THE 67TH INTERNATIONAL



# OPEN READINGS

CONFERENCE FOR STUDENTS OF PHYSICS AND NATURAL SCIENCES

## BOOK OF ABSTRACTS

2024



#### Editors:

Martynas Keršys Rimantas Naina Vincentas Adomaitis Emilijus Maskvytis

Cover and Interior Design:

Goda Grybauskaitė

Vilnius University Press 9 Saulėtekio Av., III Building, LT-10222 Vilnius info@leidykla.vu.lt, www.leidykla.vu.lt/en/ www.knygynas.vu.lt, www.journals.vu.lt

Bibliographic information is available on the Lithuanian Integral Library Information System (LIBIS) portal www.ibiblioteka.lt ISBN 978-609-07-1051-7 (PDF)

© Vilnius University, 2024

### THE EFFECT OF MONOATOMIC OXYGEN ON CARBON-SPUTTERED QUARTZ CRYSTALS

Eivydas Trioška<sup>1</sup>, Mindaugas Viliūnas<sup>2</sup>, Greta Merkininkaitė<sup>1</sup>, Simas Šakirzanovas<sup>1</sup>

<sup>1</sup>Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225, Vilnius, Lithuania <sup>2</sup>Institute of Chemical Physics, Vilnius University, Saulėtekio 9, LT-10222 Vilnius, Lithuania eivydas.trioska@chgf.stud.vu.lt\_

Atomic oxygen (AO), a predominant form of oxygen in outer space, offers an effective and minimally invasive way to remove carbon-based contaminants from various surfaces without health and environmental concerns. The efficiency of AO cleaning was estimated using a Quartz Crystal Microbalance (QCM) sensor, carbon-sputtered 6 MHz quartz crystals and a K-type thermocouple, while AO was introduced with a plasma generator.

The experimental procedure is depicted in Figure 1. Step 1: initial mass and ambient temperature measurements

(m<sub>1</sub> = -0.032  $\mu$ g/cm<sup>2</sup>, t<sub>1</sub> = 22.3 °C) over a 4-minute period. Step 2: mass change and temperature measurements

 $(m_2 = 0.226 \ \mu g/cm^2, t_2 = 20.0 \ ^{\circ}C)$  during an 8-minute period with gas flow (without plasma). Step 3: highest instantaneous mass change and temperature measurements (m<sub>3</sub> = -50.663  $\mu g/cm^2$ , t<sub>3</sub> = 70.5  $^{\circ}C$ ) with plasma for a 4-minute period.

Step 5: mass change and temperature measurements ( $m_4$  = -5.985  $\mu$ g/cm<sup>2</sup>,  $t_4$  = 24.4 °C) after a 13-minute cooldown. Results are promising for upcoming measurements, because both instantaneous and long-lasting mass changes are present ( $m_3$  = -50.663  $\mu$ g/cm<sup>2</sup> and  $m_4$  = -5.985  $\mu$ g/cm<sup>2</sup> respectively).

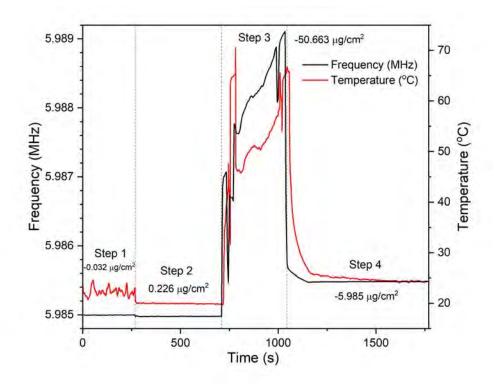



Fig. 1. QCM frequency and temperature relation.

#### **Acknowledgment**

The autors acknowledge financial support from the European Research Executive Agency (REA) (Grant Number: 101061336)