
VILNIAUS UNIVERSITETAS
MATEMATIKOS IR INFORMATIKOS FAKULTETAS

INFORMATIKOS KATEDRA

Savioptimizavimas reliacinėse duomenų bazių sistemose
Magistro baigiamasis darbas

Atliko:
Artūras Lapinskas .

(parašas)

Darbo vadovas:
lekt. I. Radavičius .

(parašas)

Recenzentas:
prof. R. Vaicekauskas .

(parašas)

Vilnius
2016

VILNIUS UNIVERSITY
FACULTY OF MATHEMATICS AND INFORMATICS

DEPARTMENT OF COMPUTER SCIENCE

Self-optimization in relational database management systems
Master’s thesis

Author:
Artūras Lapinskas .

(signature)

Supervisor:
lect. I. Radavičius .

(signature)

Reviewer:
prof. R. Vaicekauskas .

(signature)

Vilnius
2016

Santrauka
Dauguma šiuolaikinių užklausų planuotojų yra sukurti lipdant specializuotus algoritmus
pasinaudojant įvairiomis euristikomis. Tokių planuotojų kūrimas reikalauja daug laiko
ir dalykinės srities žinių. Šie planuotojai, dėl palyginus mažo paieškos erdvės tyrimo,
taipogi gali sukurti neoptimalius planus. Šiame darbe mes parodome kaip galima užko-
duoti DB užklausas SMT logikomis formulėmis. Toks kodavimas leidžia atlikti užklausų
ekvivalentumo patikrinimą. Vėliau, pasinaudodami šiuo kodavimu, sukuriame bendro
pobūdžio užklausų planuotoją. Šis planuotojas atlieka savo darbą foniniu režimu, taip
nuolatos gerindamas dinamiškai kintančią užklausų aibę. Galiausiai su šiuo planuotoju
mes atliekame keletą standartizuotų testų, iš kurių rezultatų padarome tris išvadas. Visų
pirma daugelių atvejų planuotojas pasirodo panašiai kaip ir įprastiniai planuotojai. Kele-
tai užklausų šiam planuotojų pavyksta rasti geresnius planus. Tačiau taip pat egzistuoja
užklausos planų, kurių palyginimas apribotameDBmodelyje neveikia, dėl to planuotojas
sukuria nekorektiškus planus.

Raktažodžiai Superoptimizacija, SMT, Kompiliatoriai, Užklausų Vykdymo Planas.

Summary
Most query planners are implemented as a set of specialized algorithms combined by
hand written heuristics. Creating such planner requires an enormous amount of time and
expertise, not to mention that due to a rather small exploration of search space planners
can return suboptimal results. In this project, we present a way to encode query plans
in SMT for equivalency checking. We use this to create general purpose planner which
does its work in a background, continuously producing better plans for a dynamically
created set of queries. We also experimentally test our planner with conventional one
under a few standard benchmarks. From these benchmarks, we conclude that most of
the time our planner performs as well as a state of the art planner. For some queries, it
may also find better plans or, if we can not prove equivalency under the restricted DB
model, may end up at plans that do not produce expected results.

Keywords Superoptimization, SMT, Compilers, Query Execution Plan.

Išplėstinė santrauka
Šiame darbe mes nagrinėjame kaip galima pagerinti duomenų bazių valdymo sistemų
(toliau DBVS) atliekamą SQL užklausų konvertavimą į užklausos vykdymo planus. Užk-
lausos planas – tai medis, sudarytas iš žemo lygio instrukcijų. Šios instrukcijos tiksliai ir
be jokių dviprasmybių apibrėžia iš kur ir kaip DBVS gali paimti vartotoją dominančius
duomenis. Kiekvieną užklausą gali atitikti daugiau nei vienas planas, todėl DBVS sten-
giasi iš visų galimų planų rasti tą, kuris kiek įmanomo labiau sutrumpintų duomenų
išgavimo laiką. Šią paiešką DBVS atlieka pasinaudodama įvairiomis, iš anksto apibrėž-
tomis, euristikomis ir algoritmais, atliekančiais pilną perranką tam tikrose paieškos erd-
vės poaibiuose (pavyzdžiui, optimalų santykių išdėstymą galima rasti pasinaudojant di-
naminio programavimo algoritmu, apibrėžtu IBM System R duomenų bazių valdymo sis-
temoje [SAC+79, p. 28]). Deja, tokios paieškos realizavimas DBVS reikalauja daug laiko
bei dalykinės srities žinių. Tokia paieška taipogi ne visada duoda optimalius rezultatus.

Visam užklausos kompiliavimo procesui retai bandoma pritaikyti bendro pobūdžio
optimizavimo algoritmus, kurie išspręstų anksčiau aptartas problemas. Vietoje to na-
grinėjama kaip būtų galima perrašyti pirminę užklausą, kad užklausų plano generato-
riui būtų lengviau rasti optimalų planą (pavyzdžiui, semantinis užklausų perrašymas tą
pasiekia perrašydamas užklausas atsižvelgiant į įvairias duomenų bazių vientisumo sąly-
gas [CFM86, SSS92, KK07]). Taipogi užklausų veikimo greitis gerinamas ieškant būdų
automatiškai kurti indeksus [ACN00, CN98, CBC93].

Užklausų plano paieškos situaciją mes bandome pagerinti DBVS viduje pritaikant
superoptimizaciją. Superoptimizacija – tai procesas, kurį atlieka programavimo kalbų
kompiliatoriai. Šio proceso metu kompiliatorius išsirenka mažą programinio kodo ga-
balėlį. Tada šiam kodui sugeneruoja atitinkamą instrukcijų seką. Galiausiai kompiliato-
rius perrenka visas ekvivalenčias instrukcijų sekas, ieškodamas sekos, kurią kompiuteris
galėtų įvykdyti greičiausiai.

Darbo metu mes, pristatydami superoptimizacijos raidą, detaliai aptariame kiekvieną
iš anksčiau nurodytų žingsnių:

• pirmasis superoptimizaciją pradėjo taikyti Massalin’is [Mas87];
• Denali projektas [JNR02, JNZ+03] praplėtė Masalin’io darbą pradėjęs koduoti in-
strukcijų ekvivalentumą SMT logikos formulėmis (Massalin’is instrukcijų sekas
lygino atlikdamas atsitiktinius jų vykdymo testus);

• kadangi visos programos superoptimizacija praktiniais tikslais yra per lėta, S. Bansal’is
ir A. Aiken’as parodė kaip galima taikyti superoptimizaciją iš anksto pasiruošiant
kodo konvertavimo į instrukcijas šablonus [BA06].

• STOKE projektas superoptimizacijai pradėjo naudoti mašininio mokymo algorit-
mus [SSA13] bei pristatė kaip galima atlikti ekvivalentumo tikrinimą kodui su
sąlyginiais sakiniais [SSCA15].

Šiame darbe mes adaptavome aptartą superoptimizacijos strategijąDBVS tokiu būdu:

• sukūrėmematematinį modelį, leidžiantį atlikti dviejų planų ekvivalentumo patikrą;
Ši patikra atliekama užkoduojant planus ir ekvivalentumo sąlygą SMT formulės.
Vėliau šios formulės atiduodamos SMT sprendžiančiai aplikacijai.
Stengdamiesi pagreitinti šią patikrą mes apribojame visų santykių dydį iki trijų ko-
rtežų. Toks apribojimas leidžia aprašyti visas formules be kvantorių, taip išvengiant
su jų naudojimu kylančias problemas;

• pasinaudoję šiuo ekvivalentumo tikrinimu, sukūrėme modulį, atliekantį superop-
timizacijas. Šiame modulyje planų paieška vykdoma pasinaudojant darbe apibrėž-
tomis plano mutacijos operacijomis. Planai lyginami pasitelkus įverčio funkciją,
kuri skiria prioritetą žemo aukščio indeksuotiems planams;

• siekdami patikrinti kaip šis modulis elgiasi praktikoje, sukūrėme užklausų perėmėją.
Šis perėmėjas dirba perimdamas paketus, keliaujančius tarp vartotojo ir duomenų
bazės. Iš šių paketų perėmėjas pasiima jį dominančias užklausas, konstruoja užk-
lausų abstrakčius sintaksės medžius ir leidžia atitinkamammoduliui vykdyti medžio
pakeitimus testinėje duomenų bazėje. Vėliau šis perėmėjas lygina modifikuotos ir
originalios užklausos grąžintus rezultatus – esant nesutapimams perspėja vartotoją.
Šio perėmėjo kūrimo etape mes taip pat praplėtėme PostgreSQL DBVS papildoma
komanda execplan. Šios komandos pagalba planai buvo vykdomi DBVS.

Galiausiai mes ekperimentiškai ištyrėme sukurto superoptimizatoriaus veikimą vykdy-
dami OLTBench testus. Pagal šių eksperimentų rezultatus mes padarėme tokius paste-
bėjimus:

• sukurtas matematinis modelis yra tinkamas daugumai praktinių užduočių – visi
superoptimizatoriaus sukurti planai grąžino tokius pačius duomenis kaip ir Post-
greSQL sugeneruoti planai;

• 12 iš 21 OLTBench naudotų užklausų superoptimizatoriaus planai sutapo su Post-
greSQL rastais;

• dėl per paprastos įverčio funkcijos ir nepakankamos mutacijų įvairovės, 8 iš 21
užklausų nepavyko suoptimizuoti iki galo;

• vienai užklausai nepavyko rasti optimalaus plano dėl nepilnos plano viršūnių real-
izacijos.

Darbo metu taip pat pristatėme tris užklausų grupes, kurioms mūsų sukurtas super-
optimizatorius pajėgė rasti geresnius planus nei PostgreSQL:

• gebėjimas pasinaudoti santykyje apibrėžtomis NULL leidžia superoptimizatoriui suprastinti
kai kurias užklausas iki vienos išraiškos. Konkrečiu, darbe pateiktu atveju, šis
gebėjimas leido gauti planą, kuris veikė 100 kartų greičiau nei PostgreSQL sukurtas
planas;

• mūsų sukurtas superoptimizatorius, pasinaudodamas indeksų savybėmis, gali išprastinti
plane naudojamas sort viršūnes. Užklausai, kuriai PostgreSQL nepadarė šios op-
timizacijos, superoptimizatoriaus planas veikė 200 000 kartų greičiau;

• užklausoje aprašytos tranzityvios priklausomybės tarp atributų kartais leidžia panau-
doti indeksą, kurio nepavyktų panaudoti kitu atveju. Šiame darbe mes pateikėme
pavyzdinę užklausą, kuriai, dėl aptartos savybės, superoptimizatoriui pavyko rasti
planą, veikiantį 10 000 kartų greičiau nei PostgreSQL rastas planas.

Contents

Introduction . 10
1 Background . 13

1.1 Query processing . 13
1.2 Superoptimization . 17

2 Architecture . 21
2.1 Proxy . 22

2.1.1 Initialization . 22
2.1.2 Proxying . 23
2.1.3 Query interception . 26
2.1.4 Result validation. 27

2.2 Database. 28
2.2.1 Changes to PostgreSQL configuration. 28
2.2.2 Changes to PostgreSQL . 29

2.2.2.1 Query plan node . 29
2.2.2.2 Expression nodes . 30
2.2.2.3 Action nodes . 30

2.2.2.3.1 Sequence scan node . 31
2.2.2.3.2 Result node. 31
2.2.2.3.3 Nested loop join . 32
2.2.2.3.4 Materialization node . 32
2.2.2.3.5 Limit node . 33
2.2.2.3.6 Concatenation node. 33
2.2.2.3.7 Set operation node . 34
2.2.2.3.8 Sort . 34
2.2.2.3.9 Aggregate node . 34
2.2.2.3.10 Subquery node . 35
2.2.2.3.11 Correlated subquery . 35
2.2.2.3.12 Index scan . 36

2.2.3 RDBMS structure overview . 37
2.3 Client . 38

2.3.1 Limitations and changes to OLTBench . 38
2.3.2 Clients structure overview . 39

3 Query plan generation . 41
3.1 Naive plan . 41
3.2 Plan exploration . 42
3.3 Query plan equivalency checking . 45

3.3.1 Representing schema . 47
3.3.2 Node encoding helpers . 49

3.3.2.1 Projection. 49
3.3.2.2 Filter . 51
3.3.2.3 Unique . 52

3.3.3 Node encoding . 52
3.3.3.1 Sequence and index scan nodes . 52
3.3.3.2 Nested join . 52
3.3.3.3 Aggregate node . 54
3.3.3.4 Sort . 56

3.3.3.5 Limit node . 59
3.3.3.6 Set operation and concatenation nodes 60

3.3.4 Checking for relation equivalence . 62
3.4 Calculating score of a plan. 63

4 Experiments . 65
4.1 Performance of a naive plan . 66
4.2 Performance of an optimized plan . 66
4.3 Cutom queries . 69

Results and conclusions . 72
References . 75
Glossary . 78
Acronyms . 81
Applications . 84
Appendix 1. Used queries . 87

Introduction
From the early days, humans transferred information on how to benefit from surrounding
environment to other generations. Initially, this was done by storytelling, but later,
with the invention of written word, it was done by writing valuable information on
clay tablets and paper. This data preservation was one of the factors of such immense
human expansion. As we collected more and more data, specialized institutions, called
libraries, dedicated only for data housing were born. Though libraries were perfect for
data catalogization, they had one problem – they tended to be a scarce and centralized
source of knowledge. That is, in order to read something about an interesting topic
you had to go to a library. What is more, as note copying was a tedious, long and
costly process, libraries tended to have the only original copy of work saved on fragile
paper. This, combined with aging factor, meant that some rarely read works became
unreadable and were lost (at extreme we have one of the most famous libraries „The
Royal Library of Alexandria“, in which all of the saved works were destroyed due to
fire). This problem was solved by the invention of the Gutenberg’s press machine. Press
machine boomed the number of libraries to the point where almost all cities had one and
made personal copies of various works accessible to the general public. Later on, because
of digitalization, books and other types of media could be saved in more compact digital
form. As such, millions of works could be saved on a simple USB storage device which
fits in one’s pocket.

The easier it gets to store data, the more of it will be collected. The more data one
has, the harder it is to find needed bits and process them to get useful information. The
easiest way to speed up a search of information is giving your data a fixed structure.
That is what databases (DBs for short) are – a structured collection of interdepended
data. Libraries are DBs as books and paper are stored in shelves sorted lexicographically,
shelves may be categorized by the first letter of all books in them, and an array of shelves
could be put inside of rooms depending on what kind of literature they contain – all this is
needed to simplify search procedures. In digital world DBs are represented as specialized
file formats. There are a plethora of different formats, and different formats save data by
using different objects with which one can do particular set operations. Depending on
these objects and operations (data model) DBs are put into different groups. There are
graph DBs that are optimized to manipulate graph-like structures, object DBs that try
to look similar to object oriented languages, relational DBs that work with mathematical
objects called relations, etc. Obviously, manipulating data in DB directly is a hard task.
As such, most interfacing with data occurs through DB management system (DBMS for
short) – „software system that manages, and in particular handles all access to, some
database or collection of databases“ [Dat08, p. 40].

In this paper, we will be looking at relational DBMSs – a DBMS which handles
10

access to relational DBs. When, working with RDBMSs, we will be manipulating table-
like structures – relations. Relation consists of two parts [Dat11, p. 12]: head and body.
A Head is similar to table’s header, defining its columns, and consists of the attribute set.
Here an attribute is a pair consisting of user chosen name and domain of possible values
instances of this attribute can get. A Body, on the other hand, consists of data saved
in relation. More specifically, a body is a set of tuples (list of rows). Each tuple has as
many elements as there are elements in the head. These elements contain corresponding
attribute name and domain (so that it would be possible to map element to attribute)
with an addition of value from attribute domain.

Relations within RDBMS are manipulated through SQL language. This language
allows writing down, at a high level, transformations that allow getting needed informa-
tion as a relation from the initial set of data relations (relations that contain persisted
data). Each transformation may have various implementations from which RDBMS can
choose from and each mentioned attribute can be retrieved going through various places
(contrast to a book, where you can search for a particular phrase by reading a book from
beginning to the end, or by going to an index and looking only at those pages that con-
tain all words in phrase). As such, for each SQL query, RDBMS tries to find the fastest
access path and transformation combination called an execution plan. Most of the time,
RDBMS does a great job and finds an optimal plan which allows fast data retrieval,
but sometimes, due to compilation time constraints imposed by large search space and
anxious user, it is forced to use suboptimal plans.

Assuming that queries are not changing frequently, it would seem that it should
be possible to look at a query plan generation as a single global optimization problem
which could be solved by using slower offline techniques. However, this is usually not
what people are doing. Instead, most constrain themselves in only looking into queries,
like doing semantic query rewriting, in which queries are rewritten to something which
is closer to the optimal solution by taking into account various integrity constraints
[CFM86, SSS92, KK07]. Others try to direct a query plan by automatically creating
indexes [ACN00, CN98, CBC93]. As such, we will try to fill this niche spot by try-
ing to apply superoptimization, an offline optimization technique used by programming
language compilers, to the query planning.

The goal of this thesis – a creation of query plan superoptimzer. We will achieve this
goal by doing following tasks:

• an overview of query processing strategies;
• a literature review of possible offline compilation strategies;
• a definition of the most common query plan nodes;
• creation of a framework which seamlessly enables users to intercept, alter and check
results of queries flowing to DB;

11

• creation and an experimental testing of the offline query planning module.

This paper will consist of 4 sections. In the first section, we discuss how RDBMSs
process their queries and how planning step could be improved by using offline compi-
lation tactics used in programming language compilers. The second section is dedicated
to detailing the architecture of the created query interception framework. After that, in
the third section, we present a particular module of query interceptor which is used to
continuously compile given queries. The main technical contribution of this module is
mathematical formalism which allows comparing two plans for equivalency, under the
bounded DB model. Finally, we show that, in our experiments, SMT based query plan
superoptimizer performs similarly to the state of the art PostgreSQL planner.

12

1 Background
In this section, we will give all the necessary background needed to understand how
queries are processed. We will also discuss superoptimization in greater detail and will
briefly explain how it can be included into RDBMSs.

1.1 Query processing
User interaction with RDBMS is started by the user typing a SQL query at the terminal
and pressing enter key. After that, a query is transferred over the network to RDBMS. In-
side of RDBMS, this query goes through a pipeline of variuos transformations [HSH07].
First of all, a given query is transformed from string representation into internal RDBMS
structure. This structure is a simple parsing tree, sometimes called abstract syntax tree
(AST for short). It is needed primarily to simplify further query processing. While doing
this transformation, a parser may also try to find as many syntax errors inside of a query
and report them to the user. The parser may also do other things, like view inlining
(replaces view names inside of a query to actual definitions), some primitive constant
folding, and so on – but, in general, these things are done by other modules, e.g. rewrite
engine.

On the second pass, query planner kicks in. Its responsibility is to transform AST
to the execution plan. This plan is low-level instructions (contrast with high level SQL
query), once again, represented as a tree that can be easily executed. This transformation
is not one-to-one, that is, there are multiple equivalent plans that represent a given query.
Here equivalency means that plans produce same output tuples, but plans can actually
be different in other aspects, like specific data crunching algorithms used in planner’s
nodes. So, though these plans will be equivalent in the final result, they will be different
in how this result is achieved. As such, some of these equivalent plans will work faster
than others and most planners will try really hard to produce the fastest one.

After planner, the plan goes over some other steps like cache manager, MVCC man-
agement, etc. Finally, it hits executor which executes all instructions encoded in the
plan. Though they are interesting in themselves, we are not going to look into these
steps in greater detail in this paper, instead, we will concentrate on the planner aspects.

As stated before, everything starts with a user. Previously, this user was a person,
but nowadays we are working with large business applications. So, it is no surprise that
some of the requirements for the process described above have changed.

When working with humans, RDBMS’s put a big stress on a feedback loop. This
means that RDBMS’s communicates with their users in a human readable language,
instead of relying on a user to use more efficient binary format. RDBMS’s are also trying
to keep users attention by producing at least the first few tuples of a query execution,
as fast as possible. If a user is not happy with this result, execution can be stopped no 13

matter in which state it is. If there are any errors, RDBMS’s return them to the user as
fast as possible, in a form understandable by humans.

Enterprise behemoths, on the other hand, do not really care about fast feedback.
They care only about how fast they will receive full output. First thing which hampers
query execution is a network. It is not cheap to transfer large queries over the network to
RDBMS. Human readability also does not help with this problem as it tends to promote
usage of excess words (like fetch next 2 rows only). As such, applications started
to encode their queries as small procedures inside of RDBMS. This allowed applications
not to clutter the network with large queries, and instead, use short aliases.

RDBMSs also introduced a similar feature called precompiled queries. This feature
allows applications to send a full query to RDBMS only once. On this first call, RDBMS
puts a query into an internal cache and returns user query id. Later on, instead of sending
the query, a user can use this small query id. In addition to that, RDBMS vendors allow
the initial query to have placeholders which later on can be filled in with appropriate
data. Such feature almost replaces procedure use, as described previously.

The only problem with precompiled queries is that in order to use them at full, users
have to compile the initial query only once. This headache of keeping track of what is
compiled and what is not is resolved by using query pools on the application’s side. These
pools are created by compiling all the queries that might be needed by the application,
and saving their ids on the application’s startup (this also has a side benefit: errors in the
queries are resolved at the beginning of the application’s life cycle instead of an arbitrary
time at runtime).

Query pools used with precompiled queries solved a lot of problems with RDBMS
usage from application’s perspective, but they introduced a big problem to the planner
– how to make a plan for the query which contains placeholders? The simplest answer
– you can not. This is because, depending on concrete values used in a query, the
planner can choose different plans. For example, if inside of the query we are using a
filter condition attribute = 1 (part of the where clause) which filters almost all tuples
(if, for example, all tuples contained attribute = 2), then the query planner most
probably will implement this condition as an index scan. However, if our condition will
leave out almost all the tuples – a sequence scan usage is better because a random heap
access incurred by the index scan will be too costly.

So, in general, RDBMSs can not compile queries into an execution plan until it
knows all the values used in the query. However, a compilation is considered one of
the query execution bottlenecks (in the same way the network is), so most RDBMS
vendors still try to do that. They can do that because a generated plan depends only
on the query and the attribute value distributions (as showed in the previous example).
So, if we fixate a distribution, we can compile a query plan in advance. However, what
distribution should one use for a filter with an unknown value? The most conservative

14

choice, used by most vendors, is to use the worst distribution possible [Win12, p. 32].
Using a worst distribution means that the planner will tend to generate slower plans

than it could. For example, a query with a parameterized filter condition attribute1 =
$1 or $1 is null will always use a sequence scan over the whole relation as RDBMS
does not know what filter will be needed in advance (whether instantiated parameter will
not be null). Obviously, this is not what the user expects. As such, RDBMSs try to use
various tricks. For instance, PostgreSQL for the first 5 executions of a query will compile
plan only at the very end – then all values are instantiated. On the sixth execution,
PostgreSQL will create a plan disregarding actual values, and will check if its cost is close
to the average cost of the first 5 plans. If so, this general plan will be used for all the
upcoming requests (for a some predetermined time) skipping the compilation stage. If
general cost of the plan is too large, PostgreSQL will continue to create a plan, for each
request, individually [Pos15b].

join

A B

Figure 1: Usual
join order

join

AB

Figure 2: Re-
versed join order

Figure 3: Two possible ways to join two relations

join

A

B

join

C

join

A

B

join

C

join

A

B join

C

join

A

B join

C

join

A B

joinC

join

AB

joinC

join

join

A B

C

join

join

A

B

C

join

join

AB

C

join

join A

B C

join

join

A

B

C

join

join A

BC

Figure 4: All possible ways to join three relations

Other RDBMSs use similar techniques, like bind peeking and parameter sniffing, but
no matter what kinds of tacticsRDBMSs choose to use, one thing remains – they all agree 15

that this additional complexity is worth it, as the query compilation is slow. But how
slow could it be? The answer to this question can be found by looking at simple query
select A.*, B.* from A, B. In this query, planner does not have a lot of choices or,
to be exact it, has only one choice (assuming that RDBMS supports only nested loop
join) – what is better, to join A with B (Figure 1) or B with A (Figure 2)? Joining A with
B will be more beneficial when B is small enough to fit into memory, as then executor
could do a slow sequential disk read of A tuples combined with a fast repeated read of
the relation B from memory. The reverse is also true – if A, is small then it is better to
join B with A. So, for two tables we have two possibilities. For three tables we have 12
possibilities – all of them are enumerated in Figure 4. For n tables, we would need to
test n! × Cn – a number of all the possible leaf permutations times the number of full
binary trees1. So, even with a moderate number of relations, it is impractical to do a full
search.

What most RDBMSs do with join order problem, is some alternation of the dynamic
programming solution proposed in IBM’s System R database [SAC+79, p. 28]. Though
this solution pushes the limit of a number of joined relations, for which it is possible to
find an optimal solution, it is still computationally too expensive for a large number of
relations. For queries containing many join clauses, RDBMSs fall to different imprecise
algorithms like timed genetic algorithms, used in PostgreSQL [Pos14a].

The compilation of a general query is an even tougher problem than join ordering.
Here we have to check all the possible algorithms that can be used in implementing the
join clauses, which indexes to use, different orderings of the filter predicates, predicate
propagation, constant folding, etc. So, the real search space is beyond anyone’s reach.
That is why, if RDBMS founds itself in a place where it can skip compilation, even if it
introduces some problems, it will do that.

It would seem that a search space is so large that compilation should almost never
terminate, but in reality, it finishes in seconds (seconds for human beings sitting behind
the terminal, for which RDBMS there initially created, looks like ages). This is because
no one searches for an optimal plan. Instead, RDBMS planners are using a number of
small algorithms (like a dynamic programming solution for join order) glued together
with hard-coded heuristics. This means that for each planner we can find optimizations
that it can not perform.

This can be even seen from the SQL queries. For example, in Figure 5, we can see
a simple query which takes a union of two relations, sorts them and takes top 10 results.
An execution of this query on test environment took 3.9s. We can help the planner to
find a better plan for this query by giving a new query whose direct translation (without
optimizations) yields a plan closer to optimal (Figure 6). In this new query, we do
everything exactly the same, but, instead of taking relations as is, we pre-sort them and

1here Cn stands for n’th Catalan number 16

1 drop table if exists rel1;
2 create table rel1 (attr1 float);
3 insert into rel1 (attr1)
4 select random() from generate_series(1, 10000000, 1) as gen;
5
6 explain analyze ((select * from rel1)
7 union all
8 (select * from rel1))
9 order by attr1 limit 10;

10 -- QUERY PLAN
11 -- Limit (cost=720687.36..720687.38 rows=10 width=8)
12 -- (actual time=3976.888..3976.890 rows=10 loops=1)
13 -- -> Sort (cost=720687.36..770687.24 rows=19999954 width=8)
14 -- (actual time=3976.887..3976.887 rows=10 loops=1)
15 -- Sort Key: rel1.attr1
16 -- Sort Method: top-N heapsort Memory: 25kB
17 -- -> Append (cost=0.00..288495.54 rows=19999954 width=8)
18 -- (actual time=0.019..2484.937 rows=20000000 loops=1)
19 -- -> Seq Scan on rel1 (cost=0.00..144247.77 rows=9999977 width=8)
20 -- (actual time=0.019..675.376 rows=10000000 loops=1)
21 -- -> Seq Scan on rel1 (cost=0.00..144247.77 rows=9999977 width=8)
22 -- (actual time=0.171..798.876 rows=10000000 loops=1)
23 -- Total runtime: 3976.905 ms

Figure 5: Execution of suboptimal query with limit clause

take first 10 tuples. Plan for this query is executed in under 2.9s – a win in logarithmic
parameter of sorting complexity (instead of having asymptotic sorting complexity of
O (2n log (2n)) we have O (2n log (n))), [Pos15a].

To sum up, initially RDBMSs were created to assist users in data management by
hiding a lot of complicated processes behind human readable and editable SQL language.
One of these processes is SQL compilation to machine readable and fast executable plan.
It does this translation by doing a search over a vast search space of the equivalent plans.
Because of the computational expensiveness of full search and user impatience, RDBMSs
employ various heuristics that most of the time give good enough plans in a timely
fashion. After some time, human user faded away and was replaced by the enterprise
applications. These applications do not use dynamic queries as humans do – they prepare
large precompiled query pools in advance. One of the many advantages of these pools is
that sometimes when right conditions are met they allow RDBMS to skip the compilation
process altogether by reusing old plans.

1.2 Superoptimization
As stated before, our goal will be to look on how to improve the query plan generation
process, but before describing a general idea lets look how a similar problem – producing
an optimal executable format from an abstract form – is solved in programming languages
that are transformed into machine code by the compiler. Though similar in nature, this
problem is somewhat simpler than creating an optimal plan for the SQL query. This is
primarily due to the two facts:

• the cost for executing a particular piece of machine code is well defined – most
17

1 drop table if exists rel1;
2 create table rel1 (attr1 float);
3 insert into rel1 (attr1)
4 select random() from generate_series(1, 10000000, 1) as gen;
5
6 explain analyze ((select * from rel1 order by attr1 limit 10)
7 union all
8 (select * from rel1 order by attr1 limit 10))
9 order by attr1 limit 10;

10
11 -- QUERY PLAN
12 -- Limit (cost=687123.93..687124.18 rows=10 width=8)
13 -- (actual time=3234.362..3234.367 rows=10 loops=1)
14 -- -> Merge Append (cost=687123.93..687124.43 rows=20 width=8)
15 -- (actual time=3234.360..3234.365 rows=10 loops=1)
16 -- Sort Key: rel1.attr1
17 -- -> Limit (cost=343561.96..343561.99 rows=10 width=8)
18 -- (actual time=1794.350..1794.351 rows=6 loops=1)
19 -- -> Sort (cost=343561.96..367234.64 rows=9469072 width=8)
20 -- (actual time=1794.350..1794.351 rows=6 loops=1)
21 -- Sort Key: rel1.attr1
22 -- Sort Method: top-N heapsort Memory: 25kB
23 -- -> Seq Scan on rel1 (cost=0.00..138938.72 rows=9469072 width=8)
24 -- (actual time=0.020..1020.129 rows=10000000 loops=1)
25 -- -> Limit (cost=343561.96..343561.99 rows=10 width=8)
26 -- (actual time=1440.008..1440.009 rows=5 loops=1)
27 -- -> Sort (cost=343561.96..367234.64 rows=9469072 width=8)
28 -- (actual time=1440.006..1440.006 rows=5 loops=1)
29 -- Sort Key: rel1_1.attr1
30 -- Sort Method: top-N heapsort Memory: 25kB
31 -- -> Seq Scan on rel1 (cost=0.00..138938.72 rows=9469072 width=8)
32 -- (actual time=0.036..695.884 rows=10000000 loops=1)
33 -- Total runtime: 2847.414 ms

Figure 6: Execution of improved query with limit clause

CPU come with the manuals detailing the execution cost of each of its instructions
in terms of CPU cycles [GA05]. We can contrast this with evaluating the score
of the query plan, where we have to take into consideration a speed of the hard
drive’s sequential read, a speed of the hard drive’s random page read, a speed of
the memory, whether some data subset will fit into memory without knowing an
exact amount, etc.;

• machine code instructions are known by the community, can be written and tested
directly. Query execution plans, on the other hand, are internalRDBMS structures
that can not be easily manipulated without changing RDBMS itself.

As such, there is a lot more scientific work put into improving the compilation pro-
cess.

At the core, most modern compilers nowadays use peephole optimizers as their pri-
mary source of the machine code optimization. A peephole optimizer works by going
through already generated machine code, searching for the code segments that can be
replaced with the instruction sequence which is either shorter or can be executed faster
[McK65]. These replacements are predefined inside of compiler itself in simple template
language and are constantly evolving with each new release of a compiler as better and
better replacements are found.

18

It is obvious from the description that peephole optimizer can only do local changes.
As such, they are not enough to produce an optimal sequence of instructions. That is why
modern compilers do not limit themselves to using only one single optimizer. Most of
them use other optimization passes and techniques, like complex data flow analysis tools
that are able to detect and optimize out the dead code or resolve constant expressions,
loop specific optimizers (unrolling, splitting, unswithcing, motion, etc.), static analysis
passes, profile guided optimizations [GMZ02] (that may not produce same instruction
set after several compilations), and so on.

Though very useful in practice, these techniques are also incapable of producing
something that we could call optimal – only way better than original. That is why some
people tend to refer to these techniques as improvers and not as optimizers (this oxy-
moron is best described in [BA06, p. 1]).

The first true optimizer (from now on we will call optimizer that produces optimal
code a superoptimizer) was written by Massalin [Mas87]. Massalin’s superoptimzer is
based on a very simple brute force approach. It iteratively generated all possible instruc-
tion sequences starting with a sequence containing single instruction, then two, then
three and so on. Whenever an instruction sequence equivalent to optimization target is
found, superoptimizer stops and returns it as a final optimization result. Such approach
allowed superoptimizer to produce shortest instruction sequence carrying the same pro-
cedure as the original one (all work was done on Motorola’s 68020 instruction set, in
which all instruction would take a single CPU cycle – there, shortest meant fastest).

Though such superoptimzer worked well in practice and could work with an instruc-
tion set with up to 13 instructions, it could return incorrect results. The problem was
the equivalency checking part. In his original paper, Massalin describes an equivalency
checking procedure based on a mathematical logic that would be able to guarantee that
his superoptimizer would always return correct results, but it was computationally expen-
sive. As such, his superoptimizer used a simple unit testing approach. For each generated
sequence, it generated a few random data sets and checked whether running input se-
quence on these data sets produced the same result as running generated sequence – if
so, both sequences were considered to be equivalent.

The next major step in superoptimization was Denali [JNR02], [JNZ+03]. Instead of
iteratively trying all possible sequences, Denali used templates and E-graphs to generate
possible sequences. It tested generated instruction sequences by encoding them in the
format used by SMT solver (this kind of solvers will be discussed later in this paper).
This allowed Denali to have strong equivalence guarantees.

Though Denali’s project showed that it is possible to have 100% correct superopti-
mizer, it was still infeasible to use it in practice while compiling whole programs. First
of all, Denali was not able to encode complex interactions inside of the instruction se-
quences – mainly the loop constructs – with SMT. Secondly, generating an optimal

19

instruction sequence containing only a few instructions was still a complex and, what is
more important, a very slow task.

The first project which was able to improve compilation of general programs was de-
scribed in [BA06]. Instead of trying directly superoptimize generated machine code, au-
thors were using superoptimizer to automatically generate replacement rules for peephole
optimizer. That is, they were detecting potentially optimizable instruction sequences on
the fly and were pushing them to the optimization queue. Later on, the superoptimizer
would take those pieces and would try to produce faster replacements off-line (after the
actual compilation). These replacements would be later added to the compilers rule list
– so improving the quality of the generated machine code for upcoming compilations.
This technique proved to be very valuable in practice, and now compilers from GCC and
LLVM include rules found by superoptimizers.

Since automatic peephole generation, superoptimizers have improved a lot. They
started using machine learning techniques, like Monte Carlo tree search, to minimize
search spaces [SSA13], and even started to work with some looping constructs [SSCA15].

Going back to RDBMSs and queries, we are in a similar position. A search space is
too large, so, RDBMS used specific algorithms (like compiler using specific loop opti-
mizations for loops and integer arithmetic expansion to optimize division by a constant)
and heuristics, to come up with a decent suboptimal solution. Now, knowing that queries
in pools are changing rarely, it would seem that RDBMSs could use more exhaustive
search algorithms in the background. That is, RDBMS on the first query access could
generate any sub-optimal plan, put it to internal cache and return it to the user. On
any of the subsequential calls for the same query, RDBMS would skip compilation and
return the cached plan. In addition to that, RDBMS could start searching for a better
plan in a separate thread. Whenever a better plan is found, it could replace the cached
version. Such process would imply that user would get continuous improvements on his
query execution times. This is the idea that we are going to develop in this paper.

20

2 Architecture
In this section, we will start presenting a created optimizer (similar to superoptimizers
discussed in the previous section) by beginning with its architecture. The project is split
into three actors: a client, a proxy and RDBMS. These actors are implemented as services
that can run on different machines. While working on this project locally, these services
are run on VMs managed by Vagrant. The exact layout of VM machines can be seen in
Figure 7.

«schema»
voter

«schema»
twi t ter

«schema»
seats

«schema»
ds2

«schema»
wiki

«schema»
tpc

«execution environment»
PostgreSQL 9.5 ebc0f5e (patched)

«OS»
Ubuntu 14.04.3 LTS (Trusty Tahr)

«virtual machine»
psql2 - Test DB (192.168.100.30)

«schema»
voter

«schema»
twi t ter

«schema»
seats

RDBO

«schema»
ds2

«schema»
wiki

«schema»
tpc

«execution environment»
PostgreSQL 9.5 ebc0f5e (patched)

«OS»
Ubuntu 14.04.3 LTS (Trusty Tahr)

«virtual machine»
psql1 - Target DB (192.168.100.20)

«OS»
Ubuntu 14.04.3 LTS (Trusty Tahr)

«virtual machine»
Proxy (192.168.100.10)

«execution environment»
Mono C# 3.2.8.0

(runtime v4.0)

DVDStore 2.1

«execution environment»
OpenJDK 64bit Runtime Environment 1.7.0_79

(IcedTea 2.5.6)

«OS»
Ubuntu 14.04.3 LTS (Trusty Tahr)

Host machine

OLTPBenchmark 9ec650b

«virtual machine»
Client (192.168.100.40)

«protocol»
febe 3.0/tcp

1

1

«protocol»
febe 3.0/tcp

1

1

«protocol»
jdbc/febe 3.0/tcp

1

1..*

Figure 7: Deployment on VM

We can see from this figure that client is running on themachine with IP 192.168.100.40
. It consists of two applications: OLTBench andDells DVD stores simulation. Each of these
applications connects to the proxy server and executes various SQL queries over JDBC
or ADO.NET connectors.

The primary application of this project (called RDBO) run inside of proxy server
192.168.100.10 on port 8123. It intercepts all queries, parses them to internal repre-

21

sentation and generates query execution plans. RDBO then executes these plans on Post-
greSQL instance, running on 192.168.100.20 and the original query on PostgreSQL,
sitting inside of machine with IP address of 192.168.100.30. Results of both execu-
tions are compared against each other and results of the query plan are returned to the
appropriate client application.

In the upcoming section we are going to discuss responsibilities and implementation
of these actors in greater detail.

2.1 Proxy
As mentioned before, the proxy is one of the main actors and is responsible for quite a
few things. In this section we will discuss what tasks it has to do, before going to its main
loop in detail. We will also show how proxy deals with the query interception, parsing
and plan execution. Finally, we’ll see what kind of precautionary measures it uses to
assure quality of its work.

The proxy is also responsible for the query plan generation, but being one of the
most integral topics of this project, the plan generation, deserves separate section and
will not be discussed here.

2.1.1 Initialization

Before processing, any query RDBO has to do some initialization procedures.
First of all, it has to know the connection parameters for the target and test databases.

These parameters are passed to the RDBO executable on its start, via command line
arguments by the user.

Secondly, RDBO has to connect to one of these PostgreSQL instances in order to
load schema information from the appropriate database into the memory. This is needed
primary for two reasons:

• a parser component of RDBO needs to have the information about schema, to re-
solve some more complicated structures, before converting query into an internal
format. For example, a resolution of the natural joins requires finding an intersec-
tion of the attribute sets of joined the relations. The only place from which such
information can be acquired is schema itself;

• the planner uses powerful deduction mechanisms to compare two query execution
plans. With every bit of information we give to it, the probability of getting false
negative results decreases. As such, it is very beneficial to feed these mechanisms
with information like inclusion dependencies, unique constraints, etc.

Such schema caching allows all these operations to get appropriate information with
ease and, what is more important, fast. The only restriction which is imposed by this 22

process is schema’s immutability. Data within schema can not change while RDBO is
running.

Finally, after all the caching work, RDBO can start busy loop on which it listens for
incoming connections.

2.1.2 Proxying

When RDBO gets a connection from client, it immediately makes an appropriate con-
nection to the test database on a separate thread. After that it enters listen/execute cycle
on which it tries to proxy the whole interaction.

Overall, proxying the interaction is not the only thing it has to do as it also has to
intercept all queries. As such, simple getting a TCP packet from the client and sending
to the server (or vice versa) is not sufficient. What it actually does is getting packet from
the client, parsing its contents as defined by the PostgreSQL message formats [Pos14d].
Then, it tries to understand the meaning of this message and do appropriate action. For
example, if RDBO receives a SSL encoded protocol request from the client, it sends a
message saying „unsupported“ back to the client (as we do not support this feature) and
waits for next step from the client – no message goes to the server.

As it can be seen, modelling all the possible interactions directly might be too com-
plicated. That is why proxying is implemented as a specialized automata. This automata
is encoding by lifting RUST macro system in special purpose DSL and its whole speci-
fication can be found in proxy/src/protocols/postgres.rs. One big advantage of
using this kind of automata is that it is easy to visualize all possible states and transitions
in it. Such visualizations are outputed on every client connection by RDBO logging
module as Graphviz graphs and are presented in figures 8 and 92.

That we can see from these graphs is that RDBO automata closely imitates subset of
PostgreSQLs FEBE protocol [Pos14c]. All the edges of these graphs contain two parts –
input and output, separated by the forward slash character (which somewhat reassembles
Mealy machines):

• input is encoded as a direction (can be either c indicating client or s – server), mes-
sage type pair (elements are separated by colon). So, for example, c:StartupMessage
indicates that transition happens when we get StartupMessage from client.
AsRUST does not provide proper selection mechanism, detection of the side which
is sending the message is implemented as FFI to pool(2) which has one problem
– on an idle connection it starts a busy loop (this does not really matter for RDBO
as clients are always attacking RDBMS with queries and properly end their con-
nection by sending Terminate message);

2These figures lack edges for various completion messages like CommandCompleted,
BindComplete, ParseComplete and NoData as they do not have any useful meaning and just
clutter visualization. 23

• output – an action which will be executed. In general, this action can be any func-
tion implemented as proxy/src/protocols/postgres.rs:StateMachinesEdge
, but in most cases we use default action which is to relay packet to other direction.
An encoding of such default actions inside of graphs is exactly the same as input
– direction and message type tuple.

As an edge representing simple packet proxying appears quite a few times, we some-
times use a shorthand notation in which input and output directions are written together
within curly braces. For example, {c/s}:StartupMessage means that on an event of
StartupMessagemessage from the client, we pass exactly the same packet to the server.

Knowing how automatas represent their data, we can continue by looking what they
represent.

InitializingConnectionB

Connected

{s/c}:ReadyForQuery

PlainAuthRequested

PasswordSent

{c/s}:PasswordMessage

InitializingConnection

{s/c}:BackendKeyData

{s/c}:ParameterStatus

ConnectionRequested

{s/c}:AuthenticationCleartextPassword

{s/c}:AuthenticationOk

Md5AuthRequested

{s/c}:AuthenticationMD5Password

{c/s}:PasswordMessage

{c/s}:Close

End

{c/s}:Terminate

{s/c}:AuthenticationOk

WaitingForClient

{c/s}:StartupMessage

c:SSLRequest/c:N

Figure 8: State machine for connection

First automata (Figure 8) handles a client connection which includes:

• denying SSL request if any;
24

• handling authentication (please note that in this phase all passwords are logged as
part of the protocol message logging mechanism – use in production environment
is highly disadvised);

• collecting authentication parameters, which are later used to connect to target
RDBMS;

• handling of GUC variables – taking care of things like query encoding and param-
eter formats (this information is used in later parts of interceptor).

Connected {c/s}:Close

Parsed
(ExecutionListener Exec query)

{c/s}:Parse

Bound
(ExecutionListener Exec bind)

{c/s}:Bind
ExecutingSimpleQuery

(ExecutionListener Exec exec)

{c/s}:Query

CommandCompleted
(HashCalcListener Main Path finish)

{s/c}:ReadyForQuery

ReceivingRows
(HashCalcListener Main Path calc)

{s/c}:RowDescription

{c/s}:Describe

{c/s}:Bind

ReceivedResultDesc

{s/c}:DataRow

{c/s}:Describe

PreparedToExecute
(ExecutionListener Exec exec)

{c/s}:ExecutePortal

Syncing

{s/c}:RowDescription

{s/c}:ParameterDescription

{s/c}:DataRow

{s/c}:EmptyQueryResponse

{s/c}:RowDescription

{c/s}:Parse

{c/s}:Bind

{c/s}:Sync

{s/c}:DataRow

Figure 9: State machine for query execution

Second automata is more complicated and represents two types of queries:

• Simple query – is executed when a user supplies a query as a string;
• Extended query – in this mode a user first compiles a query, giving it some sort
of name (and actually creates an associated PostgreSQL execution portal). After
that the user can bind concrete values to it (marked with the dollar signs in the
original query) by giving the parsed queries name and all values in a single message.
Finally, the user can execute a query and receive resulting tuples from RDBMS.
Binding and execution can happen at any time so RDBO has to collect and keep
all the necessary data inside of the memory. 25

2.1.3 Query interception

The next thing which needs to be discussed is query parsing, but before that we have to
get queries. Though automata described in the previous section allows us to intercept
all messages and convert them to internal RDBO format, it does not carry any other
responsibilities. Instead, it allows an arbitrary number of external listeners to attach
to its nodes. These listeners are fired when communication between client and server
reaches certain state and get all data needed for further processing (edge by which we
came to the state, stored GUC parameters, etc.). These listeners are also shown between
brackets inside of automata’s states. Their names are split into three parts:

• a name of the internal RDBO structure3 as it is written in RUST code which is
listening on a particular state;

• an arbitrary name designated for a particular instance of the structure;
• a name of the method which will be called.

A query interceptor is implemented as one of these listeners and is named Execution
listener. Its implementation can be found in proxy/src/protocols/execution_listener

.rs.
The first time this listener is fired, it creates a connection to target RDBMS. Then,

it creates exactly the same automata as was used for its call and associates it to this new
connection. After that, it replies authentication procedure on this automata – this pushes
target RDBMS to a state in which it is able to accept queries.

After that, the query interceptor processes queries. For simple queries, this is easy –
we just take it and pass to other modules. However, for extended queries there, is a little
bit of additional work that has to be carried out:

• inside of the Parsed state, the query interceptor gets a query which may contain
placeholders. As such, it has to collect and wait for other user actions;

• inside of the Bound state, a particular query (each compiled query get a dedicated
name, unique to the execution portal) gets all values that should be filled in, instead
of placeholders. The query interceptor takes these values, encodes them as strings,
and pushes to the copy of original query.
There are also a few limitations that need to be pointed out here:

– bound values can come in two forms: binary and text. Currently, we support
only a former format and throw exception on any binary value (JDBC uses
text format, so here such limitation does not have a large impact);

3Structures are used as classes in other languages.

26

– each value comes with its type OID. In order to properly process values, we
have to have knowledge of these OIDs. Instead of asking PostgreSQL backend
about these OIDs, we include a subset of mappings between OID to actual
name inside of RDBO itself. These mappings are taken from PostgreSQL
source code file src/include/catalog/pg_type.h and, while they could
change between versions, they are pretty stable in practice. A listing of the
supported types and their OIDs are shown in Figure 10.

• inside of the PreparedToExecute state, a query, which is now fully encoded as a
string, is processed as a simple query.

1 #[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
2 pub enum ParameterType {
3 Unknow = 0,
4 Bool = 16,
5 Int8 = 20,
6 Int2 = 21,
7 Int4 = 23,
8 Text = 25,
9 Float8 = 701,

10 Varchar = 1043,
11 Timestamp = 1114,
12 Numric = 1700,
13 BPCHAR = 1042,
14 }

Figure 10: Supported value types and their OID’s

The first module which is hit by query interceptor, when it tries to process captured
query, is the parser. This module takes a query represented as a string and transforms it
to the internal AST.

There are a lot of ways how this module could be created. One of the most popular
decisions is to PostgreSQL parser itself by statically linking it to executable. This is what
projects like pg_query and rust-postgres do.

In this project, we followed a different path – we are using a parser generator rust-peg
to generate a parser from grammar (the grammar is stored inside proxy/src/parser
/grammar.peg). This enables to have a more general way to parse SQL queries (for
example, it would be easier to switch to different SQL dialect) and, what is more impor-
tant, easily gives native structures to work with. The exact way a query is represented in
AST will not be discussed, as it is of little importance.

After parsing queries, AST is given to the planer which produces a query execution
plan. It is this plan which will be serialized and sent to target RDBMS for the execution.

2.1.4 Result validation

Generating and executing plans is a hard task. As such, a possibility to err is very high.

27

The responsibility for capturing errors is pushed to validation module. This module
works similarly to the query interceptor. That is, it is implemented as an automata listener
called HashCalcListener and is attached to two states:

• When data from a new query passes ReceivingRows state, this listener creates a
new hasher. Then with all subsequent enters to ReceivingRows, this hasher is
updated by hash of received tuples (after stripping some metadata);

• Finally, at CommandCompleted state, the final value of the hash is output to internal
RDBO log.

en This procedure is repeated for all the queries that are passed to both target and test
RDBMS. Later on, we run a separate script /scripts/parse_proxy_log.py on RDBO
log. This script collects all queries and final hashes and checks whether bag of hashes
generated by target RDBMS matches the hash bag from test RDBMS. Any mismatches
are reported to the caller 4.

There might be a question why these checks are done off-line and disregard order
of queries. The answer to both concerns is quite simple – RDBO does not give any
guarantees on the execution of the queries inside of test RDBMS. In addition to that,
both automatas that were used to capture queries may also go out of sync.

Having said all that we can finally talk how the hash calculation is actually performed.
A Hasher used in this project is implemented inside of proxy/src/hash.rs. As hash
calculation will be executed millions of times per benchmark, it was important to use a
fast hash function. As such, we are not using conventional hash functions as SHA256,
but instead use a noncryptographic function due to Jenkins [Jen] (which was shown to
be one of the best of its kind [HSZ08]5).

2.2 Database
As stated in the architecture overview, we have two instances of PostgreSQL running
on two separate machines (then using both VM and Digital Ocean). First one is used to
execute custom generated plans and the second one for a result set validation. In this
section we will define changes made to both of them as well as discuss some of the used
helper scripts.

2.2.1 Changes to PostgreSQL configuration

If we would check PostgreSQL code under file psql/code/src/include/nodes/plannodes.h
we would see what PostgreSQL plan may consist of roughly 40 different plan nodes.

4In order to work correctly, it is very important that both RDBMSs are of the same version and
compiled with same options, otherwise queries like „SHOWALL“ will be caught to be invalid by validation
module

5There is actually a newer version of this function called SpookyHash that might be used in future
versions of RDBO. 28

Some of these are used for advanced optimization techniques (like bitmap indexes –
index which allows going over indexed tuples in heap order) and features (like window
aggregates). Due to various factors, these nodes are not used in this project.

In order not to give PostgreSQL unfair advantage, these advanced nodes are disabled
– see Figure 11.

1 enable_bitmapscan = off
2 enable_hashjoin = off
3 enable_indexonlyscan = off
4 enable_mergejoin = off
5 enable_tidscan = off

Figure 11: Disabled PostgreSQL planner capabilities

In addition to these changes, there are also changes in a way PostgreSQL logs are
written, such as enabling of vacuum and checkpoint messages, changing log format, etc.
All changes can be found in /psql/scripts/postgresql_ex.conf.

2.2.2 Changes to PostgreSQL

One of the primary things needed for this project was the query plan execution. Un-
fortunately, PostgreSQL does not give such facility. This is understandable as a query
plan generation is considered RDBMS driver’s responsibility. For this reason, under
this project, PostgreSQL was extended with a new command execplan e_json6. Full
implementation of this command can be found in /psql/scripts/psql.patch

As an argument, this command takes a string containing query plan in JSON for-
mat. A query plan given for execplan tries to be simplified abstraction of a PostgreSQL
structure PlannedStmt. This abstraction handles such details as relation and its attribute
OIDs resolution, range table handling, junk variable management, additional node cre-
ation (for example, aggregation node requires that its actions would contain additional
flag attribute showing its origin), function and operation resolution, data type correlation,
etc.

The data format of the query plan used by execplan is defined in following sections.

2.2.2.1 Query plan node At the top of the query plan sits a plan node. It is a JSON
object consisting of the three keys:

• plan_id – this should hold any string which could be considered to be unique
per plan. In general, plan_id is SHA256 hash of query, and is primary used for
logging purposes.

• action_tree – a plan node which will be used to generate the resulting tuples;
6There is also execplan e_parse, but its mostly used for internal testing and is not discussed in

this paper.

29

• output – array of strings. Each of a them represents attribute name from tuples
returned from action_tree. These attributes will be returned to the user as a
final output.

Action tree by itself consists of two types of nodes: expressions and actions.

2.2.2.2 Expression nodes Expression nodes are the simplest type of objects and de-
fine a certain type of computation. That is, they take some values inside of processed
tuples and produce new ones. There are several simple expressions:

• Integers – represent 32 bit signed integer and are used in JSON as is;
• Booleans – truth value which can be either true or false;
• Attribute references – these represent a concrete value of an attribute in processed
tuple and are encoded as strings in JSON;

• Typed values – PostgreSQL has more primitive values than JSON. To express those
that are not available, we use a special typed value object. This object contains two
keys: typ – defines the type which we want to get (can be any type supported by
PostgreSQL); val – value encoded as string. One of the most used typed values in
plans is str, which autocorrelates to the appropriate RDBMS varchar constant;

• Functions – a final type of an expression that may occur is a function expression.
Functions are represented as an object containing two keys: func – a name of the
function or an operation; args – an array of expressions which will be given to
the appropriate function as its argument.

In Figure 12 we can see the expression generated for the query select (1 < 5 and
'abc' like 'a%c')or false;

1 { "func": "or",
2 "args": [
3 { "func": "and",
4 "args": [
5 {"func": "<", "args": [1, 5]},
6 {"func":"like","args":[{"typ":"str","val":"abc"}, {"typ":"str","val":"a%c"}]}]},
7 false]}

Figure 12: Expression node

2.2.2.3 Action nodes While expressions change values inside of tuples, actions work
with tuples themselves.

30

1 { "action": "seq scan",
2 "output": ["attr1"],
3 "relation": "rel2",
4 "filter": { "func": "<",
5 "args": ["attr2", 2] } }

Figure 13: Node representing sequence scan

2.2.2.3.1 Sequence scan node A Sequence scan node is the primary tuple gen-
erator in a query plan. This node goes through a relation in heap order one disk page at
a time. While doing so, it extracts all valid tuples from a page (here valid means tuples
that belong to the current transaction in terms of MVCC and are accepted by the filter).
All these tuples are pushed up the tree as input for other nodes.

Simple sequence scan’s node is given in Figure 13. This node contains these keys:

• action – defines type of an action node. In the sequence scan’s case, this field
should always be seq scan;

• relation – a name of the relation of which tuples ought to be returned;
• filter – an optional expression on which all returned tuples should agree (ex-
pression can access attributes that are defined in output of the node below it);

• output – an array of attributes of a relation to return. This array can contain a
literal attribute name without any restrictions (names can repeat or be given in any
order) or named expressions of form {"alias": "var1", "expr": /* expr
*/}.

1 { "action": "rtn_result",
2 "output": [
3 { "alias": "pow",
4 "expr": { "func": "power",
5 "args": [2, 3]}},
6 { "alias": "const",
7 "expr": 8 }]}

Figure 14: Result node

2.2.2.3.2 Result node Result node is another tuple generator. It always generates
a single tuple containing values from evaluating all expressions from its output key. For
example, result node shown in Figure 14 generates a tuple containing two values: a
floating point number 8.0 and an integer 8.

Additionally, a result node can contain outer_action key. This key represents
another action’s node whose tuples will be processed by the result node. That is, a result
node’s output can have expressions containing attribute references to tuples below it. In
this case, the result node would produce as many tuples as outer_action generates.
Such processing is rarely used in practice as there are better ways to apply additional
expressions over tuples (like using a subquery node).

31

2.2.2.3.3 Nested loop join Nested loop join takes two actions: outer and inner.
It then takes the first tuple from an outer action and concatenates it to all of the tuples
in inner action. After that it does the same with the second, the third and other tuples
of the outer action (in order they are produced).

All tuples that do not match filter condition are not returned if and only if join_type
is set to type inner. For left join, nested loop join, generates additional tuple for all
tuples inside of its outer action that was unmatched by any tuple inside of the inner
action.

There are plenty of other join types like natural, natural inner, cross, left
outer, natural left, natural left outer, right, right outer, natural right,
natural right outer, full, full outer, natural full outer. All of these can be
simulated by inner and left joins on the syntax level – and that is done by the RDBO
parser and the query plan generator.

1 { "action": "join by nested loop",
2 "output": ["attr1", "attr2"],
3 "join_type": "left",
4 "filter": { "func": "<=",
5 "args": ["attr1", "attr2"] },
6 "outer_action" : { /* action */ },
7 "inner_action" : { /* action */ } }

Figure 15: Node for nested loop join

A full example of the nested loop join is given in Figure 15.

2.2.2.3.4 Materialization node On the first access of materialization node, it
takes all tuples from its outer_action and passes them through up the tree. While
doing so it also stores a snapshot of these tuples on disk. It is this snapshot which is used
for subsequent calls – outer_action is not traversed anymore.

It is very beneficial to add a materialization node above a node which slowly generates
(subtree at outer action is very large and complicated) just a few tuples and is called
multiple times. One common example of such node is anything that is inside of the
nested loop join inner’s action. This is due to the fact that such node will be iterated as
many times as there are tuples in the outer action.

1 { "action": "materialize",
2 "output": ["attr1"],
3 "outer_action" : { /* action */ } }

Figure 16: Node for result materialization

An example of materialization node can be seen in Figure 16. This node contains
only three keys: action’s name (always materialize), child node inside of outer_action
and a list of variables that will be passed up the tree from node’s outer action. This list

32

will be read verbatim. That is, it can not contain any expressions – only the variable
references (and, in general, this list matches the output of outer action).

2.2.2.3.5 Limit node Limit node’s action ignores first offset tuples from its
action node. After that, it takes next count tuples and passes them up the tree. Finally,
if possible, it tries to terminate its action node’s work as no other tuples will be needed
by its parent node.

1 { "action": "limit",
2 "output": ["attr1"],
3 "count": 1,
4 "offset": 1,
5 "outer_action" : { /* action */ } }

Figure 17: Node limiting number of output tuples

Node itself is shown in Figure 17. Most of its fields should be self-explanatory, the
only thing which should be taken with care is node’s output field. This field should
fully match node action’s output.

1 { "action": "concat",
2 "output": ["attr1"],
3 "actions": [
4 { /* action 1 */ },
5 { /* action 2 */ },
6 { /* ... */ },
7 { /* action n */ }] }

Figure 18: Node representing concatenation of inner actions

2.2.2.3.6 Concatenation node In order to accommodate SQL’s need for various
set operations PostgreSQL has two action nodes: concatenation and set operation. A
concatenation node which is simpler of the two and can be seen in Figure 18 takes a
list of actions and executes them in order thus creating a combined stream of tuples. All
actions, including concatenation node itself, have to agree on output attribute names and
their types (expression nodes in the concatenation node are disallowed).

This enables to write query plans that handles union all and union (needs addi-
tional actions for unique guarantees) binary operations.

1 { "action": "setop",
2 "output": ["attr1"],
3 "operation": "intersect",
4 "leave_unique": false,
5 "op_type": "hash",
6 "groups": 5,
7 "outer_action": { /* action */ },
8 "inner_action": { /* action */ } }

Figure 19: Node representing various set operations
33

2.2.2.3.7 Set operation node Set operation node (Figure 19) is the second action
node used for implementing the set operations. It takes a name of an operation which
it will be doing (intersect or minus) and two actions on which this operation will be
carried out.

Set operations can be carried out in two ways, determined by op_type key:

• hash – before applying an operation, all the tuples are put to a predetermined
number of bins, by applying some hashing operation on them. After this operation,
the actual implementation of intersection and minus becomes trivial;

• sort – assuming that both child actions are sorted by all output attributes, set
operation node can use modified merge sort to implement intersection and minus.

Additionally, set operation node is capable by itself, without any help from additional
nodes, leave only unique tuples. The only thing which is needed by the user is to set
a value of leave_unique to true. This is due to the fact, that both implementations
of a set operation carry the uniqueness information by themselves. This enables faster
repeated tuple removal compared to the usage of an additional aggregate node.

1 { "action": "sort",
2 "output": ["attr1"],
3 "by": [{ "col": "attr1", "dir": "asc", "nulls_first": false }],
4 "outer_action" : { /* action */ } }

Figure 20: Node representing sorting

2.2.2.3.8 Sort Sort node (Figure 20) sorts tuples from its child action before
moving them up to its parent. The sorting can be done in either the memory or the
disk – whichever is better is determined by the executor of a plan.

In order to distinguish how to sort, sort node contains a key by. Under this key, the
user should put a list of attributes he/she wants to sort by. This list can contain either
literal attribute names from the output or JSON object containing a specification for the
sort order. This specification can contain:

• col – a mandatory field containing a name of an attribute;
• dir – indicates whether to sort in ascending (asc – default) or descending (desc)
order;

• nulls_first – determines where NULL values should be put in accordance to full
output.

2.2.2.3.9 Aggregate node An aggregate node is used to collect the tuples that
agree on some values and apply some function over the groups. This node consists of a
two additional keys compared to general action node: 34

• agg_type – indicates a tuple grouping method. This can be plain in order to
group nodes by doing a nested loop; hash – grouping is done by applying hash
function on specified values and putting tuples with same hash in same buckets;
sort – similar to plain way, but short circuits second loop on the first failure
(works only with data which is already pre-sorted).

• by – a list of attribute references from the aggregate nodes output. Tuples will
have to agree precisely on a value determined by these attributes.

1 { "action": "aggregate",
2 "output": [
3 { "alias": "sum",
4 "expr": { "func": "sum",
5 "args": ["attr1"] } },
6 "attr2"],
7 "agg_type": "hash",
8 "by": ["attr2"],
9 "filter": true,

10 "outer_action" : { /* action */ } }

Figure 21: Aggregate node

Functions that work with tuple set are specified as any other function – by including
them in node as an expression. For example, an aggregate node shown in Figure 21
uses sum function to sum over var1 attribute values. As we are also grouping by this
attribute, the sum will not be different from an attribute’s value.

1 { "action": "sub view",
2 "output": ["attr1"],
3 "name": "sub",
4 "filter": { "func": ">",
5 "args": ["attr1", 1] },
6 "outer_action" : { /* action */ } }

Figure 22: Node representing subquery

2.2.2.3.10 Subquery node A simple node (Figure 22) which is used in Post-
greSQL primary as an optimization blocker (for example, it is not possible to bubble out
filter conditions up from this node).

Inside of RDBO, this node is used as an intermediate node which gives support
to nodes that could not do filtering or are unable to further process its attributes with
expression nodes.

In addition to general values, this node also contains a name. This name has no
meaning accessible from JSON interface and is used primarily for the logging purposes.

2.2.2.3.11 Correlated subquery This node is not really an action node, but
rather a connector between the expressions and the nodes. That is, this node can be
used in all the same places as any other expression, but, instead of manipulating values,
it executes an action node which is saved within it. 35

This action node should produce exactly one attribute and at most one row of values
(actually, it may produce more rows and what is useful for a thing like in expressions,
but in RDBO this feature is not implemented):

• If it returns one value, then it is used as a result of an expression;
• If none – this node is considered to be equal to the NULL value.

1 { "action": "seq scan",
2 "output": ["attr1"],
3 "relation": "rel2",
4 "filter": { "func": "=",
5 "args": [
6 { "exec_sub_plan": {
7 "action": "rtn_result",
8 "output": [{ "alias": "inner",
9 "expr": { "func": "+",

10 "args": [1, { "param": "p" }]}}]},
11 "output": "inner",
12 "args": [{
13 "set_param": "p",
14 "to_var": "attr1" }]},
15 2]}}

Figure 23: Node representing a correlated subquery

A full usage of this node is shown in Figure 23. Here we are simulating a sequence
scan over relation test. All tuples are filtered according to the rule 2 = (select 1 +
var1).
As it can be seen from the example correlated, a subquery besides being able to

execute arbitrary action nodes is also able to give them arbitrary values. These values
are put inside of args array. This array contains JSON objects consisting of two keys:

• set_param – this is a name of a parameter which is accessible from anywhere inside
of exec_sub_plan’s action. It is accessed by using a special param expression
node;

• to_var – variable which is described inside of action node containing correlated
subquery. This variable can not be an expression – only an attribute reference – a
restriction which can be easily overcome by inserting an additional subquery node.

2.2.2.3.12 Index scan An index scan is very similar to the sequence scan – it
takes a relation and outputs some expression applied on its attributes. Unlike sequence
scan, it does this by iterating over the index. An index is a special structure which
contains a subset of relation’s attributes sorted in some order (plus a pointer to the original
tuple). As such, search for these attributes is very fast. In order to use this optimized
search, index scan’s filter has to adhere to the specific set of rules:

• It has to be right recursive;
36

• Only a simple comparison operator like =, <=, >, . . . can appear in it;
• It can use only the attributes defined in the index. These attributes should appear
in the filter in the same order as they are saved in the index, without gaps.

Additionally, index scan takes scan_dir key which can be either forward or backward.
This key is used to directly implement ORDER BY clause (without a need of a separate
sorting node).

1 { "action": "index scan",
2 "output": ["attr1", "attr2", "attr3"],
3 "relation": "rel1",
4 "index": "rel1_attr2_attr3_key",
5 "scan_dir": "forward",
6 "filter": {"func": "=", "args": ["attr2", 1] }}

Figure 24: Node representing index scanning over relation

An example of an index scan can be seen in Figure 24. Here we are reading attributes
attr1, attr2, attr3 from a relation rel1 via an index rel1_attr2_attr3_key. All
tuples returned from this node will be sorted lexicographically by attr2, attr3 tuple.

2.2.3 RDBMS structure overview

All code which is relevant RDBMS is stored in /psql/. Under this directory there are 4
subdirectories;

• code/ – code of the patched PostgreSQL. This directory is created in provisioning
phase;

• logs/ – we put PostgreSQL log files under this directory. It is these logs that are
later parsed to get all the benchmark results;

• cache/ – a temporal directory containing various packages downloaded from the
internet that were needed by provisioning;

• scripts/ – a primary directory containing scripts and helper files for creating
RDBMS instances. These files include:

– debug.bash – a script which is used, as name suggests, to start a PostgreSQL
instance in the debug mode. That is, it starts postmaster, then client which
detaches from it and finally the gdb debugger. In addition to that, this file is
also able to compile PostgreSQL from the source, run several static checkers
on modified parts of the code base, run RDBO specific regression tests;

– setup.bash – a script which is run by the provisioning system. It is this
script that downloads the PostgreSQL code and all the libraries needed to
build it, patches the code, compiles it, creates data a directory, changes and
creates the appropriate configuration files, etc.;

– postgresql_ex.conf – changes to vanilla PostgreSQL configuration con-
cerning the query plan generation;

– psql.patch – a patch which implements the execplan command. 37

2.3 Client
The primary concern of a client is a creation of a workload for the database. In most
cases, the client is a simple script that takes a list of template files with attached weights.
This script repeatedly selects template file at random (taking into account its weight),
replaces some general parameters with random values and executes its contents.

Obviously, this scheme is not the best as the uniform random values in SQL queries
are quite rare. Also, most values have some interdependencies that disallow certain
permutations. As such, more elaborate template languages were created, such as RAGS
[SS98] or QGEN [PS04].

Still, this system allows defining and creation of complicated queries – finding a good
set of templates is still a hard task. This is mainly due to the fact that goodness of a set
depends on what we are trying to benchmark. That is why most benchmark suits consist
of multiple workloads, modeling different real world scenarios.

A most well-known benchmark suit for the databases is TPC [Kleb]. Currently, it
contains 10 benchmarks – from ones for testing simple online transaction processing to
those for stress testing databases, running on virtual machines.

There are a few other benchmarking solutions likeDells DVD stores simulation [Klea],
PostgreSQL specific pg_bech[Pos14b]7 and recently OLTBench [DPCCM13]. Out of
these, only OLTBench gives multiple workloads and, as such, was used as a primary
transaction generator for this project.

In this project, we used seats, tpcc, twitter, voter and wikipedia benchmarks
from OLTBench. Each of them represents some real-world scenario (for example, seats
models airline ticketing system), and as such, gives a rough view of SQL queries that we
might expect in the wild. Exact description of all benchmarks is given in [DPCCM13,
p. 280] and workload parameters used in this spece ific project can be found in the
configuration files under the /client/scripts/oltpbench_configs/ directory.

2.3.1 Limitations and changes to OLTBench

Though OLTBench covered almost all our benchmarking needs, there were a few changes
that need to be discussed.

First of all, some queries inside of OLTBench contained LIMIT clause. LIMIT usage
in queries is not limited by this project, but it introduces some nondeterminism to the
query result if not treated carefully. For example, in twitter benchmark there is a query
which gives at most 20 tweets from following people. The problem here is that no one
defines which tweets to return. Because of this ambiguity, there are multiple query plans
that describe same query, but return a different set of results. This gave a lot of trouble
to thproxy’s data validation mechanism (discussed in 2.1) and needed to be fixed by

7To a certain level simulates TPC-B workload
38

introducing a total order into result set with ORDER BY clause (Figure 25).
1 -- Before
2 SELECT f2 FROM "follows" WHERE f1 = ? LIMIT 20
3 -- After
4 SELECT f2 FROM "follows" WHERE f1 = ? order by f2 LIMIT 20

Figure 25: Change in getFlights workload

Secondly, some queries contained row level locking mechanisms like FOR UPDATE
clause. These mechanisms are needed to enforce the data consistency when one query
depends on the results of the previous one. Due to the fact that locking is out of the
scope of this project, these clauses were ignored when building a query plan in proxy.
As such, results of PostgreSQL and proxy query plans might go out of sync. To mitigate
this problem, it was decided to disallow execution of multiple workloads from the same
benchmark in parallel.

Finally, some workloads were too complicated to be executed with a naive plan and
locked down the whole system. One prominent example of this is stock level query
inside of tpcc benchmark (Figure 26). Naive plan for this query plan joins relations
ORDER_LINE, STOCK before doing any filtering. Because of that, we get intermediate
relation which is too large to process in any reasonable amount of time.

1 SELECT COUNT(DISTINCT (S_I_ID)) AS STOCK_COUNT FROM ORDER_LINE, STOCK
2 WHERE OL_W_ID = 2 AND OL_D_ID = 2 AND OL_O_ID < 3007 AND OL_O_ID >= 3007 - 20
3 AND S_W_ID = 2 AND S_I_ID = OL_I_ID AND S_QUANTITY < 11;

Figure 26: Query occurring stock level from database

One way to solve this problem is to interrupt naive query when a considerably better
plan is found. Though this solution seems very promising, due to technical complications
it was not implemented in this work. Instead, all workloads containing misbehaving
queries were removed. A full listing of removed workloads can be seen in Table 1.

Table 1: Excluded workloads

Benchmark Workload
seats FindFlights

NewReservation
tpcc StockLevel

2.3.2 Clients structure overview

All client code is stored under /client. This directory contains three subdirectories:

• scripts – this directory contains the primary scripts for executing client related
procedures and will be discussed later in this section;

39

• impl – after provisioning this directory will contain patched instances of Dells
DVD stores simulation and OLTBench;

• cache – saves various remote resources improving provisioning speed. This di-
rectory will also contain copies of all OLTBench created benchmark databases. Not
only such local database copy improves test running speed, but is also vital for test-
ing. This is due to the fact that OLTBench before its benchmarks pre-fills databases
with random data. As we need to have two identical databases, we can not allow
OLTBench to fill second one randomly. Instead, we use a cached version of the
first one.

The most important directory for us is scripts. As stated before, scripts under this
directory are responsible for creating and running all the tests.

Although there are quite a few scripts in directory, here we briefly discuss just the
usage of a few most important ones:

• setup.bash – this script is used to initialize a clear machine (whether it is a lo-
cal VM or remote Digital Ocean instance). It installs various prerequirements for
OLTBench and Dells DVD stores simulation, like Java, C#, PostgreSQL, …. It also
checkouts the appropriate versions of OLTBench and Dells DVD stores simulation,
patches them when appropriate and prepares correct binaries.

• oltpbenchmark.bash – a script for interacting to OLTBench– running a speci-
fied benchmark or initializing database (maybe from cache). This script is quite
complicated so there are also a few simpler wrappers: recreate_default.bash,
run_default.bash. These, as name suggests, call oltpbenchmark.bash by first
adding all needed arguments to recreate or run some benchmark under VM.

• dvdstore.bash – script similar to oltpbenchmark.bash, but used to interact
with Dells DVD stores simulation.

• run_all.bash – runs all prepared benchmarks.

40

3 Query plan generation
In order to execute parsed and intercepted query, we have to do several things. First of
all, we have to generate any plan which would get data defined by the query and execute
it on RDBMS. Then we can try to generate other plans similar to given one by using
simple mutation procedure. After getting a new plan, we have to evaluate it – check if it
is better than the original one. Finally, we have to check whether two plans are equivalent
by encoding them in SMT (introduction to the concept can be found in [DMB11]) and
running appropriate solver (in this project we use Z3 solver). If so we can replace original
plan with a better one and try improvement cycle once again.

In later sections, we will discuss all these tasks in greater detail.

3.1 Naive plan

sub view

View

Limit

limit

Order by

sort

join by nested loop

with

sort expressions

rtn_result

aggregate

sort

join by nested loop

with

aggregate expressions

rtn_result

Group by join by nested loop

with

projected expressions

rtn_result

Projection

join by nested loop

with

lter expression

rtn_result

Where

join by nested loop

rtn_result

join by nested loop

seq scan

1

join by nested loop

seq scan

2

seq scan

n

Relation aggregation

...

Figure 27: Outline of naive plan generation

In order to start plan optimization, we have to have a starting plan. This plan is
generated by procedures inside of RDBO’s planning module. These procedures take as
an input query’s AST and produces an equivalent plan. As plan optimization is done
in different part of the system RDBO’s planner does not try to apply any sophisticated
transformations. Instead, it assumes that query is made of 8 different clauses/parts and
for each of them directly generates appropriate plan nodes. Explanation of these clauses
as seen in Figure 27 follows:

View – this is a root node which sits on top of every naive plan. Its role is to rename
internal attribute names into what is needed by the user. We can look at this node
as something which implements SELECT keyword;

Limit – for limit clause planner generates appropriate limit node as is. If query does
not contain limit we insert dummy node with offset set to be 0; 41

Order by – ORDER BY clauses are translated into a sort node. Additionally, we insert join
by nested loop child node. The job of this node is to evaluate all expression
needed by sort node. Such preparation is needed as sort node’s output can
not contain arbitrary expression – only attribute references. It would seem that
such evaluation could have been carried in lower levels, but ORDER BY clauses can
have arbitrary expression not only attributes between SELECT and FROM clauses
and lower levels do not have access to these sorting expressions;

Group by – before sorting the data set we have to resolve GROUP BY and HAVING clauses.
As aggregate node can support arbitrary expressions we do not need to insert
additional join by nested loop, but what we have to do is to take into account
aggregation type. For plain we do not need to do anything special. For sort we
have to insert additional sort node which orders input data set on all attributes
inside of GROUP BY.
As grouping by empty set inside of aggregation node means that whole data set
will be collapsed into single tuple, aggregation node is the only optional node –
we insert it only if query has grouping expressions or if it has HAVING clause;

Projection – here, by using join by nested loop, we encode all expressions that appear
between SELECT and FROM keywords;

Where – again by lifting the properties of join by nested loop we encode queries filter
condition;

Relation aggregation – finally, at the very bottom of the encoded plan, we put all relations referenced
inside of query. We do this by a simple iterative process. Initially, we assume that
final subtree will contain only the rtn_result. Then for each joined relation (we
assume that relation mentioned after the FROM keyword is implicitly joined) we
create a join by nested loop node with current subtree as either left or right
child – this join be nested loop will be our new result. While encoding we
also try to put expression after ON (or WHERE for top relation) keyword in closest
join by nested loop node.

By doing such encoding we end up with a correct, but a slow plan. For example,
encoding query SELECT 1 will end up with plan shown in 28. This plan contains all
nodes described above, though the optimal plan would have only a single rtn_result
node.

3.2 Plan exploration
A naive plan by definition is not a final solution. What we will do in order to get what
we would call optimal plan is depicted in Figure 29. Here we are taking a plan which we
want to improve from job queue and then for some predetermined time run something

42

1 {
2 "errors": 0,
3 "score": 128.00,
4 "plan": {
5 "plan_id": "rnd-635278556",
6 "output": ["?column?"],
7 "action_tree": {
8 "action":"sub view",
9 "output": [{ "alias": "?column?", "expr": "?gen-1?" }],

10 "name": "?gen-2?",
11 "outer_action": {
12 "action": "limit",
13 "output": ["?gen-1?"],
14 "offset": 0,
15 "outer_action": {
16 "action": "join by nested loop",
17 "output": [{ "alias": "?gen-1?", "expr": 1 }],
18 "join_type": "inner",
19 "outer_action": {
20 "action": "join by nested loop",
21 "output": [],
22 "join_type": "inner",
23 "filter": true,
24 "outer_action": { "action": "rtn_result", "output": [] },
25 "inner_action": { "action": "rtn_result", "output": [] }},
26 "inner_action": {"action": "rtn_result", "output": [] }}}}}}

Figure 28: Naive plan for query SELECT 1

1 loop {
2 let global_plan = jobs_queue.take();
3 while we did not run out of time {
4 plan = global_plan;
5 while true {
6 mutate(rand.choose_node(plan));
7 if rand.choose([true, false]) {
8 break;
9 }

10 }
11
12 if score(plan) < score(global_plan) {
13 global_plan = plan;
14 }
15 }
16 jobs_queue.push(global_plan);
17 }

Figure 29: Plan improvement cycle

43

similar to hill climbing algorithm [Luk13, p. 17] – pick a random tree node, apply
random mutation on it, if the final result is better than previous then update current
global solution. To improve exploration aspects of mutation, with exponentially decaying
probability, we apply mutation multiple times. After we finish current improvement
cycle, we put the plan back to the job queue. This ensures that even if we run several
plan improvers in parallel (in actual experiments we are using 3 improver threads) we will
give all plans similar attention time. So to fully understand how plan improver works we
only need to explain how we are choosing a random node in a tree and what is done by
mutation procedure.

Node selection is actually a simple expansion of linear random selection algorithm
used by Unix v7’s fortune utility. That is, we are running depth first search from root
keeping candidate solution. We set our candidate to currently visited node with proba-
bility 1

d
, where d is node’s position according to depth first search traversal. This ensures

that each plan action has an equal probability in being picked.
Definition of mutation is a bit trickier as it consists of multiple smaller mutation

sub-procedures executed with a predetermined probability. The probabilities and sub-
procedures in order are (P will stand for an independent call probability):

P = 1
10
create an new node and put it above current one. Type of this node is chosen at
random and can be either limit or sub view;

P = 1
3
take random expression from node’s output and push it to child’s action (if there
are multiple child actions, pick any of them at random);

P = 1
3
choose a child at random. Take a random subset of current nodes output expres-
sions and a random subset of child nodes expression. Finally swap them – child
will get parents’ expressions and parent – child’s.

P = 1
3
remove current node and put one of its children in its place;

P = 1
10
convert node’s filter into list of conjuncts, delete one of these conjuncts at random
and put back what is left into a new filter;

P = 1
3
go through all aliases defined in current node’s output and rename some of them
(renaming to particular alias happens with probability 1

5
) to any string used in plan;

P = 1
10
change expression of a random alias to a 0;

P = 1
5
delete random subset of node’s output expressions;

P = 1
3
convert current node, if it is a sequence scan, into an index scan. Which index to
use choose at random from all indexes attached to appropriate relation;

Obviously, such improvement procedure is highly biased towards creating small (in
terms of node count) index based plans. However, this is enough to prove that the actual
idea is correct and anyone is welcome to use a better exploitation/exploration algorithm.

44

3.3 Query plan equivalency checking
Improvement procedure defined in section 3.2 ensures that generated plans are syntac-
tically valid, but that is not enough. In order to have a plan that could be used instead
of naive one we have to check if it is semantically corrected. Here semantic correction
means that both plans (generated and naive one) will always return the same, possible
ordered, data set for any instance of RDBMS.

Even the simpler problem of checking whether there exist RDBMS for which given
query returns non empty data set is an undecidable problem (it is easy to see that knowing
that non linear integer arithmetic is undecidable problem [Gö31]). Even with restricted
SQL fragments problem of finding appropriate RDBMS is computationally hard [DV97].
As such, we have to relax equivalence definition a bit. In this project it means that we
compare two plans only against RDBMS’s having relations with bounded number of
tuples8.

Equivalency checking itself is done by first encoding schema and plans as theory
under QF_UFNIA logic. Here QF_UFNIA stands for SMT logic consisting of union of:

• QF – formulas contain boolean variables and arithmetics, but can not contain
quantifiers;

• IA – formulas can contain arithmetic and comparison operations. That is, we are
using theory of integer numbers;

• N – integer arithmetic may be non-linear – containing operations like multiplica-
tion;

• UF – indicates that there might be free sorts and function symbols inside of func-
tions.

«entity»
rel1

attr1: integer «PK» «Not Null»
attr2: integer «AK» {key = AK & order = 1}
attr3: integer «AK» {key = AK & order = 2}

«enti ty»
rel2

attr1: integer
attr2: integer «FK»

*
1

Figure 30: Schema used for testing generated theories

This kind of encoding combined with efficient solver allows to ask various questions
about underlying plan and RDBMS. For example, lets take schema shown in Figure 30.
This schema contains two tables rel1 and rel2. First relation contains three integer
attributes out of which first one is primary key and two others form unique key. Second
relation has only two attributes and its second attribute depends on rel1’s primary key
(there is an inclusion dependency between them).

8In this project we are using bound of 3 tuples per relation, but this can be easily changed. 45

1 select attr1 from rel2 where 1 <= attr2 and attr2 <= 3

Figure 31: Simple query for RDBMS data generation testing

If we encode this schema and naive plan generated for query shown in Figure 31 in
described logic, we can ask for RDBMS instance which would contain tuples matched
by this query. This is done by additionally adding constrains that rel1 and relation
constructed from query plan should not be empty and executing appropriate test from
./proxy/src/knowledge/convert.rs. Result of this can be seen in tables 32. In this
Figure we see data inside of rel2 under „Table 1“ (information about actual names is
lost while performing various data translations) – first column of this table is an internal
id, second corresponds to attr1 and third to attr2. We also get selected data under
„Table 16“ (again only the second column matters).

1 ########### Table 1 ###########
2 +---+----+---+
3 | 0 | 9 | 1 |
4 +---+----+---+
5 | 2 | 10 | 1 |
6 +---+----+---+
7
8
9 ########### Table 16 ###########

10 +---+----+
11 | 0 | 9 |
12 +---+----+
13 | 2 | 10 |
14 +---+----+

Figure 32: Possible „selectable“ data for query

We can also ask a different question – find RDBMS which contains data not selected
by query. This is achieved by adding constraint that relation representing result of query
plan for query should be empty. Running satisfiability proof for such theory gives as
tables shown in 33

1 ########### Table 0 ###########
2 +---+----+---+---+
3 | 0 | 4 | 1 | 2 |
4 +---+----+---+---+
5 | 1 | 3 | 5 | 6 |
6 +---+----+---+---+
7 | 2 | 45 | 7 | 8 |
8 +---+----+---+---+
9

10 ########### Table 16 ###########
11 ++
12 ++

Figure 33: Tuples that are not „selected“

This is what various automatic test generation tools do. For example, QEX uses Z3
SMT solver to find tests by generating formulas using bag theory [VGdHT09]. Its next
version [VTdH10] uses similar techniques and theory of algebraic data types. These tools
also blend with other tools like REX [VTdH10] to support string operations. 46

RDBO’s knowledge module is heavily influenced by ideas from these tools. Though
it uses different way of encoding queries (actually RDBO works with plans not queries,
though distinction for data generation is not really important). RDBO also adds addi-
tional formulas for limit and order by clauses and uses SMT not only for test gener-
ation, but equivalency checking.

In the next sections we will detail conversion from query plan to SMT. We will do
that by first overviewing schema’s encoding. Then we will introduce some basic utility
transformation for relations. After that, we will see formulas for simulating most of
discussed query plan nodes. Finally, definition for equivalent relations will be given as
it is used by RDBO procedure prove_are_equivalent.

3.3.1 Representing schema

First thing which is encoded is schema. Or to be more precise – its relations.
If we bound schema by relations of size of at most k we can represent each of

its relations ri as k variables ri,j, 1 ≤ j ≤ k. Each of these variables will belong to
T < B, σ0, σ1, . . . , σai−1

> (ai – number of attributes within relation i) tuple sort. First
element of this tuple belongs to boolean sort and represents whether tuple exists or not.
All other elements represent sorts agreeing with appropriate attribute sort.

Number of variables (which we sometimes may call number of tuples) inside of
relation will be represented as |ri| and call its virtual cardinality. Please note that virtual
cardinality is not the same as physical one, as some of tuples may have marked as non
existing.

Now we can try to look how rel1 would like after encoding:

r0,0 ∈T < B, ? < Z >, ? < Z >, ? < Z >> (1)
r0,1 ∈T < B, ? < Z >, ? < Z >, ? < Z >> (2)
r0,2 ∈T < B, ? < Z >, ? < Z >, ? < Z >> (3)

Here ? < σ > represents extension of σ with special symbol NULL which represents
undefined value. This special sort also contains two special functions:

• is− null :? < σ >→ B – given value from sort with NULLs returns whether value
is NULL or not;

• get− value :? < σ >→ σ – extracts actual value from nullable sort.

Now observer reader could have notices that first attribute of rel1 is marked as NOT
NULL. As such, it should not belong to ? < Z >, but to Z. Nevertheless we encoded
it as nullable as it helps to keep some consistency in other parts of formulas. We fix this
„inconsistency“ by adding additional NOT NULL constraints into encoding: 47

∧

0≤j<|r0|

¬is− null(r0,j.1) (4)

The next thing which we are going to consider for encoding is unique constraints.
Inside of rel1 we have two of them: a primary key and unique constraint AK. We can
encode AK by saying that for tuple j there is no tuple with higher index agreeing on
attributes defined by AK:

∧

0≤j<|r0|−1

r0,j.0 =⇒
∧

j<l<|r0|

¬r0,l.0 ∨ r0,l.2 ̸= r0,j.2 ∨ r0,l.3 ̸= r0,j.3

 (5)

It is easy to see how this would be changed to other unique constraints – we would
simply need to check equality on different set of attributes. In addition to forcing unique-
ness, we also create additional relation for each of unique constraints. This relation is
exactly the same as the one with defined index, but is sorted (sorting will be explained in
section 3.3.3.4) by attributes defined by constraint. This is done, because most of con-
straints that enforce uniqueness are implemented by sorted structures inside of RDBMS.
As such, planer can choose going over these structures instead of sorting relation on the
fly and safe a few cycles – this translates to SMT solver going over sorted relation.

Inclusion dependency between rel2 and rel1 is encoded by formula stating that
for each non NULL attribute attr2 inside of rel2 there should be a tuple inside of rel1
with same value:

∧

0≤j<|r1|

r1,j.0 ∧ ¬is− null(r1,j.2) =⇒
∨

0≤l<|r0|

r0,l.0 ∧ r0,l.1 = r1,j.2

 (6)

Finally, we add two types of formulas for improving solver’s work time. First one
asserts that each non existing tuple should contain only NULL values as its attribute values
– such constraint prunes Z3’s search tree. Such formula for general relation ri can be
encoded as:

∧

0≤j<|ri|

(

¬ri,j.0 =⇒
∧

0≤l<ai

is− null(ri,j.l)

)

(7)

Second formula called symmetry breaking formula is similar to what is defined in
[VTdH10, p. 10]. The idea behind it is to force strict ordering between tuples inside of

48

relations of schema. Such ordering helps solver not to try all k! possible permutations
for candidate interpretations and so improves its efficiency.

This formula for general relation ri is defined below:

∧

0≤j<|ri|−1

ite(ri,j.0 ̸= ri,j+1.0, ri,j.0 ∧ ¬ri,j+1.0, (8)

ite(ri,j.1 ̸= ri,j+1.1, ri,j.1 < ri,j+1.1, (9)
ite(ri,j.2 ̸= ri,j+1.2, ri,j.2 < ri,j+1.2, (10)
. . . (11)
ite(ri,j.(ai − 1) ̸= ri,j+1.(ai − 1), (12)

ri,j.(ai − 1) < ri,j+1.(ai − 1), (13)
true) . . .))) (14)

Here we use a built-in function ite. This function takes three parameters: a condi-
tion, formula which will be evaluated if given condition evaluates to true and formula
for false condition.

Symmetry breaking formula works by adding constraint between two consequent
tuples:

• If they differ in existence, then existing tuple should go first;
• If not, it checks whether first attributes of these tuples are different and if so it
asserts that tuple with smaller attribute comes first;

• If tuples agreed on everything so far it checks second attribute, if they are equal
third one and so on;

• If tuples agreed on all attributes then we assert that everything is correct, as relation
can contain two identical tuples.

3.3.2 Node encoding helpers

After a talk about schema’s encoding, we continue by presenting three utility transfor-
mations: filter, projection, unique. First two are used by node encoders and help them to
encode part of node – projection is used for encoding node’s output key and filter is used
for filter encoding. Last one is used as intermediate step for encoders like aggregation
node encoder.

In next sections we will describe these operations in greater details.

3.3.2.1 Projection As mentioned before projection operation is primarily used to en-
code any node’s output key. Projection as its arguments takes a relation ri and a list of
functions φ0, φ1, . . . , φa′

i
−1 (each of these functions maps single tuple from ri to attribute 49

value and has signature φj : T < B, ? < Z >0, ? < Z >1, . . . , ? < Z >ai−1>→? < Z >)
and produces a new relation r′i. This relations will have a′i attributes and |ri| tuples. It is
generated by encoding projection as SMT formula. In this formula we first loop over all
existing tuples of ri (formula 15). For each of these tuples r′i will have a tuple produced
by applying all of projection functions on appropriate ri tuple (formula 16).

∧

0≤j<|ri|

ite(ri,j.0, (15)

r′i,j.0 ∧
∧

0≤l<a′
i

r′i,j.(l + 1) = φl(ri,j), (16)

¬r′i,j.0) (17)

Projection is also responsible for creation of φ function. As such, to finish discussion
of projection we also have to look how it does that. The encoding of any expression inside
of output key into SMT formula is actually trivial. Essentially we have two objects that
we have to consider: functions and attribute references.

Functions are encoded into formulas by a direct transformation. That is, {"func":
"+", "args": [1, 2]}, becomes formula 1 + 2 (though inside of SMT this formula
would be written by using S-expressions). The only thing that we have to remember is
that most of operations in SMT are nullable – if at least one of their arguments evaluates
to NULL (note that argument has to be evaluated to be considered, that is, true or
null will produce true as right side of or will not be evaluated) then whole operation
should also produce NULL. For that we have to overload most of builtin SMT functions
ourself. Currently inside of SMT we define and support such nullable operations with
usual semantics: ? <, ? <=, ? >, ? >=, ? =, ?not, ?and, ?or, ?+, ?−, ?∗, ?div, ?mod,
? <>, ?! =, ?is− null.

Encoding of attribute reference is also carried by a simple transformation. References
are transformed into a list of relation’s tuple accessors. For example, accessing attribute
attr1 of rel1 could be transformed to a list r0,0.1, r0,1.1, r0,2.1.

1 prove_are_equivalent(
2 r#"select 1"#,
3 r#"select (5 + 5) / 10"#);

Figure 34: Proving a simple math identity

With this we finish review of projection operation. Even having only this simple tool
we already can start proving some equalities between queries. For example, we can check
whether arithmetic formula (5+5)/10 can be reduced into 1. We can prove this by writing
down formulas into singleton SQL queries and giving them to prove_are_equivalent
function – see Figure 34. It is this function which is responsible for transforming queries

50

into query execution plans, execution plans into SMT formulas and doing actual equiv-
alence check.

3.3.2.2 Filter Similarly to projection filter takes relation ri as its argument. As second
argument filter takes not a list of functions producing attribute values, but single function
φ. This function is constructed from nodes filter (in the same as any other expression
– see section 3.3.2.1) key and is in charge of mapping single tuple from ri to nullable
boolean value (its signature is φ : T < B, ? < Z >0, ? < Z >1, . . . , ? < Z >ai−1>→

? < B >). By having these two arguments filter produces a new relation r′i containing
all tuples from ri on which φ returned truthful value.

Filter does its work by iterating over all existing tuples of relation ri (formula 18).
For each tuple ri,j filter applies function φ. If it produces non NULL value which is equal
to true (formula 19) it can copy tuple from ri to r′i (formula 20). If φ produced NULL or
false value, we assume that appropriate tuple inside of r′i does not exist (formula 21).

∧

0≤j<|ri|

ite(ri,j.0 (18)

∧ ite(is− null(φ(ri,j)), false, get− value(φ(in,j))), (19)
r′i,j = ri,j, (20)
¬r′i,j.0) (21)

1 prove_are_equivalent(
2 r#"select 1 where false"#,
3 r#"select 8 where false"#);

Figure 35: Queries returning no tuples are equivalent

As with projection we can prove a few simply facts by using filter and schema’s encod-
ings in SMT. The simplest thing that we could check, is equivalency of queries select
1 where false and select 8 where false. They are equivalent due to fact that it
does not matter what kind of data could be returned by SQL query if all of it is filtered
out. This proof can be executed inside of RDBO by using function call show in Figure
35.

1 prove_are_equivalent(
2 r#"select attr1 from rel1 where attr1 is null"#,
3 r#"select 1 where false"#);

Figure 36: Scanning over relation and filtering all tuples

Similarly we can check that some expressions are always evaluated to false. One
such expression is a checking if attribute attr1 of relation rel1 is NULL. It will always

51

produce false as this attribute is marked as NOT NULL. Execution of this proof is shown
if Figure 36.

3.3.2.3 Unique The final utility transformation which we will discuss is unique. This
operation takes relation ri and attribute set s. It produces a new relation r′i which contains
tuples from r′i. The only difference between two relations is that r′i will not include more
than one tuple agreeing on set s. Such relation can be created by iterating all tuples of
ri (formula 22). If we can not find tuple with larger index and agreeing on attributes
within set s (formula 23), we can insert it to relation (formula 24).

∧

0≤j<|ri|

ite(ri,j.0 (22)

∧
∧

j<l<|ri|

(

¬ri,l.0 ∨
∨

t∈s

ri,j.t ̸= ri,l.t

)

, (23)

r′i,j = ri,j, (24)
¬r′i,j.0) (25)

3.3.3 Node encoding

Finally, by having encoded schema and knowing how to encode some simple transfor-
mations we can actually look in how to encode plan nodes at full. Representation of all
encodings used for plan nodes are presented below.

3.3.3.1 Sequence and index scan nodes Sequence and index scan nodes are one
of the simplest to encode. Encoding of both these nodes start by first applying filter
operation on appropriate relation (or index). And is finished by taking projection.

For index we do not check whether filtering is actually done by using appropriate
attributes. Node encoder’s caller is responsible for such check.

3.3.3.2 Nested join Nested join node takes two relations rn and rm and produces
relation r′i. This new relation will contain a tuple for all pairs of rn and rm tuples.

Simulating nested join for relations rn and rm is actually a hard task. The problem
arises when we have to consider outer joins. These joins produce additional tuples (with
NULL values for either rn or rm attributes) if filter condition is not matched. As such,
we have to apply filter operation before knowing which additional tuples needs adding.
However, in order to know whether we actually need these tuples we also have to run
filter on them – this somewhat complicates formulas.

So instead of running filter multiple times we create r′i in three simple steps. In the
first step we create relation ro representing full outer join of relations rn and rm. This is 52

done by iterating by all pairs of tuples from these relations (formula 26). If both tuples
from such pair represents existing tuples (formula 26), ro will contain additional tuple
(formula 27) composed of their concatenation (formulas 28 and 29):

∧

0≤j<|rn|,0≤l<|rm|

ite(rn,j.0 ∧ rm,l.0, (26)

ro,j·l.0 (27)
∧

∧

0≤t<an

(ro,j·l.(t+ 1) = rn,j.(t+ 1)) (28)

∧
∧

0≤t<am

(ro,j·l.(an + t+ 1) = rm,l.(t+ 1)) , (29)

¬ro,j·l.0) (30)

We also consider existing tuples from rn separately (formula 31). For each of these
tuples we add tuple to ro (formula 32) which consist of attributes taken from relation rn

(formula 33). rm part is filled with NULL values (formula 34):

∧

0≤j<|rn|

ite(rn,j.0, (31)

ro,|rn|·|rm|+j.0 (32)
∧

∧

0≤t<an

(

ro,|rn|·|rm|+j.(t+ 1) = rn,j.(t+ 1)
)

(33)

∧
∧

0≤t<am

(

ro,|rn|·|rm|+j.(an + t+ 1) = null
)

, (34)

¬ro,|rn|·|rm|+j.0) (35)

In similar fashion we also append tuples only from rm (formula is symmetric to
formula used for rn relation and is not shown here). After all this, ro will have cardinality
of |rn| · |rm|+ |rn|+ |rm|.

Second step of join simulation is filter operation. This operation is applied as is on
relation ro and produces relation rf .

On the third step we create final relation r′i (disregarding obligatory projection). This
relation will consist of first |rn| · |rm| tuples from rf . The next |rn| tuples will be copied
from unfiltered ro relation (formula 37). This happens if and only if appropriate tuple
from |rn| exists and all instances of this tuple were filtered inside of cross join part of rf
(formula 36):

53

∧

0≤j<|rn|

ite(rn,j.0 ∧
∧

j·|rm|≤l<(j+1)·|rm|

¬rf,l.0, (36)

r′i,|rn|·|rm|+j = ro,|rn|·|rm|+j (37)
¬r′i,|rn|·|rm|+j.0) (38)

After applying symmetric assertion for rm tuples, we finalize creation of r′i.
1 prove_are_equivalent(
2 r#"select rel1.attr1 as a, rel1.attr2 as b, rel1.attr3 as c,
3 rel2.attr1 as d, rel2.attr2 as e
4 from rel1
5 left join rel2 on
6 rel1.attr2 = rel2.attr2"#,
7 r#"select rel1.attr1 as a, rel1.attr2 as b, rel1.attr3 as c,
8 rel2.attr1 as d, rel2.attr2 as e
9 from rel2

10 right join rel1 on
11 rel1.attr2 = rel2.attr2"#);

Figure 37: left and right joins differ only in relation order

With nested loop join node implemented we can check that right join is not really
necessary. This is because it can be implemented only from left join. In order to do
that we only have to swap order of its arguments. Prove of such assertion in RDBO can
be seen in Figure 37.

3.3.3.3 Aggregate node Within aggregate we will begin with relation ri and will want
to get relation r′i. Inside of this relation all tuples agreeing on attribute set s should be
collapsed into single tuple. This collapsing is defined by aggregate functions used inside
of filter and output defined in aggregation node.

In order to give more information to SMT solver we encode these aggregate functions
not by using theory of undefined functions, but directly writing down their semantics.
As such, we support only a small fraction of possible aggregate functions:

• count – counts number of tuples within agreed group if its argument is a star
symbol. If its argument is an expression, then it evaluates this expression on all
agreeing tuples and counts how many of them gave non NULL result;

• sum – single argument function which indicates that collapsed tuple will contain
sum of attributes that appeared inside of agreeing tuples;

• min – will leave only attribute with minimum value;
• max – will leave only attribute with maximum value.

These functions are actually done not by separate transformation, but as part of filter
and/or projection transformation (section 3.3.2.2). For example, count(*) for relation 54

ri on attribute set s can be implemented as projection. In this projection we will go over
all existing rows of ri (formula 39). For each of them we create a new tuple inside of r′i
(formula 40). This tuple will contain only one attribute (if projection would have more
expressions, they would appear as additional attributes as usual). In order to get value
of this attribute we have to do an additional scan of ri. By doing so we would need to
increment attribute in question by one for each found tuple agreeing on set s (formula
41).

∧

0≤j<|ri|

ite(ri,j.0, (39)

r′i,j.0 (40)
∧ r′i,j.1 =

∑

0≤l<|ri|

ite(ri,l.0 ∧
∧

t∈s

ri,j = ri,l.t, 1, 0), (41)

¬r′i,j.0) (42)

Obviously, after running this projection modification in such a way, we will be left
with a lot of repeated tuples. These tuples can be filtered out by running unique operation
on relation r′i with attribute set s.

We can implement and other supported aggregate functions in similar fashion as
shown above. As such, their definitions are not included here.

To finalize aggregation node, after applying projection, we also have to run filter. As
stated before filter may also contain aggregate functions, but their calculation is exactly
the same as in projection. The only difference is that we no longer run additional unique
operation.

1 prove_are_equivalent(
2 r#"select sum(attr2 + 1) from rel2"#,
3 r#"select sum(attr2) + count(*) from rel2"#);

Figure 38: Associativity of aggregate functions

Having implemented aggregate node we can check a few equivalences. The easiest
thing to see is that most of defined aggregate functions are associative. That is, we
can extract part of expression inside of aggregate function and put it inside into other
aggregate function. For example, inside of Figure 38 we can see that sum(attr2 + 1)
can be safely replaced by sum(attr2)+ count(*). That is, we extracted expression + 1
and replaced it by count(*) (which is a more direct way of saying sum(1)).

Another simple fact that can be checked is that having clause is not really necessary.
It can always be replaced by simple where clause – if we push current SQL query into
subquery (Figure 39).

Aggregation is also one of the procedures which can trick the prover. For example,
55

1 prove_are_equivalent(
2 r#"select sum(attr2) from rel2 group by attr1 having max(attr2 + 1) = 5"#,
3 r#"select a.s from
4 (select sum(attr2) as s, max(attr2) as m from rel2 group by attr1) as a
5 where a.m = 4"#);

Figure 39: Having clause is just syntactic sugar for temporal table
1 prove_are_equivalent(
2 r#"select attr1 from rel1 having count(*) > 1000"#,
3 r#"select 1 where false"#);

Figure 40: Proving equivalency for non equivalent plans

queries shown in Figure 40 are clearly non equivalent, but RDBO considers them as
equivalent. This is due to the fact that all equivalency checks are done on a bounded
model. As such, queries that have to work with more tuples will always return an empty
result set.

3.3.3.4 Sort Sort node takes an input relation ri and creates relation r′i. This new
relation will contain exactly the same tuples as ri, but in the different order. This order
is defined by attributes defined under by key inside of sort node. We do not really care
about these attributes as long as we can compare two tuples. This comparison is created
in exactly the same way as any other expression and is not discussed here. Here we are
going to look only into sorting procedure itself.

As with all the other operations we need to implement sorting without using any
loops. Simplest way to do that is to create a new relation r′i. Then we could assert that
physical cardinalities of both original ri and created one r′i are the same. Furthermore
we should say that each of original tuples belongs to created relation. Finally, applying
symmetry breaking formula on appropriate attributes of r′i would force it to be sorted
(there would be problems with repeated tuples as there is no way for solver only from
this information to Figure out which ones has to be repeated and which not).

The problem with this approach is that it would take quite some time to find ap-
propriate assignment. As such, it is more beneficial to implement sorting by taking any
sorting algorithm and unrolling its loops.

Such idea is pretty similar to concept called sorting networks [Bat68]. For exam-
ple, by introducing 8 temporal variables s4, s5, s6, s7, s8, s9, s10, s11 we can sort relation
having 3 tuples with only 6 comparison operation.

We can achieve this by assigning s4 minimal and s5 maximum of ri,0 and ri,1 tuples
by some comparison operator. Then s6 gets minimal and s7 maximum of s5 and ri,2.
And so on – we repeat this process as defined by sorting network shown in Figure 41
and at the end get tuples in sorted order.

This is what was done in RDBO. In addition to that we add additional metadata
variable to all relations. This variable, lets call it Si, indicates whether relation is sorted

56

min

max

r'
i,0

r'
i,1

r'
i,2

r
i,3

r'
i,3

r
i,0

r
i,1

r
i,2

s
4

s
 5

s
6

s
 7

s
8

s
 9

s
 10 s

 11

min

max

min

max

min

max

min

max

min

max

Figure 41: Sorting network implementing bubble sort for relation having 3 tuples

in user meaningful manner. Later on, when checking relational equivalency, Si is used
to chose appropriate comparison procedure between two relations.

This variable can take three different values:

• NOT_SORTED – indicates that relation is not sorted in any user meaningful way;
• SORTED – order of tuples inside of relation matters;
• CAN_BE_SORTED – relation is sorted by an intermediate operation, but user may
not care about that.

In order to understand why two states are not sufficient we can check query plans
show in Figure 42. Here we prove that going over sorted sequence scan – user expects
to get sorted tuples – is same as index scan. Similarly we could prove that going over
index is same as going over simple scan. In this case user does not care that index scan
provides sorted tuples, he/she only cares that set of returned tuples would be the same.
For both proves to be correct (and for sorted scan to be not equivalent to sequence scan)
at the same time we have to have third state.

1 prove_actions_are_equivalent(
2 r#"
3 { "action": "index scan",
4 "output": ["attr1"],
5 "relation": "rel1",
6 "index": "prim1",
7 "filter": { "func": "<", "args": ["attr1", 10] } }
8 "#,
9 r#"

10 { "action": "sort",
11 "output": ["attr1"],
12 "by": [{ "col": "attr1" }],
13 "outer_action": { "action": "seq scan",
14 "output": ["attr1"],
15 "relation": "rel1",
16 "filter": { "func": "<", "args": ["attr1", 10] } } }
17 "#);

Figure 42: There is no need to sort by an indexed column

Si for various elements is defined like this: 57

• For all relations generated from scheme we assign NOT_SORTED to this variable.
Though these relations are sorted by symmetry breaking formula this is done only
for internal use and user may not get tuples in such order while executing appro-
priate plan;

• For indexes generated from scheme we assign CAN_BE_SORTED. This is due to fact
that most indexes are implemented by using ordered structures and scanning them
produces tuples in sorted order;

• For relations generated by applying sorting procedure we set this variable to SORTED
;

• Relation created by joining two other relations inherits its Si from left relation.
There is an exception for this – if this relation has virtual cardinality of 1 we inherit
Si from right relation.
We do this because joining is done by doing nested loop which preserves order of
its left side tuples;

• Aggregation erases sorting information, that is it gets Si value of NOT_SORTED,
unless we are using "type" = "sort". In such case we assign CAN_BE_SORTED.

• All other relations retrieved by doing operation like filter, projection, etc. inherits
their Si value from original relations.

1 prove_are_equivalent(
2 r#"
3 select r1.attr1 from rel2 as r1
4 cross join rel2 as r2
5 order by r1.attr1
6 "#,
7 r#"
8 select r1.attr1 from
9 (select attr1 from rel2 order by attr1) as r1

10 cross join rel2 as r2
11 "#);

Figure 43: Non equivalent queries may produces equivalent plans

Interestingly, introduction of sorting information may prove equivalency for some
queries that are not equivalent. For example, lets check queries shown in Figure 43.
We know that first query will produce tuples in r1.attr1 order, but order of tuples
retrieved by second query is undefined. This is due to the fact that SQL does not talk
about order of tuples after using join clause (this is done intensionally to allow wider array
of algorithms implementing this operation). As such, these queries should be considered
different. However, knowing what kind of join implementation we are using under the
hood – nested join – we can imply that plan generated from second query will also return
ordered set of tuples – proving equivalency of plans.

Sort may also introduce interesting results when interacting with other encoded parts.
For example, we may prove that order of NULL values does not matter – Figure 44.
However, that happens only if appropriate attribute is set to be NOT NULL. 58

1 prove_are_not_equivalent(
2 r#"select attr2 from rel1 order by attr2 nulls first"#,
3 r#"select attr2 from rel1 order by attr2 nulls last"#);
4
5 prove_are_equivalent(
6 r#"select attr1 from rel1 order by attr1 nulls first"#,
7 r#"select attr1 from rel1 order by attr1 nulls last"#);

Figure 44: NULL order matters unless we are ordering by column with NOT NULL con-
straint

3.3.3.5 Limit node Within limit node we have relation ri and want to generate re-
lation r′i containing only first b tuples (count part of limit node) starting from tuple
numbered a (offset part). Problem arises when we realize that not all tuples inside
of ri represents physical tuples. That is, some of them do not exist and should not be
included into final count.

This problem is solved by first creating relation rn containing |ri|+1 tuples and single
attribute. For the first tuple we set this attribute to −1 (43 formula). All other tuples (44
formula) of this relation will get this attribute to be set to increment of previous value
(formula 46) if appropriate tuple from ri exists (formula 45). If tuple does not exists this
attribute will be copied untouched (formula 47).

(rn,0.0 ∧ rn,0.1 = −1) (43)
∧

∧

1≤j≤|ri|

rn,j.0 (44)

∧ ite(ri,j−1.0, (45)
rn,j = rn,j−1 + 1, (46)
rn,j = rn,j−1) (47)

After all this, values saved in rn will correspond to physical tuple number of relation
ri. This enables us to implement limit operation by just removing tuples from ri that are
not within interval [a; a+ b). Final definition of r′i is shown below:

∧

0≤j<|ri|

ite(ri,j.0 ∧ a ≤ rn,j+1 ∧ rn,j+1 < a+ b, (48)

r′i,j = ri,j, (49)
¬r′i,j.0 = ri,j) (50)

Limit is particularly useful node in terms of optimization. This is true because limit
stops tuple processing as fast as possible – when it reads tuple with number a+ b−1. As
such, it is always beneficial to have limit node near nodes producing a lot of tuples. In

59

addition to that we may sometimes want to copy limit multiple time. First copy would
be used for correctness and other copies for performance reason.

1 prove_are_equivalent(
2 r#"select attr1 from (
3 select attr1 from rel2
4 union all
5 select attr1 from rel2 where attr2 > 3
6) as a
7 limit 1
8 "#,
9 r#"select attr1 from (

10 (select attr1 from rel2 where true limit 1)
11 union all
12 (select attr1 from rel2 where attr2 > 3 limit 1)
13) as a
14 limit 1
15 "#);

Figure 45: Pushing limit inside of union

One such optimization is shown in Figure 45. Here we have an union of two queries
after which we leave only single tuple. Obviously, we do not need to calculate whole
union to get only single tuple – it is enough to take only single element from both queries.

3.3.3.6 Set operation and concatenation nodes Starting with two relations rn and
rm we wish to apply some set operation and get relation r′i. We have to support three
set operations union, intersection and difference9. Implementing the first one is pretty
trivial – we create a relation of size |rn|+ |rm|. First |rn| tuples will come from relation
rn and next ones from rm:

∧

0≤j<|rn|+|rm|

ite(j < |rn|, r
′
i,j = rn,j, r

′
i,j = rm,j−|rn|) (51)

Next operation that we are going to consider is intersection. This operation should
produce relation r′i which would contain only those tuples that are in both rn and rm.
Simulation of intersection is a bit more difficult compared to union. The difficulty
comes from fact that for each new tuple we consider adding from rn to r′i we have to
know whether it has corresponding unused entry inside of rm. In order to follow used
tuples we create |rn| additional relations rm+0, rm+1, rm+2, . . . , rm+|rn|−1. First relation
is equal to original rm, that is rm+0 = rm. Other relations on line will be exactly the
same as previous ones if no tuple was added to r′i at appropriate time frame or will be
smaller by one tuple (the one which was added to ri).

Having said that we can actually see formula generating intersections. We start by
iterating over tuples of rn (formula 52). Having concrete tuple rn,j we try to see if we

9Here we are considering these operation as they would be applied to multisets – repeated elements
are preserved 60

will need to add it to r′i. We first check if this tuple corresponds to physical one and is
equal to first tuple of rm+j+0 (formula 53). If so, we move it to relation r′i (formula 54)
and create next temporal relation rm+j+1. This relation will contain all, but first tuples
of rm+j+0 (formula 55).

If we do not match rn,j with first tuple of rm+j+0 we try matching with second tuple
(formula 56). If again we do not find equal tuples we move to third tuple, fourth tuple
and so on until we hit tuple numbered |rm| − 1 (formula 60). If we fail to match this
tuple we conclude that tuple rn,j should not go to r′i (formula 63) and that next temporal
relation rm+j+1 will be exactly the same as current one (formula 64).

∧

0≤j<|rn|

(52)

ite(rn,j.0 ∧ rn,j = rm+j+0,0, (53)
r′i,j = rn,j (54)
∧

∧

0≤l<|rm|

ite(l = 0,¬rm+j+1.l.0, rm+j+1,l = rm+j,l), (55)

ite(rn,j.0 ∧ rn,j = rm+j,1, (56)
r′i,j = rn,j (57)
∧

∧

0≤l<|rm|

ite(l = 1,¬rm+j+1.l.0, rm+j+1,l = rm+j,l), (58)

. . . (59)
ite(rn,j.0 ∧ rn,j = rm+j,|rm|−1, (60)

r′i,j = rn,j (61)
∧

∧

0≤l<|rm|

ite(l = |rm| − 1,¬rm+j+1.l.0, rm+j+1,l = rm+j,l), (62)

¬r′i,j.0 (63)
∧ rm+j+1 = rm+j) (64)

Final operation – set difference – is very similar to intersection. This operation
defines new relation r′i which will contain all tuples from rn that are not inside of rm.
Such operation can be implemented by changing a few lines of intersection formula:

• If we do not find a matching tuple inside of rm+j+0 we insert it to r′i. That is,
formula 63 is changed to r′i,j = rn,j ;

• If we find the match we zero out corresponding tuple of r′i. So formulas 54, 57,
. . ., 61 become ¬r′i,j.0

Having implemented set operations we check simple fact – if we start from relation 61

1 prove_are_equivalent(
2 r#"(select attr2 from rel2)
3 union all
4 (select attr1 from rel2)
5 except all
6 (select attr1 from rel2)
7 "#,
8 r#"select attr2 from rel2"#);

Figure 46: We can add and remove tuples without changing original data set

rel2 and add to it some tuples, then removing same tuples will produce unchanged
relation rel2. Equivalency checking of such behaviour is shown in Figure 46.

1 prove_are_not_equivalent(
2 r#"((select attr2 from rel2)
3 union all
4 (select attr1 from rel2))
5 except
6 (select attr1 from rel2)
7 "#,
8 r#"select attr2 from rel2"#);

Figure 47: Uniqueness operation is destructive

It is also possible to see that it is very important not to mix repeated tuple count
preserving set operations and the ones that produce only unique tuples while proving
such fact. An example of such mix is shown in Figure 47. Two shown queries are
definitely not equivalent. To see that we can take relation rel2 containing repeated
value for attribute attr2. After doing except, these repeated values will collapse into
single one. As such, final result will have one tuple less compared to original relation
rel2.

3.3.4 Checking for relation equivalence

To finalize description of query plan encoding we introduce the way we are checking if
two encoded relations are equivalent. Two relations rn and rm are equivalent if SMT
solver can not find RDBMS interpretation in which these relations return different result
set. That is, we extend our formula set with formulas asserting that these two relations
are not equal. If solver infers that such extended formula set is unsatisfiable then we can
assume equivalency.

There are a few simple checks that can be used to check if these relations are not
equal:

• an ̸= am – if relations differ in number of attributes they definitely can not be
equal;

• ∑0≤j<|rn|
ite(rn,j.0, 1, 0) ̸=

∑

0≤j<|rm| ite(rm,j.0, 1, 0) – difference in physical car-
dinality is also a sufficient proof;

• (Sn = SORTED∧Sm = NOT_SORTED)∨ (Sn = NOT_SORTED∧Sm =

SORTED) – relations should also agree on whether they are sorted or not. 62

If at least one of these properties is true we are finished. If not, check procedure
splits in two cases:

• In first case both relations are not sorted – Sn = NOT_SORTED ∨ Sm =

NOT_SORTED ∨ (Sn = Sm ∧ Sn = CAN_BE_SORTED).
As such, we just have to check whether where exists tuples from rn which does not
belong to rm or vice verse. That is, we are trying to check if rn is not subset of
rm or rm is not subset of rn. The needed check is similar to inclusion dependency
checking which was shown in formula 6 and is not repeated here.

• We consider second case if both relations are sorted – Sn = SORTED ∨ Sm =

SORTED.
Here we are interested not only in existence of tuples, but also in their order.
To simplify comparison process we first sort both relations by tuple existence by
applying sorting procedure defined in section 3.3.3.4 and get relations r′n and r′m.
In these relations all existing tuples should go before non existing. In addition to
that, relative order of other tuples is the same as in original relations as described
sorting procedure is stable. Finding mismatches in these relations is as trivial as
going through relations in parallel and searching for first difference:

∨

0≤j<min(|r′n|,|r
′

m|)

r′n,j ̸= r′m,j (65)

3.4 Calculating score of a plan
We already know how to generate a stream of plans, we also can check which of these
plans are equivalent to initial one, but what we lack is a check which of these plans is the
fastest one. That is, we do not know how to implement score function used in improver
procedure (Figure 29) and that is what is going to be detailed in this section.

This function is going to return a triple consisting of:

errors – the number of errors inside of given plan. Errors are parts of a plan that would
fail to execute. For example, one of the most common errors which is produced
by mutation is attribute references that mention nonexisting attributes. Plans that
contain at least one error are broken to the level that it is even impossible to convert
them to SMT format. As such, errors component is the first one – if new plan has
more errors than the original one, there is no need to check other parts.

equivalency – a flag variable showing whether given plan is equivalent to original one (so equiv-
alency check is actually backed into score value – this simplifies a few places inside
of RDBO code base);

63

quality – quality is a scalar value which tries to represent how fast plan would be executed.
In reality DBMSs use very complicated functions to represent executed plan that
depends on various characteristics of the host machine, attribute value distribu-
tions, used algorithms, etc. In this project, we are using a function which uses only
a fraction of the possible surrounding information. This function is defined as:

– each action node gets a score which is equal to a sum of level at which this
node is, quality values of its children, quality of its output;

– quality of output is number of different attributes used in all expressions
inside of output aliases plus its size;

– index scan gets an additional of 10 points;
– sequence scan gets an additional of 100 points;
– if action node contains a filter then we subtract from its quality its depth
multiplied by a number of unique variables inside of the filter.

Having score tuples for two plans we can compare them by finding first score compo-
nent on which they do not agree – plan having smaller value on this component will be
cheaper. By doing so we should generate equivalent simple plans without errors (as the
initial plan does not have errors and we accept plans only having less or an equal number
of them). Here simple means that quality function prefers plans having a smaller num-
ber of nodes and attribute references. It also rewards index scans and penalizes sequence
scans. Finally, it prefers plans that contain their filters’ conjuncts pushed down the tree.

64

4 Experiments
In order to test how well the RDBO system acts under a stress, we run OLTBench’s bench-
marks. As stated in the section 2.3, these benchmarks are: seats, tpcc, twitter, voter
and wikipedia. We ran each individual benchmark for approximately 6 hours (as the
tpcc contains more queries than any other benchmark, we let it run for 44 hours) which
ensured 95% level of confidence for an interval 5% around the mean. This time also gave
the RDBO enough time to converge to the reasonable plans. For each benchmark we
also cut 2 minutes worth of the data from the beginning of an experiment and 2 minutes
from the end – this is needed to exclude the warm up and the cold down times.

All the results of the experiments will be shown as a charts showing the average time
in milliseconds it took to execute plans for the corresponding queries. All of the graphs
will be showing two items: how fast were RDBO’s generated plans (shown in the red) and
how on the same conditions performed PostgreSQL’s plans (the green color). Besides the
average response time, all of the graphs will include a variance shown as the error bars
for a bar charts. Additionally, instead of the queries, we will be presenting only their ids
generated by using a SHA256 on a parametrized query and taking the last 5 characters
(mapping between the queries and their ids is given in Appendix 1).

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

00
97

f

0a
e9

a

0e
4e

8

14
19

9

15
d4

b

16
f1

1

1a
0e

a

37
81

a

42
85

5

4b
08

a

4f
9b

4

75
a7

f

7e
91

b

84
ad

0

a2
e1

0

a7
3b

1

be
34

5

d7
95

f

df
c3

6

e5
a6

4

A
v
e
ra

g
e
 e

x
e
c
u
ti

o
n
 t

im
e
 (

m
s
)

Query type

RDBO
psql

Figure 48: Comparison of naive and PostgreSQL execution plans

All of the experiments were ran on the Digital Ocean cloud’s platform (the second
New York’s data center region). The overall architecture is very similar to the local one,
which was shown in Figure 7. That is, we have 4machines all running ubuntu 14.04 x64.
First one contains the clients code and has a 512MB of the RAM, a single 1.75GHz CPU

65

and a SSD disk. The second machine hosts the proxy, its brief hardware specification: a
1GB of the RAM, a 1.75 GHz CPU and a SSD disk. The third one and the fourth one
run DBs and have the same hardware as the client’s machine.

In the following sections, we will present the results of these experiments.

4.1 Performance of a naive plan
We will start the discussion by looking at the simplest experiment possible – performance
of a naive plan. Here we disable all RDBO’s optimizations. This forces RDBO to always
use naive plans. Results of such experiment can be observed in Figure 48. As expected,
naive plan performed miserably. In the worst case, for the query 42855, it took naive
plan about 594 times more time to find the result compared to an appropriate PostgreSQL
plan. However, the most important thing holds – naive plans generated the same results
as PostgreSQL ones. This is an indicator, showing that RDBO’s translation mechanism
(discussed in section 3.1) and our execplan command (section 2.2.2) work as expected.

 0

 50

 100

 150

 200

 250

00
97

f

0a
e9

a

0e
4e

8

14
19

9

15
d4

b

16
f1

1

1a
0e

a

37
81

a

42
85

5

4b
08

a

4f
9b

4

75
a7

f

7e
91

b

84
ad

0

a2
e1

0

a7
3b

1

be
34

5

d7
95

f

df
c3

6

e5
a6

4

A
v
e
ra

g
e
 e

x
e
c
u
ti

o
n
 t

im
e
 (

m
s
)

Query type

RDBO
psql

Figure 49: Performance comparison of execution plans generated by RDBO and Post-
greSQL

4.2 Performance of an optimized plan
Having a baseline from which to improve, we can enable improver’s threads and rerun
the experiments. A bar chart of the response times over the last hour of the experiments
(in this period, plans either stopped improving or improvement was very slow) can be
seen in Figure 49. From it, we can see that RDBO’s performance increased for many,

66

if not all, queries. However, that was not enough to catch up the PostgreSQL and at the
query 42855 RDBO performed about 67 times worse.

1 {
2 "plan_id": "sha1-917185b4f00cf531840017ce9064fc906f40e4e8",
3 "output": ["no_o_id"],
4 "action_tree": {
5 "action": "limit",
6 "offset": 0,
7 "count": 1,
8 "output": ["no_o_id"],
9 "outer_action": {

10 "action": "index scan",
11 "relation": "new_order",
12 "index": "new_order_pkey",
13 "output": ["no_o_id"],
14 "filter": {
15 "func": "and",
16 "args": [
17 {"func": "=", "args": ["no_w_id", {"const_param": "$2"}]},
18 {"func": "=", "args": ["no_d_id", {"const_param": "$1"}]}]}}}}

Figure 50: The final RDBO’s output for the query with id 0e4e8

1 explain analyze select no_o_id from new_order where no_d_id = 1 and no_w_id = 2 order by no_o_id asc limit 1;
2 -- QUERY PLAN
3 -- Limit (cost=0.29..0.75 rows=1 width=4)
4 -- (actual time=0.050..0.051 rows=1 loops=1)
5 -- -> Index Scan using new_order_pkey on new_order (cost=0.29..197.99 rows=426 width=4)
6 -- (actual time=0.048..0.048 rows=1 loops=1)
7 -- Index Cond: ((no_w_id = 2) AND (no_d_id = 1))

Figure 51: PostgreSQL’s generated plan for the query with id 0e4e8

.
To understand better what happened, we can categorize the queries into three groups.

In the first group, we have the queries that were optimized fully. That is, RDBO’s gener-
ated plans for these queries matched, or were very close, to the PostgreSQL’s plans. One
of the queries that lies in this group is 0e4e8. RDBO’s generated plan for this query can
be seen in Figure 50 and PostgreSQL’s in Figure 51. Despite the equivalency of these
plans, RDBO’s plan was still slower, running at the average speed of 2.4 ms per query
(compared to the PostgreSQL’s 0.7 ms). Actually, all the plans in this group were slightly
slower than we expected. This is due to the way performance of these plans is measured.
For RDBO, a response time consists of these parts:

• a plan parsing – in this step, patched PostgreSQL translates given plan’s JSON string
into a query plan. This step involves converting JSON into an internal object,
resolving attribute and relation names, adding additional nodes to a plan, etc.;

• a portal managing – in order to execute a plan inside of the PostgreSQL, we have to
create a portal (can be viewed as some sort of an execution environment), assign
a plan to it, execute it (not included in a portal management timing), and finally,
destroy it;

67

• a data retrieval – this is the primary part in which we are executing a plan by
traversing the heap and producing output tuples;

• an other – before a plan hits patched code it goes through the several general Post-
greSQL’s layers. This involves PostgreSQL’s parser (parsing the execplan part),
transaction cop, etc.

Table 2: Inspection of query execution parts

Query 0e4e8 Overall
Part Cumulative s Avg. ms Percentage Cumulative s Avg. ms Percentage
Plan parsing 0.05 0.19 7.71% 119.85 3.16 2.74%
Data retrieval 0.10 0.37 15.33% 3199.72 84.27 73.06%
Portal management 0.04 0.13 5.41% 81.65 2.15 1.86%
Other 0.49 1.74 71.55% 978.14 25.76 22.34%
Total 0.68 2.43 4379.37 115.34

Run times of each of these parts separately for the query 0e4e8 and overall com-
mutative impact of all queries in the optimized query group (includes queries: 0ae9a,
4b08a, 7e91b, e5a64, 0e4e8, 15d4b, 14199, d795f, 0097f, 84ad0, a2e10, dfc36) can
be seen in Table 2. As expected, a data retrieval is either the most or the second most
demanding part. If we would take only this value and compare it to the PostgreSQL,
we could observe that now for most of the plans we get faster run times. This is due to
the fact that PostgreSQL’s query execution life cycle is different from ours. For actual
execution, JDBC driver is not sending a full query, instead, it sends only the prepared
statement’s id and the bind parameters. These values are assigned to an in advance cre-
ated portal. As such, PostgreSQL execution includes little of that we have under „Plan
parsing“, „Portal management“ and „Other“ parts. On the other hand, PostgreSQL may
re-plan prepared statements – so increasing the query execution time. As such, making
a fair comparison is actually a hard task and for simplicity sake, we assume that anything
within 10 ms should be considerate equal.

Second group consists of queries whose optimized versions contain nodes that are
not supported by the execplan command. As such, it was impossible for the RDBO
to find an optimal plan. This group contains only a single query 16f11 for which an
optimal plan contained an indexed array expression.

What is left for the third group, are queries whose plans suffered from nonmonotonic-
ity of a score function and poor exploration capabilities of the improver. That is, a proper
scoring function should produce smaller values for faster plans, but our function does not
have such property. One prominent example where not having such property can lead
to bad results is the query SELECT SUM(OL_AMOUNT)AS OL_TOTAL FROM ORDER_LINE
WHERE OL_O_ID = $1 AND OL_D_ID = $2 AND OL_W_ID = $3 (query id a73b1). A 68

1 insert into rel1 (attr1, attr2, attr3)
2 select generate_series(1, 10000000),
3 generate_series(1, 10000000),
4 generate_series(1, 10000000);
5 explain analyze
6 select attr3 from rel1
7 where attr2 + 1 = attr3 + 1 and attr3 = 500000;
8 -- QUERY PLAN
9 -- Seq Scan on rel1 (cost=0.00..254055.00 rows=250 width=4)

10 -- (actual time=185.203..3155.304 rows=1 loops=1)
11 -- Filter: ((attr3 = 500000) AND ((attr2 + 1) = (attr3 + 1)))
12 -- Rows Removed by Filter: 9999999
13 -- Execution time: 3155.344 ms
14
15 execplan e_json '{
16 "plan_id": "sha1-51c7fd35b14cf4c64ddcd6e8ce98716ff3551dd3",
17 "output": ["attr3"],
18 "action_tree":{
19 "action": "join by nested loop",
20 "join_type": "inner",
21 "output": [{ "alias": "attr3", "expr": "?gen-3?" }],
22 "filter": { "func": "=", "args": [{ "func": "+", "args": ["?gen-2?", 1] },
23 { "func": "+", "args": ["?gen-3?", 1] }]},
24 "outer_action":{
25 "action": "index scan",
26 "relation": "rel1",
27 "index": "uniq1",
28 "output": [{ "alias": "?gen-2?", "expr": "attr2" },
29 { "alias": "?gen-3?", "expr": "attr3" }],
30 "filter": { "func": "=", "args": ["attr2", 500000] }},
31 "inner_action": { "action": "rtn_result", "output":[] }}}';
32 -- Execution time: 0.297 ms

Figure 52: Query for which RDBO finds better plan than PostgreSQL

proper plan for this query should consist of a sorted aggregate node, followed by an index
scan and filtered by all the three conjuncts. RDBO started the search for such plan by
going from the naive one containing an aggregate node, a sequence scan, and some other
excess nodes. The score of this initial plan was 245. After some time, RDBO managed
to drop most of the useless nodes and produce a plan with the score of 113. Then it
started to use an index scan, filtering by the first attribute – ol_w_id. This led to a plan
having the score of 22. The problem with this new indexed scan is that it is actually
slower than the one with the score of 113. This is because selectivity of the ol_w_id is
rather small so, the index does not filter out a lot of tuples and instead give a penalty for
jumping between indexed structure and heap. Thankfully, after some more time, RDBO
managed to move the second attribute to an index’s filter which gave a physically faster
plan (score – 17). Not all queries were so lucky, and some of them stuck in the places
that gave a great score but were actually bad. Queries that were stuck because of the
scoring function or were not optimized fully because of the timing constraints: 42855,
4f9b4, 75a7f, a73b1, be345, e5a64, 1a0ea, 3781a.

4.3 Cutom queries
To conclude the experimental section, we provide several queries (not from OLTBench)
for which RDBO finds better plans than PostgreSQL. 69

The first query and its execution statistics can be observed in Figure 52. Here we
are doing a simple search over the relation rel1 from our test DB (Figure 30). In this
search, we are filtering out all the tuples on which attr2 and attr3 are not equal (with
excessive + 1 expression) or attr3 is not equal to 500000. As the attribute attr3 is
not used in any indexe’s prefix, PostgreSQL concludes that it is impossible to optimize
the filter condition any better than using a simple sequence scan10. RDBO, on the other
hand, notices that there is an index on attr2 and, because attr2 = attr3, it can use
it to improve plan’s execution performance. As such, RDBO’s generated plan runs over
10 thousand times faster.

1 insert into rel1 (attr1, attr2, attr3)
2 select generate_series(1, 100000000),
3 generate_series(1, 100000000),
4 generate_series(1, 100000000);
5 explain analyze select attr1 from rel1 where attr1 is null;
6 -- QUERY PLAN
7 -- Index Scan using rel1_attr1_pk on rel1
8 -- (cost=0.57..1381758.57 rows=500000 width=4)
9 -- (actual time=0.041..0.041 rows=0 loops=1)

10 -- Index Cond: (attr1 IS NULL)
11 -- Execution time: 0.106 ms
12
13 execplan e_json '{
14 "plan_id": "sha1-0f08efa67ae2070ff975ceaefaece6894d718611",
15 "output": ["attr1"],
16 "action_tree":{
17 "action": "rtn_result",
18 "output": [{ "alias": "attr1", "expr": 0 }],
19 "filter": false }}';
20 -- Execution time: 0.001 ms

Figure 53: Query whose optimal plan depends on check constraint

The second query can be seen in Figure 53. This query finds all tuples from rel1
in which attr1 is equal to NULL. The only problem with such search is that attr1 is
marked as NOT NULL as such no tuples will ever be returned. RDBO can easily prove
such fact and, after several minutes of optimization, comes up with a very simple plan
which always returns an empty set of tuples. On the other hand, PostgreSQL never looks
at CHECK and have to to use index scan which, for given data sample, is 100 times slower.

The final query is shown in Figure 54. In this query, we are searching for a tuple with
the smallest attr3 value and in which attr2 is undefined. The best plan that we can
generate for it contains a single index scan over attributes attr2 and attr3. As index is
already sorted there is no need to add any additional sort node, but PostgreSQL inserts
one. The problem here is the IS NULL operator. In PostgreSQL, this operator is not an
equity, but a set membership check. This small difference is enough for PostgreSQL’s
planner not to consider a uniq1 index as a viable access path11. Using simple sequence
scan resolves in a plan which is 200 thousand times faster compared to the plan generated

10Actually, PostgreSQL is able to deduce transitive aliases when they are created by simple equity
operator without any additional expressions.

11If we would use attr2 = 1 instead of attr2 is null, we would get a desired plan 70

by RDBO.
1 insert into rel1 (attr1, attr2, attr3)
2 select generate_series(1, 10000000),
3 case when random() < 0.5 then null else 1 end,
4 generate_series(1, 10000000);
5 explain analyze select attr1 from rel1 where attr2 is null order by attr3 limit 1;
6 -- QUERY PLAN
7 -- Limit (cost=174223.02..174223.02 rows=1 width=8)
8 -- (actual time=4593.337..4593.338 rows=1 loops=1)
9 -- Sort (cost=174223.02..186805.52 rows=5033001 width=8)

10 -- (actual time=4593.336..4593.336 rows=1 loops=1)
11 -- Sort Key: attr3
12 -- Sort Method: top-N heapsort Memory: 25kB
13 -- Seq Scan on rel1 (cost=0.00..149058.01 rows=5033001 width=8)
14 -- (actual time=0.635..3182.984 rows=5002203 loops=1)
15 -- Filter: (attr2 IS NULL)
16 -- Rows Removed by Filter: 4997797
17 -- Execution time: 4593.380 ms
18
19 execplan e_json '{
20 "plan_id":"sha1-83254ad6156486b395cb96daea5e7db6f14a7751",
21 "output": ["attr1"],
22 "action_tree": {
23 "action": "limit",
24 "output": ["attr1"],
25 "count": 1,
26 "outer_action": {
27 "action": "index scan",
28 "output": ["attr1"],
29 "relation": "rel1",
30 "index": "uniq1",
31 "filter": { "func": "is null", "args": ["attr2"] }}}}';
32 -- Execution time: 0.021 ms

Figure 54: Query sorted by attribute tuple containing NULL

71

Results and conclusions
In this paper, we present a problem of converting a human-readable SQL query into the
executable rules expressed as an execution plan. By introducing a simple subproblem of
optimal join ordering, we show how complicated and slow such conversion could be in
practice. In order to speed up this process, most RDBMSs provide several ways to avoid
at least some parts of it. We detail most of the common ways of doing so, in particular,
stressing a usage of precompiled queries.

We also examine another problem of program compilation into executable machine
instructions and conclude that this compilation problem is inherently similar to a query
planning. This is due to the fact that currently most compilers, similarly as RDBMSs,
use special purpose algorithms (most prominently peephole optimization) together with
various heuristics to do their job. The problem with these techniques is that they try to
solve the computationally expensive problem fast which leads to suboptimal results.

There is also a new wave of general purpose optimizers that are used in compilation
process and can actually find truly optimal machine code. In the beginning of this paper
we present a history of these so called superoptimizers. We also explain how these super-
optimizers work – they look at a compilation as a complex optimization problem which
can be solved by a brute force (trying out all the possible candidate sequences) or by
using randomized algorithms (like the Monte Carlo search or the genetic programming).
Obviously, in order to apply these methods, superoptimizer has to be able to prove
that generated sequences are equivalent to the initial one. To do that, superoptimizers
represent input instructions as mathematical formulas in SMT logic – a distinguished
superoptimizer tactic – which allows usage of state of the art solvers (like Z3) to do ac-
tual equivalence proves for them. Though, at least in theory, superoptimizer can produce
optimal code, they tend to be way too slow. This problem is solved by using them offline
in preparation of conversion templates used by peephole optimizers in advance.

In the paper, we note that query planners are not using anything similar to super-
optimizers, though having rarely changed query pools of precompiled queries seems to
be a great target for long running optimizations, and try to apply examined techniques
ourselves. We start an exploration of superoptimization application in RDBMSs by out-
lining an implementation of general purpose framework for query interception written as
a side product of this thesis. This framework consists primarily of proxy service, which
sits between client and DB. This service captures all packets flowing through it, com-
bines them to query execution commands (query and its bind parameters) and parses
these commands by producing easily malleable query AST. Any module can hook to
this process and do query modifications at will. Proxy also allows to branch execution
to other DBs executing on them altered queries. This allows one DB to act as a control
mechanism which always produces correct results, as we are executing unchanged queries

72

on it, and other DB as a testing service on which altered queries have to produce same
results as unchanged ones on control DB.

As part of this framework, we also extend PostgreSQL to support plan execution.
This plan execution is carried by a new command called execplan which as its second
argument (first argument is always a constant e_plan) takes query execution plan as
JSON object. In the paper, we also give a detailed explanation of this object. That is, we
describe what kind of plan nodes this object can contain and what they do.

After that, we overview a created superoptimization module which was plugged into
a previously mentioned framework. We start this overview by detailing query plan con-
version to set of SMT formulas and how these formulas were used to prove equivalency
between two plans. We show that direct plan encoding is too slow for practical use (di-
rect conversion would require a use of quantifiers for which no general purpose prover
could guarantee termination). To mitigate this problem, we make a restriction on maxi-
mum relation size – while converting we assumed that no initial relation will have more
than 3 tuples. This allowed us to manually ground all formulas and define any plan as a
pipeline of simple transformations on a finite set of free variables, defined from the DB’s
schema. We also show that such model bounding may sometimes have a negative impact
on equivalency checking – any plan which has to touch more tuples than predefined
bound will be equated to an empty query.

As part of superoptimization module’s overview, we also define a scoring fuction
used in comparing two plans. We define this score function as a triple consisting of a
number of errors inside of a generated plan, a flag showing whether plan is equivalent to
the target plan and a scalar value which tries to estimate plans qualitative properties (in
theory, this estimate should be a normalized representation of plans executions speed).
We define a third, and most important, component of this triple to be a simple additive
function on nodes children which tries to promote small index based scans. In the
paper, we note that this is a naive definition as it does not take into its account things
like environment on which superoptimizer runs and time changing data variability, but
is good enough for basic optimization needs.

We use this score function inside of created superoptimizer’s exploratory search. In
this search an improver thread takes a plan that was determined to be needing optimiza-
tions from the job queue. Later on, improver for some predetermined amount of time
tries to find a better plan by using an algorithm similar to hill climbing algorithm. That
is, for a particular plan a randomized mutation procedure (which we explained in de-
tails) is applied several times. Current plan is changed to a mutated one if its score is
lower, otherwise, improvement search continues from a copy of the original plan. After
improvement time runs out, the plan is put back to queue – all appropriate queries from
that time on will use this improved plan.

Finally, this module was tested by running OLTBench benchmarks on it. The results
73

of these benchmarks showed that:

• our created mathematical model is sufficient to work with queries used in a practice
as all plans – optimized, PostgreSQL and naive ones – returned matching result sets;

• our optimized query plans compared to PostgreSQL were:

– as fast as PostgreSQL generated plans – happened to 12 plans;
– not optimized due to us not implementing some of the plan nodes – a single
plan;

– not optimized fully due to nonmonotonicity of scoring function and poor
query plan exploration – 8 plans.

We also showed that there are queries for which our superoptimizer performed better
than PostgreSQL one:

• ability to look at NULL constraints allowed superoptimizer to collapse one of the
queries to a single expression. Empirically, this gave a plan which is 100 times
faster than a PostgreSQL’s created plan;

• knowledge that indexes are ordered structures allows our superoptimizer to remove
unnecessary sort nodes in a plan. For one particular query this knowledge gave
200 thousand times faster plan;

• deduction of transitive attribute aliases allows superoptimizer to use indexes indi-
rectly. In the paper, we presented a query for which this ability allowed to generate
a query plan which is 10 thousand times faster.

From all these benchmarks we conclude that superoptimization could be a viable
solution for RDBMS’s in a near future, but before that, following tasks/problems should
be solved:

• a detection of query plan instances for which mathematical model can produce a
false positive result;

• a creation of a better scoring function which could work ofline;
• an improvement of a query plan exploration.

Investigation of possible solutions for these problems could be a topic for future
works.

74

References
[ACN00] S. Agrawal, S. Chaudhuri and V. R. Narasayya. Automated selection of

materialized views and indexes in sql databases. In Proceedings of the 26th
International Conference on Very Large Data Bases. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 2000, VLDB ’00, pp. 496–505

[BA06] S. Bansal and A. Aiken. Automatic generation of peephole superoptimizers.
In Proceedings of the 12th International Conference on Architectural Support
for Programming Languages and Operating Systems. ACM, New York, NY,
USA, 2006, ASPLOS XII, pp. 394–403

[Bat68] K. E. Batcher. Sorting networks and their applications. In Proceedings of the
April 30–May 2, 1968, Spring Joint Computer Conference. ACM, New York,
NY, USA, 1968, AFIPS ’68 (Spring), pp. 307–314

[CBC93] S. Choenni, H. M. Blanken and T. Chang. On the selection of secondary
indices in relational databases, 1993

[CFM86] U. S. Chakravarthy, D. H. Fishman and J. Minker. Semantic query opti-
mization in expert systems and database systems. In Proceedings from the First
International Workshop on Expert Database Systems. Benjamin-Cummings
Publishing Co., Inc., Redwood City, CA, USA, 1986, pp. 659–674

[CN98] S. Chaudhuri and V. R. Narasayya. Autoadmin ’what-if’ index analysis
utility. In L. M. Haas and A. Tiwary, eds., SIGMOD Conference. ACM
Press, 1998, pp. 367–378

[Dat08] C. Date. The Relational Database Dictionary, Extended Edition. Apressus
Series. Apress, 2008

[Dat11] C. Date. SQL and Relational Theory: How to Write Accurate SQL Code.
O’Reilly Media, 2011

[DMB11] L. De Moura and N. Bjørner. Satisfiability modulo theories: Introduction
and applications. In Commun. ACM, 54(9), pp. 69–77, 2011

[DPCCM13] D. E. Difallah, A. Pavlo, C. Curino and P. Cudre-Mauroux. Oltp-bench:
An extensible testbed for benchmarking relational databases. In Proc. VLDB
Endow., 7(4), pp. 277–288, 2013

[DV97] E. Dantsin and A. Voronkov. Logical Foundations of Computer Science: 4th
International Symposium, LFCS’97 Yaroslavl, Russia, July 6–12, 1997 Pro-
ceedings, Springer Berlin Heidelberg, Berlin, Heidelberg, chap. Complex- 75

ity of query answering in logic databases with complex values, pp. 56–66,
1997

[GA05] T. Granlund and S. Ab. Instruction latencies and throughput for amd and
intel x86 processors, 2005

[GMZ02] R. Gupta, E. Mehofer and Y. Zhang. Profile guided compiler optimizations,
2002

[Gö31] K. Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und
verwandter Systeme I. In Monatshefte für Mathematik und Physik, 38(1), pp.
173–198, 1931

[HSH07] J. Hellerstein, M. Stonebraker and J. Hamilton. Architecture of a Database
System. Foundations and trends in databases. Now Publishers, 2007

[HSZ08] C. Henke, C. Schmoll and T. Zseby. Empirical evaluation of hash functions
for multipoint measurements. In SIGCOMM Comput. Commun. Rev., 38(3),
pp. 39–50, 2008

[Jen] B. Jenkins. lookup3. http://burtleburtle.net/bob/c/lookup3.c.
[online; accessed 2015-04-12]

[JNR02] R. Joshi, G. Nelson and K. Randall. Denali: A goal-directed superoptimizer.
In SIGPLAN Not., 37(5), pp. 304–314, 2002

[JNZ+03] R. Joshi, G. Nelson, Y. Zhou, R. Joshi, G. Nelson and Y. Zhou. The
straight-line automatic programming problem, 2003

[KK07] N. Kerdprasop and K. Kerdprasop. Semantic knowledge integration to sup-
port inductive query optimization. In Proceedings of the 9th International
Conference on Data Warehousing and Knowledge Discovery. Springer-Verlag,
Berlin, Heidelberg, 2007, DaWaK’07, pp. 157–169

[Klea] Kle11. Dell dvd store. http://linux.dell.com/dvdstore/. [online; ac-
cessed 2015-11-21]

[Kleb] Kle11. Transaction processing performance council. http://www.tpc.org/
default.asp. [online; accessed 2015-11-21]

[Luk13] S. Luke. Essentials of Metaheuristics. Lulu, second edn., 2013. Available
for free at http://cs.gmu.edu/∼sean/book/metaheuristics/

76

http://burtleburtle.net/bob/c/lookup3.c
http://linux.dell.com/dvdstore/
http://www.tpc.org/default.asp
http://www.tpc.org/default.asp

[Mas87] H. Massalin. Superoptimizer: A look at the smallest program. In Proceedings
of the Second International Conference on Architectual Support for Program-
ming Languages and Operating Systems. IEEE Computer Society Press, Los
Alamitos, CA, USA, 1987, ASPLOS II, pp. 122–126

[McK65] W. M. McKeeman. Peephole optimization. In Commun. ACM, 8(7), pp.
443–444, 1965

[Pos14a] PostgreSQL Global Development Group. Genetic Query Optimizer, 2014.
PostgreSQL documentation. [Online; accessed 2015-03-14] http://www.
postgresql.org/docs/9.4/static/geqo.html

[Pos14b] PostgreSQL Global Development Group. pgbench, 2014. PostgreSQL doc-
umentation. [Online; accessed 2015-11-22] http://www.postgresql.
org/docs/9.4/static/pgbench.html

[Pos14c] PostgreSQL Global Development Group. PostgreSQL FEBE flow, 2014.
PostgreSQL documentation. [Online; accessed 2015-01-12] http://www.
postgresql.org/docs/9.4/static/protocol-flow.html

[Pos14d] PostgreSQL Global Development Group. PostgreSQL Message
Formats, 2014. PostgreSQL documentation. [Online; accessed
2015-01-12] http://www.postgresql.org/docs/9.4/static/
protocol-message-formats.html

[Pos15a] PostgreSQL Global Development Group. Pushing order by + limit to union
subqueries, 2015. Pgsql-performance (Mailing list). [Online; accessed
2015-02-28] http://www.postgresql.org/message-id/CAP=2L=
FRza_catqP9LRfJOMybzoorpxSBxSP=J1o9WZnFp1USg@mail.gmail.
com

[Pos15b] PostgreSQL Global Development Group. SELECT slows down on sixth exe-
cution, 2015. Pgsql-performance (Mailing list). [Online; accessed 2015-10-
14] http://www.postgresql.org/message-id/561E068F.1040702@
socialserve.com

[PS04] M. Poess and J. M. Stephens, Jr. Generating thousand benchmark queries
in seconds. In Proceedings of the Thirtieth International Conference on Very
Large Data Bases - Volume 30. VLDB Endowment, 2004, VLDB ’04, pp.
1045–1053

[SAC+79] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie and T. G.
Price. Access path selection in a relational database management system. In

77

http://www.postgresql.org/docs/9.4/static/geqo.html
http://www.postgresql.org/docs/9.4/static/geqo.html
http://www.postgresql.org/docs/9.4/static/pgbench.html
http://www.postgresql.org/docs/9.4/static/pgbench.html
http://www.postgresql.org/docs/9.4/static/protocol-flow.html
http://www.postgresql.org/docs/9.4/static/protocol-flow.html
http://www.postgresql.org/docs/9.4/static/protocol-message-formats.html
http://www.postgresql.org/docs/9.4/static/protocol-message-formats.html
http://www.postgresql.org/message-id/CAP=2L=FRza_catqP9LRfJOMybzoorpxSBxSP=J1o9WZnFp1USg@mail.gmail.com
http://www.postgresql.org/message-id/CAP=2L=FRza_catqP9LRfJOMybzoorpxSBxSP=J1o9WZnFp1USg@mail.gmail.com
http://www.postgresql.org/message-id/CAP=2L=FRza_catqP9LRfJOMybzoorpxSBxSP=J1o9WZnFp1USg@mail.gmail.com
http://www.postgresql.org/message-id/561E068F.1040702@socialserve.com
http://www.postgresql.org/message-id/561E068F.1040702@socialserve.com

Proceedings of the 1979 ACM SIGMOD International Conference on Man-
agement of Data. ACM, New York, NY, USA, 1979, SIGMOD ’79, pp.
23–34

[SS98] D. Slutz and D. Slutz. Massive stochastic testing of sql. In In VLDB. Morgan
Kaufmann, 1998, pp. 618–622

[SSA13] E. Schkufza, R. Sharma and A. Aiken. Stochastic superoptimization. In
Proceedings of the Eighteenth International Conference on Architectural Sup-
port for Programming Languages and Operating Systems. ACM, New York,
NY, USA, 2013, ASPLOS ’13, pp. 305–316

[SSCA15] R. Sharma, E. Schkufza, B. Churchill and A. Aiken. Conditionally correct
superoptimization. In Proceedings of the 2015 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and Appli-
cations. ACM, New York, NY, USA, 2015, OOPSLA 2015, pp. 147–162

[SSS92] M. Siegel, E. Sciore and S. Salveter. A method for automatic rule derivation
to support semantic query optimization. InACM Trans. Database Syst., 17(4),
pp. 563–600, 1992

[VGdHT09] M. Veanes, P. Grigorenko, P. de Halleux and N. Tillmann. Symbolic query
exploration. In Formal Methods and Software Engineering, 11th International
Conference on Formal Engineering Methods, ICFEM 2009, Rio de Janeiro,
Brazil, December 9-12, 2009. Proceedings, 2009, pp. 49–68

[VTdH10] M. Veanes, N. Tillmann and J. de Halleux. Qex: Symbolic SQL query
explorer. In Logic for Programming, Artificial Intelligence, and Reasoning -
16th International Conference, LPAR-16, Dakar, Senegal, April 25-May 1,
2010, Revised Selected Papers, 2010, pp. 425–446

[Win12] M. Winand. SQL Performance Explained: Everything Developers Need to
Know about SQL Performance. M. Winand, 2012

78

Glossary
A | C | D | F | G | I | J | M | R | S | T | U | V
A
Abstract syntax tree

A tree representing structure of compiled program or query. 13, 27, 41, 72
ADO.NET

Part of Microsoft .NET Framework that enables comunication with RDBMS. 21

C
Central processing unit

Circuit used for machine level instruction execution. 17–19, 65, 66

D
Database

Collection of structured data. 10–12, 66, 70, 72, 73
Database management system

Software which is used to manipulate DB. 10, 64
Domain specific language

A language created for modeling particular domain problem. 23

F
Foreign function interface

A mechanism that allows two languages to call each other functions. 23
Frontend/Backend protocol

Protocol used by by various applications to to communicate with PostgreSQL back-
end. 23

G
Grand unified configuration

Mechanism used by PostgreSQL to manage its configuration variables on various
levels at runtime. 25, 26

I
Internet protocol

Internet layer protocol used for packet relaying based on IP address. 21, 22

J
79

Java Database Connectivity
Programming interface that allows to communicate with RDBMS from Java. 21,
26, 68

JavaScript object notation
General purpose data encoding format. 29, 30, 34–36, 67, 73

M
Multiversion concurrency control

A concurrency control implementation based on concept of dublicated values. 13,
27, 29, 31

R
Random Access Memory

Volatile data storage device that allows to access data within the same speed despite
its physical location. 65, 66

Relational database management system
DBMS which uses relational data model. 11–18, 20, 21, 23, 25–30, 37, 41, 45,
46, 48, 62, 72, 74

Relational database optimizer
Package of programs created while writing master thesis. 21–23, 25–28, 32, 35–37,
41, 47, 51, 54, 56, 63, 65–71, 76

S
Satisfiability modulo theories

First order logic formula encoded with a help of specialized predicates from a va-
riety of underlying theories. 12, 19, 41, 45–48, 50, 51, 54, 62, 63, 72, 73

Secure Sockets Layer
Application layer protocol which uses a set of cryptographic primitives to ensure
secure communication over network. 23, 24

Solid-state drive
Persistance data storage device. 66

Structured query language
Most popular language for writing RDBMS queries. 11, 13, 16, 17, 21, 27, 33, 38,
45, 50, 51, 55, 58, 72

T

80

Transaction Processing Performance Council
Non-profit organization defining RDBMS benchmarks and openly publising their
results. 38

Transmission control protcol
Transport layer protocol used for reliable session based packet transportation. 23

U
Universal Serial Bus

Standard which defines cables and protocols used in communication between var-
ious digitilized systems. 10

V
Virtuam machine

Software implementation of machine that enables user to run run operating systems
in isolation. 21, 28, 40

81

Acronyms
A | C | D | F | G | I | J | M | O | R | S | T | U | V
A
AST

Abstract syntax tree. 13, 27, 41, 72

C
CPU

Central processing unit. 17–19, 65, 66

D
DB

Database. 10–12, 66, 70, 72, 73
DBMS

Database management system. 10, 64
DSL

Domain specific language. 23

F
FEBE

Frontend/Backend protocol. 23
FFI

Foreign function interface. 23

G
GUC

Grand unified configuration. 25, 26

I
IP

Internet protocol. 21, 22

J
JDBC

Java Database Connectivity. 21, 26, 68
JSON

JavaScript object notation. 29, 30, 34–36, 67, 73
82

M
MVCC

Multiversion concurrency control. 13, 31

O
OID

Multiversion concurrency control. 27, 29

R
RAM

Random Access Memory. 65, 66
RDBMS

Relational database management system. 11–18, 20, 21, 23, 25–30, 37, 41, 45,
46, 48, 62, 72, 74

RDBO
Relational database optimizer. 21–23, 25–28, 32, 35–37, 41, 47, 51, 54, 56, 63,
65–71, 76

S
SMT

Satisfiability modulo theories. 12, 19, 41, 45–48, 50, 51, 54, 62, 63, 72, 73
SQL

Structured query language. 11, 13, 16, 17, 21, 27, 33, 38, 45, 50, 51, 55, 58, 72
SSD

Solid-state drive. 66
SSL

Secure Sockets Layer. 23, 24

T
TCP

Transmission control protcol. 23
TPC

Transaction Processing Performance Council. 38

U
USB

Universal Serial Bus. 10
83

V
VM

Virtuam machine. 21, 28, 40

84

Applications
D | F | G | L | O | P | Q | R | U | V | Z
D
Dells DVD stores simulation

http://linux.dell.com/dvdstore/
Benchmark based on ecommerse site simulation. 21, 38, 40

F
fortune

http://minnie.tuhs.org/cgi-bin/utree.pl?file=V7/usr/src/games/fortune.
c
Unix V7 program that display randomized message. 44

G
GCC

https://gcc.gnu.org/
A collection of programmin language compilers. 20

Graphviz
http://www.graphviz.org/
A software suite used in graph visualization. 23

L
LLVM

http://llvm.org/
A collection of compiler specific technologies. 20

O
OLTBench

http://oltpbenchmark.com/
A framework consisting of multiple benchmarks created for DB testing. 21, 38,
40, 65, 69, 73, 76

P
pg_query

https://github.com/lfittl/pg_query
PostgreSQL style query parser for Ruby. 27

85

http://linux.dell.com/dvdstore/
http://minnie.tuhs.org/cgi-bin/utree.pl?file=V7/usr/src/games/fortune.c
http://minnie.tuhs.org/cgi-bin/utree.pl?file=V7/usr/src/games/fortune.c
https://gcc.gnu.org/
http://www.graphviz.org/
http://llvm.org/
http://oltpbenchmark.com/
https://github.com/lfittl/pg_query

PostgreSQL
http://www.postgresql.org/
Opensource RDBMS. 12, 15, 16, 22, 23, 25, 27–30, 33, 35, 37–40, 65–70, 73, 74

Q
QEX

Testing data generator for SQL queries. 46
QGEN

Query generator. 38

R
RAGS

Randomized query generator. 38
REX

Testing data generator for regular expressions. 46
RUST

https://www.rust-lang.org/
A system programming language. 23, 26

rust-peg
https://github.com/kevinmehall/rust-peg
Parser generator for RUST. 27

rust-postgres
https://github.com/sfackler/rust-postgres
PostgreSQL driver for RUST. 27

U
ubuntu

http://www.ubuntu.com/
Linux operating system. 65

V
Vagrant

https://www.vagrantup.com/
VM management system. 21

Z
Z3

http://rise4fun.com/z3
Automatic theorem prover. 41, 46, 48, 72

86

http://www.postgresql.org/
https://www.rust-lang.org/
https://github.com/kevinmehall/rust-peg
https://github.com/sfackler/rust-postgres
http://www.ubuntu.com/
https://www.vagrantup.com/
http://rise4fun.com/z3

Appendix 1. Used queries
All queries used in experiments are shown in the table below (queries are taken from
OLTBench [DPCCM13]). In this table column „Opt.“ represents how well queries were
optimized by RDBO and can contain following symbols:

• ✓– RDBO found optimal plan;
• ✗– found plan is suboptimal;
• ➘– plan uses too many optimizations (mostly using index scan then simple se-
quence scan is faster);

• ➚– plan for given query is optimal, but contains up to 3 excess nodes.

Query id Opt. Query
tpcc

0097f ➚ SELECT I_PRICE, I_NAME , I_DATA FROM ITEM WHERE I_ID =
$1

0ae9a ➘ SELECT D_STREET_1, D_STREET_2, D_CITY, D_STATE, D_ZIP,
D_NAME FROM DISTRICT WHERE D_W_ID = $1 AND D_ID = $2

0e4e8 ✓ SELECT NO_O_ID FROM NEW_ORDER WHERE NO_D_ID = $1 AND
NO_W_ID = $2 ORDER BY NO_O_ID ASC LIMIT 1

15d4b ✓ SELECT O_C_ID FROM OORDER WHERE O_ID = $1 AND O_D_ID =
$2 AND O_W_ID = $3

1a0ea ✗ SELECT C_FIRST, C_MIDDLE, C_ID, C_STREET_1, C_STREET_2
, C_CITY, C_STATE, C_ZIP, C_PHONE, C_CREDIT,
C_CREDIT_LIM, C_DISCOUNT, C_BALANCE, C_YTD_PAYMENT,
C_PAYMENT_CNT, C_SINCE FROM CUSTOMER WHERE C_W_ID = $1
AND C_D_ID = $2 AND C_LAST = $3 ORDER BY C_FIRST

42855 ✗ SELECT OL_I_ID, OL_SUPPLY_W_ID, OL_QUANTITY, OL_AMOUNT,
OL_DELIVERY_D FROM ORDER_LINE WHERE OL_O_ID = $1 AND

OL_D_ID =$2 AND OL_W_ID = $3
4b08a ➘ SELECT D_NEXT_O_ID, D_TAX FROM DISTRICT WHERE D_W_ID =

$1 AND D_ID = $2 FOR UPDATE
4f9b4 ✗ SELECT C_Fsql, C_MIDDLE, C_LAST, C_STREET_1, C_STREET_2

, C_CITY, C_STATE, C_ZIP, C_PHONE, C_CREDIT,
C_CREDIT_LIM, C_DISCOUNT, C_BALANCE, C_YTD_PAYMENT,
C_PAYMENT_CNT, C_SINCE FROM CUSTOMER WHERE C_W_ID = $1
AND C_D_ID = $2 AND C_ID = $3

75a7f ✗ SELECT C_DATA FROM CUSTOMER WHERE C_W_ID = $1 AND
C_D_ID = $2 AND C_ID = $3

87

7e91b ➘ SELECT C_DISCOUNT, C_LAST, C_CREDIT, W_TAX FROM
CUSTOMER, WAREHOUSE WHERE W_ID = $1 AND C_W_ID = $2
AND C_D_ID = $3 AND C_ID = $4

a73b1 ✗ SELECT SUM(OL_AMOUNT)AS OL_TOTAL FROM ORDER_LINE WHERE
OL_O_ID = $1 AND OL_D_ID = $2 AND OL_W_ID = $3

be345 ✗ SELECT O_ID, O_CARRIER_ID, O_ENTRY_D FROM OORDER WHERE
O_W_ID = $1 AND O_D_ID = $2 AND O_C_ID = $3 ORDER BY

O_ID DESC LIMIT 1
dfc36 ➚ SELECT S_QUANTITY, S_DATA, S_DIST_01, S_DIST_02,

S_DIST_03, S_DIST_04, S_DIST_05, S_DIST_06, S_DIST_07,
S_DIST_08, S_DIST_09, S_DIST_10 FROM STOCK WHERE S_I_ID
= $1 AND S_W_ID = $2 FOR UPDATE

e5a64 ➘ SELECT W_STREET_1, W_STREET_2, W_CITY, W_STATE, W_ZIP,
W_NAME FROM WAREHOUSE WHERE W_ID = $1

wikipedia
84ad0 ➚ SELECT * FROM page WHERE page_namespace = $1 AND

page_title = $2 LIMIT 1
voter

14199 ✓ SELECT state FROM AREA_CODE_STATE WHERE area_code = $1
3781a ✗ SELECT COUNT(*)FROM VOTES WHERE phone_number = $1
d795f ✓ SELECT contestant_number FROM CONTESTANTS WHERE

contestant_number = $1
seats

a2e10 ➚ SELECT R_ID, R_F_ID, R_SEAT FROM "RESERVATION" WHERE
R_F_ID = $1

cfab8 ✗ SELECT * FROM "CUSTOMER" WHERE C_ID = $1
d07f5 ✓ SELECT C_ID FROM "CUSTOMER" WHERE C_ID_STR = $1

twitter
16f11 ✗ SELECT uid, name FROM "user_profiles" WHERE uid IN ($1

, $2, $3, $4, $5, $6, $7, $8, $9, $10, $11, $12, $13,
$14, $15, $16, $17, $18, $19, $20)

88

	Introduction
	Background
	Query processing
	Superoptimization

	Architecture
	Proxy
	Initialization
	Proxying
	Query interception
	Result validation

	Database
	Changes to configuration
	Changes to
	Query plan node
	Expression nodes
	Action nodes
	Sequence scan node
	Result node
	Nested loop join
	Materialization node
	Limit node
	Concatenation node
	Set operation node
	Sort
	Aggregate node
	Subquery node
	Correlated subquery
	Index scan

	structure overview

	Client
	Limitations and changes to
	Clients structure overview

	Query plan generation
	Naive plan
	Plan exploration
	Query plan equivalency checking
	Representing schema
	Node encoding helpers
	Projection
	Filter
	Unique

	Node encoding
	Sequence and index scan nodes
	Nested join
	Aggregate node
	Sort
	Limit node
	Set operation and concatenation nodes

	Checking for relation equivalence

	Calculating score of a plan

	Experiments
	Performance of a naive plan
	Performance of an optimized plan
	Cutom queries

	Results and conclusions
	References
	Glossary
	Acronyms
	Applications
	Appendix 1. Used queries

