

THE 67TH INTERNATIONAL

OPEN READINGS

CONFERENCE FOR STUDENTS OF PHYSICS AND NATURAL SCIENCES

BOOK OF
ABSTRACTS

2024

Vilnius
University

VILNIUS UNIVERSITY PRESS

Editors:

Martynas Keršys
Rimantas Naina
Vincentas Adomaitis
Emilijus Maskvytis

Cover and Interior Design:

Goda Grybauskaitė

Vilnius University Press
9 Saulėtekio Av., III Building, LT-10222 Vilnius
info@leidykla.vu.lt, www.leidykla.vu.lt/en/
www.knygynas.vu.lt, www.journals.vu.lt

Bibliographic information is available
on the Lithuanian Integral Library Information System (LIBIS) portal www.ibiblioteka.lt
ISBN 978-609-07-1051-7 (PDF)

© Vilnius University, 2024

SYNTHESIS AND LUMINESCENT PROPERTIES OF EU-DOPED STRONTIUM CHLORAPATITE

Simona Bendziute¹, Inga Grigoraviciute¹, Arturas Katednikovas¹, Aleksej Zarkov¹

¹Vilnius University

simona.bendziute@chgf.stud.vu.lt

Optical materials with adjustable luminescence attract a lot of attention due to their broad application possibilities. Most commonly Eu²⁺-doped materials are synthesized in reducing atmosphere; nevertheless, some specific inorganic matrices allow for the stabilization of Eu²⁺ oxidation state in air atmosphere. Self-reduction phenomenon is known for the materials such as borates, silicates and phosphates. Overall, phosphate matrices are widely employed for the preparation of lanthanide-activated phosphors. One of the promising hosts is strontium chlorapatite (Sr₅(PO₄)₃Cl). This matrix is able to adopt a variety of isovalent and aliovalent ions including lanthanides.

In this work, Eu-doped Sr₅(PO₄)₃Cl powders with various Eu content were synthesized and analyzed. The optimization of synthesis conditions in terms of temperature, time, precursor-to-flux ratio and Eu concentration was performed. Phase purity and crystal structure of synthesized products were studied by powder X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR). Morphological properties were investigated using scanning electron microscopy (SEM). Luminescent properties were investigated by means of photoluminescence measurements. Excitation and emission spectra of the samples were studied. Temperature-dependent photoluminescence measurements were performed as well.