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MiniCPM-V LLaMA Model for Image Recognition:
A Case Study on Satellite Datasets

Kürşat Kömürcü and Linas Petkevičius , Member, IEEE

Abstract—This study evaluates the performance of the
MiniCPM-V model on four distinct satellite image datasets: MAI,
RSICD, RSSCN7, and a newly created merged dataset that com-
bines these three. The merged dataset was developed to expand the
generalization and variation of data distribution associated with the
labeling and training processes inherent in satellite image analysis.
We systematically collected prediction results for each individual
dataset and conducted a comparative analysis against results re-
ported in previous studies to benchmark the model’s effectiveness.
The findings indicate that large language models (LLMs), such as
MiniCPM-V, exhibit promising capabilities in the realm of satellite
image recognition. On the RSSCN7 dataset, MiniCPM-V achieved
an accuracy of 70.57% , while on RSICD it reached 62.19% , on
MAI 7.01% , and on the merged dataset 43.49% . Specifically, the
model demonstrated mostly high accuracy (more than 80% ) in
identifying a majority of object classes across the datasets. Also,
we identified, it underperformed in accurately classifying certain
object categories and recognizing all objects in multilabeled images,
which suggests that while the model is robust overall, there are
specific areas where its performance can be enhanced. Despite these
limitations, the successful recognition of most objects underscores
the potential of LLMs in advancing satellite imagery analysis.
These results highlight the significant potential of integrating LLMs
into remote sensing applications, offering a foundation for future
research aimed at improving classification accuracy and expanding
the range of detectable object classes by having caption level textual
information.

Index Terms—Image recognition, LLama, large language models
(LLMs), MiniCPM, remote sensing, satellite imagery, visual
language models (VLMs).

I. INTRODUCTION

SATELLITE imagery plays a pivotal role in a wide range of
applications, including environmental monitoring, disaster

management, and urban planning [1]. For instance, advanced
models have been developed for automatic weather classifi-
cation from remote sensing images, enhancing environmental
monitoring capabilities [2]. The vast amounts of data collected
by satellites require advanced image recognition techniques to
extract meaningful insights effectively and efficiently [3]. In re-
cent years, traditional models that process satellite imagery have
primarily relied on visual pixel information alone to interpret
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data and generate insights [4]. However, with the rise of large
language models (LLMs), new opportunities have emerged for
enhancing these tasks by leveraging the model’s extensive ability
to process both visual and textual data [5].

Visual-language models (VLMs) have gained significant at-
tention for their ability to process both textual and visual data
simultaneously, enabling advancements in image captioning,
visual question answering (VQA), and object recognition. Un-
like traditional computer vision models, which rely solely on
pixel-based feature extraction, VLMs integrate natural language
understanding to improve classification and reasoning tasks.
Recently, large multimodal language models (MLLMs) such as
Llama [6], MiniGPT-4 [5], LLaVA (Large Language and Vision
Assistant) [7], Otter [8], and PandaGPT [9] have demonstrated
strong capabilities in processing and interpreting images through
structured text-based queries.

Among these models, LLaMA-based MLLMs have gained
particular interest due to their open-source nature and efficient
scaling strategies. LLaVA, for instance, builds upon LLaMA
by integrating a pretrained vision encoder, allowing it to an-
swer questions about images with a high degree of contextual
awareness [7]. Similarly, MiniGPT-4 aligns a vision transformer
with a LLaMA-based text decoder to generate detailed image
descriptions and reason about visual content [5]. While these
models have achieved remarkable success in general-purpose
vision-language tasks.

Traditional satellite image recognition techniques rely on
deep learning architectures, such as CNNs and SVMs, which
have been effective for high-resolution multispectral im-
ages [10]. However, these methods focus solely on pixel-based
classification and lack the ability to incorporate textual de-
scriptions or contextual metadata, limiting their semantic un-
derstanding. In addition, remote sensing images often exhibit
high variability in resolution, scale, and spectral characteristics,
making it difficult for conventional methods to generalize across
datasets [11]. Ensemble learning techniques have been explored
to improve classification accuracy [12], but they typically re-
quire large-scale labeled datasets and significant computational
resources [13].

The integration of vision-language modeling into satellite
image recognition provides several advantages over these tra-
ditional approaches. First, VLMs can process multimodal in-
puts, allowing them to leverage textual information alongside
image features to improve classification performance. Second,
because these models are pretrained on massive datasets, they
can reduce reliance on manually labeled satellite imagery,
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which is often limited or costly to obtain. Building on these
strengths, MiniCPM-V extends the capabilities of LLaMA-
based models by optimizing them for multimodal satellite image
classification [14]. Unlike general-purpose multimodal mod-
els, MiniCPM-V is specifically designed to handle structured
prompts for remote sensing data, making it well-suited for
multilabel classification and object recognition tasks in satellite
imagery.

This study aims to evaluate the performance of the MiniCPM-
V model in satellite image recognition tasks, focusing on its
ability to classify and recognize patterns in satellite datasets.
Specifically, we chose MiniCPM-Llama3-V 2.5 version and we
investigate how well the model can generalize across different
types of satellite imagery, and compare its performance with
traditional deep learning models, such as convolutional neural
networks. By exploring MiniCPM-Llama3-V 2.5’s capabilities
in this context, we seek to contribute to the growing body of
research on the application of LLMs to satellite image analysis,
and to highlight the potential of these models in improving the
accuracy and efficiency of satellite image recognition tasks.

The main contributions of this article are as follows.
a) This study explores the use of the MiniCPM-V model,

capable of processing both visual and textual data, as a
novel approach for satellite image analysis, comparing its
performance with existing methods.

b) The MiniCPM-V model is evaluated across multiple
satellite image datasets [multi-scene aerial image (MAI),
RSICD, RSSCN7] and a combined dataset to analyze its
generalization capabilities and the impact of data diversity
on model performance.

c) The study examines the model’s performance in multilabel
classification tasks, addressing challenges such as class
imbalance and overlap, and discussing potential solutions
for improving model accuracy.

The rest of this article is organized as follows. Section I,
the model is presented. In Sections II and III, the data and it’s
preparation is presented. Section IV, methodolody is presented.
In Section V, the results are presented followed by discussion-
Finally, Section VI concludes this article.

II. MODEL

The MiniCPM-V model [14] is a smaller, optimized variant of
the CPM (Chinese Pre-trained Language Model) family, specif-
ically designed for multimodal tasks that require the integration
of both visual and textual data. Built on transformer-based archi-
tecture, MiniCPM-V uses both Vision Transformers (ViTs) [15]
and text transformers [16], allowing it to handle tasks like image
classification, image captioning, and VQA with natural language
prompts.

ViTs [15] are used for process visual data by splitting images
into patches, embedding each patch into a vector space, and
feeding them through transformer layers. This method allows
the model to capture spatial relationships and features within
images, similar to how transformers handle textual data. Unlike
traditional CNNs, ViTs [15] in MiniCPM-V [14] can model
long-range dependencies across the image, enhancing its ability
to recognize complex patterns.

MiniCPM-V [14] is designed to be more computationally
efficient than larger models in the CPM family, with fewer
parameters but similar performance. This makes it suitable for
environments, where computational resources are limited, such
as real-time image classification or deployment on edge de-
vices. The model’s parameter-sharing techniques help maintain
a balance between model size and accuracy, ensuring that it
can be used effectively in practical applications. In this study,
MiniCPM-V [14] was used for satellite image classification.
The input consisted of satellite images combined with structured
prompts to guide the model in recognizing specific patterns or
objects in the images. The model was able to integrate visual
and textual information, improving its accuracy in classifying
diverse landscapes and objects in satellite imagery.

We selected MiniCPM-V for its efficiency in handling vision-
language tasks while maintaining a balance between computa-
tional cost and performance. Unlike larger models, MiniCPM-V
is optimized for multimodal learning, making it suitable for
satellite image recognition without requiring extensive computa-
tional resources [14]. Among the MiniCPM model variants listed
in Table I, MiniCPM-Llama3-V 2.5 stands out as the most effec-
tive option for our study. This model achieves the highest Open-
Compass score (65.1) and exhibits superior performance across
multiple benchmarks, including MME (2024.6), MMB test (en)
(77.2), and LLaVA Bench (86.7). In addition, it demonstrates
the lowest hallucination rate in the Object HalBench (10.3/5.0),
indicating strong reliability in object recognition tasks. Com-
pared to MiniCPM-V 1.0 and 2.0, the Llama3-V 2.5 variant
significantly improves accuracy while maintaining a relatively
compact size (8.5B parameters). Given its enhanced multimodal
understanding, balanced computational efficiency, and robust
classification accuracy, MiniCPM-Llama3-V 2.5 was selected
as the optimal model for our satellite image recognition task.
The performance metrics in Table I were obtained from [14],
which provides a comprehensive evaluation of the MiniCPM
family and its capabilities in various multimodal benchmarks.

III. DATASETS

In this study, three well-known datasets commonly used for
remote sensing image recognition and classification were uti-
lized: MAI, 1 RSICD, 2 and RSSCN7. 3 These datasets provide a
diverse range of aerial scenes and are frequently used in research
related to remote sensing and image processing.

The Multi-scene Aerial Image Dataset (MAI) is a dataset [39]
designed for understanding aerial scenes, particularly focusing
on recognizing various scene types. The dataset contains a wide
variety of images aimed at multiscene recognition tasks. It was
introduced in the context of prototype-based memory networks
for scene classification, demonstrating the effectiveness of this
method in identifying different scene types in aerial images. To
facilitate the progress of aerial scene interpretation in the wild,
we yield a new dataset, MAI dataset, by collecting and labeling
3923 large-scale images from Google Earth imagery that covers

1[Online]. Available: https://github.com/Hua-YS/Prototype-based-Memory-
Network

2[Online]. Available: https://github.com/201528014227051/RSICD_optimal
3[Online]. Available: https://github.com/palewithout/RSSCN7

https://github.com/Hua-YS/Prototype-based-Memory-Network
https://github.com/Hua-YS/Prototype-based-Memory-Network
https://github.com/201528014227051/RSICD_optimal
https://github.com/palewithout/RSSCN7
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TABLE I
EXPERIMENTAL RESULTS ON GENERAL MULTIMODAL BENCHMARKS

Fig. 1. Example images for MAI Dataset (a) “apron, parking lot, residential,
runway,” (b) “apron, residential, runway,” (c) “baseball field, parking lot, river,
park,” (d) “residential, runway,” (e) “residential, roundabout,” (f) “residential,
lake, park,” (g) “residential, bridge, roundabout,” (h) “commercial, farmland,
residential,” (i) “commercial, parking lot, residential, lake.”

the United States, Germany, and France. The size of each image
is 512 × 512, and spatial resolutions vary from 0.3 m/pixel
to 0.6 m/pixel. The dataset has 24 classes, including apron,
baseball, beach, commercial, farmland, woodland, parking lot,
port, residential, river, storage tanks, sea, bridge, lake, park,
roundabout, soccer field, stadium, train station, works, golf
course, runway, sparse shrub, and tennis court see Fig. 1 and
Table II.

The RSICD (Remote Sensing Image Captioning Dataset)
is a dataset [40] specifically developed for generating textual
descriptions of remote sensing images. RSICD contains a wide
array of remote sensing images, which are used to train models
that generate accurate captions for these images. This dataset is
instrumental in improving the development of image captioning
models in remote sensing contexts. The total number of sen-
tences in RSICD is 24333, and the total words of these sentences
are 3323. The dataset has 30 classes, including airport, bare
land, baseball field, beach, bridge, center, church, commercial,
dense residential, desert, farmland, forest, industrial, meadow,
medium residential, mountain, park, school, square, parking,
playground, pond, viaduct, port, railway station, resort, river,
sparse residential, storage tanks, and stadium see Fig. 2 and
Table III.

The RSSCN7 (Remote Sensing Scene Classification Dataset)
is another dataset [41] used in deep learning-based scene classi-
fication tasks. It consists of a variety of scene types captured
through remote sensing imagery and is widely employed to
test the performance of deep learning-based feature selection
methods for scene classification. The dataset provides a series
of high-resolution images aimed at classifying different types
of remote sensing scenes. The dataset RSSCN7 contains 2800
remote sensing sceneimages, which are from seven typical scene
categories, namely,the grassland, forest, farmland, parking lot,
residential region,industrial region, and river/lake. For each
category, there are 400 images collected from the Google
Earth, which are sampled on four different scales with 100
images per scale. Each image has a size of 400×400 pixels
see Fig. 3.

To ensure consistency and fairness across the merged
dataset, labels from the MAI, RSICD, and RSSCN7 datasets
were systematically standardized by grouping synonymous
or overlapping categories under unified labels. For example,
“dense residential,” “medium residential,” “sparse residential,”
and “resident” were consolidated into a single category named
“Residential.” Similarly, “soccer field” and “playground” were
unified under the label “Football field,” while “woodland” from
MAI and “forest” from RSICD and RSSCN7 were combined
as “Forest.” “Parking lot” and “parking” were merged into
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TABLE II
NUMBER OF IMAGES FOR EACH CLASS IN THE MAI DATASET [39]

TABLE III
NUMBER OF IMAGES FOR EACH CLASS IN THE RSICD DATASET [40]

Fig. 2. Example images for RSICD Dataset (a) airport, (b) bare land, (c)
baseball field, (d) beach, (e) bridge, (f) center, (g) church, (h) commercial, (i)
dense residential.

“Parking,” and “train station” was standardized as “Railway
station” to align with other datasets. In addition, ambiguous or
inconsistently represented labels such as “grass,” “meadow,”
and “river/lake” were excluded due to their variability across

Fig. 3. Example images for RSSCN7 Dataset (a) grass, (b) field, (c) industry,
(d) river/lake, (e) forest, (f) resident, (g) parking.

datasets, which could introduce noise and affect the reliability
of the results. This careful standardization ensured the merged
dataset retained its diversity while providing a clear and
consistent framework for model evaluation.
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Fig. 4. Distribution of the classes in the merged dataset.

IV. METHODOLOGY

Each dataset meta-data was first converted into a CSV file
format. For each dataset, we created a CSV file containing the
names of the images along with their corresponding labels. This
structure allowed for efficient handling and processing of the im-
age data during the classification tasks. This preprocessing step
ensured that the datasets were formatted in a uniform manner,
enabling seamless integration into the classification pipeline.

For the classification model, we utilized the MiniCPM-V
model [14]. We ran this model on the Google Colab platform us-
ing an L4 GPU. The input to this model included both the images
and specific prompts designed to guide the classification process.
These prompts provided context and additional instructions to
enhance the model’s ability to correctly classify each image.
By leveraging a structured prompt-based approach, we ensured
that the model received explicit guidance on object recognition,
reducing ambiguity in classification. Data and reporduceable
code can be found online.4

Using this approach, we leveraged the MiniCPM-V model to
classify each image in the datasets and subsequently collected
the classification results. After this process, we merged three
datasets and converted synonymous labels into unified category
names to maintain consistency. Specifically, the label residential
was used in place of dense residential, medium residential,
sparse residential, and resident; football field replaced soccer
field and playground; forest was substituted for woodland; park-
ing replaced parking lot; industrial replaced works; railway
station replaced train station; and lake was used instead of pond.
Moreover, we did not include grass and river/lake labels in the
MAI dataset [39] in our merged dataset due to the unclear nature
of their images (see Fig. 4).

The MiniCPM-V classification process follows a structured
workflow, outlined in Algorithm 1. The methodology is designed
to preprocess data, apply classification, and collect results sys-
tematically.

To ensure the MiniCPM-V model effectively classifies im-
ages, we used a set of structured prompts tailored to each dataset.

1) Identify the following categories in the satellite image
and list them in a comma-separated format enclosed in
double quotation marks: “apron, baseball field, beach,
commercial, farmland, woodland, parking lot, port,

4[Online]. Available: https://www.kaggle.com/datasets/kursatkomurcu/
minicpm-v-satellite-object-recognition/data

Algorithm 1: MiniCPM-V Image Classification Pipeline.
1: Input: Satellite image dataset D, MiniCPM-V

model M , Prompts P
2: Output: Classified image labels L
3: Convert dataset D metadata into CSV format
4: for each image I in D do
5: Generate classification prompt PI for I
6: Feed image I and prompt PI into model M
7: Collect classification result LI

8: end for
9: Merge dataset results and standardize labels

10: Return classified labels L

residential, river, storage tanks, sea, golf course, runway,
sparse shrub, tennis court, bridge, lake, park, roundabout,
soccer field, stadium, train station, works”. Return the
identified categories in double quotation marks without
any explanations or additional text.

2) Identify the object in this satellite image. Respond with
only one word from the following list: airport, bareland,
baseball field, beach, bridge, center, church, commer-
cial, dense residential, desert, farmland, forest, meadow,
medium residential, mountain, park, playground, pond,
port, railway station, resort, river, school, sparse residen-
tial, square, stadium, storage tanks, viaduct. Do not use
any other words or phrases.

3) What do you see in this satellite image? Do not answer
more than one word. Reply with only one word from these
options: green areas, field, industry, river/lake, forest, res-
ident, parking.

4) Identify the satellite image from the following list: field,
industrial, river, lake, forest, residential, parking, airport,
bareland, baseball field, beach, bridge, center, church,
commercial, desert, farmland, meadow, mountain, park,
playfields, port, railway station, resort, school, square,
stadium, storage tanks, viaduct, apron, sea, golf course,
runway, sparse shrub, tennis court, roundabout, football
field. Note: Do not include any other words than the list
and do not include any other additional information in your
response. The image may contain one or multiple objects.
Decide whether the image contains one or more objects
and please list only the names of the detected object(s),
if there are more than one objects and separate them by
commas.

The MiniCPM-V model’s performance was optimized by
adjusting its hyperparameters to better align with the character-
istics of the datasets. Two key hyperparameters, temperature and
sampling, were carefully selected to control the model’s output
behavior, ensuring a balance between prediction diversity and
determinism.

For the MAI, RSICD, and RSSCN7 datasets, the temperature
was set to 0.7. This value allowed the model to explore diverse
prediction possibilities while maintaining focus on the most
probable labels, a crucial factor for multilabel classification
tasks. On the other hand, for the merged dataset, a lower

https://www.kaggle.com/datasets/kursatkomurcu/minicpm-v-satellite-object-recognition/data
https://www.kaggle.com/datasets/kursatkomurcu/minicpm-v-satellite-object-recognition/data
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TABLE IV
TOP-1/TOP-5 OVERALL METRICS OF THE DATASETS

temperature of 0.1 was applied. This stricter setting ensured
deterministic and consistent predictions across the diverse and
complex class distributions inherent in the merged dataset.

The sampling parameter was configured to influence the
variability of the model’s predictions. For the MAI, RSICD, and
RSSCN7 datasets, sampling was enabled to encourage a broader
exploration of potential labels, particularly useful in multilabel
scenarios. Conversely, for the merged dataset, sampling was dis-
abled to prioritize the most probable outputs, thereby reducing
noise and enhancing reliability in predictions.

These adjustments were guided by empirical observations to
ensure optimal alignment between the model’s predictions and
the specific demands of each dataset, without the need for fine-
tuning the model’s internal weights. By focusing on hyperpa-
rameter selection and dataset standardization, the MiniCPM-V
model was effectively adapted for satellite image recognition
tasks involving varying data complexities and label distributions.
The inclusion of multilabel datasets allowed for a comprehensive
evaluation of the model’s capability to handle complex object
recognition scenarios, further demonstrating the effectiveness of
LLMs in satellite image classification.

V. RESULTS

Our study systematically evaluates the performance of the
MiniCPM-V [14] model for satellite image recognition based
purely on language information from VLM (see Table IV). We
explored its efficacy across three distinct datasets: MAI [39],
RSICD [40], RSSCN7 [41] and the merged dataset.

For the MAI dataset, the model achieved a notably low Top-1
accuracy of 0.0701, despite moderate precision 0.485 and recall
0.6116, culminating in an F1 score of 0.541. This indicates that
while the model identified a significant portion of relevant in-
stances (high recall), it struggled to correctly predict the majority
class labels, as evidenced by the low accuracy. The Top-5 accu-
racy, however, was significantly higher at 0.9783, showing that
the true labels were often present within the top five predictions.
Despite this, the Top-5 precision and recall dropped to 0.618 and
0.5, respectively, resulting in an F1 score of 0.11. This suggests
that while the model could identify relevant predictions, ranking
these predictions accurately remains a challenge.

In contrast, the RSICD dataset showed improved performance
with a Top-1 accuracy of 0.6219, precision of 0.6784, recall
of 0.5836, and an F1 score of 0.5575. The Top-5 accuracy for
RSICD remained at the same level 0.6219, but the precision and
recall values dropped to 0.311 and 0.5, respectively, resulting
in an F1 score of 0.3834. These results highlight that while the
model performed reasonably well in ranking the top predictions,
its ability to effectively utilize the additional predictions in a
Top-5 setting was limited.

TABLE V
TOP-1 RESULTS FOR MAI DATASET

TABLE VI
COMPARISON FOR RSICD DATASET

The RSSCN7 dataset demonstrated the best performance
across the board, with a Top-1 accuracy of 0.7057 and corre-
sponding precision 0.4257, recall 0.4117, and F1 score 0.4084.

When evaluating the model on the merged dataset, which
combines the challenges of all individual datasets, the Top-1
accuracy was moderate at 0.4349, with precision 0.6026, recall
0.4551, and an F1 score 0.5186. In the Top-5 setting, the accuracy
improved to 0.7023, although precision 0.1547, recall 0.5, and
the F1 score 0.2363 showed declines. These results suggest that
while the model is capable of identifying relevant predictions in
a broader set of data, achieving high precision across multiple
labels remains challenging.

For the MAI and merged datasets, the lower Top-1 accuracy
scores are due to their multilabeled nature—the MAI dataset is
entirely multilabeled, while the merged dataset is partially so. In
multilabel classification, accuracy reflects the model’s ability to
correctly predict each individual label, which inherently compli-
cates the task. However, the significantly higher Top-5 accuracy
values demonstrate that the model performs considerably better
when evaluated with leniency in ranking predictions (see Tables
V and VIII).

A. Results for MAI Dataset

Hua et al. [39] employed various machine learning and deep
learning models on the entire MAI dataset, which comprises
100 000 images. They achieved maximum overall precision,
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TABLE VII
RESULTS FOR RSICD DATASET

TABLE VIII
COMPARISON FOR RSSCN7 DATASET

Fig. 5. MAI dataset F1 scores-class frequency graphics.

recall, and F1 scores of 0.801, 0.665, and 0.713, respectively. In
addition, they reported only average precision results for each
class. In contrast, our study utilized a subset of 3923 images
from the MAI dataset. Although our results are lower than those
reported in [39] (see Tables IV and V). Furthermore, we observed
a positive correlation with 0.8 p-value between class frequencies
and F1 scores (see Fig. 5).

As shown in Table V, the accuracy, precision, recall, and
F1 scores for each class vary significantly. For example, the

Fig. 6. Confusion matrix of RSICD dataset classification.

“Parking Lot” and “Residential” classes exhibit relatively high
F1 scores, indicating that the model performs well in these
categories. On the other hand, classes such as “Port,” “Train
Station,” and “Works” have very low F1 scores. This could be
due to the under representation of these classes in the dataset,
potential confusion with other similar classes, or the model’s
difficulty in distinguishing specific features of these classes.
In addition, while the model demonstrates acceptable perfor-
mance for certain classes like “Commercial,” “Woodland,” and
“Farmland,” lower recall and precision rates were observed
for some classes. These findings highlight the impact of data
imbalance and overlap between classes on the overall model
performance. Therefore, creating a more balanced dataset or em-
ploying techniques such as data augmentation could potentially
improve the model’s performance. Furthermore, the prediction
outcomes for sample images from the MAI dataset can be found
in Fig. 9, which demonstrates the model’s performance visually,
highlighting both false positives and false negatives.

B. Results for RSICD Dataset

Table VI presents the recall performance of various models
on the RSICD dataset. Among the evaluated models, Remote-
CLIP [42] achieved a recall of 0.3635, while GeoRSCLIP-
FT [43] slightly improved this metric to 0.3887. The AMFMN
model [44], however, demonstrated a significantly lower recall
of 0.1553. In contrast, our proposed LLaMA MiniCPM-V model
attained a substantially higher recall of 0.5836, outperforming
all compared models by a considerable margin.

Moreover, our model achieved high metric values for each
class (see Fig. 6 and Table X). This indicates that the MiniCPM-
V model not only excels in overall recall, but also maintains
strong performance across individual classes. The superior re-
call of the LLaMA MiniCPM-V model highlights its enhanced
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TABLE IX
RESULTS FOR RSSCN7 DATASET

TABLE X
RESULTS FOR THE MERGED DATASET

capability to identify relevant instances within the RSICD
dataset, which may be attributed to its advanced feature ex-
traction and classification mechanisms. These results suggest
that MiniCPM-V is highly effective in capturing the diverse
and complex patterns present in satellite imagery, leading to
improved identification and classification of relevant classes.
The consistent high performance across classes underscores the
potential of the MiniCPM-V model for applications requiring
robust and reliable satellite image recognition.

C. Results for RSSCN7 Dataset

Table VIII demonstrates that our experimental model achieves
a lower accuracy compared to other approaches. Notably, the
LLaMA MINICPM-V model [14] incorrectly classified many

Fig. 7. Confusion matrix of RSSCN7 dataset classification.

instances of the green areas class, while exhibiting high accuracy
for the remaining classes (see Table IX and Fig. 7).

Despite the overall lower accuracy of the MiniCPM-V model
on the RSSCN7 dataset compared to other approaches, the
performance across most classes remains relatively strong. The
exceptionally low performance on the green areas class suggests
that the model struggles with distinguishing this class from
others, potentially due to high visual similarity with classes
like field and forest. This confusion may arise from overlapping
features and textures that make it challenging for the model
to accurately differentiate between these categories. Overall,
while the MiniCPM-V model shows promise in handling several
classes within the RSSCN7 dataset, targeted improvements are
necessary to enhance its performance on more ambiguous or
visually similar categories.

D. Results for the Merged Dataset

The evaluation of the MiniCPM-V model on the merged
dataset, which integrates the MAI, RSICD, and RSSCN7
datasets, provides a comprehensive assessment of the model’s
ability to generalize across diverse satellite image distributions
and class heterogeneities (see Table X and Fig. 4). The merged
dataset presents a more complex classification task due to the
varied characteristics and label distributions inherited from the
individual datasets.

Overall, the model achieved a moderate accuracy of 0.4349
on the merged dataset, which is lower compared to its perfor-
mance on the individual datasets. This reduction in accuracy
can be attributed to the increased diversity and complexity of
the combined data, which challenges the model’s generalization
capabilities. Despite this, certain classes within the merged
dataset exhibit high accuracy scores, indicating that the model
can effectively recognize specific types of satellite imagery when
sufficient distinguishing features are present.
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Fig. 8. Merged dataset accuracy scores-class frequency graphics.

For instance, classes such as Airport (Accuracy: 0.9899),
Bridge (0.9463), Mountain (0.9953), and Port (0.996) demon-
strate exceptionally high accuracy, precision, and recall values.
These results suggest that the model performs well on classes
with distinct and consistent visual patterns. Conversely, classes
like Apron (Accuracy: 0.9873), Bare Land (0.9832), and Com-
mercial (0.8913) show lower performance metrics, highlighting
areas where the model struggles, possibly due to overlapping
features with other classes or insufficient training samples.

The F1 scores across classes reveal a similar trend, with higher
scores for well-defined classes and lower scores for more am-
biguous or less represented classes. For example, the Residential
class achieved an F1 score of 0.7417, while the Sparse Shrub
class only reached 0.0435. These disparities indicate that while
the model is capable of handling certain categories effectively,
it faces challenges with classes that have subtle distinctions or
limited representation in the merged dataset.

Fig. 8 illustrates the relationship between class frequency
and accuracy scores, demonstrating a positive correlation where
classes with higher frequency tend to achieve better accuracy.

The merged dataset results also reflect the inherent difficul-
ties of multilabel classification, where the model must predict
multiple classes simultaneously for each image. The complexity
of this task increases with the diversity of the merged dataset, as
the model must navigate a broader range of visual patterns and
class overlaps. Despite these challenges, the MiniCPM-V model
demonstrates robust performance on several key classes, under-
scoring its potential for applications requiring comprehensive
satellite image recognition across varied environments.

In summary, the results for the merged dataset highlight
both the strengths and limitations of the MiniCPM-V model.
While it excels in accurately classifying certain distinct and
well-represented classes, its performance diminishes in more
complex and less frequent categories. These findings emphasize
the need for further model refinement and potentially additional
training data to enhance its generalization capabilities across
diverse and heterogeneous satellite image datasets (see Fig. 10).

VI. DISCUSSION

Our study focuses on object recognition in satellite imagery
using the MiniCPM-V VLM, rather than object counting or
few-shot classification. While NWPU-MOC [48] aims to count

objects across multiple categories, our approach is designed to
identify and classify objects within satellite images, leveraging
a VLM that processes both textual and visual data. Similarly,
while HSL-MINet [49] tackles few-shot classification using a
multiview framework, our work does not rely on few-shot set-
tings but rather evaluates the MiniCPM-V model across multiple
large-scale remote sensing datasets (MAI, RSICD, RSSCN7,
and a merged dataset).

Moreover, unlike previous works that primarily utilize CNN-
based architectures or density map regression techniques,
MiniCPM-V employs transformer-based vision models (Vision
Transformers) along with a language-driven recognition pro-
cess, allowing the model to integrate textual cues with visual
patterns. Our findings highlight that LLMs can effectively assist
in multilabel satellite image recognition, achieving competitive
performance in object identification tasks.

While NWPU-MOC [48] and HSL-MINet [49] provide valu-
able insights into remote sensing object counting and few-shot
learning, our research contributes to the field by demonstrating
the potential of VLMs for remote sensing object recognition,
offering a new perspective on leveraging large-scale multimodal
learning in satellite image analysis. In addition, our approach
differs from transformer-based multimodal learning frameworks
such as the synchronized class token fusion (SCT Fusion) archi-
tecture [50], which fuses multiple input modalities to enhance
classification accuracy. Unlike these methods, MiniCPM-V op-
erates with a single modality (visual data) while leveraging a
textual component to improve object recognition, making it
adaptable to datasets lacking multimodal annotations. Similarly,
our method contrasts with multitask fine-grained feature extrac-
tion [51], where each class is learned separately through a series
of binary classification tasks. While this method enhances clas-
sification granularity, MiniCPM-V efficiently processes all class
labels in a unified framework, reducing computational complex-
ity while maintaining strong classification performance. Com-
pared to HiReNet [52], which models hierarchical relationships
to improve few-shot learning, our approach does not specifically
target low-data scenarios. Instead, it is evaluated across large-
scale datasets, demonstrating its robustness in recognizing di-
verse satellite imagery patterns. These comparisons underscore
how MiniCPM-V presents a viable alternative to existing meth-
ods, offering a lightweight yet effective solution for multilabel
classification without requiring hierarchical modeling, multitask
decomposition, or multimodal fusion.

The evaluation of the MiniCPM-V model across the MAI,
RSICD, RSSCN7, and merged datasets reveals a nuanced per-
formance landscape. The model demonstrated strong accuracy
and balanced precision and recall on the RSSCN7 and RSICD
datasets, indicating its effectiveness in environments with dis-
tinct and well-represented classes. Particularly, the high recall on
the RSICD dataset (0.5836) underscores MiniCPM-V’s capabil-
ity to identify relevant instances effectively. However, the model
struggled with the MAI dataset, achieving a low accuracy of
0.0701, which can be attributed to the dataset’s fully multilabeled
nature, increasing the complexity of the classification task.
Similarly, the merged dataset, which combines the challenges
of all individual datasets, resulted in a moderate accuracy of
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0.4349. This decline highlights the difficulties the model faces
in generalizing across diverse data distributions and handling
class heterogeneity.

Recent studies in remote sensing classification have explored
network fusion approaches, combining CNN-based architec-
tures with transformer models to enhance classification perfor-
mance. For instance, a super-resolution framework integrating
CNN architectures has shown significant improvements in re-
mote sensing image classification by refining feature resolution
and enhancing textural details [53]. Similarly, a network-level
fusion of self-attention and ViTs has been introduced for land use
and land cover classification, demonstrating that hybrid models
leveraging both local and global feature extraction can yield
superior results [54]. Unlike these approaches, which focus
on fusing different visual network architectures, MiniCPM-V
integrates language-driven object recognition into the classi-
fication pipeline. Rather than merging feature extraction net-
works, it employs a vision-language approach, allowing the
model to process textual information alongside image features,
which is particularly advantageous for datasets, where semantic
relationships between objects provide additional classification
cues. While network fusion methods enhance pixel-based fea-
ture learning, our approach introduces a different paradigm
by leveraging multimodal alignment to improve recognition
capabilities.

The discrepancies in performance across different datasets
suggest that while MiniCPM-V excels in scenarios with clear
and consistent visual patterns, it requires further refinement to
manage multilabel classifications and underrepresented classes
effectively. The positive correlation between class frequency
and accuracy in the merged dataset indicates that the model
benefits from ample training data, which enhances its ability
to generalize for more prevalent classes. Conversely, classes
with limited representation or subtle distinctions pose signif-
icant challenges, leading to lower performance metrics. This
aligns with findings from multitask fine-grained feature mining
approaches, which demonstrate that class-specific learning can
improve underrepresented category recognition [51]. However,
unlike such approaches, MiniCPM-V does not require a ded-
icated training mechanism for rare categories, instead relying
on large-scale learning to infer semantic relationships between
object classes.

Comparative analysis with existing models shows that
MiniCPM-V achieves competitive recall on the RSICD dataset
but falls short in accuracy on the RSSCN7 dataset compared to
models like GLNet. This suggests that while MiniCPM-V has
strengths in certain contexts, there is room for improvement
in handling specific classes and ensuring consistent perfor-
mance across all categories. Future work could explore hybrid
approaches that integrate hierarchical structures for underrep-
resented classes or modality-aware training pipelines, taking
inspiration from state-of-the-art remote sensing classification
techniques. The results presented in this study highlight the via-
bility of VLMs in satellite image recognition and open avenues
for further optimizations that balance efficiency and accuracy
across multilabel classification tasks.

VII. CONCLUSION

This study presents a comprehensive evaluation of the
MiniCPM-V model’s performance in satellite image recognition
across multiple datasets. The results demonstrate that MiniCPM-
V is highly effective in classifying distinct and well-represented
classes within the RSSCN7 and RSICD datasets, achieving
high accuracy and balanced precision and recall. However, the
model’s performance diminishes in more complex and hetero-
geneous datasets, such as MAI and the merged dataset, where
multilabel classification and class diversity introduce significant
challenges.

The findings highlight the necessity for further enhance-
ments to MiniCPM-V to improve its generalization capabili-
ties across diverse and multilabeled environments. Future work
should focus on incorporating advanced techniques such as
data augmentation, transfer learning, and strategies to address
class imbalance. In addition, refining the model’s architecture
to better handle multilabel classifications and leveraging more
comprehensive training data could enhance its robustness and
accuracy across varied satellite image datasets.

In conclusion, while MiniCPM-V shows promising results in
specific scenarios, achieving consistent and high performance
across all tested datasets will require targeted improvements.
Addressing the identified limitations will pave the way for
MiniCPM-V to be a more versatile and reliable tool in the field
of remote sensing and satellite image analysis.

APPENDIX

Fig. 9. Predictions for MAI dataset. Red: Refers to wrong predictions. Blue:
Refers to correct predictions which are in the image but not in the ground truth
labels.



7902 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 18, 2025

Fig. 10. Predictions for the merged dataset. Red: Refers to wrong predictions.
Blue: Refers to correct predictions which are in the image but not in the ground
truth labels.
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