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Abstract. We propose a method for decoding technical vehicle‘s parameters 
(make, model name, body type etc.) from its identification number. Classification 
is done for the entire specification at once, thus utilising the underlying 
dependencies between labels. To achieve the goal, several models were used – 
nearest neighbours, decision tree, extra trees and random forest classifiers.
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1. Introduction

In the 1980s, there was a serious attempt at standardising the identification 
of any particular vehicle by introducing a 17-character vehicle identification 
number (VIN). Despite the goal being standardisation, nowadays, several 
VIN standards are in use. Furthermore, even if some manufacturers use the 
same VIN structure, they are not obligated to encode the same information 
and the same symbols may carry different information. Therefore, VIN 
structure is very inconsistent among manufacturers, and there is no easy 
way to decode it. Although there are plenty of free specification decoder 
tools on the internet, they frequently are applicable to only one make or 
a group of makes (for example, “Volkswagen“ model VINs are encoded 
analogously to those of “Audi“ or “Seat“ because all of these manufacturers 
belong to “Volkswagen Auto Group“). The most frequently used method 
of decoding – a VIN lookup table. Using it one can decode certain 
technical parameters [1]. Although this method can be very accurate, it is 
tremendously inefficient in the long run since each new make comes with 
a new VIN structure. Furthermore, every time a manufacturer updates one 
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of its current models, the lookup table has to be updated as well. Moreover, 
manufacturers are not inclined to freely share their VIN encoding schemas. 
In most cases, owners of a particular make of vehicle collectively analyse 
and figure out the meaning of the VIN symbols on their cars. Lastly, although 
universal VIN decoder tools exist, most of them are closed-source, so it 
is impossible to figure out how they work or suggest any improvements. 
This research paper offers an alternative – VIN decoding using machine 
learning methods. To achieve the goal, multi-label machine learning models 
were used since they are capable of utilising the underlying correlations 
and dependencies between the technical parameters, thus enabling the 
model to make more accurate predictions and avoid impossible parameter 
combinations. Conducting the literature analysis, we did not encounter 
articles considering the decoding of VINs. Therefore, the research direction 
pursued by us exhibits substantial novelty. 

The rest of the paper is organized as follows: Section 2 describes the 
data, Section 3 focuses on the methodology, Section 4 describes the results; 
the concluding section is devoted to the summary.

2. Data

The VIN of an automobile is an international coding standard that appeared 
in the 1980s. It is a collection of 17 letters and numbers, consisting of 
three obligatory parts, in which the encoding of the manufacturer, model 
and serial number is mandatory. The manufacturer is identified by the 
first three VIN symbols, often referred to as WMI (world manufacturer 
identifier). Symbols in positions 4-8 define the model and its specification. 
However, this requirement is enforced very loosely: some manufacturers 
only encode the model name, whereas others encode everything from the 
model name to a specific engine. The standards of the European Union (and 
the majority of the rest of the world) and North America differ as well. From 
the 9th symbol onwards European manufacturers must encode the VIN in 
such a manner that it becomes unique, i.e. encode a serial number and 
(sometimes) encode more specific technical data. Meanwhile, the North 
American VINs’ ninth symbol is used as a check symbol – ensuring the rest 
of the VIN is entered correctly; symbols 10-11 contain the model year and 
the plant in which the vehicle was manufactured; finally, from the 12th 
symbol onwards follows the serial number of the vehicle. 
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Data from various European national automotive registries containing 
the VINs and technical specifications of automobiles was used in this 
research paper. The manufacturers‘ list included “Toyota”, “Lexus”, “Seat”, 
“Cupra”, “Mercedes-Benz” and “BMW”. The technical parameters chosen 
for classification training were the ones that were present in all datasets: 
make, model name, model generation code, body type, fuel type, engine 
displacement and engine power. Some labels, especially those of model 
names and generation codes, were tremendously rare. The direct cause 
of this was an inherent data disbalance in the dataset. The usual methods 
of solving this issue (for example, data augmentation) were inapplicable, 
because the data contained many cases where insignificant differences 
between VIN symbols (for example, different serial numbers) resulted in 
different label sets. Therefore, the best way to resolve the data disbalance 
was to create models that are insensitive to outliers and are able to 
accurately classify even rare data values. 

One unit of measurement was picked for each measurable technical 
parameter. For example, the engine displacement values in some sources 
were in cubic centimetres, whereas in others – in litres. Because cubic 
centimetres are a more accurate unit of measurement, they were chosen as 
the unit for engine displacement. Records having displacement in litres were 
converted into cubic centimetres. In case of unsuccessful conversion, the 
data row was dropped. Kilowatts were selected as the unit of measurement 
for engine power.

Finally, we had to decide how to cope with the rare data instances. As 
mentioned before, data synthesis was too risky because this method might 
mislabel generated VINs, thus confusing the models that will be trained on 
the data. Another frequently utilised method – dataset size reduction to 
the least popular label – was also inapplicable. This method reduces the 
dataset by finding the least common label and removing values of all other 
labels until their frequency is the same as of this label. However, because 
this problem involves thousands of possible label vector values, leaving 
just a few of each value would very likely result in underfitted models. 
Furthermore, these rare VIN values reflect an essential characteristic of 
the population. Namely, these are either low-production models or very 
old (at least 30 years old) automobiles. Low-production model VINs are 
tremendously difficult to find, because any single one of the data sources 
used in this research (mainly European national automobile registries) 
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could contain a handful of these VINs at best, and there was insufficient 
time to expand the dataset to include more sources. Old cars, meanwhile, 
provide a similar challenge – 30 years after rolling out of the factory very 
few cars still drive on the road. According to the European Automobile 
Manufacturers‘ Association, the mean age of a car registered in Europe was 
only 12 years old in 2023. Thus, it is entirely likely that vehicles that are 30 
or more years old constitute the absolute minority of all vehicles on the 
road. These challenges left only one solution for the data disbalance – the 
removal of rare values from the dataset. The rarity threshold was set to 10. 
After removing these values, the dataset contained 2,611,885 entries. 

3. Methodology

3.1. Classifiers

These multi-label classifiers were used for modelling: random forest 
classifier (RFC), decision tree classifier (DTC), extra trees classifier (ETC) and 
k-nearest neighbours classifier (MLkNN). 

Multi-label random forest classifer differs from its single-label sibling 
in two ways: 1) different metrics that are used for node splitting during 
training; 2) predictions are made differently [2]. When splitting a node, this 
classifier calculates the value of the splitting criterion for each label vector 
coordinate separately and uses the mean of these values to determine 
splits. This manner of splitting ensures that the tree is optimised to best 
predict label vectors rather than separate label vector coordinates [3]. 
Because the leaves are vectors, the prediction of a single tree is a full 
technical specification vector. Whenever the forest is supplied a VIN it has 
never seen before, the prognosis is produced by the process of voting [4].

A decision tree is a special case of a random forest classifier where the 
forest consists of only one tree. The main difference is that the random 
forest trees are fitted by using a randomly sampled dataset, thus creating a 
decorrelated tree ensemble, whereas a decision tree is fitted with the entire 
training dataset.

Extra trees classifiers work analogously to random forest classifiers, but 
they use an additional randomisation that is much stronger than those of 
the previously described classifiers [5].

The multi-label case of the k-nearest neighbours classifier is the same as 
the single-label one. This research paper utilises two search algorithms for 
the MLkNN model – K-D tree and ball tree [6], [7], [8].



    Konferencijos „Lietuvos magistrantų informatikos ir IT tyrimai“ darbai   /  125

3.2. Utilised software tools

The code used for this research paper was written using the “Python“ 
programming language, version 3.10.16. All machine-learning methods 
were coded using the “scikit-learn“ library.

3.3. Model accuracy metrics

The classification accuracy metrics for multi-label models differ significantly 
from those meant for single-label models. We utilised 6 accuracy metrics 
for models’ evaluation and choice. Two of these metrics are meant for 
separate labels’ vector coordinate scoring accuracy evaluation, whereas 
the remaining four are meant to evaluate the accuracy when classifiying 
the entire label vector. First, the base formulae that are used for all the 
aforementioned accuracy metrics need to be defined. The indicator function 
is given by equation 
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The second formula is devoted to a single label vector coordinate class L, whereas the third 

formula is the combined F1macro for a single coordinate of the label vector.  
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here y is a single coordinate column, the amount of coordinates is labeled n and Y is the set of 
all label vectors, represented as a matrix, where one column is for a single technical parameter. So, the 
overall classification accuracy and F1macro are calculated by averaging the metric calculated for each 
separate technical parameter. Finally, two additional accuracy metrics devoted to multi-label models 
were used –  Hamming loss and exact-match score [9]: 
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where N denotes the amount of rows in Y, i.e. the amount of data instances in Y. 

4. Results 
The full dataset was split into training and testing subsets by iterative stratification, which 

prioritises the least common labels and starts by stratifying those first [10]. All models were trained 
with the same dataset (size – 2,089,508 rows), and all accuracy metrics were calculated after the 
trained models classified the same testing dataset (size – 522,377 rows). The optimal parameters for 
the models were chosen by using 10-fold cross-validation on a subset of the full dataset. This subset 
was created by randomly taking 10 of each unique row in the dataset. 

As we can see in the first table, all models reached a quite high overall classification accuracy 
(>0.88). However, looking at the F1macro it becomes quite obvious that not all models were capable of 
classifiying outliers equally well. The extra trees classifier in particular is the worst in this regard with 
only 0.763 F1macro. The exact-match score also separates the extra trees classifier as the worst of the 
bunch – it managed to correctly decode the technical specification of only 59.5% of the testing data 
VINs. Therefore, for further work it is recommended to skip this model and use one of the three 
remaining ones – random forest classifier, decision tree or k-nearest neighbours classifier. For further 
analysis the decision tree was chosen as it beats both of the remaining models with respect to all 
metrics and manages to correctly predict the technical specification of more than 4 out of 5 VINs in the 
testing dataset – an exact-match score of 82.2%.  
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trained models classified the same testing dataset (size – 522,377 rows). The optimal parameters for 
the models were chosen by using 10-fold cross-validation on a subset of the full dataset. This subset 
was created by randomly taking 10 of each unique row in the dataset. 

As we can see in the first table, all models reached a quite high overall classification accuracy 
(>0.88). However, looking at the F1macro it becomes quite obvious that not all models were capable of 
classifiying outliers equally well. The extra trees classifier in particular is the worst in this regard with 
only 0.763 F1macro. The exact-match score also separates the extra trees classifier as the worst of the 
bunch – it managed to correctly decode the technical specification of only 59.5% of the testing data 
VINs. Therefore, for further work it is recommended to skip this model and use one of the three 
remaining ones – random forest classifier, decision tree or k-nearest neighbours classifier. For further 
analysis the decision tree was chosen as it beats both of the remaining models with respect to all 
metrics and manages to correctly predict the technical specification of more than 4 out of 5 VINs in the 
testing dataset – an exact-match score of 82.2%.  
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stratifying those first [10]. All models were trained with the same dataset 
(size – 2,089,508 rows), and all accuracy metrics were calculated after the 
trained models classified the same testing dataset (size – 522,377 rows). 
The optimal parameters for the models were chosen by using 10-fold 
cross-validation on a subset of the full dataset. This subset was created by 
randomly taking 10 of each unique row in the dataset.

As we can see in the first table, all models reached a quite high overall 
classification accuracy (>0.88). However, looking at the F1macro it becomes 
quite obvious that not all models were capable of classifiying outliers 
equally well. The extra trees classifier in particular is the worst in this regard 
with only 0.763 F1macro. The exact-match score also separates the extra 
trees classifier as the worst of the bunch – it managed to correctly decode 
the technical specification of only 59.5% of the testing data VINs. Therefore, 
for further work it is recommended to skip this model and use one of the 
three remaining ones – random forest classifier, decision tree or k-nearest 
neighbours classifier. For further analysis the decision tree was chosen as it 
beats both of the remaining models with respect to all metrics and manages 
to correctly predict the technical specification of more than 4 out of 5 VINs 
in the testing dataset – an exact-match score of 82.2%. 

Table 1. The accuracy metrics for all models.

Classifier Classification 
accuracy F1macro

Exact-match 
score Hamming loss

RFC 0.932 0.870 0.747 0.068
DTC 0.950 0.923 0.822 0.050
ETC 0.884 0.763 0.595 0.116
MLkNN 0.930 0.878 0.764 0.070

The second table shows the accuracy metrics for all technical parameters 
separately when using a decision tree. All parameters are classified with at 
least 85% accuracy. The classification of an automobile‘s make is especially 
accurate – the model only made mistakes for “Seat“ and “Cupra“ VINs 
(99.5% and 91.0% of “Seat“ and “Cupra“ VIN codes respectively had their 
make labeled correctly). The F1macro of the fuel type is quite a bit lower than 
that of other technical parameters – while analysing incorrectly labeled VINs 
it was noticed that the model classified VINs, where fuel type was labeled 
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as “Gasoline/LPG“, poorly – only 10.2% of such VINs had their fuel type 
labeled correctly. All remaining fuel types were classified with at least 87.7% 
accuracy. The lowest individual classification accuracy was achieved with 
engine power, but even this value of 0.859 should be considered impressive, 
given that this information is not even encoded in “Seat“ and “Cupra“ VINs.

Table 2. Accuracy metrics for separate technical parameters using the DTC model.

Technical parameter Classification accuracy F1macro

Make 0.997 0.985

Model name 0.974 0.951

Body type 0.974 0.986

Model generation code 0.994 0.992

Fuel type 0.950 0.802

Engine displacement 0.899 0.866

Engine power 0.859 0.879

5. Conclusions

This research paper proposes several machine-learning methods capable 
of decoding a vehicle‘s technical parameters from its VIN. The optimal 
parameters for the models were selected using a small subsample and 
applying cross-validation to it. The data was split into training and testing 
subsets by stratifying it by the rarest labels, thus ensuring good data 
distribution in these subsets. After all models were fitted, the best results 
were achieved using the decision tree classifier which achieved 95% overall 
classification accuracy and correctly predicted the full technical specification 
of 82.2% VINs in the testing dataset. This model classified all individual 
technical parameters with at least 85.9% accuracy as well as F1macro no 
smaller than 0.802. Future research will consider the improvement of 
classification of rare values as well as finding better ways to separate “Seat“ 
and “Cupra“ VINs.
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