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ABSTRACT
Although population genomics approaches have been successful in identifying regions of the genome shaped by natural selec-
tion, progress in dissecting the molecular mechanisms of adaptive variants and traits has been slow. By integrating multi-tissue 
(gill, spleen, olfactory rosette, whole eye, and liver) transcriptomes from 16 wild Eurasian perch (Perca fluviatilis) populations 
and previously identified footprints of selection, we prioritise tissues, candidate genes, and putative SNP-gene expression asso-
ciations potentially involved in the humic adaptation of this keystone freshwater fish. Over 5000 differentially expressed genes 
(DEGs) were discovered across the five tissues. A significant excess of outlier SNPs among DEGs found in the gill and spleen 
tissues indicated their potential involvement in humic adaptation. Next, we identified 2640 cis-eQTLs, and observed significant 
enrichment of outliers among expression-associated SNPs (eSNPs) in spleen and olfactory rosette tissues, as well as in all tissues 
combined. Several eQTLs were found in the regions showing the strongest signals of selection, which also harboured DEGs (chr. 
5: PLAGL2, chr. 7: PPP1R8, TCHH). Thus, our integrative analyses enabled us to pinpoint specific organs that potentially play a 
key role in adaptation, prioritise candidate genes under divergent selection based on their expression patterns, and identify links 
between SNPs and transcript abundance variation. We expect that by combining evolutionary and functional genomics perspec-
tives this work provides a practical framework for understanding the genetic basis of phenotypic diversification and adaptation 
across a wide range of species.

1   |   Introduction

An adaptation to natural, human-driven, or novel environ-
ments in metazoans is expected to alter the functioning of 
multiple organ systems, resulting in complex changes scat-
tered across the whole genome that reflect past selection at the 

molecular level. By harnessing the power of high-throughput 
sequencing, population genomic approaches have been highly 
successful in identifying such chromosomal regions shaped 
by divergent selection (e.g., Foote et al. 2016; Hill et al. 2019; 
Karlsson et al. 2014; Marques et al. 2017; Ozerov et al. 2022; 
Roberts Kingman et  al.  2021; Vasemägi et  al.  2023). 
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Nevertheless, further refinement of candidate genes through 
the characterisation of putative causal variants, encompass-
ing their molecular function and effect, has been challenging 
(Cano-Gamez and Trynka  2020; Kitano et  al.  2022; Schaid 
et al. 2018; Watanabe et al. 2017).

Among the common issues faced during selective sweep map-
ping is the size of the selective footprints, which often harbour 
tens to hundreds of genes, making the identification of selection 
targets difficult (Campbell et  al.  2019; Munch et  al.  2016; Reid 
et  al.  2021; Roberts Kingman et  al.  2021; Wilder et  al.  2020). 
Furthermore, most adaptations have a polygenic genetic basis 
(Barghi et al. 2020) and many studies to date highlight the impor-
tance of regulatory rather than coding sequence variation in shap-
ing organismal phenotypes and driving evolutionary processes in 
adaptation (Fraser 2013; Jones et al. 2012; Mack et al. 2023; Ozerov 
et  al.  2022; Verta and Jones  2019; Price et  al.  2022). Regulation 
of gene expression is facilitated by two distinct mechanisms: cis-
regulatory elements, which primarily influence the expression of 
nearby genes, and trans-regulatory factors, which modulate the 
expression of distant genes by interacting with their respective tar-
get sequences (Cowles et al. 2002; Mattioli et al. 2020; Wittkopp 
et al. 2004). Complex interactions of both cis- and trans-regulatory 
factors are involved in the regulation of gene expression and both 
modes can contribute to adaptation in natural populations (Mack 
et al. 2023; Meiklejohn et al. 2014; Verta and Jones 2019). Yet, pre-
dicting the genetic effects on phenotypic variation at different lev-
els of biological organisation has been far from trivial (Amariuta 
et al. 2023; Brown et al. 2023; Fraser 2013; Henriques et al. 2018; 
Hernandez et al. 2011; Maurano et al. 2012; Ozerov et al. 2022; 
Wittkopp and Kalay 2012; Yu et al. 2015). Moreover, phenotypic 
plasticity and evolutionary change are not mutually exclusive pro-
cesses (Falconer and Mackay  1996). This is because both geno-
type and environment interact to shape an individual's phenotype 
(Pfennig 2021), and this interaction is crucial in driving the varia-
tion observed in natural populations. Therefore, to understand the 
molecular mechanisms of gene expression and its regulation, it is 
important to study organisms in their native environment.

A key step in understanding the functional role of genomic regions 
shaped by selection and their phenotypic effects is the integration 
of omics data obtained from multiple levels, such as whole-genome, 
transcriptome, proteome, and metabolome. Recent advancements 
in genomics have allowed the development of several methods 
and databases to refine causative genetic variants and facilitate 
their functional characterisation (Cano-Gamez and Trynka 2020; 
Schaid et al. 2018; Uffelmann et al. 2021). These include a diverse 
set of approaches such as SNP enrichment analyses, fine mapping 
of SNPs associated with specific traits or diseases (e.g., Finucane 
et al. 2015; Hu et al. 2011; Pickrell 2014), co-localisation analyses 
to explore shared genetic signals across related traits (e.g., Hukku 
et al. 2021; Nica et al. 2010; Wallace et al. 2012), and transcriptome-
wide association analysis to assess the impact of genetic vari-
ants on gene expression patterns underlying complex traits and 
diseases (Gamazon et  al.  2015). However, these approaches are 
currently constrained by the resolution of existing functional da-
tabases and their inability to establish causality (Cano-Gamez and 
Trynka  2020; Li and Ritchie  2021). Moreover, most functional 
databases focus on human diseases, thereby reducing the applica-
bility of these methods in an ecological and evolutionary context. 
As a result, the genetic and functional underpinnings of adaptive 

traits for the majority of species remain uncharacterised (Quiver 
and Lachance  2022, but also see Krishnan et  al.  2022; Marand 
et al. 2023).

Recently, we identified hundreds of candidate regions and genes 
associated with adaptation to humic environments in the com-
mon teleost fish, Eurasian perch (Perca fluviatilis) by performing 
whole genome analyses of 32 populations (Ozerov et al. 2022). We 
observed a significant excess of outlier SNPs in putative regulatory 
regions (5′UTR, 3′UTR and 5K downstream of genes), which in-
dicates that variation in gene expression likely plays an important 
role in humic adaptation. In order to refine our understanding of 
key tissues, physiological processes and genes involved in humic 
water adaptation, we set out to integrate information from mul-
tiple genomic datasets. We hypothesised that the excess of outlier 
SNPs in differentially expressed genes (DEGs) between humic and 
clear-water environments in a specific tissue supports the involve-
ment of identified DEGs in humic adaptation. Conversely, signifi-
cant underrepresentation of outlier SNPs within DEGs in certain 
tissues most likely indicates that those tissues play a lesser role in 
adaptation. However, it is essential to keep in mind that the lack 
of enrichment of outliers among DEGs can be caused by various 
factors, including predominance of trans-regulatory changes, mis-
match between the sampled developmental stage of an organism 
and the selection episode or simply lack of power of outlier scans 
or DE analyses. Furthermore, if a single cis-regulatory change con-
trols a large proportion of variation in an adaptive trait (e.g., EDA 
in sticklebacks, O'Brown et al. 2015), genome-wide outliers may 
not show enrichment among DEGs for particular tissue.

To examine the hypotheses described above, we combined data 
consisting of newly generated perch transcriptomes of five sep-
arate tissues (gill, spleen, olfactory rosette, liver, and whole eye) 
from eight humic and eight clear-water lakes, and previously 
identified footprints of selection containing ~10K outlier SNPs 
and > 3000 candidate genes (Ozerov et al. 2022). By screening 
multiple tissues with diverse functions in metabolism, sensory 
perception, immunity, respiration and osmoregulation, and 
by combining the transcriptomic information with genome-
wide signatures of selection (outlier SNPs), we evaluated (i) 
whether this integrative genomics approach could assist in 
highlighting physiological processes most relevant for adapta-
tion. Furthermore, we aimed to (ii) prioritise candidate genes 
under divergent selection based on their expression differences 
in five tissues; (iii) identify putative causative links between 
SNPs and transcript abundance variation by investigating the 
extent of cis-regulation through detection of eQTLs, and (iv) 
evaluate whether regulatory SNPs show enrichment of signa-
tures of selection suggestive of their adaptive role; (v) refine the 
most promising candidate regions and genes by evaluating the 
overlaps among outliers, DEGs and eQTLs.

2   |   Material and Methods

2.1   |   Target Species

The Eurasian perch (P. fluviatilis), is a common fish species 
in the northern latitudes that is able to live in diverse range 
of environments, such as humic and clear-water lakes (van 
Dorst et  al.  2019). Humic lakes exhibit higher concentrations 

 1365294x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

ec.17698 by V
ilnius U

niversity, W
iley O

nline L
ibrary on [20/05/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



3 of 17

of dissolved organic carbon (DOC; Wood et al. 2011), which, in 
turn, contribute to acidification, affecting the ion composition of 
the water (Arvola et al. 2010; Erlandsson et al. 2010). The visual 
environment in humic lakes is essentially “nocturnal” due to 
the absorption of both down-welling short-wavelength light and 
almost all up- or side-welling light (Eloranta 1978; Jones 1992). 
Moreover, the oxygen content in humic lakes sharply decreases 
with depth, leading to hypoxia in deeper areas (Bastviken 
et  al.  2004; Kankaala et  al.  2006). In addition to abiotic fac-
tors, the high concentration of DOC has a drastic effect on the 
whole aquatic community, including bacterial, phyto- and zoo-
plankton, underwater vegetation and fish species (Blanchet 
et al. 2022).

2.2   |   Biological Samples

In total, 29 and 40 perch were sampled in 2018 and 2021, re-
spectively, from 8 humic and 8 clear-water lakes in Estonia 
(Figure  1a, Tables  1, and S1). The selection of lakes for the 
analysis was based on the drastic differences in water colour 
(medianHUMIC = 381.3 mgPt/l; range = 172.5–752.5 mgPt/l vs. 
medianCLEAR = 20.0 mgPt/l; range = 15.0–30.0 mgPt/l, Mann–
Whitney test p < 0.001) and DOC (medianHUMIC = 44.40 mg/L; 
range = 17.41–66.10 mg/L vs. medianCLEAR = 10.7 mg/L; 
range = 5.27–16.78 mg/L, Mann–Whitney test p < 0.001, 
Figure 1b). The indexes of water colour and DOC for the studied 
lakes were retrieved from Ozerov et al.  (2022) and Noreikiene 
et  al.  (2020). Fish were caught using a gillnet, beach seine or 
rod. To account for potential differences in sex, we aimed to 
sample one male and one female from each studied lake. The 
fish were euthanised by an overdose of ethyl 3-aminobenzoate 
methanesulfonate (MS-222; in 2018) or benzocaine (in 2021) be-
fore sampling. Thereafter, total length (to the nearest mm) was 
measured, and sex was determined by visual examination of the 
gonads. In 2018, samples of the olfactory rosette were immedi-
ately snap frozen in liquid nitrogen. In 2021, the tissue samples 
of the whole eye, gill, spleen, and liver were placed on dry ice. 
By screening multiple tissues with diverse functions (gills, as 
a major hub for respiration and osmoregulation; spleen, as an 
important reservoir for red blood cells and an organ playing an 
essential role in protecting the body from pathogens; olfactory 
rosette, as a chemoreceptor organ, which detects and responds 
to chemical cues in the water; eye, as an organ responsible for 
the sense of vision; and liver, playing a central role in metab-
olism), we aimed to identify physiological processes most rel-
evant to adaptation. The samples were transferred to a −80°C 
freezer on the day of sampling and were stored there until RNA 
extraction.

The collection of samples was conducted in accordance with 
national legislation based on permits issued by the Estonian 
Ministry of Environment (no. 10-1/21/18 and 10-1/18/29). The 
requirements outlined in the Annex III (Requirements for es-
tablishments and for the care and accommodation of animals) 
and Annex IV (Methods of killing animals) Section B point 11 
of the “Directive 2010/63/EU of the European parliament and 
of the council of 22 September 2010 on the protection of animals 
used for scientific purposes” were fully met. The authors have 
also followed the principles of the 3Rs (Replacement, Reduction, 
and Refinement).

2.3   |   RNA Extraction, Library Preparation 
and Sequencing

Before RNA isolation, larger tissues (whole eye, liver, and gill) 
were mechanically crushed in liquid nitrogen using a custom-
made metal crusher to produce a homogenised powder. Small 
pieces of the spleen and whole olfactory rosette were homo-
genised using a Retsch MM400 mill (Retsch). Total RNA was 
extracted from the homogenised frozen tissues (whole eye, 
gill, spleen, liver and olfactory bulb; ~ 15–20 mg each) using 
the NucleoSpin RNA extraction kit (MACHEREY-NAGEL). 
The quality of the total RNA sample was evaluated using the 
TapeStation 2200 (Agilent) electrophoresis and the sample con-
centration was measured with a Nanodrop ND-2000 (Thermo 
Scientific).

The preparation of RNA libraries and sequencing was per-
formed at Novogene, located at the Cambridge Science Park 
(Cambridge, United Kingdom). Libraries were prepared from 
total RNA by polyA capture with magnetic beads, followed 
by reverse transcription to produce cDNA and second strand 
cDNA synthesis according to the Novogene NGS RNA Library 
Prep Set (PT042) instructions (Novogene). After fragmenta-
tion and end repair, poly-A tail attachment, adapter ligation, 
size selection, amplification, and purification, the libraries 
were sequenced (2 × 150 bp design) using the NovaSeq 6000 
(Illumina) instrument.

2.4   |   Read Quality Control and Mapping

Sequencing data were sorted by individuals and indexing adapt-
ers were removed at the sequencing facility. The quality of the 
reads was checked using FastQC ver. 0.11.8 (Andrews  2017). 
Removal of Illumina adapters, short (< 50 bp) and low quality 
(average quality score < 25) reads was performed with fastp ver. 
0.20 (Chen et al. 2018) using the following parameters: -g -w 12 
-r -W 5 -M 25 -trim_front1 9 -trim_front2 9 -trim_tail1 2 -trim_
tail2 2 -l 50. Further, the filtered sequence reads were mapped 
to the P. fluviatilis reference genome [(Roques et  al.  2020) 
GCA_010015445.1] using hisat2 ver. 2.1.0 (Kim et al. 2015, 2019) 
with default parameters. Only reads with the best match to their 
mapped location in the reference genome (primary aligned) 
were extracted to bam-files using samtools ver. 1.10 (Li 2011; -F 
260) for subsequent analyses.

2.5   |   Differential Expression (DE) Analysis

The read counting was performed for exonic gene regions in 
a non-strand-specific manner with the GenomicFeatures ver. 
1.46.5 and GenomicAlignments ver. 1.30.0 packages (Lawrence 
et al. 2013) in R 4.2.2 (R Core Team 2021) using a GFF file con-
taining the P. fluviatilis reference genome annotation records. 
To remove rare transcripts, genes with fewer than 10 raw read 
counts per tissue in more than 15 individuals were excluded 
from further analyses.

A Poisson distance matrix was estimated using read counts sep-
arately for each tissue with the PoissonDistance function im-
plemented in the PoiClaClu package ver. 1.0.2.1 (Witten 2011) 
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and plotted using classical multidimensional scaling (MDS) 
with the cmdscale function from the stats package ver. 4.1.3 
in R. In total, five samples (one from the gill, one from the 
spleen and three from the olfactory rosette) were visually de-
tected as outliers on the MDS plots and were excluded from 
further analyses (Table  S1 and Figure  S1). Fold changes (FC) 
in transcript abundance between two groups of perch (from 
humic vs. clear-water environment), controlled for geographi-
cal location (geographical latitude), fish size (total length) and 
sex (design = ~Lat.log10 + TL.log10 + Sex + Type), were deter-
mined for each tissue with the DEseq2 package ver. 1.34.0 (Love 
et al. 2014) in R. We also tested an alternative model where pop-
ulation structure was taken into account by adding the two first 
PCA scores (normalised, see below) as covariates to the model. 

However, irrespective of the model the main findings were sim-
ilar to one another and therefore, we present here the results 
from the first model only. The latitude and total length values 
were log10-normalised before the analyses. All genes with an 
adjusted p-value ≤ 0.05 (Benjamini and Hochberg  1995) were 
considered to be differentially expressed (DEG) between humic 
and clear-water perch.

2.6   |   Enrichment of Footprints of Selection 
Among DEGs

Outlier SNPs potentially shaped by natural selection driven 
by humic substances were previously identified by Ozerov 

FIGURE 1    |    (a) Map indicating sampling locations; perch populations from clear-water and humic lakes are presented as cricles filled white and 
black, respectively. (b) Box-plots showing the level of dissolved organic matter content (DOC) and water colour (log10-transformed) between 8 hu-
mic and 8 clear-water lakes (p-values of non-parametric Mann–Whitney U-test are presented). Horizontal line, rectangle, and whiskers indicate the 
median, 25th and 75th quartiles, and the non-outlier range, respectively. (c) PCA plot showing relationships among perch populations; populations 
form clear-water and humic lakes are presented as circles filled white and black, respectively. (d) Dot plot showing relationships between genetic 
(Nei 1978) and geographic distances.
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et al. (2022) using both population divergence and two genotype-
environment association methods (redundancy analysis (RDA) 
and latent factor mixed model (LFMM)). In short, the genetic 
divergence of each SNP locus was estimated as the mean abso-
lute allele frequency difference (δ) between humic and clear-
water lakes. Candidate SNPs were identified as SNPs with a δ 
value that was higher than 2.5 SD (standard deviations) from 
the mean δ. RDA and LFMM were performed to test the associ-
ation of dissolved organic carbon (DOC) and water colour with 
the estimated allele frequencies. The final set of candidate SNPs 
potentially under natural selection included 10,245 outlier SNPs, 
which were identified using at least two methods.

To test if DEGs and nearby gene regions were enriched for 
outlier SNPs (within 5K up- and 5K downstream) poten-
tially shaped by natural selection driven by humic substances 
(Ozerov et al. 2022), permutation tests were performed using 
a custom R script for each tissue separately. Specifically, per-
mutation tests compared whether the frequency of outlier 
SNPs in DEGs was significantly different from that of outlier 
SNPs in non-DEGs using 1000 randomly generated subsets 
without replacement. To test the excess or deficiency of outlier 
SNPs within DEGs, we randomly shuffled the outlier identity 
among 810,591 SNPs and evaluated the frequency of permuted 
outliers within DEGs. This type of randomisation incorpo-
rates the differences in SNP density among genes, providing 
robust support for the association between outlier SNPs and 
differentially expressed genes.

Further, to test for an excess or deficiency of outlier SNPs 
among DEGs for each annotation category, i.e., intronic, syn-
onymous, non-synonymous, 3′UTR, 5′UTR, 5K up- and 5K 
downstream (Ozerov et al. 2022), the frequency of candidate 
SNPs located in DEGs was compared with that of candidate 
SNPs located in all expressed genes in a tissue for each anno-
tation category using chi-squared tests with the stats package 
ver. 4.1.3 in R.

2.7   |   Identification of SNPs From RNA-Seq Data

Aligned bam files generated from RNA-seq reads of four tis-
sues (whole eye, gill, spleen, and liver) were first merged by 
individual. Genomic variants in the olfactory rosette samples 
were called separately. Two alternative pipelines were used 
to identify genomic variants following similar procedures 
as in Ozerov et  al.  (2022). First, bcftools ver. 1.16 (Li  2011) 
mpileup was applied to the locally realigned and sorted BAM 
files to generate genotype likelihoods with the following SNP 
calling. Second, the GATK ver. 4.3.0.0 (McKenna et al. 2010) 
pipeline was applied to call variants using the same BAM 
files with the following import of single-sample GVCF files 
into GenomicsDB using GenomicsDBImport, and final call-
ing of consensus genotypes with GenotypeGVCFs using the 
same parameters as in Ozerov et al. (2022). Further, genomic 
variants generated by the two pipelines were filtered using 
vcftools ver. 0.1.17 (Danecek et al. 2011) applying the follow-
ing parameters: (i) minimum mean sequencing depth (d) was 
set to 10; (ii) the consensus quality was ≥ 30; (iii) only bi-allelic 
sites were included; (iv) a variant had at least two copies of an 
allele; (v) a variant did not occur in repetitive genomic regions 

(vi) minor allele frequency (MAF) was 0.05, and (vii) no 
missing data were allowed. After applying the quality filters, 
bcftools and gatk pipelines resulted in generation of 55,854 
and 118,787 SNPs among the four tissues samples and 67,724 
of 62,378 SNPs among olfactory rosette samples, respectively. 
Finally, to ensure high quality and reliability of the data, 
only the variants consistently called by both pipelines were 
retained: 44,259 and 48,982 SNPs among the four tissues and 
among the olfactory rosette samples, respectively.

To estimate genetic structure of the 16 studied populations prin-
cipal component analysis was performed using 44,259 SNPs 
based on the four tissue samples with the dudi.pca function 
of the ade4 ver. 1.7-22 package (Dray and Dufour  2007) in R. 
Genetic relationship among populations was estimated as Nei's 
genetic distances (Nei 1978) using the nei.dist function from the 
poppr ver. 2.9.6. package (Kamvar et al. 2014) in R. Next, the re-
lationships between genetic and geographic distances, estimated 
as the shorter pairwise distance between lakes using the distm 
function of the geosphere package ver. 1.5-19 (Hijmans  2023), 
were evaluated. In addition, pairwise FST was calculated with 
the pairwise.fstb function of the PopGenReport ver. 3.1 package 
(Adamack and Gruber 2014) in R.

2.8   |   Identification of cis-Variants Associated With 
Transcript Abundance

The association between each SNP and each gene expression level 
was tested with the R package MatrixEQTL (Shabalin  2012). 
The associations were tested separately for each tissue and 
only the genotypes and expressed genes of the same individuals 
within each tissue were included. SNPs with MAF < 0.10 and 
having only heterozygous genotypes were excluded. eQTLs were 
identified by modelling the effect of genotype as additive linear 
(least squares model), accounting for sex, environment type, 
and the first two normalised PCA scores for population struc-
ture, which were included as covariates in the model. Given that 
the cis-eQTLs are mostly centred around the transcribed region, 
and to reduce the burden of multiple testing, cis-regulatory re-
gion was set as the maximum distance for each gene that span-
ning 50 Kb upstream and downstream from the gene start and 
end positions, respectively (Peters et al. 2016; Powell et al. 2012; 
Stranger et al. 2007; Veyrieras et al. 2008). Gene-SNP associa-
tions were considered significant at FDR ≤ 0.05 (Benjamini and 
Hochberg  1995). To test for significant enrichment of outliers 
among identified eSNPs (i.e., SNPs that are significantly asso-
ciated with gene expression), we used a 2 × 2 chi-square test. 
The test compares outlier and nonoutlier count from Ozerov 
et al. (2022) with the outlier and nonoutlier count among eSNPs 
using the Yates (Yates 1934) correction.

2.9   |   Gene Ontology (GO) Analysis

Human orthologue gene symbols were searched using complete 
gene names in the NCBI database. GO enrichment analysis of 
DEGs against all orthologous genes expressed in each tissue as 
a background was performed using the gprofiler package ver. 
0.2.1 (Kolberg et al. 2020; Raudvere et al. 2019) in R. GO terms 
with a g:SCS threshold ≤ 0.05 were considered significant.
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3   |   Results

3.1   |   Relationships Among Tissues and Samples

The number of raw reads ranged from 35.1 to 68.8 M for each 
tissue sample, totalling 7155.1 M, and an average of 86.4% of the 
raw reads passed QC and were further mapped to the reference 
genome. In total, from 15,020 to 20,189 genes per tissue were 
expressed out of 24,326 annotated protein-coding genes in perch 
after applying QC filters (Table 2). A clear separation among tis-
sues was evident on a MDS plot based on 146 samples and all 
expressed genes (Figure 2), with much larger among-tissue dif-
ferences compared to within-tissue differences between humic 
and clear-water perch. The separation between humic and clear-
water perch was more pronounced for the gill, spleen and olfac-
tory rosette samples (Figure 2), whereas the whole eye and liver 
showed less extensive expression differences between the two 
habitats (Figure  2). In total, 13,633 genes were commonly ex-
pressed in all five tissues, whereas expression of a smaller num-
ber of genes (from 143 genes in spleen to 1261 genes in eye) was 
tissue-specific (Figure S2).

The studied populations showed strong genetic divergence from 
each other (pairwise FST = 0.07–0.43; Table  S2), reflecting the 
importance of isolation and genetic drift in shaping population 
structure. We did not observe pronounced genetic clustering on 
the PCA plot; the populations did not group according to the en-
vironment (Figure 1c). Additionally, there was no evidence for 
isolation by distance (r = −0.007, p = 0.939; Figure 1d).

3.2   |   Differential Expression in Five Tissues

In total, 5598 genes were differentially expressed (padj ≤ 0.05) 
between perch from humic and clear-water environment across 
all tissues (Figure  3, Tables  2 and S3). The largest number of 
DEGs was observed in gill (n = 4311), where 1996 (46.3%) were 
up-regulated and 2315 (53.7%) were down-regulated in humic 
perch (Table  2), indicating that differences in water chemis-
try, oxygen content and/or pathogen and parasite community 
are likely important factors shaping gene expression variation 
between humic and clear-water environment. The number of 
DEGs (n = 891) in spleen was nearly five times lower than that in 
gill, with 314 (35.2%) and 577 (64.8%) genes being up- and down-
regulated in humic perch, respectively. In the olfactory rosette 
705 DEGs were detected, of which 259 (36.7%) were up- and 363 
(63.3%) were down-regulated in humic perch. In the eye 557 
DEGs were detected, among them 194 (34.8%) were up- and 363 
(65.2%) down-regulated in humic perch. The lowest number of 
DEGs was observed in liver (n = 241), of which 144 (59.8%) and 97 
(42.2%) were up- and down-regulated, respectively, in humic en-
vironment. In general, the number of down-regulated DEGs sig-
nificantly exceeded that of up-regulated in humic environment 
(chi-squared test: χ2 = 11.74–39.39, p = 1.0 × 10−5—6.1 × 10−4) 
in all the tissues, except for the liver, where the number of up-
regulated DEGs was significantly higher (chi-squared test: 
χ2 = 4.62, p = 3.1 × 10−2).

In total, 948 (16.9%) DEGs were found in two or more tis-
sues (Figure  3 and Table  S3). Eight common DEGs were 
down-regulated in four tissues of humic perch (gills, spleen, T
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olfactory rosette and eye: CRTAC1, SOCS1, TTN, KLHL6, 
LCP1, MR1, IRF1, PLD4; Figure 3 and Table S3). One common 
DEG (IFITM3) was down-regulated in the gills, spleen and 
olfactory rosette in humic environment, whereas it was up-
regulated in the liver. In addition, 1 to 64 DEGs overlapped in 
three studied tissues (Figure 3 and Table S3). Among the tis-
sue pairs, the largest overlap of DEGs was observed between 
gill and spleen (n = 525), followed by gill and eye (n = 237) and 
gill and olfactory rosette (n = 184). None of the DEGs were 
common for all five tissues.

3.3   |   Functional Enrichment Analysis of DEGs

Gene Ontology (GO) analysis revealed enrichment of multi-
ple GO terms for DEGs in all the studied tissues. The highest 
number of enriched GO terms was observed in gill: 288 biolog-
ical process (BP), 42 cellular component (CC) and 17 molecu-
lar function (MF) GO terms (Table S4). The most significant 
terms included signal transduction (BP GO:0007165) and cell 
adhesion (BP GO:0007155), cell periphery (CC GO:0071944), 
plasma membrane (CC GO:0005886), signalling receptor bind-
ing (MF GO:0005102) and signalling receptor activity (MF 
GO:0038023). In the olfactory rosette, DEGs were enriched for 
76 BP, 17 CC and 5 MF GO terms, of which the most significant 
included immune response (BP GO:0006955), immune system 
process (BP GO:0002376), cell periphery (CC GO:0071944), 

plasma membrane (CC GO:0005886), signalling receptor 
binding (MF GO:0005102) and immune receptor activity (MF 
GO:0140375). A similar number of enriched GO terms were 
observed for DEGs in the liver (75 BP, 10 CC and 1 MF) and 
spleen (63 BP, 10 CC and 1 MF). Mitotic cell cycle process (BP 
GO:1903047), mitotic cell cycle (BP GO:0000278), nuclear 
chromosome (CC GO:0000228), DNA replication preinitiation 
complex (CC GO:0031261) and single-stranded DNA helicase 
activity (MF GO:0017116) were among the most significant 
GO terms in the liver, while immune system process (BP 
GO:0002376), immune response (BP GO:0006955), cell periph-
ery (CC GO:0071944), plasma membrane (CC GO:0005886), 
and enzyme binding (MF GO:0019899) were the most signif-
icant in the spleen. The lowest number of enriched GO terms 
was revealed in the eye (26 BP, 4 CC and 1 MF), with immune 
response (BP GO:0006955), response to external stimulus (BP 
GO:0009605), photoreceptor cell cilium (CC GO:0097733), 
photoreceptor outer segment (CC GO:0001750) and oxidore-
ductase activity (MF GO:0016491) being the most significant 
(Table S4).

Enrichment of GO terms among DEGs overlapped in two or 
more tissues was observed in seven of 26 possible combinations 
(Table  S4). The majority of significant GO terms among over-
lapped DEGs were linked to immunity, e.g., immune system 
process (BP GO:0002376) immune response (BP GO:0006955), 
regulation of immune response (BP GO:0050776), positive 

FIGURE 2    |    MDS plots showing relationships of all samples analysed, gill (olive green), spleen (magenta), olfactory rosette (deep sky blue), whole 
eye (light red) and liver (spring green) tissue samples. Clear-water and humic perch samples are presented as filled circles and filled triangles, respec-
tively. Open circles, open triangles, solid line and dashed line ellipses show the central points and distribution of the clear-water and humic samples 
data, respectively.
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regulation of immune system process (BP GO:0002684) and T-
cell activation (BP GO:0042110) were observed (Table S4).

3.4   |   Overlap Between DEGs and Putative 
Signatures of Selection

The permutation test showed a significant excess of outlier 
SNPs among DEGs in two tissues, the gill and the spleen 
(Table  3 and Figure  S3). The excess of outlier SNPs among 
DEGs was also observed when DEGs from all tissues were 
combined; however, this pattern was likely driven by the ex-
cess of outliers in the gill and the spleen. Likewise, the pro-
portion of DEGs harbouring outlier SNPs was higher in the 
gill and the spleen (14.8% for both tissues), whereas a lower 
proportion was observed in the olfactory rosette (12.9%) and 
in the whole eye (13.1%; Table 2).

Further comparison of outlier SNPs among DEGs by annotation 
categories revealed a significant excess of outlier SNPs among 5K 
upstream gene variants in the spleen, intron variants in the gill 
and non-synonymous variants in the eye (Table S5). On the other 
hand, we also observed a significant depletion of outliers among 
DEGs for 5′UTR and 5K downstream variants in the gill, and 
3′UTR variants in the eye. Similarly, a significant depletion of out-
lier SNPs among DEGs was observed for 5K downstream variants 
when the data from all tissues were combined (Table S5).

3.5   |   cis-eQTLs

In total, 821 pairs of gene expression-SNP associations (cis-eQTLs) 
(268 eGenes, i.e., genes that contain cis-eQTL, and 783 eSNPs, 
i.e., SNPs, that are significantly associated with eGenes) were ob-
served in the gill, 581 cis-eQTLs (221 eGenes and 537 eSNPs) in 
the spleen, 1361 cis-eQTLs (489 eGenes and 1294 eSNPs) in the 
olfactory rosette, 466 cis-eQTLs (198 eGenes and 461 eSNPs) in 
the eye, and 155 cis-eQTLs (75 eGenes and 154 eSNPs) in the liver 
(Tables  4 and S6). Approximately 40% to 50% of the cis-eQTLs, 
eGenes, and eSNPs in each of the four tissues were shared with 
the others (Figure 4a–c), whereas in the olfactory rosette the pro-
portion of shared cis-eQTLs, eGenes and eSNPs was around 25% 
(Figure 4a–c). The majority of the overlapped cis-eQTLs (> 99%) 
had the same direction of regulatory effect (estimated as beta co-
efficient; Table S6). Around 50% of eGenes were cis-regulated by 
a single eSNP (46.6% in gill, 55.2% in spleen, 53.4% in olfactory 
rosette, 54.5% in eye, and 61.3% in liver; Figure S3 and Table S6). 
Among the identified 953 eGenes, 81 (8.4%) were differentially ex-
pressed (eGenes & DEGs) in one or several tissues: 20.5% in the 
gill, 3.6% in the spleen, 3.3% in the olfactory rosette, 2.0% in the 
eye, and 2.7% in the liver (Figure 4d, Tables 4 and S6).

The genomic regions of high genetic divergence detected 
by Ozerov et  al.  (2022) also harboured eSNPs in one or sev-
eral tissues (Figure  5). Moreover, outlier SNPs were signifi-
cantly overrepresented among identified eSNPs in the spleen 

FIGURE 3    |    Venn diagram showing the common and unique DEGs among the five tissues (top left corner). Volcano plots showing differentially 
expressed genes of P. fluviatilis between humic and clear-water environments in the gill, spleen, olfactory rosette, whole eye and liver tissues. Up-
regulated and down-regulated genes in humic environment are presented as filled red and blue dots, respectively. Non-significantly differentiated 
genes are shown as grey dots.
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(Chi-square test p-value < 0.00001), the olfactory rosette 
(Chi-square test p-value < 0.001) and when all tissues were 
combined (Chi-square test p-value < 0.001; Table  5). On the 
other hand, DEGs in one tissue were not always correspond-
ing to the cis-eQTLs for the same tissue. For example, outlier 
eSNPs associated with the expression of PLAGL2 (Figure 5a) 
and PPP1R8 (Figure 5b) genes in the olfactory rosette tissue, 
whereas PLAGL2 and PPP1R8 were differentially expressed in 
the gill and the spleen. In addition, three eGenes & DEGs were 
shared between the gill and the spleen (IFITM3—Interferon 
Induced Transmembrane Protein 3/dispanin subfamily A 
member 2b-like, and two uncharacterised genes: PFLUV_
G00269580 and PFLUV_G00130350) and one between the gill 
and olfactory rosette tissues (CD3E—T-cell surface glycopro-
tein CD3 epsilon chain-like; Table S6).

4   |   Discussion

Genome scans represent an important first step towards un-
covering regions involved in adaptation harbouring excep-
tionally high genetic divergence and/or low diversity patterns 
suggestive of a selective sweep (Bomblies and Peichel  2022; 
Ellegren  2014; Storz and Wheat  2010; Vasemägi and 
Primmer 2005). The main advantage, as well as the limitation, 
is that the potential candidate regions involved in adaptation 
can be identified without the incorporation of phenotypic or 
environmental information. As a result, we frequently lack a 
detailed understanding of the molecular functions, physiolog-
ical processes, or phenotypic traits that are involved in adapta-
tion. In this work, we applied a strategy of integrating multiple 
levels of genomic information using functional genomic and 
evolutionary approaches, to gain deeper insights into the tis-
sues, molecular functions, genomic regions, genes, and cis-
regulatory associations involved in adaptation.

Previous whole genome analyses of Eurasian perch indicated that 
adaptation to a humic environment may involve a large number 
of SNPs and hundreds of regions scattered across the genome 
(Ozerov et al. 2022). Here, we tested whether an integrative strat-
egy would enable us to prioritise the genes and tissues involved in 
this process. Based on RNA-seq analyses across five tissues, we 
detected over 5000 DEGs and prioritised candidate genes contain-
ing outlier SNPs based on their expression differences between 
humic and clear-water environments. The majority of DEGs were 
found in the gill, suggesting that ion composition and oxygen lev-
els may be involved in humic acclimation and potentially adapta-
tion in perch. The latter was supported by the significant excess 
of outlier SNPs among DEGs in the gill, as well as in the spleen, 
suggesting the involvement of these tissues in adaptation. Thus, by 
combining adaptive variation with transcriptomic data, we were 
able to narrow down the initial large list of outlier SNPs by tenfold. 
Additionally, we found more than two-and-a-half thousand pu-
tative cis-eQTLs regulating gene expression, with approximately 
8% of genes (81) harbouring cis-eQTLs showing differential ex-
pression between humic and clear-water perch. Furthermore, we 
observed significant over-representation of outliers among eSNPs 
in spleen and olfactory rosette tissues, as well as when combin-
ing data from tissues. This suggests that among the identified cis-
regulatory links are possible functional variants that have been 
shaped by selection.T
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We first detected a significant excess of outlier SNPs among 
DEGs in the gill and spleen tissues, suggesting their involve-
ment in humic adaptation. Notably, among the five tissues, 
the gill and spleen also exhibited the highest number of DEGs 
(n = 4311 and n = 891, respectively). The observed gene expres-
sion variation between humic and clear-water environments 
in the gills was anticipated, given that besides their respiratory 
function, this multifunctional organ is involved in ion exchange, 
acid–base regulation, osmoregulation, and excretion of nitrog-
enous waste (Evans et al. 2005). Furthermore, recent work has 
shown that gill microbial communities and host-microbe inter-
ations may influence the ionoregulatory response in humic en-
vironments (François-Étienne et  al.  2023). We found that the 
majority of genes involved in the transmembrane transportation 
of ions, such as solute carriers (SLCs), calcium channel subunits 
(CACNs), potassium channel subunits (KCNs) and sodium chan-
nel subunits (SCNs), were differentially expressed exclusively in 
the gills (ranging from 50% to 85%; Table S3). This is in agree-
ment with the differences in ion composition between humic and 
clear-water lakes due to variation in DOC concentrations (Arvola 
et  al.  2010; Erlandsson et  al.  2010) and the function of the gill 
epithelium serving as a barrier between the blood and the aquatic 
environment (Evans et al. 2005). In addition, our previous whole-
genome scan for footprints of selection identified a substantial 
number of candidate genes involved in the transportation of Na+/
H+, K+ and Ca2+ ions and the maintenance of pH balance (Ozerov 
et  al.  2022). Similarly, these gene families have been shown to 
play a role in adaptation to acidic (Haenel et al. 2019) and alkaline 
(Xu et al. 2017) habitats in other fish species.

In addition to the gill, we observed a significant excess of 
outliers among DEGs expressed in the spleen, which also ex-
hibited the second highest number of DEGs. The fish spleen 
functions as a secondary lymphoid organ, where adaptive im-
mune responses are generated, and it is an important source 
of immunoglobulins in teleosts (Bjørgen and Koppang 2021; 
Fänge and Nilsson 1985; Flajnik 2018). In line with this, the 
majority of enriched GO terms for spleen DEGs were related 
to immune system functioning (Table  S4). Interestingly, our 
earlier work identified drastic differences in diplostomid 
parasite communities between humic and clear-water perch 
(Noreikiene et al. 2020). Due to the effect of humic substances 
on whole aquatic communities, including underwater vegeta-
tion and zooplankton (Blanchet et  al.  2022), the abundance 
of free-living trematode parasites and their intermediate 
hosts, gastropods (Selbach et al. 2020) in humic lakes is much 
lower compared to that in the clear-water lakes (Halmetoja 
et  al.  2000; Pietrock and Marcogliese  2003). Consequently, 
the high prevalence of eye flukes in clear-water lakes along 
with the absence of diplostomid parasites in humic lakes 
(Noreikiene et al. 2020) may be associated with the elevated 
number of immune response-related DEGs in the spleen. In 
addition, the spleen plays an active role in haemopoiesis in 
fishes, being a primary site for the destruction of aged red 
cells and the recycling of iron (Fänge and Nilsson 1985). Given 
that humic lakes show highly stratified temperature and ox-
ygen levels, where hypoxia can occur even at a depth of a few 
meters (Karpowicz and Ejsmont-Karabin  2018; Karpowicz 
et al. 2023), it is plausible that the processes of haemopoiesis 

TABLE 4    |    The number of cis- gene-SNP associations (cis-eQTLs), SNPs with regulatory effects (eSNPs), outlier SNPs found among eSNPs (outlier 
eSNPs), genes associated with eSNPs (eGenes), differentically expressed genes among eGenes (eGenes&eDEG), eGenes found among candidate 
genes (genes harbouring outlier SNPs and eGenes) and DEGs found among candidate eGenes (outlier eGenes&DEGs) in different tissues.

Tissue cis-eQTLs eSNPs
outlier 
eSNPs eGenes eGenes&DEG

Candidate 
eGenes

Candidate 
eGenes&DEG

Gill 821 783 16 268 55 35 6

Spleen 581 537 21 221 8 23 2

Olfactory rosette 1361 1294 31 489 16 66 3

Whole eye 466 461 7 198 4 24 0

Liver 155 154 1 75 2 15 1

Total 2640 2464 52 953 81 128 11

Note: The details about outlier SNPs and candidate genes (i.e. genes harbouring outlier SNPs within 5K up- and 5K downstream area) can be found in Ozerov 
et al. (2022).

FIGURE 4    |    Venn diagrams showing the common and unique (a) cis-eQTLs, (b) eGenes, (c) eSNPs and (d) eGenes&DEGs among the five tissues.
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and iron recycling in perch are interconnected with these hy-
poxic conditions in humic lakes.

Regulatory polymorphisms that shape gene expression are 
known to play a key role linking genetic variation to organ-
ismal performance and phenotypic traits (Cano-Gamez and 
Trynka 2020; Li and Ritchie 2021; Williams et al. 2007). Recent 
efforts to uncover associations between regulatory mechanisms 
and disease traits have shed light on the genetic control of gene 
expression in humans and farmed animals (Clark et  al.  2020; 
GTEx Consortium  2020; GTEx Consortium et  al.  2015; Kim-
Hellmuth et al. 2020; Liu et al. 2022). However, for the major-
ity of non-model organisms, gene regulation mechanisms and 
their connections to phenotypic traits remain to be character-
ised (Krishnan et al. 2022; Marand et al. 2023). Here, we iden-
tified 2640 cis-eQTLs that are associated with gene expression 
variation in perch, of which 50%–70% were tissue-specific. This 
finding aligns with previous observations of localised effects 

of cis-eQTLs on gene expression, often within a particular tis-
sue or cell type (Hill et  al.  2021; Signor and Nuzhdin  2018). 
Furthermore, the significant over-representation of outlier SNPs 
among detected eSNPs in the spleen and olfactory rosette tissues, 
as well as when considering all tissues combined, suggests that 
some of the cis-acting regulatory associations are likely involved 
in the humic adaptation of perch. Our results, therefore, cor-
roborate previous studies that underline the importance of cis-
regulation in adaptive evolution (Signor and Nuzhdin 2018). For 
example, a recent analysis of temperate and tropical house mice 
in different environments found that cis-regulatory changes are 
likely mechanisms for adaptive body size evolution (Ballinger 
et al. 2023). Similarly, an intraspecific comparison between ma-
rine and freshwater three-spine sticklebacks showed that cis-
eQTLs drive expression variation (Verta and Jones 2019).

To pinpoint the most promising candidate genes involved in 
humic adaptation, we aligned the identified cis-eQTLs with the 

FIGURE 5    |    Detected eQTLs and examples of genomic regions potentially involved in adaptive divergence with associated regulatory links. 
Manhattan plots showing p-values of eSNPs across perch genome in (a) gill, (b) spleen, (c) olfactory rosette, (d) whole eye and (e) liver tissues. 
Manhattan plots showing example of genomic regions harbouring outlier SNPs of high genetic divergence (δ) between perch from humic and clear-
water environment (Ozerov et al. 2022) with significant gene expression-SNP associations (cis-eQTLs) in (f) PLAGL2 and (g) PPP1R8 genes (on 
the left) and plots showing linear relationships of normalised read counts of the genes with the most significantly associated eSNP genotype (on 
the right). DEGs are presented by rectangles filled with the colour corresponding to the tissue (gill—olive green, spleen – magenta and olfactory 
rosette—deep sky blue). Expressed and non-expressed genes are presented as black-filled and grey-filled rectangles, respectively. eSNPs, outlier 
SNPs, outlier eSNPs, and other SNPs are shown by light blue, red, black, and grey dots, respectively. The colour of the eSNP designation above each 
Manhattan plot indicates the tissue where cis-eQTLs was detected and corresponds to the tissue colour codes. Moving averages of δ and HO of perch 
from humic and clear-water environment across 50 SNPs are shown with black, brown and cyan solid lines, respectively. Gene symbols are presented 
as human orthologues and perch GenBank gene IDs (PFLUV_G) for genes with unidentified functions.
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genomic regions showing the strongest signals of selection har-
bouring DEGs. Among the putative regulatory links involved in 
humic adaptation, we observed cis-eQTLs involving DEGs within 
several candidate regions (e.g., chr. 8, CM020916_12156238—
IFITM3; chr. 14, CM020922_15798921—TRIM39; and chr. 
7, CM020915_23598807—TCHH). For example, interferon-
induced transmembrane protein 3 (IFITM3) is a member of the 
IFITM family, which is composed of important innate immune 
effectors involved in protecting against diverse viral infec-
tions in vertebrates (Spence et  al.  2019). IFITM3 was consis-
tently down-regulated in the gill, spleen and olfactory rosette 
of humic perch, which may reflect the negative effect of DOC 
and low pH on viral communities in humic lakes (Blanchet 
et al. 2022; Dalziel et al. 2016). Another notable association in-
volved trichohyalin (TCHH), a versatile protein found in hair 
follicles and other specialised epithelial tissues of mammals, 
that assists in mechanical strengthening and in connecting the 
protective outer layers of cells to the inner structural framework 
made of keratin filaments (Steinert et al.  2003). In contrast to 
terrestrial animals, the fish epidermis does not have a dead, ke-
ratinised surface (Rakers et al. 2010). The TCHH-like gene was 
up-regulated in multiple tissues of humic perch, which, together 
with its function in maintaining skin structures, may indicate 
its involvement in helping perch to thrive in a highly acidic 
humic environment.

In addition, we detected several cis-eQTLs in the regions of high 
genetic divergence between humic and clear-water perch har-
bouring DEGs on chromosomes 5 and 7 (Figure  5). DEGs lo-
cated in these regions are involved in multiple functions, such as 
the regulation of anatomical structure development (PLAGL2), 
regulation of oxidative stress response (PLAGL2), mitochondrial 
fusion (MFN2), response to stress (RPA2, THEMIS2) and glyco-
gen metabolism (PPP1R8). Notably, given its regulatory function 
in oxidative stress response (Guo et al. 2007), the up-regulation 
of PLAGL2 in the gills of perch living in humic lakes may be 
linked to the hypoxic conditions. Similarly, the down-regulation 
of PPP1R8 in the gills and spleen of humic perch may indicate 
divergent energy metabolism in humic versus clear-water perch, 
as high DOC concentration reduces the diversity of aquatic prey 
communities in humic lakes (Blanchet et al. 2022). However, the 

relatively low number of DEGs found in the liver together with 
the lack of enrichment of outlier SNPs suggests that energy me-
tabolism probably does not play a major role in the adaptation to 
a humic environment. It is also important to note that we did not 
quantify sex-specific differences in gene expression, and further 
research is needed to investigate how sex-biased gene expres-
sion varies across different tissue types. Similarly, an important 
unresolved question is how the level of gene expression influ-
ences the selective pressures acting on regulatory regions (Joshi 
et al. 2021; Wolf et al. 2023).

In conclusion, we employed an integrative genomics approach 
to gain further insights into the tissues, molecular functions, 
genomic regions, genes, and putative regulatory associations in-
volved in the adaptation of a keystone freshwater fish. This in-
tegrative strategy enabled us to prioritise candidate genes under 
selection based on their expression patterns, and to identify tis-
sues and organs that potentially play a key role in adaptation. 
Furthermore, we identified putative causative links between 
SNPs and transcript abundance variation, and found that some 
of the cis-acting regulatory associations have likely been shaped 
by divergent selection linked to humic substances. Thus, al-
though we did not explicitly disentangle the plastic and genetic 
effects on gene expression variation by studying organisms in 
their native environment, this study successfully bridged the 
gap between genome scans for selection and functional ge-
nomics approaches. We expect that the framework combining 
evolutionary genetics and functional omics fields will serve as 
a valuable guide for increasing our understanding of the regula-
tory mechanisms and genetic basis of phenotypic diversification 
and adaptation in a wide range of species.
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TABLE 5    |    Enrichment of outlier SNPs among eSNPs (i.e., SNPs that are significantly associated with gene expression variation) in five tissues 
based on chi-square test with Yates correction.

Analyses/Tissue type Data type Non-outlier SNPs Outlier SNPs
Frequency of 
outlier SNPs p

RNAseq—gill eSNPs 783 16 0.0204 0.087

RNAseq—spleen eSNPs 537 21 0.0391 < 0.00001

RNAseq—olfactory rosette eSNPs 1294 31 0.0240 0.001

RNAseq—whole eye eSNPs 461 7 0.0152 0.809

RNAseq—liver eSNPs 154 1 0.0065 0.741

RNAseq—five tisssues 
combined

eSNPs 2464 52 0.0211 0.001

WGS—analysis of footprints of 
selection

SNP data from 
Ozerov et al. (2022)

800,346 10,245 0.0128 —

Note: Significant enrichment is marked with bold.
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