative outcome as a result of successful
exploitation should be considered when scoring the Impact metrics of a vulnerability. If a scope
change has not occurred, the Impact metrics should reflect the Confidentiality, Integrity, and Avail-
ability impacts to the vulnerable component. However, if a scope change has occurred, then the
Impact metrics should reflect the Confidentiality, Integrity, and Availability impacts to either the
vulnerable component, or the impacted component, whichever suffers the most severe outcome.

Confidentiality Impact (C) in Table 7 measures the impact on the confidentiality of the infor-
mation resources managed by a software component due to a successfully exploited vulnerability.

Metric Value Description Numerical Value
None (N) No loss of confidentiality. 0
Low (L) Limited impact on confidentiality, with partial

data exposure.
0.22

High (H) Complete loss of confidentiality, exposing all
data.

0.56

Table 7. Confidentiality Impact (C)

Integrity Impact (I) in Table 8 measures the impact on integrity of a successfully exploited
vulnerability. Integrity refers to the trustworthiness and veracity of information.

Metric Value Description Numerical Value
None (N) No loss of integrity. 0
Low (L) Limited impact on data integrity, with some data

alteration possible.
0.22

High (H) Complete loss of integrity, leading to total data
compromise.

0.56

Table 8. Integrity Impact (I)

Availability Impact (A) in Table 9 measures the impact to the availability of the impacted com-
ponent resulting from a successfully exploited vulnerability.

Metric Value Description Numerical Value
None (N) No impact on availability. 0
Low (L) Reduced performance or intermittent disrup-

tions.
0.22

High (H) Complete loss of availability, rendering the sys-
tem or service unusable.

0.56

Table 9. Availability Impact (A)

Calculating the Base Score. The Base Metrics combine into a Base Score, which ranges from
0.0 to 10.0. This score reflects the intrinsic severity of the vulnerability, independent of any specific

15

environment. The Base Score is computed through a mathematical formula that uses the values of
each Base Metrics.

The Base Score is categorised into the following severity levels:
None ∶ 0.0, Low ∶ 0.1 − 3.9, Medium ∶ 4.0 − 6.9,

High ∶ 7.0 − 8.9, Critical ∶ 9.0 − 10.0

To calculate the base score there had to be multiple sub-calculations made. The Base Score for-
mula Algorithm 4 depends on sub-formulas for Impact Sub-Score Algorithm 1, Impact Algorithm
2, and Exploitability Algorithm 3.
Algorithm 1. Impact Sub-Score (ISS) calculation

1: 𝐼𝑆𝑆 ≔ 1 − [(1 − 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑡𝑖𝑎𝑙𝑖𝑡𝑦) × (1 − 𝐼𝑛𝑡𝑒𝑔𝑟𝑖𝑡𝑦) × (1 − 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦)]

Algorithm 2. Impact calculation
1: if 𝑆𝑐𝑜𝑝𝑒 is 𝑢𝑛𝑐ℎ𝑎𝑛𝑔𝑒𝑑 then
2: 𝐼𝑚𝑝𝑎𝑐𝑡 ≔ 6.42 × 𝐼𝑆𝑆
3: else if 𝑆𝑐𝑜𝑝𝑒 is 𝑐ℎ𝑎𝑛𝑔𝑒𝑑 then
4: 𝐼𝑚𝑝𝑎𝑐𝑡 ≔ 7.52 × (𝐼𝑆𝑆 − 0.029) − 3.25 × (𝐼𝑆𝑆 − 0.02)15

5: end if

Algorithm 3. Exploitability calculation
1: 𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ≔ 8.22 × 𝐴𝑡𝑡𝑎𝑐𝑘𝑉 𝑒𝑐𝑡𝑜𝑟 × 𝐴𝑡𝑡𝑎𝑐𝑘𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 × 𝑃𝑟𝑖𝑣𝑖𝑙𝑒𝑔𝑒𝑠𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 ×

𝑈𝑠𝑒𝑟𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛

Algorithm 4. Base Score calculation
1: if 𝐼𝑚𝑝𝑎𝑐𝑡 ≤0 then Base Score ≔ 0
2:3: if 𝑆𝑐𝑜𝑝𝑒 is 𝑢𝑛𝑐ℎ𝑎𝑛𝑔𝑒𝑑 then
4: 𝐵𝑎𝑠𝑒𝑆𝑐𝑜𝑟𝑒 ≔ min⌈(𝐼𝑚𝑝𝑎𝑐𝑡 + 𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦), 10⌉)
5: else if 𝑆𝑐𝑜𝑝𝑒 is 𝑐ℎ𝑎𝑛𝑔𝑒𝑑 then
6: 𝐵𝑎𝑠𝑒𝑆𝑐𝑜𝑟𝑒 ≔ min⌈1.08 × (𝐼𝑚𝑝𝑎𝑐𝑡 + 𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦), 10⌉)
7: end if
8: =0

1.6.2 Temporal metrics

In the Common Vulnerability Scoring System (CVSS), the Temporal Metrics allows adjustment
of the Base Score based on factors that change over time. These metrics provide a way to refine
a vulnerability’s score as new information, such as exploit availability or remediation, becomes
available. The three Temporal Metrics in CVSS v3.1 Exploit - Code Maturity (E), Remediation
Level (RL), and Report Confidence (RC).

Exploit Code Maturity (E). This metric reflects the likelihood and availability of exploit code
or techniques for the vulnerability. The more mature or available the exploit code is, the higher the
score Table 10.

16

Metric Value Description Numerical Value
Not Defined (X) No impact on availability. 1
High (H) Exploit code or techniques are widely available

and mature.
1

Functional (F) Exploit code is functional but may be less ma-
ture.

0.97

Proof-of-Concept
(P)

There is proof-of-concept code, but it may not
be fully functional or reliable.

0.94

Unproven (U) No exploit code is available or publicly accessi-
ble.

0.91

Table 10. Exploit Code Maturity (E)

Remediation Level (RL). This metric reflects the availability and level of remediation for the
vulnerability. The more readily available and complete the remediation, the lower the Temporal
Score Table 11.

Metric Value Description Numerical Value
Not Defined (X) Default; no adjustment to the Base Score. 1
Unavailable (U) No remediation, such as a patch or workaround,

is available.
1

Workaround (W) A workaround is available, but it may not com-
pletely resolve the issue.

0.97

Temporary Fix
(T)

A temporary or partial fix is available. 0.96

Official Fix (O) An official patch or solution is available and ad-
dresses the vulnerability effectively.

0.95

Table 11. Remediation Level (RL)

Report Confidence (RC). This metric assesses the level of confidence in the vulnerability’s
existence and technical details based on the quality and source of the report Table 12.

Metric Value Description Numerical Value
Not Defined (X) Default; no adjustment to the Base Score. 1
Confirmed (C) The vulnerability is confirmed by reliable

sources, such as the vendor.
1

Reasonable (R) There is reasonable evidence for the vulnerabil-
ity, but some uncertainty remains.

0.96

Unknown (U) The report is unverified, with limited informa-
tion about the vulnerability.

0.92

Table 12. Report Confidence (RC)

Temporal Score Calculation. The Temporal Score is calculated by adjusting the Base Score
using the Temporal Metrics Algorithm 5

Where 𝐸, 𝑅𝐿, and 𝑅𝐶 are the numerical values associated with the selected Temporal Metrics.

17

Algorithm 5. Temporal Score calculation
1: 𝑇 𝑒𝑚𝑝𝑜𝑟𝑎𝑙𝑆𝑐𝑜𝑟𝑒 ≔ 𝐵𝑎𝑠𝑒𝑆𝑐𝑜𝑟𝑒 × 𝐸 × 𝑅𝐿 × 𝑅𝐶=0

Each metric value has a defined weight that decreases the score as the availability of exploits,
level of remediation, or confidence in the vulnerability decreases. Temporal Metrics provide a
dynamic layer to the CVSS score by considering factors that evolve as a vulnerability matures or is
mitigated. By applying Temporal Metrics, organisations can prioritise vulnerabilities to reflect their
current severity and mitigations available, which is useful for keeping vulnerability management
up-to-date with real-world conditions.

1.6.3 Environmental Metrics

The Environmental Metrics in the Common Vulnerability Scoring System (CVSS) allow organi-
sations to adjust the Base and Temporal Scores of a vulnerability based on factors specific to their
environment. These metrics help prioritise vulnerabilities by considering the impact of the vulnera-
bility on an organisation’s particular systems, configurations, and requirements. The Environmental
Metrics include two main categories - Security Requirements, and Modified Base Metrics.

The Security Requirements metrics enable organisations to specify the importance of the con-
fidentiality, integrity, and availability impacts in their environment. Each requirement can be set to
indicate whether that aspect is critical, moderately important, or unimportant for the organisation.

Each requirement of Confidentiality Requirement (CR), Integrity Requirement (IR), and Avail-
ability Requirement (AR) has the values depicted in Table 13.

Metric Value Description Numerical Value
Not Defined (X) Default; no adjustment to the Base Score. 1
High (H) The requirement is of high importance to the or-

ganization.
1.5

Medium (M) The requirement is of medium importance to the
organization.

1

Low (L) The requirement is of low importance to the or-
ganization.

0.5

Table 13. CR, IR, AR values

Modified Base Metrics. The Modified Base Metrics allow an organisation to adjust the original
Base Metrics according to the specific conditions of their environment. Each Modified Base Metric
corresponds to a Base Metric, providing a way to reflect environment-specific characteristics that
might influence the exploitability or impact of a vulnerability.

These values are modified versions of Attack Vector, Attack Complexity, Privileges Required,
User Interaction, Scope, Confidentiality Impact, Integrity Impact, and Availability Impact metrics
with corresponding labelling: MAW, MAC, MPR, MUI, MS, MC, MI, MA. Each Modified Base
Metric value has the same possible choices as the original Base Metric values.

Environmental Score Calculation. The Environmental Score is calculated by adjusting the Base
Score using the Environmental Metrics Algorithm 6.

18

Algorithm 6. Environmental Score calculation
1: 𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑎𝑙𝑆𝑐𝑜𝑟𝑒 ≔ 𝑇 𝑒𝑚𝑝𝑜𝑟𝑎𝑙𝑆𝑐𝑜𝑟𝑒 ×𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑𝐼𝑚𝑝𝑎𝑐𝑡

Where the Modified Impact reflects the importance of confidentiality, integrity, and availability
impacts as specified by the organisation. And calculation considers all Modified Base Metrics and
Security Requirements in the specific environment.

The Environmental Metrics enable organisations to prioritise vulnerabilities based on their en-
vironment’s specific impact and requirements. By taking into account factors like security require-
ments and environmental adjustments to the Base Metrics, organisations can customise vulnerabil-
ity scores to more accurately reflect their operational needs.

1.6.4 Comparison of CVSS v4 and CVSS v3.1 Calculations.

The calculation methods for CVSS v4 and CVSS v3.1 aim to quantify the severity of vulnerabilities,
but CVSS v4 introduces enhancements to improve precision and flexibility.

In CVSS v3.1, the overall score is calculated using Base Metrics (Exploitability and Impact)
to determine the Base Score, which is then modified by the Temporal and Environmental Metrics
Algorithm 5.

The final Environmental Score then adjusts the Temporal Score using Security Requirements
and Modified Base Metrics Algorithm 6.

CVSS v4 introduces additional metrics and modifiers to address modern security needs, such
as those presented by IoT, cloud environments, and supply chains. Key enhancements include:

• New Metrics: CVSS v4 adds Attack Requirements and Safety Impact to capture more specific
exploit conditions and impacts.

• Granularity of Severity Ratings: CVSS v4 refines scoring for more nuanced prioritisation,
allowing for more precise severity categories.

• Dynamic Scoring Adjustments: The scoring formula now includes options for automatically
adjusting scores based on the evolving exploit and remediation landscape.

In addition to these modifications, CVSS v4 scoring formulas are adapted to balance the in-
creased range of metrics without disproportionately affecting the score. The final Environmental
Score in CVSS v4 is calculated by incorporating these new metrics directly into the Base Score and
then applying modified Temporal and Environmental values as applicable. This structure allows
for a more tailored vulnerability assessment that better aligns with real-world risk.

In summary, CVSS v4 maintains the core principles of CVSS v3.1 but enhances the calculation
methods and adds new metrics for greater precision and applicability in diverse environments.

These calculations will be useful in determining the CVE description severity from its descrip-
tion. First, CVSS v3.1 will be predicted, and then a CVSS v4 calculation will be performed on top
of it. The only problem is determining how to classify the CVE descriptions.

1.7 CVE classification methods and tools
Classifying Common Vulnerabilities and Exposures (CVE) and Common Weakness Enumeration
(CWE) is a critical component in the ongoing effort to enhance software security. As the number of

19

vulnerabilities continues to grow, the need for effective classification becomes increasingly impor-
tant. By accurately categorizing these vulnerabilities, organizations can prioritize their responses,
allocate resources more effectively, and ultimately reduce the risk of exploitation. The integration
of machine learning (ML) techniques into this classification process has emerged as a promising
solution, enabling automation that leads to faster and more efficient identification and management
of vulnerabilities.

Several machine learning methods have been explored for the classification of CVE and CWE,
each offering unique advantages:

• Decision Tree Classifier: This algorithm constructs a model that predicts the class of vul-
nerabilities based on features extracted from the code. Decision trees are intuitive and easy to
interpret, making them a popular choice for initial classification tasks. They work by recur-
sively splitting the data into subsets based on feature values, ultimately leading to a decision
about the class label [25].

• Random Forest Classifier: As an ensemble method, the Random Forest Classifier aggre-
gates predictions from multiple decision trees to enhance classification accuracy. By com-
bining the outputs of various trees, this method reduces the risk of overfitting and improves
generalization to unseen data. It is particularly effective in handling large datasets with nu-
merous features, making it well-suited for vulnerability classification [3].

• Support Vector Classifier: This method employs a hyperplane to separate different classes
in a high-dimensional space, making it a robust approach for classifying vulnerabilities. By
focusing on the most informative data points (support vectors), this classifier can effectively
manage complex datasets and is particularly useful when the classes are not linearly separable
[6].

• Logistic Regression Classifier: A widely used statistical method, logistic regression is suit-
able for both binary and multi-class classification tasks. It estimates the probability of a vul-
nerability being present based on input features, making it a valuable tool for understanding
the likelihood of different vulnerabilities occurring [10].

To optimize the performance of these machine learning models, hyperparameter tuning is es-
sential. This process involves adjusting the parameters that govern the learning process to achieve
the best possible results. Properly tuned hyperparameters can significantly enhance the model’s
performance, leading to higher accuracy on both training and validation datasets. Tuning hyper-
parameters can also help in understanding how different settings affect model behavior. Different
algorithms have various hyperparameters that can affect their performance.

• Randomized Search Cross Validation: This technique enhances model performance by
randomly sampling from a predefined range of hyperparameters. By exploring a diverse
set of parameter combinations, it allows for efficient optimization without the exhaustive
computational cost associated with evaluating every possible configuration [2].

• Grid Search Cross Validation: In contrast, grid search is a systematic approach that eval-
uates all possible combinations of specified hyperparameters. While it can be computation-
ally intensive, it provides a thorough examination of the parameter space, ensuring that the
best-performing model is identified. This method is particularly useful when the number of
hyperparameters is limited, allowing for a comprehensive search of the optimal.

20

The use of machine learning techniques to classify Common Vulnerabilities and Exposures
(CVEs) and predict Common Vulnerability Enumeration (CWE) images and Common Vulnerabil-
ity Scoring System (CVSS) indicators is a significant advancement in software security. Traditional
machine learning algorithms, including decision trees, random forests, support vector machines
(SVMs), and logistic regression, are utilized to analyze and categorize vulnerabilities in software
systems. Applying hyperparameter optimization techniques such as grid search cross-validation
(CV) and random search CV can greatly improve the performance of these algorithms. These tech-
niques help identify the best model parameters, enhancing prediction accuracy and model robust-
ness. Optimizing model parameters is crucial to ensure that the models can effectively generalize
from unseen data, which is vital for effective vulnerability management.

Automating the grading process and integrating machine learning into vulnerability manage-
ment systems is a proactive methodology that improves the identification and management of vul-
nerabilities. This approach also helps prioritize remedial actions based on estimated CVSS scores,
allowing organizations to react more quickly to emerging threats and improve their overall secu-
rity posture. Additionally, integrating machine learning into vulnerability management systems
enhances the resilience of software systems, increasing their ability to withstand potential attacks
and protect sensitive data. As the cybersecurity landscape becomes more complex, utilizing ad-
vanced machine learning techniques for vulnerability classification becomes crucial in developing
robust defenses against complex threats. This emphasizes the significance of using data-driven
methodologies to enhance software security and effectively mitigate risk.

21

2 Implementation
All of the experiments and data processing were done using Python programming language and
JupyterLab environment. Multiple python files were created that includes custom methods, classes
and defined constants. Custom method class contains methods and classes that are used in data
processing, CVSS metric mapping and metrics calculations. A custom class of CVEClassifier was
developed to predict CWE mapping and CVSS metrics from a JSON object.

All of the code uses data processing libraries, that work with JSON objects, pandas for data
management, numpy for calculations, logging, to track issues with the code. Matplotlib pyplot and
seaborn are used for data visualization and pickle for dumping trained model data into file. Sklearn
is primary library that hold necessary model, metrics and feature extraction tools for developing
custom training model.

In Section, 2, more detailed information will be provided on how the data were processed. What
additional steps were taken to make the data more suitable for all the experiments and analysis.
From the description alone, we will gain more insights into what models were used to classify
CWE or CVSS metric predictions. Some details on comparing multiple classification models and
their outcomes. How were they compared by comparing results before and after hyperparameter
adjustments. What differences were when comparing training models with different data sizes.
What kind of data pre-processing was necessary.

2.1 Data description
All data used in each experiment was taken from National Vulnerability Databases. Data are acces-
sible in huge quantities, starting in early 1999, when NVD launched the CVE project, and ending
with the latest submitted entries in 2024. In total, over 236 thousand CVE entries were recorded
in 25 years. All necessary data comes in different folders separated by year and stored in JSON
format. Most datasets are usually in CSV format for faster pre-processing, yet this one is in JSON
because all CVE entries are widely used. Since JSON is a common standard for API development
and endpoint creation in today’s web service technologies, it is only natural that such data be in the
most accessible format.

In Figure 3 it can be seen that all CVE entries follow the same structure. Id is a string attribute
that refers to the CVE’s identification number, which consists of the CVE appendix, followed by
the year that the CVE was registered and the unique number that was reserved for analysis from
the number queue. The "SourceIdentifier" attribute is a string that refers to the reported source
email. The published and "lastModified" string attributes refer to the date and time that the CVE
was registered or updated, respectively. The "VulnStatus" string attribute refers to the status of
the CVE that it currently is. An array of descriptions refers to the descriptions that a particular
CVE may have; it is possible to have multiple descriptions in different languages. Commonly,
English and Spanish languages appear on some CVE descriptions, but English remains the primary
language. The "Metrics" attribute, which refers to the CVSS score and data, can be separated into
a unique JSON object with its specific fields. Some descriptions lack this attribute, especially
those with "vulnStatus" set as "Avaiting Analysis." "Weaknesses" is also an optional array that
describes the CWE entry value. This attribute is able to have multiple possible weaknesses in
accordance with the description or even metrics. The "Configurations" array is optional and refers
to the possible configurations that the reported CVE might affect. The "References" optional array
attribute provides additional information that can be related to the CVE entry.

22

Figure 3. CVE Structure

The metrics attribute is divided further because multiple versions of CVSS metrics can be at-
tached to the CVE entry. This also applies to data reported by multiple sources with the same
description. The same CVE entry gets updated, and additional calculated CVSS metrics are added
to the metrics attribute.

When the theses were written, CVSS version 2 was already deprecated and no longer supported.
Yet there are cases where some new CVE entries had CVSS version 2 metrics attached. In compar-
ison, CVSS version 3.1 had less attributed compared to version 2. All of the attributes regarding
privileges were moved inside the CVSS data attribute under a single attribute called "privilegesRe-
quired" Figure 4.

Figure 4. CVSS version 3.1 object structure

23

The main difference between version 3.1 and version 2.0 CVSS data is that multiple CVSS
metrics attributes were moved into the data. CVSS data "vectorString" has more keywords and an
appended version number Figure 5.

Figure 5. CVSS version 2 object structure

Since 2023, a new standardized version 4 of CVSS has been released, but it has yet to be used in
current CVE entries. CVSS version 4 will introduce a new and updated metric system that overhauls
all the calculations of the previous metric by introducing multiple different attributes and fields.

2.2 Data preparation for CWE classification
The primary part of pre-processing the data is to extract the most needed key points for further
classification methods. When predicting CWE entries for newly created CVE entries, it is best to
associate the CWE label with specific keywords that refer to them. The earliest implementation
was focused on extracting the top 25 commonly occurring CWE entries and compiling a dictionary
based on their general description that would refer to the specific CWE entry if such a keyword was
detected in the CVE description.

The first implementation approach was not very efficient and showed very poor results. After
several more failed attempts to improve overall prediction accuracy, the idea of using only the 25
most frequently occurring CWE entries and their keywords was completely abandoned. The earliest
implementation involved completely deconstructing a JSON object and mapping every component
to its designated field or even an entire class. Such an approach was impractical since it created the
same object only in a different format and obstructed further data processing. Because the data was
unprocessed overall training results were very poor. By using unprocessed data and implementing
Decision Tree Classifier model, the accuracy of prediction was less than 50%. Additional models
like Neural Networks barely made any decent changes that could be reliable and overall accuracy
was still less than 50%. Predicting with such models was very inefficient, and good predictions
were too sparse to be able to determine if there was any successful prediction. A new approach was
taken in making successful predictions.

24

Figure 6. CVE distribution by status of 246,993 entries

Several key features had to be addressed, including the status of the CVE entry itself. In Figure
6 there can be seen six possible statuses for CVEs were distinguished among the over 240,000
entries. The most common and notably useful status is "Modified," which accounts for nearly 84%
of all CVEs listed since 1999. Entries with the status "Rejected" cannot be used because there was
some reason why they were rejected. Some causes are that such an entry is a duplicate of another
CVE entry and should be referred to it. Some entries were not used, withdrawn, or associated by
the CNA for a certain time. Additionally, entries with the status "Awaiting Analysis," "Undergoing
Analysis," and "Received" are considered new entries, and they have yet to receive their associated
weaknesses and metrics. Therefore, only entries with "Modified" and "Analyzed" statuses can be
used for further research.

In Figure 7, it can be seen that there are multiple CWE naming patterns. The standard is a
CWE label appended with a number, but there are two additional entries that takes around 22% of
the data. Such entries have their weakness label set to "NVD-CWE-info" or "NVD-CWE-other."
Such weaknesses have their descriptions and are not needed for further study. Their descriptions
are as follows:

• NVD-CWE-noinfo - There is insufficient information about the issue to classify it, details
are unkown or unspecified.

• NVD-CWE-other - NVD only uses a subset of CWE for mapping instead of the entire CWE,
which does not cover the weakness type.

One of the final data processing was cleaning up CVE entry descriptions. Since humans create
descriptions, they are prone to errors, which can result in more unnecessary words or letters than

25

Figure 7. CWE distribution by category of 246,993 entries

necessary. Every CVE description had to undergo text processing and tokenization, splitting the
entire description and removing unnecessary words. And finally, these words joined again, but
without any unnecessary words that could obscure the data. A list of keywords was created in a
separate file for this case. This list was populated with the most common words that appear in any
sentence and have no particular meaning or impact on predicting descriptions. There are many
keywords, starting with random letters and ending with words that do not add any meaning to the
description context Table 14.

Table 14. Sample list of Stop Words
Stop Words

i me my myself we our ours
ourselves you your yours yourself yourselves he

him his himself she her hers herself
it its itself they them their theirs

themselves what which who whom this that
...
...

how all any both each few more
most other some such no nor not
only own same so than too very

s t can will just don should

26

2.3 Data preparation for CVSS classification
Considering CVSS classification, the data had to be prepared similarly to CWE data. Both datasets
have the same description preparation steps. The difference between the two data sets is that vital
CVEs with defined weaknesses but no metrics might be removed. Some CVE entries may have
multiple metric entries because there were several versions of metric calculations over 25 years.
Since there were four main versions throughout the CVE lifetime, there are some things to consider.
The primary concern is that the current standard of the CVE metric version is 3.1. This is the latest
and final metrics iteration before moving on to version 4. Older metric implementations consist of
version 2 and version 3.0. 3.0 barely has any difference from the current standard. Therefore, its
conversion poses no issues. Version 4 is the newest metric iteration, drastically changing overall
evaluation and calculation. Since it is a rather new metric, barely any entries contain this version.

Figure 8. Metrics versions used by 246,993 CVE entries

Figure 8 shows that among 219756 entries, 76.61% comprises of version 2. Versions 3 and
3.1 are rather similar, and they do not have any major differences between each other. They both
individually appear in 20.82% entries for version 3.0 and 44.45% for version 3.1; in total, they are
present in nearly 65% of total entries. Additionally, the newest version is present only in 0.05 of
the entries, it is bound to change since this is the newest iteration of the metrics.

Some sort of standardization of the metrics had to be done in order to prepare data for making
predictions. CVSS version 2 is the earliest standard of metric calculation and the most dominant
among the entries, yet it is deprecated and no longer used. For this reason, some sort of data
conversion is required in order to use a broader data spectrum for the model training. Every CVE
entry with only version 2 metrics had to be converted into version 3.1, the latest.

27

The Version 2 standard had attributes that are no longer used by the newer versions; additionally,
it lacks a couple of critical attributes used by its successors. In Figure 9, it can be seen that the
metrics taken from the same CVE entry have multiple metrics versions. In comparison with one
another, the entire metrics structure was reduced in version 3.1, and its data was increased from
version 2. The most significant change was the introduction of 3 new attributes: privileges required,
user interaction and scope. Additionally, the access vector has been changed to an attack vector.

Figure 9. CVSS metrics compared between version 3.1 and version 2

To convert CVSS version 2 into version 3.1, attributes, such as privileges required and user
interaction were set to the value of none, while scope was set to unchanged. This represents the
lowest values in the newly introduced attributes. Additionally, version 2 data that had attributes
with a value of partial was changed to low, while complete was changed to high. There are some
additional cases where the value medium is mapped to high or low. This is determined by the CVSS
version 2 vector itself. The remaining values were mapped according to their respective attributes.
After mapping the primary values and creating a new version 3.1 vector, the remaining scoring
values were recalculated using version 3.1 calculation methods and newly assigned data values.

Since there are over 240,000 entries it is a bit too much to perform any experiments. Figure 10
shows how many entries have been identified every year. Judging by the yearly increase of CVE
entries it is best to take the latest year for experimentation. Since the year 2024 is the latest one,
there can be too many entries that are still waiting for further analysis. Additionally, this year can
be used for manual verification of the predictions. For further experiments, the year 2023 will be
taken since it is the second-largest data set consisting of 23,502 entries in total.

2.4 Pseudocode of an algorithm
In pseudo-code Algorithm 7 there is described the model that is being developed. The developed
model should take in a CVE entry in the form of a JSON file, and extract its description. Vectorize
the description and transform it to both CWE model and CVSS model. Vectorized CWE description

28

Figure 10. CVE entries per year

then is predicted and the results are encoded into the corresponding label creating a new weakness
entry for the CVE to have. Vectorized CVSS description is predicted using CVSS model. Predicted
values are encoded and mapped to the corresponding metrics. Based on predicted metric values,
scoring metrics are calculated by the predicted value weights. A new metrics entry is created for
the CVE to have. Updates the loaded JSON file with newly predicted weakness and metrics.
Algorithm 7. Basic model pseudocode

1: Input: CVE JSON file
2: Output: Updated CVE JSON file with CWE and CVSS predictions
3: Load the CVE JSON file
4: Initialize the CVEClassifier with the loaded data
5: Extract the description from the classifier
6: Vectorize the description for the CWE model
7: Vectorize the description for the CVSS model
8: Predict the CWE mapping using the CWE model
9: Encode the predicted CWE label into textual format

10: Predict the CVSS metric values using the CVSS model
11: Calculate the CVSS scoring metrics based on the predicted metrics
12: Construct the attack vector string from the predicted metrics
13: Update the loaded CVE JSON file with the new CWE prediction
14: Update the loaded CVE JSON file with the new CVSS metric predictions

29

3 Experiments
After data preparation, multiple experiments were performed on both CWE and CVSS datasets.
During experimentation, observations were made to determine the most accurate model by com-
paring them without any hyperparameter adjustments.

3.1 CWE experiments
To train models for CWE prediction only 2 attributes were needed: description and weakness num-
ber. For training all of the description keywords will be assigned to the corresponding CWE label.
In order to increase the prediction accuracy there had to be data limitations added in order to keep
more clearer model training and predictions. There are many different CWE entries in a single year,
there are some cases where a single CWE entry might appear very rarely. These occurrences are
infrequent it is possible to assume that they can be set as a clear threshold at what occurrence of
a threat can be accounted for in training. By filtering data from such entries, basic model training
can be done. For this experiment, a 1% threshold has been chosen. Any summed-up CWE entry
if it falls under 1% of the threshold they are dropped out of the dataset. By removing CVE entries
that do not have valid CWE entries we get a total of 19,678 valid entries. With the application of
1% threshold, the dataset was reduced to 12,347 valid CVE entries in total.

To compare the accuracy with both datasets, training was done with Decision Tree Classifier
[18]. In Figure 11 it is seen that unfiltered data with Decision Tree Classification accuracy is barely
67.45%, while filtered data with the same classification model shows 82.63%. Since filtered data
provides better results it is decided for further experiments to use filtered data.

Figure 11. Comparison of unfiltered and filtered data

Next comparison was made between several Linear models in order to determine which model
provides higher accuracy without any hyperparameter adjustments. The models in question for
CWE prediction were Decision Tree Classifier [18], Support Vector Classifier [20], Random Forest
Classifier [19], and Logistic Regression classifier [17].

The same training method was used on all four classifier models, as it was used to determine the
accuracy of filtered and unfiltered data. In terms of accuracy, in Figure 12 Support Vector model
performed the worst with only 80.12% accuracy, while Logistic Regression and Decision Tree
models had roughly the same accuracy 82.27% and 82.51% respectively. Random Forest model

30

Figure 12. Training accuracy comparison between models

managed to have the highest accuracy of 85.06%. In terms of accuracy alone, Random Forest
classifier is the best model to use, yet there are other metrics to be considered.

Figure 13 shows the performance of every model without any adjustments. When comparing
other metrics in terms of precision, Logistic Regression showed the best performance with 82.23%,
while Decision Tree has the lowest Precision of 71.51%. Recall and F1 Score show very low results
for every model except Random Forest which exceeds other models by 3 and even up to 10% at
some cases. Overall all of the models perform nearly the same, while Decision Tree falls under
the lowest performers it will be abandoned for the next experiment. Random Forest favours higher
accuracy, but Logistic Regression shows a higher precision rate, which is very important as well.
For the next experiment, Random Forest Classifier and Logistic Regression will be used to make
predictions with hyperparameter adjustments.

By utilizing the scikit’s Random Search cross [21] validation and Gradient Search cross vali-
dation [22] the best estimator was picked for both models. In Figure 14 it is seen that both models
gained some sort of performance boost, even if it is non-significant. In regards of Random Forest,
there is barely any change seen, while Logistic Regression shows a whole 5% accuracy boost, with
a 4% decrease in precision. Although both recall and f1 score had from 7% up to 9% boost which
is very good in predicting more accurately.

In order to verify the accuracy of the models in predicting the CWE from the CVE description,
there were 10 CVE entries taken from the year 2024 at random. In Table 15 a list of CVE entries
is provided with ID in the first column, real CWE value in the second column, in the third column
- prediction result from adjusted Random Forest model and in the final column prediction result
from Logistic Regression model. Random Forest model predicted 7 out of 10 entries, while Logistic
Regression model predicted 6 out of 10 entries.

31

Figure 13. Performance metrics heatmap

Figure 14. Performance metrics heatmap of Random Forest and Logistic Regression

32

Table 15. 10 tested CVEs and their descriptions

CVE Real CWE Predicted CWE (RF) Predicted CWE (LR)
CVE-2024-7454 CWE-89 CWE-89 CWE-89
CVE-2024-9799 CWE-79 CWE-79 CWE-79
CVE-2024-8073 CWE-20 CWE-20 CWE-20
CVE-2024-23764 CWE-269 CWE-400 CWE-400
CVE-2024-23494 CWE-89 CWE-89 CWE-89
CVE-2024-27242 CWE-79 CWE-79 CWE-79
CVE-2024-3402 CWE-79 CWE-79 CWE-79
CVE-2024-3153 CWE-400 CWE-400 CWE-434
CVE-2024-6996 CWE-362 CWE-416 CWE-79
CVE-2024-8252 CWE-98 CWE-22 CWE-22

It is clear that after this manual data validation, Random Forest shows better results; however,
these experiments were done with data worth a single year. This will change if the entire dataset
is used to train both models. Since the dataset contains a lot of entries, it will take a significant
amount of time and computing power to perform such a task. But according to Figure 14 it is more
likely that the Logistic Regression model will be more favourable for predicting labels even with a
bigger dataset.

3.2 CVSS Experiments
For CVSS prediction, more attributes were needed, with a cleaned-up and tokenized description
as the primary attribute. The secondary attributes were the attributes taken from CVSS data, these
attributes are attack vector, attack complexity, privileges required, user interaction, scope, confi-
dentiality impact, integrity impact and availability impact. These attributes are used to calculate
metric scoring like base score, exploitability score and impact score. These metrics use designated
calculation methods provided by the NVD, and each attribute value has a certain weight attached
to it. Vector string is a combination of the metric version, and each of the attribute’s first letter of
each word and the first letter of the assigned value.

Every entry regardless of year will be recalculated to use CVSS version 3.1 mapping. The data
for the CVSS prediction will not undergo any kind of filtering, since all the entries not containing
any metrics will not be present in the dataset. To make each attribute much easier to identify, the
value of every attribute was encoded with a positional value of the corresponding attribute. Every
attribute has specific values assigned to it. They are constant, so the only time they can change is
when there is a major update and the entire metric system is overhauled or improved. The possible
values for each metric attribute and the weight of each metric value are described in detail by the
First [24] companies documentation on CVSS version 3.1.

After changing values for each attribute, it is much easier and faster to perform model training.
The year 2023 was used for training Decision Tree, Random Forest, Support Vector and Logistic
Regression models.

In Figure 15 a comparison between all the models is shown. Each of the models predicted
every designated metric, which is in total 8 of them. After predictions were made an average of all

33

the metrics for each type were summed up. This resulted in average data for each model and their
statistics. By comparing untuned models, it is seen that Decision Tree performed overall the worst.
Although an average of 82% in each of the metrics is a very high value, other models produced
better results. While Logistic Regression showed a very high percentage of nearly 87%, the Support
Vector classifier managed to outperform the Logistic Regression model in each category by over
0.5% in each category.

Figure 15. CVSS average model statistics
These statistics were even similar clearly showing, that the Support Vector Classifier is the best

choice for further experiments, to predict each attribute of the CVSS metric. The next experiment
involves tuning the model hyperparameters. For this purpose, the Grid Search cross-validation was
used to search for the most optimal parameter to increase the prediction rate. Main adjustments were
done by adjusting the regularization parameter, starting from the lower value of 0.1 which creates
a larger margin with the risk of misclassifying. Going to the larger value will lower the margin to
increase the prediction rate, yet it makes the model more complex. Additional changes were made to
the kernel, to make the model work efficiently with the high-dimensional data by using linear type.
As well as using the default Radial Basis Function that can handle non-linear relationships of the
data. Gamma adjustments were tested to determine the decision boundaries between a larger radius
which leads to smoother decision boundaries and a smaller radius, which leads to more complex
decision boundaries. Lastly, class weight adjustments had to be experimented on, since there is no
guarantee that dataset classes are imbalanced or not. Because of that reasoning, the class weight
of none had to be tested with consideration that all classes are of the same weight, and the class
weight of balanced, had to be tested which automatically adjusts the weights of classes.

After making parameter adjustments the results were compared with the untuned model. By
analysing differences in training models depicted in Figure 16 it is clear to see that the tuned Support
Vector model gains higher performance in every aspect. Precision gained the lowest increase, only
0.28%, recall and accuracy had the same boost of 0.59%, and f1-score had the biggest increase in
its performance, gaining 0.84% increase.

The final step in the CVSS experiment was to manually check whether the predictions were
accurate enough. Predicting multiple outputs from the same string might cause one or even more
metrics to be predicted differently. Table 16 lists 10 tested CVE entries which are the same as the
ones used in CWE prediction. In the table there are multiple columns, CVE indicates the CVE id,

34

Figure 16. Support Vector tuning result comparison

and Data represents whether the data provided is original, or predicted. The remaining columns are
acronyms of the metrics, AV - attack vector, AC - attack complexity, PR - privileges required, UI -
User Interaction, S - scope, CI - confidentiality impact, I - integrity impact, AI - availability impact,
ES - exploitability score, IS - impact score, BS - basic score. From these 10 tested CVEs, only 4
were predicted perfectly. CVEs: CVE-2024-979, CVE-2024-8073, CVE-2024-23494, and CVE-
2024-3403 were predicted identical in comparison to their original entries. CVE-2024-0079, CVE-
2024-4453, and CVE-2024-8252 had a single metric predicted incorrectly, and only the CVE-2024-
0079 entry had the worst calculated base score, but this is because scope changes affect metrics
dramatically. CVE-2024-23764 and CVE-2024-27242 had 2 wrongly predicted attributes, the base
score was not impacted much, but CVE-2024-23764 entries exploitability score went up by 1 point.
CVE-2024-3153 entry had the worst predicted values and because of that, the scoring is incredibly
bad. The reason for this poor prediction of this entry is tied to its assigned CWE mapping which is
CWE-400 15. CWE-400 entries are not very common and it is highly discouraged by Mitre [12]
themselves, to use this mapping with the real-world vulnerabilities and that is because this mapping
is frequently misused. It is highly possible that after training the adjusted Support Vector Classifier
model, the prediction rate should increase. The current dataset which is comprised of a single year
contains limited samples, and yet it predicts with a very high precision and accuracy.

35

Table 16. Tested CVE metrics using tuned Support Vector Classifier

CVE Data AV AC PR UI S CI I AI ES IS BS
CVE-2024-979 Original N L L R U N L N 2.1 1.4 3.5
CVE-2024-979 Predicted N L L R U N L N 2.1 1.4 3.5
CVE-2024-0079 Original L L L N C N N H 2.0 4.0 6.5
CVE-2024-0079 Predicted L L L N U N N H 1.8 3.6 5.5
CVE-2024-8073 Original N L N N U H H H 3.9 5.9 9.8
CVE-2024-8073 Predicted N L N N U H H H 3.9 5.9 9.8

CVE-2024-23764 Original L L H N U H H H 0.8 5.9 6.7
CVE-2024-23764 Predicted L L L N U H N H 1.8 5.9 7.8
CVE-2024-23494 Original N L L N U H H H 2.8 5.9 8.8
CVE-2024-23494 Predicted N L L N U H H H 2.8 5.9 8.8
CVE-2024-27242 Original N L L R C N N L 2.3 1.4 4.1
CVE-2024-27242 Predicted N L L R C N L N 2.1 1.4 3.8
CVE-2024-3403 Original N L N N U H N N 3.9 3.6 7.5
CVE-2024-3403 Predicted N L N N U H N N 3.9 3.6 7.5
CVE-2024-3153 Original N L L N U N N H 2.8 3.6 6.5
CVE-2024-3153 Predicted N L L N C H H H 2.8 6.0 9.6
CVE-2024-4453 Original L L N R U H H H 1.8 5.9 7.8
CVE-2024-4453 Predicted N L N R U H H N 2.8 5.2 8.1
CVE-2024-8252 Original N L L N U H H H 2.8 5.9 8.8
CVE-2024-8252 Predicted N L L N U H H N 2.8 5.2 8.1

36

Conclusions
Security is one of the most important issues of our time. Every day, security breaches ranging from
physical break-ins or fraud to cybercrime are recorded around the world. To prevent the physical
consequences of security breaches, special instances have been set up which can take appropriate
action. In the context of cyber security, security is highly valued and there is an increasing level of
activity in this area, but unfortunately, not everyone is willing to take the time to take steps against
cybercrime. In most cases, the concern is only belated.

The study focused on the analysis of security descriptions, which can help to protect against
cyber attacks. Of course, the detection of security vulnerabilities is not new, but the processing and
analysis of the information is a rather lengthy process. In the course of this work, the following
objectives have been set and the following conclusions have been reached:

1. Analysing CVEs is a fairly lengthy process with many steps. Due to the number of steps
involved, it can take months or even years to analyse an inventory. One of the main reasons
for this would be the human factor that exists between the creation of the inventory and its
final analysis. The manual creation of inventories leads to many grammatical and logical
errors. It is common to have one sentence to describe an violation, but that sentence is made
up of a number of keywords that are not related to each other. This means that the violation
cannot be analysed from the text alone. It is therefore common that a recorded infringement
has to be replicated manually, which requires more resources and resources. Such tedious
resource use requires new tools and techniques to speed up the process.

2. n the case of the CVE, CWE and CVSS descriptors, they are all intended to describe vul-
nerabilities. Each of these keywords has its own specific function, which is to inform the
world about how threatening a breach is and what influences the existence of a breach and
how to deal with it. In general terms, each of the descriptors can be nicely organised into
a fairly simple structure, the CVE being the parent element that describes the entire breach.
The CWE is an additional short description that points in a specific direction to have a gen-
eral idea of how to deal with the vulnerability. The CVSS describes how bad the breach can
be by providing additional calculations and indicating which categories are affected by the
vulnerability.

3. There are many different classification methods and techniques, each focusing on a different
category or species. The study used linear-based models ranging from Decision Trees, Ran-
dom Forests, and Logistic Regression to Support Vectors. These models proved to be the
most appropriate for classifying big data. For the classification of CWEs, random forest and
logistic regression models performed best. These two models kept each other in check in all
experiments. Both before and after optimisation, the results of these models were similar.
Meanwhile, the same models performed worse when predicting several different values for
the CVSS prediction. In contrast, the support vector model showed particularly good results.
After optimisation, the likelihood of the model increased locally, even up to 9%. Of course,
it should not be excluded that the results of the models change with larger amounts of data.
Even though the experiments were carried out on data that represented almost 10% of the
total data, the results were very good.

4. Given the good performance of the models, the profiles of 10 randomly selected CVEs were
provided as part of the testing of the real entries. These descriptions were not included in the

37

model training to allow their use as a test. During the validation, hyper-parameter-enhanced
Random Forest and Logistic Regression models were used to predict CWEs. The Random
Forest model had a very high accuracy in the experiments, while the Logistic Regression
model had a slightly lower accuracy but a higher precision compared to the Random Forest
model. Each model predicted 10 randomly selected records and the Random Forest model
was able to accurately predict 7 out of 10 entries, while the Logistic Regression model pre-
dicted only 6. Although the logistic regression had a better average in a general sense, the
accuracy of the Random Forests was higher. Meanwhile, for CVSS predictions, the Support
Vector Model was superior to all others. In achieving over 88% accuracy, out of 10 entries, it
accurately predicted 4 entries, predicted 3 entries with 1 discrepancy, predicted 2 entries with
2 discrepancies, and predicted 3 discrepancies for 1 entry. The predictions in this case are
really good because most of the records that are harder to predict are the ones that are rarer.
The support vector model predicted the most recurrent vulnerabilities very well in terms of
CWE value.

38

References
[1] Taylor Amerding. "what is cve, it’s definition and purpose?". https://www.csoonline.com/

article/562175/what-is-cve-its-definition-and-purpose.html.
[2] James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. Jour-

nal of Machine Learning Research, 13:281–305, 2012.
[3] LEO BREIMAN. Random forests. Machine Learning, 45:5–32, 2001.
[4] The MITRE Corporation. About the cve program. https://www.cve.org/About/Overview.
[5] Philipp Kühn, David N. Relke, and Christian Reuter. Common vulnerability scoring system

prediction based on open source intelligence information sources. Computers & Security,
131(103286), 2023.

[6] K.W. Lau and Q.H. Wu. Online training of support vector classi er. Pattern Recognition,
36:1913–1920, 2003.

[7] D. E. Mann and S.M. Christey. Towards a common enumeration of vulnerabilities, 199.
http://cve.mitre.org/docs/cerias.html.

[8] Robert A Martin. Managing vulnerabilities in networked systems. Computer, 34(11):32–38,
2001.

[9] Peter Mell, Karen Scarfone, and Sasha Romanosky. A complete guide to the common vul-
nerability scoring system version 2.0. 2007. https://tsapps.nist.gov/publication/get_pdf.cfm?
pub_id=51198).

[10] PhD Michael P. LaValley. Logistic regression. International Conference on Cybernetics and
Computational Intelligence, 117:2395–2399, 2008.

[11] MITRE. Common weakness enumeration — cwe™ a community-developed dictionary of
software weakness types. https://cwe.mitre.org.

[12] Mitre.org. Common vulnerabilities and exposures — cve ® the standard for information
security vulnerability names. https://cve.mitre.org/docs/cve-intro-handout.pdf.

[13] NIST. computer network attack (cna). https://csrc.nist.gov/glossary/term/computer_network_
attack.

[14] NIST. National vulnerability database. https://nvd.nist.gov/.
[15] NIST National Institute of Standards and Technology. National vulnerability database (nvd),

2019. https://nvd.nist.gov/.
[16] A. Saita. Cve-use recommendations open for comment, 2002. http://www.

INFOSECURITYMAG.COM/digest/2002/02-04-02.shtml#1b).
[17] scikit learn.org. 1.1. linear models — scikit-learn 1.6.0 documentation.
[18] scikit learn.org. 1.10. decision trees — scikit-learn 1.6.0 documentation.

39

https://www.csoonline.com/article/562175/what-is-cve-its-definition-and-purpose.html
https://www.csoonline.com/article/562175/what-is-cve-its-definition-and-purpose.html
https://www.cve.org/About/Overview
http://cve.mitre.org/docs/cerias.html
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=51198
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=51198
https://cwe.mitre.org
https://cve.mitre.org/docs/cve-intro-handout.pdf
https://csrc.nist.gov/glossary/term/computer_network_attack
https://csrc.nist.gov/glossary/term/computer_network_attack
https://nvd.nist.gov/
https://nvd.nist.gov/.
http://www.INFOSECURITYMAG.COM/digest/2002/02-04-02.shtml#1b)
http://www.INFOSECURITYMAG.COM/digest/2002/02-04-02.shtml#1b)

[19] scikit learn.org. 1.11. ensembles: Gradient boosting, random forests, bagging, voting, stack-
ing — scikit-learn 1.6.0 documentation.

[20] scikit learn.org. 1.4. support vector machines — scikit-learn 1.6.0 documentation.
[21] scikit learn.org. 3.2. tuning the hyper-parameters of an estimator — scikit-learn 1.6.0 docu-

mentation.
[22] scikit learn.org. 3.2. tuning the hyper-parameters of an estimator — scikit-learn 1.6.0 docu-

mentation.
[23] Arfan Sharif. What is cve? common vulnerabilities & exposures, 2022. https://www.

crowdstrike.com/cybersecurity-101/common-vulnerabilities-and-exposures-cve/.
[24] CVSS v3.1 Specification Document. Common vulnerability scoring system version 3.1 -

specification document - revision 1.
[25] Song YY and Lu Y. Decision tree methods: applications for classification and prediction.

Machine Learning, 27:130–135, 2015.

40

https://www.crowdstrike.com/cybersecurity-101/common-vulnerabilities-and-exposures-cve/
https://www.crowdstrike.com/cybersecurity-101/common-vulnerabilities-and-exposures-cve/

	Abstract
	Santrauka
	Introduction
	Related work
	Meaning of CVE
	A brief history of CVE
	CVE usability and performance
	CVE compatibility
	Comparison between CWE, CVE and CVSS
	CVSS calculation metrics and values
	Base metrics
	Temporal metrics
	Environmental Metrics
	Comparison of CVSS v4 and CVSS v3.1 Calculations.

	CVE classification methods and tools

	Implementation
	Data description
	Data preparation for CWE classification
	Data preparation for CVSS classification
	Pseudocode of an algorithm

	Experiments
	CWE experiments
	CVSS Experiments

	Conclusions
	References

