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ABSTRACT
Predicting the energy consumption of an electric vehicle (EV) is 
often relevant when planning and managing electric mobility. 
The prediction is challenging as EV energy consumption is 
highly variable and dependent on context. First, this paper 
proposes an integrated framework for the collection of online 
telematic data, processing of this data, online maintenance of 
statistics, and machine-learning-based prediction of travel time 
and energy consumption. A key feature of the proposed frame-
work is the preprocessing of the trajectory data into triplets, 
a convenient data unit that captures the relevant context neces-
sary for effective energ y prediction. The second contribution of 
the paper addresses the effective management of drastic change 
in context through robust energy prediction models. In particu-
lar, using few-shot learning techniques, we tackle the problem of 
the need to create different energy prediction models for dif-
ferent EV types, from small EVs to electric buses. Experimental 
results on three different data sets demonstrate how energy 
prediction models adapt to different EV types.
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Introduction

The electrification and digitalization of transportation mark a transformative 
era. For example, the European Union is planning a ban on the sale of vehicles 
with internal combustion engines (ICEs) from 2035, Erbach (2023). This 
significant shift toward electric vehicles (EVs) raises new challenges. One 
such challenge is the prediction of the energy consumption of EV trips. As 
we argue below, except for short commute trips, effective use of electric 
vehicles requires an accurate prediction of energy consumption.

Consider long-distance trips that involve planning charging stops and 
predicting the required charging times (Popiolek et al. 2023; Šaltenis et al.  
2023; Shi, Zeng, and Moura 2024; Subramanian et al. 2022). Without an 

CONTACT Linas Petkevičius linas.petkevicius@mif.vu.lt Institute of Computer Science, Vilnius University, 
Didlaukio g. 47, Vilnius, 08303 Vilniaus m. sav., Lithuania

Supplemental data for this article can be accessed online at https://doi.org/10.1080/08839514.2025.2474785

APPLIED ARTIFICIAL INTELLIGENCE                    
2025, VOL. 39, NO. 1, e2474785 (20 pages) 
https://doi.org/10.1080/08839514.2025.2474785

© 2025 The Author(s). Published with license by Taylor & Francis Group, LLC.  
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/ 
licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly 
cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) 
or with their consent.

http://orcid.org/0000-0003-2416-0431
https://doi.org/10.1080/08839514.2025.2474785
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2025.2474785&domain=pdf&date_stamp=2025-03-24


accurate prediction of energy consumption, conservative, worst-case energy 
consumption would have to be assumed limiting the set of reachable charging 
stations when planning each leg of a trip.

The prediction challenge is amplified by the fact that the energy consumption 
of EVs varies a lot depending on contextual parameters, such as weather 
conditions, traffic, and road geometry. (Krogh, Andersen, and Torp 2015). 
Note that predicting EV energy consumption is more difficult than predicting 
the fuel consumption of ICE vehicles, which is much less variable, as the 
majority of fuel energy is expended as a mostly constant thermal loss. In 
contrast, electric vehicles are much more efficient in energy use, making the 
effect of environmental conditions more pronounced.

We consider the problem of predicting the EV energy consumption on 
a planned route in a road network. Ideally, the best energy consumption 
prediction would be achieved utilizing historical driving data collected on 
the same route under similar driving conditions. However, collecting such 
a large amount of data is extremely time-consuming and almost impossible 
due to the exponential number of possible routes in the road network. 
Therefore, statistics are typically calculated segment-wise. Each route is mod-
eled as a sum of energy predictions for a sequence of road segments, making it 
easier to collect statistical data. However, this method loses the context of the 
trip as it is split into individual segments. Instead, to capture the context, we 
propose to split the trips into overlapping segment triplets, so that, for segment 
x in a trip, the attributes of the preceding segment and the attributes of the 
next segment are considered as the contextual attributes of the segment x. We 
do this for both statistics collection and model building, as well as when 
predicting the energy consumption on a given route.

Existing work on predicting EV energy consumption is scarce. We briefly 
review the most relevant research that employs machine learning methods. 
Recent studies use transformer neural networks (Shen et al. 2022), recurrent 
neural networks (Hua et al. 2022), probabilistic deep learning (Petkevičius 
et al. 2021), and classical machine learning methods like gradient-boosted 
regression tree and extreme gradient boosting (Chen, Lei, and Ukkusuri 2022; 
Roy et al. 2022), linear regression, random forest, and neural networks 
(Madziel 2024). However, these studies are mostly limited to experiments 
with a single EV type. In practice, there are many different EV types, from 
small EVs to large electric buses. This raises the question of whether it is 
possible to create an energy prediction model that could be effectively adapted 
when the context drastically changes with the introduction of new EV types.

The main problem of cross-EV-type energy prediction is the lack of data. Data 
collected from different EV types usually have different attributes, data is collected 
in various locations and under differing conditions. For the methods to work in 
real life, they must be robust in terms of varying parameters. To address this 
problem, we investigate the use of the few-shot learning approach.
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Few-shot learning methods became very popular recently due to their 
ability to reuse existing knowledge for new tasks with little data (Wang et al.  
2020). Such models were successfully applied for building energy predictions 
(Tang et al. 2023), wind power predictions (Meng et al. 2022), battery state-of- 
charge predictions (Zhang, Liu, and Su 2023), battery lifespan prediction 
(Meng et al. 2024), and forecasting of energy in smart grids (Xu, Li, and Li  
2024). A recent study surveyed various approaches for few-shot learning from 
a supervised learning perspective using different loss functions (Li et al. 2023).

In this paper, we propose a few-shot learning approach for EV energy 
consumption prediction using triplet data, the transformed embeddings 
using the cumulative distribution of known domain features, and parameter-
less Nadaraya-Watson regression (Nadaraya 1964). We demonstrate that the 
proposed approach is feasible to adapt to different EV types and does not 
require retraining of the model on new tasks.

In summary, the main contributions of our work are

● the triplet-based trajectory data management strategy to capture context 
and significantly improve task learnability as well as to decrease the 
complexity of the task;

● an architecture for a framework that integrates online telematic data 
processing, maintenance of statistics, machine learning, and prediction 
of travel time and energy use;

● novel few-shot learning approach using the cumulative distribution func-
tion for feature transformation using embedding learning and parameter-
less Nadaraya-Watson regression for new task learning when new types of 
EVs are introduced.

First, we present the motivation for triplets and the general architecture of 
the envisioned energy-prediction system in Section 2. Next, the proposed 
machine learning models are presented in Section 3. Section 4 presents the 
results of the extensive experimental study. Finally, Section 5 concludes the 
paper and points to possible future work.

Problem setting and architecture

As mentioned in the introduction, the goal of this work is to predict the EV 
energy consumption on a planned route in a road network. We assume that 
this prediction is done based on the prediction models built and maintained 
using a continuously replenished data warehouse of telematic traces – record-
ings of vehicle trips. First, we present the idea of splitting such traces into 
triplets. Then, we discuss the architecture for collecting the data, building 
prediction models on it, and using the models for prediction.

APPLIED ARTIFICIAL INTELLIGENCE e2474785-3



Triplet formulation

We assume the road network is broken into road segments, where a piece of 
road between two intersections is considered a segment. Further, long seg-
ments can be broken into shorter ones if needed. Then, we model a planned 
route as a sequence of road-segment traversals.

To estimate the EV energy consumption along a planned route, physical 
properties of the vehicle, road conditions such as surface and shape, and 
weather conditions (temperature, wind direction) should be used. The most 
significant parameters that influence energy consumption, independent of the 
vehicle model, are vehicle speed and acceleration, road shape (uphill, downhill, 
curvature), and road type (highway vs. service road, etc.). While road shape 
and road type are fixed for each segment, car speed and acceleration depend 
on the driver, time-varying traffic conditions, and the route being driven. The 
route the driver is going on affects how each segment is driven, as drivers 
might have different plans at the end of a road segment. For example, in 
Figure 1, a driver on a highway (segments a, b, c) might continue straight on 
the next segment (take path a to b) or exit the highway (take path a to a1), 
resulting in different speed profiles on segment a and, thus, different energy 
consumptions for the same segment. Similarly, how segment c is traversed 
depends on whether the driver has just merged from segment b1 or is simply 
continuing from segment b.

Previous work on EV energy prediction (Petkevičius et al. 2021) demon-
strates the benefits of a two-step process. First, the speed on each segment of 
the route is predicted based on time-dependent historical speed statistics 
collected on the segment. Then, this speed prediction is used as one of the 
covariates in the machine-learning model for energy prediction.

We argue that capturing the next and previous segments on a route is 
important both for a more refined collection of historical speed statistics and 
as additional context when inferring energy consumption along the route. To 
address this, for each segment on a route, we define a triplet which is a sequence 
of three consecutive road segments: pre-segment, segment, and post-segment. We 
split all recorded trips into overlapping triplets and aggregate speed statistics 
triplet-wise. Then, a planned route is also transformed into a sequence of over-
lapping triplets, where we, first, estimate the average speed on the middle 
segment of each triplet and, then, perform machine learning inference using 
the attributes of the surrounding segments as additional covariates.

Figure 1. An example of a triplet. The triple consists of (a, b, c) segments. The cases (a, a1), (a, b), 
(b, c), and (b1, c) are the pairs or duplets.
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Sometimes, when planning a route, we might not have historical data 
statistics for a particular triplet. However, we might have data for a pair 
of adjacent segments or only for a single segment. We term pairs of 
segments duplets. A triplet can then be constructed from two duplets: 
the pre-duplet, consisting of the pre-segment and the segment, and the 
post-duplet, consisting of the segment and the post-segment. When 
predicting speed using duplet-level statistics, two different speed values 
are available for a given segment: one from a pre-duplet and another 
from a post-duplet. Different strategies can be employed in such 
a scenario, such as calculating the average speed of the two duplet 
speeds, taking the minimum or maximum speed, or using single- 
segment data. If there is no statistical data for a given segment at all, 
the segment speed can be estimated to be equal to the average speed on 
this type of road or the speed limit on the particular segment.

Framework architecture

In the following, we describe the envisioned architecture of a framework that 
integrates online telematic data processing, maintenance of statistics, machine 
learning, and prediction of travel time and energy use.

Figure 2 shows the architecture that is divided into two components: model 
building, shown in the upper part of the figure, and online prediction, shown in 
the lower part of the figure.

Model building
The model-building component of the framework is responsible for proces-
sing the incoming telematic data from the vehicles that are being tracked by 
the system.

Figure 2. Information flow in the framework. The flowchart visualizes the data aggregation to 
fixed-dimension information, which could be used for statistical predictions.

APPLIED ARTIFICIAL INTELLIGENCE e2474785-5



We assume that each tracked vehicle periodically uploads its trips as GPS 
traces. Each GPS trace is a sequence of GPS elements. What kind of informa-
tion is included in a GPS element may vary, but we require that it includes 
a GPS position, a timestamp, and, if this is an EV, energy used since the last 
GPS element: 

GPSTrace ¼ ðvid; h. . . ; ðposi; ti; Δei½ �Þ; . . .iÞ (1) 

Here, vid is a vehicle identifier. The received GPS traces are first map- 
matched, assigning each GPS element a map-segment id (sid). Next, the 
elements are aggregated, so that for each traversal of a segment, all corre-
sponding GPS elements are replaced with computed traversal time (stt) and 
energy used (se): 

Segment Trace ¼ ðvid; h. . . ; ðsidi; stti; seiÞ; . . .iÞ (2) 

The aggregated segment traversals are then enriched with context informa-
tion. In particular, a digital road map is used for segment road type (srt), 
segment length (slen), average heading of the segment (shead), elevation at 
segment start (sels), and at segment end (sele). The heading is defined as an 
angle relative to the true north. Depending on the average length of the 
segments, more detailed elevation information may be necessary for each 
segment or, segments may need to be split.

While the digital road map provides static context information, current 
weather information is a dynamic part of the context. It includes temperature 
(wt), wind direction (wwd), and wind speed (wws).

As detailed in Section 2.1, an important part of the segment-traversal 
context is the triplet-related characteristics. In the triplet-splitting step, each 
segment traversal is augmented with such information so that it becomes 
a triplet traversal.

Such triplet traversals are used to maintain traffic speed statistics, the mean, 
and the standard deviation, at different aggregation levels. As Figure 3 shows, we 
propose to aggregate these speed statistics along two main dimensions: spatial 
and temporal. Considering the spatial dimension, a given triplet traversal updates 
the speed statistics for that specific triplet as well as for the corresponding pre- 
duplet, post-duplet, and center segments of the triplet. In the time dimension, we 
propose the aggregation hierarchy of three layers. At the most detailed level, 
a day is broken into three time-of-day periods (rush hour (7:00–9:00 and 15:00– 
17:00), night (22:00–6:00), and the rest of the day). Next, days are categorized 
either as weekdays or weekends. Finally, if there is not enough historical data for 
a given segment on the lower levels of the time dimension, global statistics are 
used. Note that we envision that the above, traffic-related, statistical data is 
collected for all types of vehicles. If the triplet traversal was from an EV, it is 
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saved in the backlog of EV triplets – an accumulation of model training data. 
Periodically, this backlog is used to retrain the deep learning model.

Online prediction
The bottom of Figure 2 shows the workflow for the online prediction of 
energy consumption on a given route. As explained in Section 2.1, after the 
route segments are augmented with contextual attributes and the route is 
split into a sequence of overlapping triplets, the online prediction is a two- 
step process. First, an approximate speed estimate for each segment is 
derived as the mean of the collected historical speed values at the lowest 
levels of the aggregation hierarchies where historical data are available for 
this segment (see Figure 3).

Then, the machine learning model is fed this speed estimate as one of the 
covariates of the segment together with its other attributes. In addition, the 
attributes of its pre-segment and post-segment are used as covariates as well 
as triplet-specific covariates: the angle between the pre-segment and the 
segment, the angle between the segment and the post-segment, and the 
cardinalities of the pre-segment/segment and segment/post-segment 
intersections.

Machine learning models

Using the aggregated data and statistics maintained as described in the pre-
vious section, we proceed to develop machine learning models that are trained 
on that data and are used for energy prediction. First, we discuss different 
machine-learning problem formulations, and then we detail the workings of 
the proposed model.

Segment

Pre-duplet Post-duplet

Triplet

All

Weekday/Weekend

Time-of-day

Spatial
dimension

Time
dimension

Figure 3. Aggregation hierarchies for speed statistics. The spatial aggregation via duplet presented 
on the left; the temporal aggregation of day type is presented on the right.
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Regression problem

We denote X as the input space and E as the target (consumed energy) space. 
Here, xj;i 2 X � R x is an observation of trip j at segment i, and ej;i 2 E � R is 
the consumed/recuperated energy. Here, dx is the number of all the segment- 
and triplet-related characteristics mentioned in Section 2. A simple regression 
model predicts energy consumption ̂ej;i for each segment srj;i independently: ̂ej. 
The independent predictions can then be summed up to get the cumulative 
prediction of energy use for the whole route. The unknown parameters of 
a regression-like models are estimated by minimizing the mean square error 
loss (MSE): 

LReg ¼
1
M

XM

j¼1
ðej � êjÞ

2
; (3) 

where M is the total number of trip segments in the training dataset.
In our experiment setup, we will use the series of parametric mathematical 

models fθðxÞ. All used different deep neural networks (DNN) with different 
architectures are described in Supplementary file.

Deep probabilistic problem

An alternative way to look at the problem is to interpret the energy consump-
tion (target) data as independent random variables e1; . . . ; eM. Denote by 
FiðejθÞ the cumulative distribution function (cdf.) of ei. Let 

F 0 ¼ fFðejθÞ; θ 2 � � R 2g

be a parametric family of absolutely continuous cumulative distribution func-
tions with continuous unimodal densities f .

Let us assume that distribution parameters θ̂ ¼ ðθ1; θ2Þ depend on expla-
natory variables x: θ̂ ¼ gðxjϕÞ. We choose the operator gðxjϕÞ to be a deep 
neural network with unknown parameters ϕ. The model is trained on the 
training data fxi; eigi¼1;::;N and the output of the model is θ̂. Different from 
regression-like problem formulation, the ei is just a realization of FiðyjθÞ. Thus, 
a deep neural network is trained to predict the parameters of the distribution, 
i.e., the mean and deviation of energy consumption for a given segment: 

θ ¼ gðxjϕÞ (4) 

s:t: e , FðejθÞ

e2474785-8 A. ČIVILIS ET AL.



Few-shot learning

Few-shot learning aims to address the problem of learning with only a few 
supervised data point instances. Formally, the training dataset 
D ¼ DPrior [ DAdapted is separated into two datasets DPrior and DAdapted containing 
different sets from different data domains, in our case, the domains of EV cars and 
buses. Each tuple ðXi; ŷiÞ 2 D consists of data Xi ¼ fx1;i; . . . ; xM;ig containing M 
covariates and their corresponding labels ŷ of energy consumption. The small 
dataset DAdapted contains only a small number of supervised data pairs in contrast 
to DPrior. For the task of K-shot learning, there are exactly K annotated instances 
available in DAdapted. Training a regression model only on DAdapted quickly leads to 
overfitting and poor generalization due to limited training (Chen et al. 2018; Yan 
et al. 2019).

The typical approaches to few-shot learning are a) multi-task learning and b) 
embedding learning. The multi-task learning approach often suggests keeping the 
main tasks and using parameter sharing between existing and new tasks. In Zhang, 
Tang, and Jia (2018); Wang et al. (2020), the initial two task networks share the first 
few layers for the generic features and learn different final branches to deal with 
new tasks. In addition, there is the parameter-tying approach which regularizes the 
parameters, forcing the parameters of different tasks to be similar (Goodfellow, 
Bengio, and Courville 2016). The limitation of multi-task learning is the necessity 
to keep and process all of the original tasks and data for complement tasks. On the 
other hand, the embedding learning allows not to track all of the information about 
the previous tasks and reuse the high-level features for new tasks. Feature vectors 
could be calculated and saved separately, this saves computational costs.

The most common approach is task-invariant embedding when model fθ;fixedðxÞ
is used as a feature extractor. The model is parameterised with neural network 
parameters θ and fixed means. The model was trained on another task, thus it is 
used as a pre-trained model (Goodfellow, Bengio, and Courville 2016). Then, 
a new task is learned on top of the extracted features from model fθ;fixedðxÞ. At 
inference, the high-level embeddings are compared with the embedding of few- 
shot examples using some distance, e.g., cosine distance. Such an approach is used 
in (Snell, Swersky, and Zemel 2017; Tsimpoukelli et al. 2021; Vinyals et al. 2016). It 
has the benefits of a) the ability to work with the informative features learned 
before and b) the reduced number of parameters in use, since pre-trained model 
weights are fixed. Thus, we will use this embedding approach.

Proposed approach

We propose to use the statistical nearest neighbors method to leverage the 
high-level embedding distribution to encode second-order information from 
features cdf instead of using raw high-level feature values (See Figure 4). The 
changes in transformed embeddings aim to achieve the following goals:
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● to have normalized high-level features by applying the cdf transformation.
● to have a reduced number of samples for domain transfer by using the 

nearest neighbors technique.

Definition 3.1 (embeddings) Let ffixedðxjθÞ ¼ fPriorðxjθÞ: X ! Y to be any 
pre-trained (Prior) deep neural network with fixed parameters θ. Deep neural 
networks consist of multiple nonlinear input transformations which transform 
the original input x into a new representation E which is informative for the 
final prediction:  

Y ¼ f ðxjθÞ ¼ fLðfL� 1ð. . . f2ðf1ðxjθ1Þjθ2ÞjθL� 1ÞjθLÞ

¼ ½E1 ¼ f1ðxjθ1Þ; E2 ¼ f2ðE1jθ2Þ; . . . ;EL ¼ fLðEL� 1jθLÞ�

where L is the number of layers (the transformations), and θ � �d� - the 
neural network parameters. The high-level representations or extracted fea-
tures also known as embeddings are represented as a vector ~emb ¼ EL� 1.

The cdf by definition has the property that a data transformation passed to 
FθðXÞ ¼ Uð0; 1Þ returns a uniform distribution. The uniform distribution 
maximizes the entropy of the distribution (Cover 1999) and improves the 
classification (Halbersberg, Wienreb, and Lerner 2020).

Prior model

usage for feature (embeddings)

extraction and second order

statistics cdf estimation

c-emb embeddings calculation using

and

Figure 4. The cdf-embedding process. The trip is split into triplet segments s� ; s0; sþ. The prior 
model fPrior is used as a feature extractor. The F̂~embð~embjμ̂; Σ̂Þ is estimated on the prior data DPrior 

and is used to transform embeddings to the cdf-embeddings. During inference, the cdf- 
embeddings are calculated which represents second-order information of the data. The cdf- 
embeddings are then used to calculate the new task.
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Some approaches work by training models MPrior on data Dfinetune � D and 
include a novel domain CAdapted, resulting in the final model MFinal: 

MInit � !
DPrior
MPrior � !

Dfinetune
MFinal (5) 

Such models have the crucial drawback in cases when the embeddings of the 
pre-trained model MPrior are calculated on a data distribution that is different 
from the novel domain DAdapted. The embeddings mapped to a concentrated 
area of the embedding value space become uninformative.

Definition 3.2 (cdf-embeddings) The cumulative embeddings (cdf- 
embeddings) is a transformation of the embeddings. Under the dataset over 
which it is estimated, it produces the uniform distribution.

The main features of the cdf-embeddings are:

● The cdf-embeddings are calculated at inference time after DPrior is fixed;
● The cdf-embeddings are calculated on the training data DPrior and the 

few-shot data DAdapted;
● The cdf-embeddings require to know the distribution of the data FθðXÞ. 

We make a law-of-large-numbers assumption on the normality of the 
embeddings data distribution, thus, the empirical estimates μ̂ and σ̂ need 
to be saved under Nðμ̂; σ̂Þ assumption, where μ̂ and σ̂ are the mean and 
the standard deviation of the embeddings data distribution of the prior 
data DPrior.

Definition 3.3 (cdf-embeddings finetuning). Let us consider the few data 
points from the novel domain DAdapted, then the cdf-embeddings finetuning is 
a transformation of the cdf-embeddings of the prior model MPrior to the cdf- 
embeddings of the final model MFinal.

Definition 3.4 (cdf-embeddings Nadaraya-Watson regression). The cdf- 
embeddings Nadaraya-Watson regression is a transformation of the cdf- 
embeddings of the prior model MPrior to the cdf-embeddings of the final 
model MFinal using the Nadaraya-Watson regression Nadaraya (1964); 
Watson (1964); Bierens (1996). 

ŷ ¼ gðXÞ ¼
PN

i¼1 KðXi;XÞyi
PN

i¼1 KðXi;XÞ;

where KðXi;XÞ is the kernel function, yi is the target value of the ith data point, 
Xi is the cdf-embedding of the ith data point, X is the cdf-embedding of the 

APPLIED ARTIFICIAL INTELLIGENCE e2474785-11



new data point, and N is the number of the few-shot observations. In our 
experiments, we use the sklearn library for Nadaraya-Watson regression.1

Experimental study

To validate the proposed models, experiments were performed on real tele-
matic data. We present the data sets first, followed by the experimental results.

Data

Three datasets are investigated. In all datasets, the data is map matched to the 
OSM (OpenStreetMap) road network using the pgMapMatch package 
(Millard-Ball, Hampshire, and Weinberger 2019), and the characteristics are 
aggregated per segment. Figure 5 illustrates the geographical coverage of the 
three datasets. 

Danish dataset
The largest EV dataset that was used contains data collected in 
Denmark throughout 2012 (Krogh, Andersen, and Torp 2015) and 
covers the trips of 164 almost identical EVs. The Denmark data is 
joined with the weather data from NOAA (Oceanic and 
Administration 2021), as well as digital elevation data (Observation 
and Center 2012). Finally, observations with missing values are 
removed. The dataset contains 442,963 segment traversals from 11,908 
unique trips. We split the data 70/10/20% or 8335, 1191, 2382 trips for 

Figure 5. The EV data set trajectories. Line thickness represents the number of trip segments on 
a road segment. (a) Denmark (North Jutland) dataset. (b) USA (Ann Arbor, Michigan) dataset. (c) 
Lithuania (Klaipėda) dataset.
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training, validation and testing datasets, or 305,867, 47,315, 89,781 
segments respectively as in Petkevičius et al. (2021).

USA dataset
The second EV dataset is extracted from the Extended vehicle energy dataset 
(eVED), a large-scale, open dataset of fuel and energy data collected in Ann 
Arbor, Michigan, USA (Zhang et al. 2022). The data captures GPS trajectories 
of vehicles along with the time-series data of their speed as well as fuel, energy, 
and auxiliary power use. In our case, only the EV data was used. Trips with 
more than 70% of successful map matchings are chosen. The data is augmen-
ted with the weather data from NOAA (Oceanic and Administration 2021). 
The trip data of eVED containes only the data from three vehicles. The train/ 
test splitting was done by taking vehicle 10 data for training and using the data 
from the remaining two vehicles for testing.

Lithuanian dataset
The dataset of electric buses stems from Klaipėda, Lithuania. The data is 
collected from two buses during February–May 2023. The data is provided 
by electric bus manufacturer DANCER.2 The data captures GPS trajectories of 
vehicles along with the time-series data of their speed as well as battery state, 
temperature, and weight.

Variables and data preprocessing
After the pre-processing, 30 trip-segment characteristics are used as the input 
for the models (see Table 1). The road type can be one of the following: living 
street, motorway, motorway link, primary, residential, secondary, secondary 
link, service, tertiary, track, trunk, trunk link, unclassified, unpaved; the road 
conditions cover: drifting, dry, fog, freezing, none, snow, thunder, wet.

Triplet data
The triplet data preparation from the segment-level data is done in two steps. 
First, the pre- and post-segments are identified for each segment in a trip. The 

Table 1. The characteristics of a trip segment, in total 30 variables, and which 
variables arepresent in which of the three datasets.

Characteristic # Var. Denmark USA Klaip_eda

Speed 1 + + +
Time (s) 1 + + +
Air temperature 1 + + +
Wind speed (ms) 1 + + -
Wind direction 1 + - -
Triplet angle diff 1 + - -
Time of day 1 + + +
Weekend 1 + + +
Road conditions 8 + - -
Road type 14 + + +
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first and the last segments of a trip do not have both neighboring segments. In 
such cases, the pre/post segments are set to the same segment. Second, all 30 
variables from each of the three segments are combined to a single triplet 
vector. The triplet data is used for training and testing of the models.

Results

Experiments
In our study, multiple configurations of deep neural networks were 
considered. Experimentally, the best regression models for energy con-
sumption were identified. The architectures of those models are presented 
in Table 2. For all models, training was carried out for up to 50 epochs 
with a batch size of 128, with early stopping by waiting 20 epochs to track 
testing loss. The binary mean square error loss function and Adam 
optimizer Kingma (2014), Goodfellow, Bengio and Courville (2016) deep 
with a learning rate of 0.001 were used for neural network parameter 
estimation.

Each of the configurations listed in Table 2 are considered in two versions: 1) 
as a regression model, with MSE as a loss function and the output dimension of 
one; 2) as a probabilistic model with the negative log-likelihood (ll).

Nadaraya-Watson regression of c-embeddedings
First, we investigated the c-embeddings Nadaraya-Watson regression. The 
results (Klaipėda dataset) are presented in Table 3.

Table 2. Configurations of regression neural network models.
Model Architecture/hyper-parameters

M1 FL-D-FC(4*H)-BN-Relu-D-FC(H)-BN-Relu-D-FC(1)
M2 FL-BN-FC(H)-Relu-BN-Res(1,2,1)-FL-FC(1)
M3 FL-BN-MHA(FC(H), 4)-Res(2)-FL-FC(1)
M4 VS(H)-FC(1)
M5 VS(H)-BN-FC(H)-MHA(FC(H), 8)-FC(1)
M6 FL-MHA(FC(H), 8)-FL-FC(1)
M7 FL-BN-Wide-Deep(4*H,H)-MHA-FC(1)
M8 FL-Cross(128,16)-Deep(4*H,H)-FL-FC(1)
M9 FL-MHA(FC(32), 8)-Cross(4*H,H)-Deep(4*H,H)-FL- MHA(FC(16), 8) -FC(1)
M10 FL-BN-Wide-Deep(4*H,H)-FC(1)

The model architectural representations. FL stands for Flattening, D – for Dropout (p = .2), BN – for 
batch normalization, Res – for residual block, MHA – Multi-head attention, VS – continuous 
variable selection layer, Wide – wide connection, Deep – deep connection, neural network layers, 
and Relu is a non-linear point-wise activation. H is the hidden state parameter, H ¼ 16.

Table 3. The mean absolute value (MAE) statistics of c-embeddings of the investigated models on 
unseen test-data segments (Klaipėda dataset). Columns are the models used as prior models 
(feature extractors) for c-embeddings.

M1 M9 M8 M6 M7 M3 M2
7.3592 30.7558 26.0246 26.7407 29.2027 30.6492 14.5868

e2474785-14 A. ČIVILIS ET AL.



The table demonstrates that the c-embeddings of Nadaraya-Watson regres-
sion are not sufficient for transfer learning under a small embedding dimension 
(e.g. H ¼ 16). The results are not better than the M1 model. The benefits of 
parameterless models are not sufficient for practical use in this particular case.

Triplet data model
Next, we present the results of the investigated models on the Danish dataset. 
Table 4 shows that the larger parameter models outperform the smaller neural 
networks. However, it should be noted that the M9 model, while 10× larger 
than most of the models, does not outperform the M4 model. The results show 
that the triplet-level predictions, compared to the trip-level predictions, are 
more challenging (Petkevičius et al. 2021). The M2 and M8 models were 
overfitted, thus they failed significantly according to the tested performance 
measures. The best results (Petkevičius et al. 2021) demonstrated on long 
sequence data reach MAE 0.22 and MSE 0.32. This demonstrates that the 
results in Table 4 using zero-shot approach on individual triplets fall shortly 
below the supervised learning results.

The USA dataset results are presented in Table 5. The results show that the 
models are not performing well onunseen data. The data split was arranged by 
selecting vehicle 10 as a training dataset (1235 records), and the remaining two 
cars (total 12,143 records) as the testing subset. One can see that the model 
became overfitted and did not generalize well on unseen data.

Table 4. The statistics of investigated models on unseen test-data segments (Denmark dataset).
Model MAE MSE RMSE R2 # params

M4 0.0232 0.0026 0.0510 0.5480 87387
M3 0.0246 0.0036 0.0604 0.3659 83657
M5 0.0254 0.0029 0.0542 0.4884 29107
M9 0.0269 0.0039 0.0623 0.3246 233793
M1 0.0333 0.0045 0.0673 0.2115 16449
M10 0.0354 0.0057 0.0757 0.0019 14755
M6 0.1004 0.0124 0.1116 . 52929
M7 0.1045 0.1207 0.3475 . 98265
M2 2.5250 75.5819 8.6938 . 41833
M8 44.0542 1049110.1642 1024.2608 . 31135

Table 5. The statistics of investigated models on unseen test-data segments (USA dataset).
Model MAE MSE RMSE R2 # params

M1 0.3873 1.9940 1.4121 0.0394 16449
M9 0.4429 2.0484 1.4312 0.0132 233793
M4 0.4718 2.1310 1.4598 . 87387
M5 0.5474 2.2365 1.4955 . 29107
M8 0.6107 2.9297 1.7116 . 31135
M7 1.5798 4.3663 2.0896 . 98265
M6 5.3829 86.0566 9.2767 . 52929
M3 6.5579 46.1958 6.7968 . 83657
M10 10.8146 118.8738 10.9029 . 14755
M2 66.1188 4384.3006 66.2141 . 41833
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The Klaipėda dataset results are presented in Table 6. The results show that 
the models are performing relatively well on unseen data. The data split was 
arranged by selecting one bus to the training dataset (40603 records), and 
a second bus (total 65,516 records) to the testing subset. We will demonstrate 
the improvement over the M1 model creation in the following sections.

Probabilistic models
The deep probabilistic models have the benefit of the uncertainty estimation 
which could aid the route planning and the energy consumption estimation 
(Petkevičius et al. 2021). The deep probabilistic models are trained on the same 
data as regression models, but predicting the distribution parameters instead 
of the point prediction. The distribution parameters are estimated by mini-
mizing the negative log-likelihood loss function. We trained the models with 
the same setup as regression models. The best models are presented in Table 7.

Table 7 shows that the probabilistic models benefit from the uncertainty 
estimation with 97.28% of true energy consumption values falling into ŷ� 3ŜD 
interval. However, most of the models, due to stability issues, at some point in the 
training process produced the NaN values, which prevented obtaining meaningful 
results for these models. Due to the lack of convergence and stability of the models, 
the probabilistic models were not investigated further in this study.

Transfer learning of c-embeddedings
The transfer-learning models are widely known in deep learning, especially in 
finetuning the backbone features of ImageNet pre-trained models (Goodfellow, 
Bengio, and Courville 2016; Zhuang et al. 2020). The features from the prior 
knowledge enable more robust representations under a limited amount of data.

Table 6. The statistics of investigated models on unseen test-data segments (Klaipėda 
dataset).

Model MAE MSE RMSE R2 # params

M4 0.0990 0.0177 0.1332 0.4041 87387
M5 0.0991 0.0181 0.1345 0.3921 29107
M8 0.1016 0.0220 0.1485 0.2598 31135
M9 0.1030 0.0216 0.1470 0.2741 233793
M7 0.1047 0.0204 0.1429 0.3143 98265
M2 0.1091 0.0234 0.1529 0.2149 41833
M3 0.1105 0.0214 0.1464 0.2805 83657
M1 0.1255 0.0238 0.1544 0.1991 16449
M10 0.1858 0.0553 0.2351 . 14755
M6 1.9136 6.6088 2.5708 . 52929

Table 7. The statistics of investigated deep probabilistic models on unseen test-data segments 
(Denmark dataset). Rows are models investigated as prior models for c-embeddings. Columns 
show the performance statistics.

Model MAE MSE RMSE R2 CI Number of params

M1 0.0339 0.0063 0.0063 . 0.9728 16482
M10 0.0355 0.0061 0.0061 . 0.9705 14862
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The results of transfer learning using c-embeddings of the USA dataset are 
presented in Table 8. The table shows that the c-embeddings demonstrate 
better accuracy (M6 model) than using the original data. It is worth mention-
ing that the majority of the feature extractor models using the Prior model 
trained on the Denmark data produce robust results for the new models. The 
results show that the c-embeddings are sufficient for transfer learning.

The results of the experiments on transfer learning using c-embeddings on the 
Klaipėda dataset are presented in Table 9. One can see in the table that the M1 deep 
neural network is not a sufficient feature extractor and multiple models cannot 
learn from those features. The best results (MAE = 0.1) are equivalent to the 
original model training results. The majority of results are within 10% error 
margin. The results show that the c-embeddings are sufficient for transfer learning.

Conclusions

Motivated by the necessity to address different EV vehicle types when predicting 
energy consumption, we propose a suite of few-shot learning models for EV 
energy-use prediction. In particular, we propose not only efficient trip decomposi-
tion to the triplet level, but also an approach for adapting models for different EV 
vehicle models. We investigate the learnable and parameter-free approaches using 
few-shot learning. The experiments show that the prior model embeddings can be 
successfully used to model different domains of EV vehicles/buses. The datasets 

Table 8. The mean absolute value (MAE) statistics of c-embeddings in investigated models on 
unseen test-data segments (USA dataset). Rows are the models investigated as the prior models 
for c-embeddings. Columns represent the models investigated.

Model M1 M8 M9 M6 M2 M3 M10 M7

M8 0.449 1.255 0.949 0.408 0.463 0.502 0.423 0.444
M9 0.459 0.864 0.580 0.400 0.462 0.520 0.502 0.446
M4 0.447 1.125 0.906 0.400 0.515 0.511 0.413 0.443
M6 0.466 0.588 0.448 0.409 0.471 0.577 0.492 0.445
M2 0.471 0.614 0.735 0.409 0.480 0.514 0.487 0.445
M3 0.473 0.523 0.571 0.390 0.448 0.597 0.475 0.452
M10 0.455 0.497 0.541 0.372 0.465 0.471 0.462 0.445
M7 0.464 0.688 1.504 0.396 0.453 0.501 0.415 0.442

Table 9. The mean absolute value (MAE) statistics of c-embeddings in investigated models on 
unseen test-data segments (Klaipėda dataset).

Model M1 M8 M9 M6 M2 M3 M10 M7

M1 0.138 0.123 0.100 0.117 99.664 17.986 0.100 0.111
M8 0.134 0.100 0.104 0.145 0.117 0.128 0.098 0.116
M9 - 0.111 0.103 0.186 - 0.147 0.105 0.103
M6 0.133 0.104 0.106 0.135 0.171 0.110 0.100 0.145
M10 0.139 0.104 0.100 0.217 0.124 0.166 0.099 0.123
M7 0.133 0.101 0.104 0.158 303.788 0.198 0.100 0.109
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used for this study, including the bus data, are mainly from urban areas. Further 
work and experiments are needed to improve the domain adaptation across the 
different EV vehicle domains.

Notes

1. SciKit Kernel Density.
2. Similar, but less detailed data is also publicly available at https://dancerbus.com/techni 

niai-duomenys-gyvai/?lang=enhttps://dancerbus.com/techniniai-duomenys-gyvai/? 
lang=en.
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