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Abstract
Predator fear can leave long-lasting impacts on the neural circuitry and behaviours of prey organ-
isms, leading to enduring effects on memory characteristic of post-traumatic stress disorder. Previ-
ous research showed better survival in Drosophila grown with predators and, thus, stress. A better
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long-term memory can likely help Drosophila avoid visiting places where predators have been
spotted before. We investigated the link between predator-induced stress exposure and memory
retention in two groups of Drosophila. In this study, one group of Drosophila was exposed to visual
and olfactory signals of spiders during the first five days of their adult stage, prior to memory test-
ing. We found that 1 h short-term memory did not differ between experimental flies and flies in the
control group, which were raised without spiders. In contrast, flies exposed to predator presence
exhibited better long-term memory than control flies 24 h later. The strain of Drosophila used was
found to possess a diabetes-like biochemical phenotype in a previous study, indicating metabolic
shifts between glucose and lipids, which influences memory formation and retention. We show that
linking long-term memory, body and brain metabolism, and predation risk-induced stress is needed
to better understand the post-traumatic stress-associated biochemical and behavioural adaptations
of Drosophila.
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1. Introduction

The traditional view in ecology is that predators impact prey organisms
directly by killing them and reducing their numbers in the population (Lima,
1998; Lourenço et al., 2014). Yet, research has increasingly shown that prey
species are also profoundly affected by simply perceiving the presence of
predators within their environment (Lima, 1998; Suraci et al., 2016; Allen et
al., 2022). Predators have been found to induce fear in their potential prey,
affecting reproductive and survival strategies (Dudeck et al., 2017). This fear
response can manifest in various physiological and behavioural changes in
prey, such as alterations in social interactions, habitat choices, and general
lifestyle to evade predators (Suraci et al., 2016; Potash et al., 2023). The
lethal and non-lethal effects of predation are often costly to prey individu-
als (Sheriff et al., 2020). However, predator presence or cues of predators
may have a positive impact on some prey individuals, such as priming prey
reactions for subsequent encounters with similar threats (Krams et al., 2016;
Krama et al., 2023a). This complex interplay underscores the intricate bal-
ance between fear and survival strategies in the face of predation.

Behavioural reactions like anti-predatory behavioural responses occur in
response to external sensory stimuli, which are transduced along specific
pathways of the central nervous system (CNS). Although stress can cause
impairment to the development and connectivity of neural circuitry (Clinchy
et al., 2011, 2013), subserving decision-making and behavioural expres-
sion of physiological and neurobiological states in the long term, in the
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short term, these changes may be adaptive. For example, a recent study
demonstrated that predators can induce a heightened sensitivity to preda-
tor danger, elevated neuronal activity in the amygdala and hippocampus,
and improved long-term memory (LTM) in black-capped chickadees (Poe-
cile atricapillus) that had been exposed to predator signals for only two
days (Zanette et al., 2019). These neurobiological effects of predation risk-
induced fear on black-capped chickadees resemble post-traumatic stress dis-
order (PTSD) in humans, which supplements the conclusions and assertions
made by the growing body of literature researching the link between pre-
dation risk-induced stress and possible PTSD-like responses by non-human
animals (Adamec et al., 2008; Cantor, 2009; Campos et al., 2013; Clinchy
et al., 2013; Zoladz and Diamond, 2016; Zanette et al., 2019). These endur-
ing memories suggest adaptive changes, as the respective CNS mechanisms
allow prey to prioritize survival over other needs.

Like many prey species, the common fruit fly (Drosophila melanogaster)
exhibits a strong response to the visual and chemical cues of predators (de
la Flor et al., 2017; Krams et al., 2021a,b). Exposure to these predation
cues during development leads to several adaptive changes: fruit flies are
smaller at full maturation, they are faster in the negative geotaxis tests, their
bodies contain higher concentrations of nitrogen (indicating more muscles
and smaller amounts of lipid reserves), and their movements become more
erratic and unpredictable (Krams et al., 2016; Krama et al., 2023a; Popovs et
al., 2024). These morphological and behavioural changes might be caused
by adaptive changes in fruit flies triggered by predator stress, leading to
increased survival under direct predation by spiders (Krama et al., 2023b).
The metabolic requirements of such changes entail a shift towards systemic
use of lipids as fuel and a downregulation of glucose utilization (Krama et al.,
2023b). This could be caused by a need to reserve glucose for neural tissue,
where it is used for generation of LTM to better deal with these conditions
in the future. In fact, enhanced LTM is induced in response to predator stress
in other animals (Forest et al., 2016). However, despite these insights, the
specific effects of predator-induced stress on enhancing LTM in fruit flies
have not been directly explored.

In this study, we examined whether exposure to predators during enhances
LTM in male fruit flies when they encounter spiders as adults. Stress is
a significant factor in the development of human metabolic and mental
health problems, such as type-2 diabetes, which is known to impair memory
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(Arvanitakis et al., 2020). Severe stress from trauma like war, sexual assault,
or aggression can generate PTSD in humans, and PTSD often has a cascade
of affective, cognitive, and neural impacts on those suffering from it (Lik-
itlersuang et al., 2023; Womersley et al., 2023). Recently there have been
calls for researchers to make stronger experimental connections between
such stressors and memory impairments (Dunsmoor et al., 2022). Since a
recent study found that fruit flies grown with predators develop a diabetes-
like metabolic phenotype (Krama et al., 2023a), we hypothesized that stress
induced by predators might conversely supplement LTM in stressed fruit
flies.

2. Materials and methods

2.1. Drosophila husbandry and predator exposure

The stock animals were maintained in a laboratory at the University of
Tennessee, Knoxville, at 24 ± 1°C under a constant 12:12 hour (h) light–
dark cycle. The wild strain Oregon-R-modENCODE (No. 25211) of D.
melanogaster was used as the focal prey species, and wild adult (c. six
months old) male jumping spiders (Phidippus apacheanus) were used as
predators. This spider species is distributed across much of the US and
depredates both larvae and adult flies (Edwards, 2004). The fruit flies were
obtained from the Bloomington Drosophila Stock Center (Indiana, US). The
spiders were collected in Florida, US, and they were received from the sup-
plier phids.net. This spider is easy to house and breed in captivity (Krams et
al., 2016).

In the predator exposure group, spiders were added to the growth cham-
bers of flies (N = 400) (Plexiglas jars, 10 cm height × 12 cm diameter) on
the day of their imaginal eclosion (Krams et al., 2016). The predators were
separated from the flies with a mesh net in the middle of each fruit fly jar. We
provided spiders with fresh water and 5–10 fruit flies every day. While flies
could see and smell the predators, spiders could not kill the flies. Predators
and prey were kept together until the fifth day of the fly adult stage, when we
started memory conditioning of fruit flies. Control group flies experienced
the same conditions and stimuli in their growth chambers as predator group
flies, but with no spiders added. In this study, we used only males because
a large portion of female bodies is composed of eggs and reproductive tis-
sues. This can affect stress-related metabolic processes and possibly memory
formation (Burggren, 2017).

http://phids.net
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2.2. Conditioning and memory tests

Conditioning (i.e., associative learning) and memory tests were performed
following the methods of previous studies (Mery and Kawecki, 2005). We
used samples of 10 adult flies, raised in standard conditions and aged 6–7
days. The conditioning procedure consisted of 5 training sessions separated
by 20-min intervals (i.e., spaced protocol). During associative condition-
ing, flies were first exposed for 30 s to one odorant simultaneously with a
mechanical shock of 2000 rpm vibration pulses of 1 s duration, delivered
every 5 s by a test tube shaker (Heidolph Instruments, Schwabach, Ger-
many). This period was followed by a 60 s rest period (no odour and no
shock). Then, for 30 s, another odorant was delivered without shock. The
training session ended with a second rest period of 60 s. 3-Octanol and 4-
methylcyclohexanol (both 0.6 ml/l paraffin) were used as odorants (Mery
and Kawecki, 2005). Each fly group was chosen to be conditioned randomly
to either 3-octanol or 4-methylcyclohexanol. The results of the final trial (the
fifth out of 5 trials, referred to as the “conditioning” group hereafter) of asso-
ciative conditioning were used to characterize the learning of fruit flies.

We tested 1 h (short-term memory, STM) and 24 h memory (LTM) reten-
tion after associative conditioning (Tully et al., 1994; Margulies et al., 2005;
Wang et al., 2023). During the memory retention assay, the flies walked to
the choice point of a T-maze, in which they were exposed to two converging
currents of air, one carrying 3-octanol and the other 4-methylcyclohexanol,
and then allowed to choose between the two odours for 60 s. The memory
score was calculated as the difference in the proportion of individuals choos-
ing 3-octanol between flies conditioned to avoid 4-methylcyclohexanol and
those conditioned to avoid 3-octanol. We conditioned 400 fruit flies in the
predator exposure group (N = 200 STM flies, N = 200 LTM flies) and 400
fruit flies in the control group (N = 200 STM flies, N = 200 LTM flies); 800
flies in total. Each fly was used only for one memory test.

2.3. Statistics

We conducted the Shapiro–Wilk test to assess the normality of our data dis-
tribution. Since the p-value was <0.05 for all samples, we concluded that
the data in all samples were not normally distributed, thereby justifying the
use of a non-parametric approach. We ran Friedman’s tests (corrected for
ties) to assess the differences in memory retention percentage at three time
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points (0 h ‘conditioning’; 1 h ‘STM’; and 24 h ‘LTM’) in predator expo-
sure treatment and control groups of fruit flies. Wilcoxon pairwise tests with
Bonferroni correction were used for post hoc analysis. We also compared the
differences in memory retention percentage between predator treatment and
control groups of fruit flies at three time points using Mann-Whitney tests
with Bonferroni correction for multiple comparisons. Results are shown as
median, min–max, and differences were considered significant if p < 0.05.
The types of odours were excluded as potential factors in our models because
the substances (3-octanol and 4-methylcyclohexanol) were randomly cho-
sen during trials. Analyses were performed using Past 3.26 (Hammer et al.,
2001).

3. Results

Mean memory retention (%) differed significantly between time points in
control (Friedman test: χ2 (tie corrected) = 38.68, df = 2, p < 0.0001)
and treatment fruit flies (Friedman test: χ2 (tie corrected) = 38.68, df = 2,
p < 0.0001). Memory retention (%) diminished within both control (median,
min–max; after the conditioning trial: 100%, 80–100%; STM: 80%, 80–90%;
LTM: 20%, 10–30%; Wilcoxon tests: all p < 0.001) and predator treatment
(after the conditioning trial: 100%, 80–100%; STM: 80% 80–90%; LTM:
35%, 30–40%; Wilcoxon tests: all p < 0.001) groups. It did not differ sig-
nificantly between control and predator treatment groups after the condition-
ing trial and STM (Mann–Whitney tests: p = 1.0 and 0.535, respectively)
(Figure 1). However, fruit flies from the predator treatment group had sig-
nificantly higher LTM retention (%) than the flies from the control group
(Mann–Whitney test: p < 0.0001), indicating lower memory decay in the
predator treatment group (Figure 1).

4. Discussion

Our results show that the LTM retention of fruit flies in the predator treat-
ment experimental group was superior to that of control flies, as the memory
decay during 24 h was less in the flies exposed to spider presence. Enhanced
LTM can offer a significant advantage in predator-rich environments, aid-
ing in survival. An improved memory can help fruit flies better remember
where predators are encountered most often to avoid visiting such places.
A suggested biochemical mechanism is the release of glucocorticoids, or
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Figure 1. Differences between non-predator (control) and predator (spider) exposure treat-
ment groups in their learning after the final conditioning trial (conditioning), short-term
memory (STM), and long-term memory (LTM). Squares indicate medians, small circles
individual data points; N = 20 for each treatment group. The p-values between respective
treatment groups are presented. In both non-predator and predator groups, memory retention
in the conditioning group was significantly greater than in STM, and memory retention in
STM was significantly greater than in LTM.

their fruit fly analogue ecdysone, which can stimulate memory consolida-
tion and LTM formation (Ishimoto et al., 2009, 2013; de Quervain et al.,
2019). Another stress mechanism is octopamine release, as it is produced
during stress (Adamo, 2022), and blocking octopamine receptors results in
impaired learning (Segi et al., 2023).

To perform flight-or-fight responses under predation risk, body proteins
are catabolized to produce glucose (Christianson and Creel, 2009; Hawlena
and Schmitz, 2010a,b). However, predator presence is also known to induce
a diabetes-like biochemical phenotype formation in fruit flies (Krama et al.,
2023b). This is contradictory as it prevents glucose from being used as the
main energy source to fuel stress responses. Importantly, while human dia-
betics cannot use glucose for their systemic metabolism, glucose remains the
main fuel for the brain tissues (Li et al., 2023). Brain activity and especially
memory formation are costly processes, as memory requires expression of
specific genes (Hoedjes et al., 2015), extensive protein synthesis and expan-
sion of synaptic connections (Burns et al., 2011; Wu et al., 2017). Thus,
glucose might be conserved for neural tissue to increase its activity, includ-
ing functions such as learning and memory (Wirth, 2015). It has been shown
that elevated carbohydrate uptake in humans and in non-human animals,
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including Drosophila, has an apparent memory-enhancing effect (Green-
wood and Winocur, 2001; Lu et al., 2012; Plaçais et al., 2013; Totani et
al, 2020; Chatterjee and Perrimon, 2021). Therefore, shunting glucose away
from catabolically active tissues like muscle to be consumed by neurons
could be an adaptation for facilitating memory creation and priming neuro-
biological responses for stressful conditions, such as predator presence. This
would explain the clearly adaptive effect of flies with diabetes-like biochem-
ical phenotypes having greater survival rates than flies that can use glucose
for their systemic metabolism (Krama et al., 2023b; Popovs et al., 2024).

Long-lasting predator-induced stress is one of the stressors used in animal
model studies of human PTSD (Adamec et al., 2008; Cantor, 2009; Campos
et al., 2013; Clinchy et al., 2013; Zoladz and Diamond, 2016; Zanette et
al., 2019). Our results demonstrate enhanced LTM in response to predator
stress in a potentially disease-associated biochemical phenotype (Krama et
al., 2023b), adding weight to the argument that the adaptive nature of this
negative metabolic effect, stemming from shifts in energy source use and
metabolism, is tied to memory formation. Our results also suggest that fruit
flies are valuable for studying PTSD-like effects in animals due to the relative
ease of studying the biological underpinnings of memory formation and
subsequent behavioural consequences with them as model organisms.

Research indicates that long-term memory (LTM) formation is a com-
plex process influenced by stress through the interaction of adrenergic agents
and glucocorticoids released during stressful events. These hormones impact
neural networks essential for memory generation (Roozendaal, 2002; Sandi
and Pinelo-Nava, 2007; Goldfarb, 2019). Studies have confirmed that stress
contributes to memory formation when DNA damage and inflammation are
caused in hippocampal neurons, leading to long-lasting memories in mice
(Jovasevic et al., 2024). Similarly, stress from predation risk induces compa-
rable neural changes (Kotrschal et al., 2017; Mitra, 2019). Predator-induced
stress offers a valuable model for studying LTM formation in mice and fruit
flies, enhancing our understanding of the relationship between stress and
memory at the neuroanatomical level and beyond.

It is known that Drosophila strains vary in regard to baseline neurotrans-
mitter levels (Krams et al., 2021a,b) and, thus, baseline behavioural state
(Maloney, 2021). For instance, white-eyed (w1118) mutants have greatly
reduced serotonin levels (Borycz et al., 2008) and dopaminergic activity
(Krama et al., 2023a) when compared to red-eyed strains. Stemming from
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this discrepancy, white-eyed flies tend to have deficits in courtship behaviour
(Lee et al., 2008), aggression (Hoyer et al., 2008), learning (Sitaraman
et al., 2008), and locomotion (Xiao and Robertson, 2016). However, they
are observed to display the diabetes-like phenotype as well (Krama et al.,
2023b). Therefore, across fly strains, observing the roles of neurotransmit-
ter level, baseline behaviour, propensity to display diabetes-like phenotypes,
and predator species on stress-induced LTM retention is needed to support a
robust link between neurophysiology and behaviour.

Drosophila go through four stages of development: embryonic, larval,
pupal, and adult (Reaume and Sokolowski, 2006). Therefore, it is pertinent
to examine fruit fly learning retention through the scope of developmental
neuroscience. The pupal stage marks the beginning of metamorphosis in
flies, involving a significant change in the neuronal structuring of the mush-
room body (Truman et al., 2023). This may suggest that larval memories
are not retained in adulthood. Though the mechanism of this developmental
shift in neural circuitry is becoming understood, the resultant outcome of the
shift on memory and behaviour needs to be studied. The associative learn-
ing and memories from olfactory cues that persist in Drosophila mushroom
bodies (Hige, 2018) may still be retained through the metamorphosis reshuf-
fling, as other insect species preferentially reproduce on the same species
of plants where they initially matured (Blommers et al., 2004; Dion et al.,
2019). We suggest observing whether fly larvae exposed to pheromones of
spider species “X” during pre-pupal development are predisposed to natu-
rally avoiding spider species “X” as mature flies when compared to flies not
exposed to spider pheromones. Furthermore, it would be critical to assess
whether fly larvae exposed to predator pheromones during pre-pupal devel-
opment undergo a different mushroom body re-assemblage during metamor-
phosis due to stress, and to research what effect this might have on lifetime
memory and associative learning outcomes, as well as overall fitness.

Interestingly, stress did not significantly affect conditioning and STM in
this experiment. The nervous system in Drosophila utilizes acquisition, con-
solidation, forgetting, and retrieval in memory operations (Davis, 2023), with
unconsolidated memories decaying within 6–8 h and consolidated memories
lasting at least 24 h (Wang et al., 2023). Since LTM formation requires the
synthesis of specific proteins and consolidation processes, and STM does not
require consolidation (Roselli et al., 2021; Davis, 2023), our results might
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suggest that predator-induced stress specifically affects memory-related pro-
tein synthesis and memory consolidation and does not affect STM because
the latter does not rely on consolidation.

We recognize our findings are derived from the effects of one predator’s
presence on the behaviours of one Drosophila strain. Future studies should
aim to evaluate the generalizability of our results to assess whether the
behavioural changes we observed are predator-specific and/or Drosophila
strain-specific. Fruit flies are observed to exhibit predator-specific antipreda-
tor behaviours in response to olfactory cues from multiple species of spiders
which prey upon them (Kempraj et al., 2017). This study shows that forag-
ing rates and escape behaviours varied depending on which spider species’
olfactory cues flies were exposed to, supporting the idea that flies may not
respond to all pressures of predation risk in a uniform behavioural pattern.
Future studies are necessary to explore whether fruit flies can retain specific
predator-related memories, the duration these memories last, and the under-
lying mechanisms of memory formation under predation risk.
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E., Must, A., Rantala, M.J., Krams, I. & Jõers, P. (2023b). A diabetes-like biochemical and
behavioural phenotype of Drosophila induced by predator stress. — Proc. Roy. Society
Lond. B: Biol. Sci. 290: 20230442.

Krams, I., Inwood, S.E., Trakimas, G., Krams, R., Burghardt, G.M., Butler, D.M., Luoto, S. &
Krama, T. (2016). Short-term exposure to predation affects body elemental composition,
climbing speed and survival ability in Drosophila melanogaster. — PeerJ 4: e2314.

Krams, I.A., Krama, T., Krams, R., Trakimas, G., Popovs, S., Jõers, P., Munkevics, M.,
Elferts, D., Rantala, M.J., Makn, a, J. & de Bivort, B.L. (2021a). Serotoninergic modulation
of phototactic variability underpins a bet-hedging strategy in Drosophila melanogaster. —
Front. Behav. Neurosci. 15: 659331.

Krams, R., Krama, T., Munkevics, M., Eichler, S., Butler, D.M., Dobkeviča, L., Jõers, P.,
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