THE 67<sup>TH</sup> INTERNATIONAL

## OPEN READINGS



CONFERENCE FOR STUDENTS OF PHYSICS AND NATURAL SCIENCES

## BOOK OF 2024



VILNIUS UNIVERSITY PRESS

Editors:

Martynas Keršys Rimantas Naina Vincentas Adomaitis Emilijus Maskvytis

Cover and Interior Design:

Goda Grybauskaitė

Vilnius University Press 9 Saulėtekio Av., III Building, LT-10222 Vilnius info@leidykla.vu.lt, www.leidykla.vu.lt/en/ www.knygynas.vu.lt, www.journals.vu.lt

Bibliographic information is available on the Lithuanian Integral Library Information System (LIBIS) portal www.ibiblioteka.lt ISBN 978-609-07-1051-7 (PDF)

© Vilnius University, 2024

## **OPTICAL SECOND HARMONIC GENERATION IN GAN WAVEGUIDE STRUCTURE**

Ignas Dailidėnas<sup>1</sup>, Roland Tomašiūnas<sup>1</sup>

<sup>1</sup>Institute of Photonics and Nanotechnology, Vilnius University ignas.dailidenas@ff.vu.lt\_

To create modal phase matching, most common approach is to use periodic poling structure, which can be troubling to manufacture. Our research investigates attractive all *GaN* based structure with modal phase matching second harmonic generation abilities. Our goal was to grow second-harmonic generator (SHG) *N*-polar  $GaN/Al_2O_3/Ga$ -polar GaN/AlGaN/AlN/Sapphire using metal-organic chemical vapor deposition (MOCVD) technique for Nd : *YAG* lasers. For our theoretical model main variable was width of *GaN* layers. The waveguide structure of 507*nm Ga*-polar and 91*nm N*-polar *GaN* sandwich, separated by 20*nm* atomic layer deposition (ALD) of an  $Al_2O_3$  layer was grown on sapphire and 420*nm AlGaN* epilayer. Structure was tested using endfire method with femtosecond laser and peak conversion was observed around 1080*nm*. In conclusion by changing widths of *GaN* layers, this structure SHG can be used for tunable spectrum second-harmonic generation, but more research and fine tuning is required