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Jungčių taikymas paskolų modeliavime

Santrauka

Jungčių taikymas diskretiems duomenims, pasižymintiems priklausomumu, nėra plačiai išnagrinė-
tas literatūroje. Šiame darbe nagrinėjamas pirmos eilės dvimatis sveikareikšmių dydžių autoregresi-
nis procesas (BINAR(1)), kurio paklaidos yra aprašomos jungties funkcija. Pateikiamos modelio
savybės su įrodymais. Nagrinėjami skirtingi vertinimo metodai, o jų palyginimai atliekami Monte
Karlo simuliacijomis, pabrėžiant jungties priklausomybės parametro vertinimo galimybes. Em-
piriniams mokių ir nemokių paskolų dieniniams duomenims sudaromi BINAR(1) modeliai. Naudo-
jamos skirtingos jungčių funkcijų ir marginaliųjų pasiskirstymo funkcijų kombinacijos. Vertinami
modeliai su liekanų marginaliosiomis funkcijomis, kurios gali būti iš tos pačios arba iš skirtingų
skirstinių šeimų.

Raktiniai žodžiai : Skaičiuojantieji duomenys, BINAR, Puasono, Neigiamas binominis skirstinys,
jungtis, FGM jungtis, Frank jungtis, Clayton jungtis, Gumbel jungtis

Applications of copulas in loan modelling

Abstract

Copula applications for discrete data with autocorrelation are not widely studied. In this thesis, a
bivariate integer-valued autoregressive process of order 1 (BINAR(1)) with copula-joint innovations
is analysed. Model properties and their proofs are provided. Different estimation methods are
analysed and comparisons are carried out via Monte Carlo simulations with emphasis on estimation
of the copula dependence parameter. An empirical application on defaulted and non-defaulted loan
daily data is carried out using different combinations of copula functions and marginal distribution
functions covering the cases when both marginal distributions are from the same family and when
they are from different distribution families.

Key words : Count data, BINAR, Poisson, Negative binomial distribution, Copula, FGM copula,
Frank copula, Clayton copula, Gumbel copula



1 Introduction
Copulas are functions which link marginal distributions of a random vector to form a

joint distribution. The advantage is that copulas allow to model the marginal distributions
(which can be from different distribution families) and their dependence structure (which
is described via a copula) separately. Because of this feature copulas were applied to many
different fields, including finance1 (for examples of copula applications see Brigo et al. (2010)
or Cherubini et al. (2011)), which also included the analysis of loans and their default rates.
Crook and Moreira (2011) analysed the dependence between the default rate of loans be-
tween different credit risk categories. In order to model the dependence, copulas from 10
different families were applied and three model selection tests were carried out. Because of
the small sample size (24 observations per risk category) most of the copula families were not
rejected and a single best copula model was not selected. To analyse whether dependence
is affected by time Fenech et al. (2015) estimated the dependence between four different
loan default indexes before the Great Financial Crisis and after. They have found that the
dependence was different in these periods. Four copula families were used to estimate the
dependence between the default index pairs.

While these studies were carried out for continuous data, there is less developed liter-
ature on discrete models created with copulas: Genest and Nešlehová (2007) discusses the
differences and challenges of using copulas for discrete data compared to continuous data.
Furthermore, the previously mentioned studies assumed that the data does not depend on its
own previous values. By using bivariate integer-valued autoregressive models (BINAR) it is
possible to account for both the discreteness and autocorrelation of the data. Furthermore,
copulas can be used to model the dependence of innovations in the BINAR(1) models: Karlis
and Pedeli (2013) used the Frank copula and normal copula to model the dependence of the
innovations of the BINAR(1) model.

In this thesis we expand on using copulas in BINAR models by analysing additional
copula families for the innovations of the BINAR(1) model. Secondly, we analysed different
estimation methods for BINAR(1) models. We also present a two-stage estimation method
for the parameters of the BINAR(1) model where we estimate the model parameters sep-
arately from the dependence parameter of the copula. These estimation methods are then
compared to the estimation method used in Karlis and Pedeli (2013) via Monte Carlo simu-
lations. Additionally, an estimation method for the dependence parameter of a copula with
discrete marginal distributions when the data does not exhibit autoregressive properties is
examined in this thesis. This method is based on minimizing the distance between the the-
oretical copula and the empirical joint distribution function. It is then compared to one of
the more commonly used estimation methods for copula dependence parameter estimation
via Monte Carlo simulations. Finally, in order to analyse the presence of autocorrelation
and copula dependence in loan data, an empirical application is carried out.

The thesis is structured as follows: Section 2 presents the BINAR(1) process and its
main properties, Section 3 presents the main properties of copulas as well as some copula
functions with graphical examples. Section 4 compares different estimation methods for the
BINAR(1) model and the dependence parameter of copulas via Monte Carlo simulations.
In Section 5 an empirical application is carried out using different combinations of copula
functions and marginal distribution functions. Conclusions are presented in Section 6.

1other notable fields include survival analysis, hydrology and insurance risk analysis
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2 The bivariate INAR(1) process
The BINAR(1) process was introduced in Pedeli and Karlis (2011). We will begin this

Section by providing the definition of the BINAR(1) model as well as its properties.

2.1 The BINAR(1) model
Definition 2.1. Let Xt, t ∈ Z be a non-negative integer-valued bivariate time series and
let Rt, t ∈ Z be a non-negative integer-valued bivariate random sequence. Then a bivariate
integer-valued autoregressive process of order 1 (BINAR(1)) is defined as:

Xt = A ◦Xt−1 + Rt =

[
α1 0
0 α2

]
◦
[
X1,t−1
X2,t−1

]
+

[
R1,t

R2,t

]
, t ∈ Z. (2.1)

The symbol ’◦’ is the thinning operator which also acts as the matrix multiplication. So the
j = 1, 2 element is defined as an INAR process of order 1 (INAR(1)):

Xj,t = αj ◦Xj,t−1 +Rj,t, (2.2)

where α ◦X :=
∑X

i=1 Yi and Y1, Y2, ... is a sequence of i.i.d. Bernoulli random variables with
P(Yi = 1) = α = 1− P(Yi = 0), α ∈ [0, 1). Xj,t has two random components: the survivors
of the elements of the process at time t− 1, each with the probability of survival αj, which
is denoted by αj ◦Xj,t−1, and the elements which enter in the system in the interval [t− 1, t]
which are called arrival elements Rj,t. The distribution properties of the BINAR(1) process
can be studied in terms of Rt values. We can obtain a moving average representation by
substitutions and the properties of the thinning operator as in Kedem and Fokianos (2002):

Xj,t = αj ◦Xj,t−1 +Rj,t (2.3)
= αj ◦ (αj ◦Xj,t−2 +Rj,t−1) +Rj,t

d
= α2

j ◦Xj,t−2 + αj ◦Rj,t−1 +Rj,t

d
= ...

d
=
∞∑
k=0

αkj ◦Rj,t−k, j = 1, 2, t ∈ Z.

Pedeli (2011) states that Xt, t ∈ Z is strictly stationary, if the largest eigenvalue of the matrix
A is less than 1, i.e. if max(α1, α2) < 1 and Rj,t - an i.i.d. sequence with ERj,t <∞, j = 1, 2.
A number of thinning operator properties are provided in Pedeli (2011) and Silva (2005) with
proofs for selected few. We will present the main properties of the thinning operator along
with their proofs which will be used later on for the BINAR(1) model property validity:

Theorem 2.1. Thinning operator properties. Let X,X1, X2 be non-negative integer-
valued random variables, α, α1, α2 ∈ [0, 1) and let ’◦’ be the thinning operator. Then the
following properties hold:

(a) 0 ◦X = 0, 1 ◦X = X;

(b) α1 ◦ (α2 ◦X)
d
= (α1α2) ◦X;

(c) α ◦ (X1 +X2)
d
= α ◦X1 + α ◦X2;

(d) E(α ◦X) = αE(X);
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(e) Var(α ◦X) = α2Var(X) + α(1− α)E(X);

(f) E((α ◦X1)X2) = αE(X1X2);

(g) Cov(α ◦X1, X2) = αCov(X1, X2);

(h) E((α1 ◦X1)(α2 ◦X2)) = α1α2E(X1X2).

Proof:

(a) 0 ◦ X =
∑X

i=1 Yi
a.s.
=
∑X

i=1 0 = 0, since P(Yi = 1) = 0 and P(Yi = 0) = 1, i = 1, 2, ...;
1 ◦X =

∑X
i=1 Yi

a.s.
=
∑X

i=1 1 = X, since P(Yi = 1) = 1 and P(Yi = 0) = 0, i = 1, 2, ...;

(b) Let Ỹi ∼ Bern(α1), Yi ∼ Bern(α2) and Y i ∼ Bern(α1α2), i = 1, 2, .... We will show
that α1 ◦ (α2 ◦ X) and (α1α2) ◦ X are equal in distribution by showing that their
characteristic functions are equal. From the definition of the thinning operator we
have that

α1 ◦ (α2 ◦X) = α1 ◦
X∑
i=1

Yi =

∑X
i=1 Yi∑
j=1

Ỹj, (2.4)

(α1α2) ◦X =
X∑
i=1

Y i. (2.5)

The characteristic function of equation (2.4) is:

ϕ(u) = Eeiu
∑X
i=1 Y i =

∞∑
k=0

Eeiu
∑k
i=1 Y iP(X = k) =

∞∑
k=0

ϕkα1,α2
(u)P(X = k)

=
∞∑
k=0

(eiuα1α2 + (1− α1α2))
kP(X = k), (2.6)

because

ϕα1,α2
(u) = EeiuY = E(eiuY |Y = 1)P(Y = 1) + E(eiuY |Y = 0)P(Y = 0)

= eiuα1α2 + (1− α1α2).

The characteristic function of equation (2.5) is:

ϕ̃(u) = Eeiu
∑∑X

i=1 Yi
j=1 Ỹj =

∞∑
k=0

Eeiu
∑∑k

i=1 Yi
j=1 ỸjP(X = k). (2.7)

We see that

Eeiu
∑∑k

i=1 Yi
j=1 Ỹj =

k∑
l=0

Eeiu
∑l
j=1 ỸjP

(
k∑
i=1

Yi = l

)
=

k∑
l=0

ϕlα1
(u)P

(
k∑
i=1

Yi = l

)
, (2.8)

where

ϕα1(u) = EeiuỸ = E(eiuỸ |Ỹ = 1)P(Ỹ = 1) + E(eiuỸ |Ỹ = 0)P(Ỹ = 0)

= eiuα1 + (1− α1),
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and

P

(
k∑
i=1

Yi = l

)
=

(
k

l

)
αl2(1− α2)

k−l.

From (2.7) and (2.8) we have that:

ϕ̃(u) = Eeiu
∑∑X

i=1 Yi
j=1 Ỹj =

∞∑
k=0

k∑
l=0

(eiuα1 + (1− α1))
l

(
k

l

)
αl2(1− α2)

k−lP(X = k) (2.9)

Because (a+ b)k =
∑k

l=0

(
k
l

)
albk−l where a, b ∈ R, we see that∑k

l=0(e
iuα1 + (1 − α1))

l
(
k
l

)
αl2(1 − α2)

k−l = (eiuα1α2 + (1 − α1)α2 + (1 − α2))
k and

equation (2.9) becomes:

ϕ̃(u) =
∞∑
k=0

(eiuα1α2 + (1− α1)α2 + (1− α2))
kP(X = k)

=
∞∑
k=0

(eiuα1α2 + (1− α1α2))
kP(X = k). (2.10)

Comparing equations (2.6) and (2.10) we see that they are equal, so we have that
α1 ◦ (α2 ◦X)

d
= (α1α2) ◦X.

(c) We have that α ◦ (X1 +X2) =
∑X1+X2

i=1 Yi, which has the characteristic function:

ϕ(u) = Eeiu
∑X1+X2
i=1 Yi =

∞∑
k=0

Eeiu
∑k
i=1 YiP(X1 +X2 = k) (2.11)

=
∞∑
k=0

(eiuα + (1− α))kP(X1 +X2 = k), (2.12)

where we used the property that Yi are i.i.d. random variables:

Eeiu
∑k
i=1 Yi = (EeiuYi)k = (eiuα + (1− α))k.

Applying the same propertis to the right side of the equality, we have that:

α ◦X1 + α ◦X2 =

X1∑
i=1

Y i +

X2∑
i=1

Ỹi =

X1+X2∑
i=1

Yi,

where Y i ∼ Bern(α) and Ỹi ∼ Bern(α) and

Yi =

{
Y i, if i = 1, ..., X1,

Ỹi, if i = X1 + 1, ..., X2.

Since Yi are i.i.d. random variables conditionally with respect to X1 and X2, we have
that the characteristic function is the same as the left side of the equality:

ϕ̃(u) = Eeiu
∑X1+X2
i=1 Yi =

∞∑
k=0

(eiuα + (1− α))kP(X1 +X2 = k) = ϕ(u). (2.13)

Thus, the equality in part (c) holds.
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(d) Using the definition of α ◦X we have that:

E (α ◦X) = E

(
X∑
i=1

Yi

)
=
∞∑
k=0

E

(
k∑
i=1

Yi

)
P(X = k)

=
∞∑
k=0

k∑
i=1

αP(X = k) = α

∞∑
k=0

kP(X = k) = αE(X).

(e) We know that Var(α ◦X) = E(α ◦X)2 − (E(α ◦X))2. Using part (d), we have that
the first term can be expressed as

(E(α ◦X))2 = (αE(X))2 = α2(E(X))2, (2.14)

and the second term as

E(α ◦X)2 = E

(
X∑
i=1

Yi

)2

= E

(
X∑

i,j=1

YiYj

)
= E

(∑
i 6=j

YiYj +
X∑
i=1

Y 2
i

)

=
∞∑
k=0

E

(∑
i 6=j

YiYj +
k∑
i=1

Y 2
i

)
P(X = k) =

∞∑
k=0

(∑
i 6=j

α2 +
k∑
i=1

α

)
P(X = k)

=
∞∑
k=0

((k2 − k)α2 + kα)P(X = k)

= α2

∞∑
k=0

k2P(X = k) + α(1− α)
∞∑
k=0

kP(X = k)

= α2E(X2) + α(1− α)E(X). (2.15)

From equations (2.14) and (2.15) we get:

Var(α ◦X) = α2E(X2) + α(1− α)E(X)− α2(E(X))2

= α2Var(X) + α(1− α)E(X).

(f) We have that

E((α ◦X1)X2) = E (E((α ◦X1)X2|X1, X2))

= E

(
E

(
X1∑
i=1

YiX2|X1, X2

))

= E

(
X1∑
i=1

E (YiX2|X1, X2)

)

= E

(
X1∑
i=1

E (Yi|X1, X2)X2

)

= E

(
X2

X1∑
i=1

α

)
= αE(X1X2). (2.16)
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(g) Using parts (d) and (f), we get that

Cov(α ◦X1, X2) = E((α ◦X1)X2)− E(α ◦X1)E(X2) (2.17)
= αE(X1X2)− αE(X1)E(X2)

= α (E(X1X2)− E(X1)E(X2))

= αCov(X1, X2).

(h) Similarly to part (f), we have that

E((α1 ◦X1)(α2 ◦X2)) = E (E((α ◦X1)(α2 ◦X2)|X1, X2))

= E

(
E

(
X1∑
i=1

X2∑
j=1

YiYj|X1, X2

))

= E

(
X1∑
i=1

X2∑
j=1

E (YiYj|X1, X2)

)

= E

(
X1∑
i=1

X2∑
j=1

E (Yi|X1, X2)E (Yj|X1, X2)

)

= E

(
X1∑
i=1

X2∑
j=1

α1α2

)
= α1α2E(X1X2). (2.18)

2.2 The properties of the BINAR(1) model
A number of the properties of the BINAR(1) model are presented in Pedeli (2011) with

proofs for a selected few. For the convenience of the reader in this section we will present the
properties of the BINAR(1) process (2.1) along with their complete proofs. These properties
will later be used when analysing some of the parameter estimation methods.

Theorem 2.2. Properties of the BINAR(1) process. Let Xt = (X1,t, X2,t)
′ be a

non-negative integer-valued time series given in Def. 2.1 and αj ∈ [0, 1), j = 1, 2. Let
Rt = (R1,t, R2,t)

′ be a non negative integer-valued random variables with a finite mean λj
and variance σ2

j , j = 1, 2. Then the following properties hold:

(a) EXj,t = µXj =
λj

1−αj ;

(b) E(Xj,t|Xj,t−1) = αjXj,t−1 + λj;

(c) Var(Xj,t) = σ2
Xj

=
σ2
j + αjλj

1− αj
;

(d) Cov(Xi,t, Rj,t) = Cov(Ri,t, Rj,t), i 6= j;

(e) Cov(Xj,t, Xj,t+h) = αhj σ
2
Xj

;

(f) Corr(Xj,t, Xj,t+h) = αhj , h ≥ 0;

(g) Cov(Xi,t, Xj,t+h) =
αhj

1− αiαj
Cov(Ri,t, Rj,t), i 6= j, h ≥ 0;

8



(h) Corr(Xi,t+h, Xj,t) =
αhi

√
(1− α2

i )(1− α2
j )

(1− α1α2)
√

(σ2
i + αiλi)(σ2

j + αjλj)
Cov(Ri,t, Rj,t), i 6= j, h ≥ 0;

Proof:

(a) We have

EXj,t = E(αj ◦Xj,t−1 +Rj,t) = E(α2
j ◦Xj,t−2 + αj ◦Rj,t−1 +Rj,t)

= . . . = E(
∞∑
k=0

αkj ◦Rj,t−k) =
∞∑
k=0

αkjE(Rj,t−k) =
∞∑
k=0

αkjλj

=
λj

1− αj
.

Here, first equality is from the definition of BINAR(1) model from equation (2.1). We
get the second, third and fourth equalities by using the definition of BINAR(1) model
expressed in terms of arrival processes (2.3) and the second and third properties from
Theorem 2.1. The fifth equality is from the fourth property from Theorem 2.1. The
last equality is from the definition of an infinite geometric series.

(b) We have

E(Xj,t|Xj,t−1) = E(αj ◦Xj,t−1 +Rj,t|Xj,t−1) = E(αj ◦Xj,t−1|Xj,t−1) + E(Rj,t|Xj,t−1)

= αjE(Xj,t−1|Xj,t−1) + E(Rj,t) = αjXj,t−1 + λj.

(c) We have

Var(Xj,t) = Var

(
∞∑
k=0

αkj ◦Rj,t−k

)
=
∞∑
k=0

Var(αkj ◦Rj,t−k)

=
∞∑
k=0

(
α2k
j Var(Rj,t−k) + αkj (1− αkj )E(Rj,t−k)

)
=
∞∑
k=0

(α2k
j σ

2
j + αkj (1− αkj )λj) =

1

1− α2
j

σ2
j +

1

1− αj
λj −

1

1− α2
j

λj

=
σ2
j + λj + αjλj − λj

1− α2
j

=
σ2
j + αjλj

1− α2
j

.

Here, the first equality is from equation (2.3). The second equality is from the fact
that Rj,t−k are i.i.d. The third equality is from the fifth property of Theorem 2.1.

(d) We have that

Cov(Xi,t, Rj,t) = E(Xi,tRj,t)− E(Xi,t)E(Rj,t) = E(Xi,tRj,t)− µXiλj

= E

((
∞∑
k=0

αki ◦Ri,t−k

)
Rj,t

)
− µXiλj =

∞∑
k=0

αkiE(Ri,t−kRj,t)− µXiλj

= E(Ri,tRj,t) +
∞∑
k=1

αkiE(Ri,t−kRj,t)− µXiλj

= E(Ri,tRj,t) +
∞∑
k=1

αki λiλj −
λiλj

1− αi
= Cov(Ri,t, Rj,t).
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Here we use the (2.3) equation, the fact that Rj,t−k are i.i.d. in t and the property of
EXj,t from part (a).

(e) We have that

Cov(Xj,t, Xj,t+h) = Cov(Xj,t, α
h
j ◦Xj,t +

h−1∑
k=0

αkj ◦Rj,t+h−k)

= Cov(Xj,t, α
h
j ◦Xj,t) + Cov(Xj,t,

h−1∑
k=0

αkj ◦Rj,t+h−k)

= αhjCov(Xj,t, Xj,t) = αhj σ
2
Xj
.

Here, using the fact that Rj,t are i.i.d in t and t + h − k > t for k < h, we have that
Cov(Xj,t,

∑h−1
k=0 α

k
j ◦Rj,t+h−k) = 0. We have also used the last property from Theorem

2.1 to get the next-to-last equality.

(f) Using covariance and variance expressions from (b) and (d) we have that

Corr(Xj,t+h, Xj,t) =
Cov(Xj,t+h, Xj,t)√
Var(Xj,t+h)Var(Xj,t)

=
αhj σ

2
Xj√
σ4
Xj

= αhj .

(g) Using equations (2.2), (2.3) and Theorem 2.1 we have that

Cov(Xi,t, Xj,t+h) = E(Xi,tXj,t+h)− E(Xi,t)E(Xj,t+h)

= E

(
Xi,t

[
αhj ◦Xj,t +

h−1∑
l=0

αlj ◦Rj,t+h−l

])
− µXiµXj

= αhjE (Xi,tXj,t) +
h−1∑
l=0

αljE (Xi,tRj,t+h−l)− µXiµXj

= αhjE (Xi,tXj,t) + (1− αhj )µXiµXj − µXiµXj
= αhj

(
E (Xi,tXj,t)− µXiµXj

)
= αhjCov(Xi,tXj,t)

=
αhj

1− αiαj
Cov(Ri,t, Rj,t),

because:
h−1∑
l=0

αljE (Xi,tRj,t+h−l) =
h−1∑
l=0

αljE(Xi,t)E(Rj,t+h−l) = µXiλj

(
h−1∑
l=0

αlj

)

= µXiλj
1− αhj
1− αj

= (1− αhj )µXiµXj ,

and

Cov(Xi,tXj,t) = Cov

(
∞∑
k=0

αki ◦Ri,t−k,
∞∑
s=0

αsj ◦Rj,t−s

)
=

∞∑
k,s=0

αki α
s
jCov(Ri,t−k, Rj,t−s)

=
∞∑
k=0

αki α
k
jCov(Ri,t−k, Rj,t−k) =

(
∞∑
k=0

αki α
k
j

)
Cov(Ri,t, Rj,t)

=
1

1− αiαj
Cov(Ri,t, Rj,t), h ≥ 0,

10



where
∑h−1

l=0 α
l
j is a geometric series and

∑∞
k=0 α

k
i α

k
j is an infinite geometric series.

(h) From the definition of the correlation as well as using properties (b) and (f) we have
that

Corr(Xi,t+h, Xj,t) =
Cov(Xi,t+h, Xj,t)√
Var(Xi,t+h)Var(Xj,t)

=
αhi

√
(1− α2

i )(1− α2
j )

(1− α1α2)
√

(σ2
i + αiλi)(σ2

j + αjλj)
Cov(Ri,t, Rj,t), h ≥ 0.

From the covariance and correlation of the BINAR(1) process we see that the dependence
between X1,t and X2,t depends on the joint distribution of the innovations R1,t, R2,t. Pedeli
and Karlis (2011) analysed BINAR(1) models when the innovations were joint by either a
bivariate Poisson or a bivariate negative binomial distribution, where the covariance of the
innovations can be easily expressed in terms of their joint distribution parameters. Karlis
and Pedeli (2013) analysed two cases when the innovations of a BINAR(1) model are joint
by specific copula functions. We will expand on their work, by analysing additional copulas
for the BINAR(1) model innovation distribution as well as estimation methods for the dis-
tribution parameters. We will firstly provide the definition of copulas and their properties
in the next section.

3 Copulas
In this section we provide the definition and main properties of bivariate copulas mainly

following Genest and Nešlehová (2007), Nelsen (2006) and Trivedi and Zimmer (2007) for
the continuous and discrete settings.

3.1 Copula definition and properties
Copulas are used for modelling the dependence between several random variables. The

term copula2 was first used by Sklar (1959). The main advantage of using copulas is that
they allow to model the marginal distributions separately from their joint distribution.

In general, the joint cumulative distribution function of a random vector (X1, X2) is
defined as:

H(x1, x2) = P(X1 ≤ x1, X2 ≤ x2). (3.1)

The marginal distributions F1 and F2 are defined as:

Fi(x) = P(Xi ≤ x), i = 1, 2. (3.2)

Copulas are multivariate distribution functions with uniform marginal distributions on
the interval [0,1].

2the term copula is derived from the latin word copulare - to connect, to join.
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Definition 3.1. A 2-dimensional copula C : [0, 1]2 → [0, 1] is a function with the following
properties:

1. For every u, v ∈ [0, 1]:

C(u, 0) = C(0, v) = 0 (3.3)

2. For every u, v ∈ [0, 1]:

C(u, 1) = u, C(1, v) = v. (3.4)

3. For any u1, u2, v1, v2 ∈ [0, 1] such that u1 ≤ u2 and v1 ≤ v2:

C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) ≥ 0 (3.5)

(this is also called the rectangle inequality).

The theoretical foundation of copulas is given by Sklar’s theorem:

Theorem 3.1. Sklar (1959). Let H be a joint cumulative distribution function (cdf)
with marginal distributions F1, F2. Then there exists a copula C such that ∀xi ∈ [−∞,∞],
i = 1, 2:

H(x1, x2) = C(F1(x1), F2(x2)). (3.6)

If Fi is continuous ∀i = 1, 2 then C is unique; otherwise C is uniquely determined only on
RanF1 ×RanF2, where RanFi denotes the range of the cdf Fi. Conversely, if C is a copula
and F1, F2 are distribution functions, then the function H, defined by equation (3.6) is a joint
cdf with marginal distributions F1, F2.

If a pair of random variables (X1, X2) has continuous marginal cdfs Fi(x), i = 1, 2, then
by applying the probability integral transformation one can transform them into random
variables (U1, U2) = (F1(X1), F2(X2)) with uniformly distributed marginals which can then
be used when modelling their dependence via a copula.

Theorem 3.2. Probability integral transformation. Let X be a random variable with
a continuous cdf F. Then U = F (X) ∼ U(0, 1), where U(0, 1) is the uniform distribution on
the interval [0, 1].

Proof: We have that P(U ≤ u) = P(F (X) ≤ u) = P(X ≤ F−1(u)) = F (F−1(u)) = u,
∀u ∈ (0, 1), where F−1(u) = inf{x : F (x) ≥ y}. So, U = F (X) has a uniform distribution
on the interval [0, 1].

3.2 Dependence and correlation
Since copulas are used to model the dependence between parameters it is important to

understand the nature of dependence captured by copulas, its relationship to correlation as
well as its interpretability.

• Correlation coefficient can be used to measure the association between two random
variables X1 and X2 with finite second-order moments. It is defined as:

ρX1,X2 = ρ(X1, X2) =
Cov(X1, X2)√
Var(X1)Var(X2)

. (3.7)
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The correlation coefficient has the following properties:

(a) ρX1,X2 is a measure of linear dependence;
(b) ρX1,X2 is symmetric;
(c) −1 ≤ ρX1,X2 ≤ 1 where ρX1,X2 = −1 measures perfect negative linear dependence

and ρX1,X2 = 1 measures perfect positive linear dependence;
(d) ρX1,X2 is invariant with respect to linear transformations of the variables;
(e) Zero correlation does not imply independence. For example: if X ∼ N(0, 1) and

Y = X2, then Cov(X, Y ) = 0, but it is clear that X and Y are dependent.

As a result, correlation has its limitations:

(a) Zero correlation requires that Cov(X, Y ) = 0, however zero dependence
requires Cov(φ1(X), φ2(Y )) = 0 for any functions φ1, φ2;

(b) If a distribution does not have a second order moment, then correlation cannot
be defined for it (example: Students t distribution with one degree of freedom);

(c) Correlation is not invariant under strictly increasing non-linear transformations:
ρT (X),T (Y ) 6= ρX,Y for T : R→ R.

Given these limitations some alternative measures of dependence are considered:

• Rank correlation There are two established measures of correlation for measuring
the dependence of two random variables X1 and X2 with continuous cdfs F1, F2:

1. Spearman’s rho is the linear correlation between F1(X1) and F2(X2):

ρS(X1, X2) = ρ(F1(X2), F2(X2)). (3.8)

2. Kendall’s tau is defined as the difference between the probability of concordance
and the probability of discordance of the random variables:

ρτ (X1, X2) = P((X1,1 −X1,2)(X2,1 −X2,2) > 0)− P((X1,1 −X1,2)(X2,1 −X2,2) < 0)

= P(concordance)− P(discordance), (3.9)

where (X1,1, X2,1) and (X1,2, X2,2) are two independent pairs of random variables
from F1 and F2. Concordance refers to the property that large values of one
random variable are associated with large values of the other random variable.
Discordance refers to large values of one random variable being associated with
small values of the other random variable.

Both ρS and ρτ have the following properties (more can be found in Trivedi and Zimmer
(2007)):

(a) ρS and ρτ are symmetric;
(b) If the random variable pair (X1, X2) is independent, then ρS(X1, X2) = 0 and

ρτ (X1, X2) = 0;
(c) The copula of X1 and X2 is the lower bound of the Frechet-Hoeffding bounds (see

below) if and only if ρS(X1, X2) = ρτ (X1, X2) = −1;
(d) The copula of X1 and X2 is the upper bound of the Frechet-Hoeffding bounds if

and only if ρS(X1, X2) = ρτ (X1, X2) = 1.

13



3.3 Frechet-Hoeffding bounds
Let H(x1, x2) be a bivariate joint cdf with univariate marginal cdfs F1, F2 and each

marginal distribution can take values in the range [0, 1]. Then, the joint cdf is bound below
and above by the Frechet-Hoeffding lower and upper bounds:

1. Lower bound:

W := HL(x1, x2) = max(F1(x1) + F2(x2)− 1, 0). (3.10)

2. Upper bound:

M := HU(x1, x2) = min (F1(x1), F2(x2)) , (3.11)

so that:

W ≤ H(x1, x2) ≤M, ∀x1, x2. (3.12)

The Frechet-Hoeffding bounds also applies to copulas since copulas are cumulative distribu-
tion functions:

max(F1(x1) + F2(x2)− 1, 0) ≤ C(F1(x1), F2(x2)) ≤ min(F1(x1), F2(x2)). (3.13)

If the dependence parameter of a copula approaches its lower (upper) bound, then the copula
should approach the Frechet-Hoeffding lower (upper) bound. However, the parametric form
of a copula may impose restrictions so that one (or both) Frechet-Hoeffding bound is not
included in the range.

3.4 Copulas with discrete marginal distributions
In this section we will mention some of the key differences when copula marginals are

discrete rather than continuous.
Firstly, as mentioned in Theorem 3.1, if F1 and F2 are discrete marginals then a unique

copula representation exists only for values in the range of Ran(F1) × Ran(F2). However,
the lack of uniqueness does not pose a problem in empirical applications because it implies
that there may exist more than one copula with identical properties.

Secondly, regarding concordance and discordance, the discrete case has to allow for ties, so
the concordance measures are margin-dependent, see Trivedi and Zimmer (2007). There are
several modifications for ρτ proposed, however, none of them are margin-free. Furthermore,
Genest and Nešlehová (2007) states that estimations of the dependence parameter θ based
on Kendall’s tau or its modified versions are biased and estimation techniques based on
maximum likelihood are recommended.

3.5 Some concrete copulas
In this section we will introduce bivariate copulas, which will be used in the later sections

when constructing and evaluating the BINAR(1) model. We provide an explanation of the
dependence structure of each copula as well as graphical examples of dependence for the
discrete case.

For all the copulas discussed, the following notation is used: u1 := F1(x1), u2 := F2(x2)
where F1, F2 are marginal cdfs of discrete random variables and θ is the dependence pa-
rameter. In the examples the discrete random variables X1 and X2 both follow a Poisson
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distribution with parameters λ1 and λ2 respectively:

Fi(k) = P(Xi ≤ k) = e−λi
k∑
j=0

λji
j!
, k ∈ {0, 1, 2, ...}, i = 1, 2. (3.14)

Another discrete marginal distribution, which will be considered in the empirical application
is the negative binomial distribution with an alternative parametrization in terms of its mean
λi and variance σ2

i :

Fi(k) = P(Xi ≤ k) =
k∑
j=0

(
j +

λ2i
σ2
i−λi
− 1

j

)(
λi
σ2
i

)( λ2i
σ2
i
−λi

)(
σ2
i − λi
σ2
i

)j
, i = 1, 2 (3.15)

When talking about copula examples with continuous marginals, Theorem 3.2 is used, which
means that U1 = F1(X1) ∼ U(0, 1) and U2 = F2(X2) ∼ U(0, 1).

3.5.1 Product copula

The product copula has the form:

C(u1, u2) = u1u2. (3.16)

The product copula corresponds to independence so it is important as a benchmark.
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Figure 3.1: The product copula for the continuous marginal case and the discrete marginal
case

Figure A.2 provides the graphical representations of the product copula for the contin-
uous and the discrete cases. As we can see from the plots, there does not seem to be any
dependence between the two random variables.
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3.5.2 Farlie-Gumbel-Morgenstern copula

The Farlie-Gumbel-Morgenstern (FGM) copula has the following form:

C(u1, u2; θ) = u1u2(1 + θ(1− u1)(1− u2)). (3.17)

The dependence parameter θ can take values from the interval [−1, 1]. If θ = 0, then the
FGM copula collapses to independence. Even though the analytical form of the FGM copula
is relatively simple, the FGM copula can only model weak dependence between two marginals
(see Nelsen (2006)).
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Figure 3.2: The FGM copula for the continuous marginal case and the discrete marginal
case

Figure 3.2 shows the FGM copula for the continuos and discrete marginal cases when
the dependence parameter is -1. We can see that even when θ has the minimum value, the
dependence between the random variables isn’t strong.

3.5.3 Frank copula

The Frank copula has the following form:

C(u1, u2; θ) = −1

θ
log

(
1 +

(exp(−θu1)− 1)(exp(−θu2)− 1)

exp(−θ)− 1

)
. (3.18)

The dependence parameter can take values from (−∞,∞) \ {0}. The Frank copula allows
for both positive and negative dependence between the marginals.
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Figure 3.3: The Frank copula for the continuous marginal case and the discrete marginal
case

Figure 3.3 shows the Frank copula for the continuous and discrete marginal cases when
θ = −5. We can see from the figures that the negative dependence is clearer compared to
the FGM copula case.

3.5.4 Clayton copula

The Clayton copula has the following form:

C(u1, u2; θ) =
(
u−θ1 + u−θ2 − 1

)− 1
θ , (3.19)

with the dependence parameter θ ∈ (0,∞). The marginals become independent when θ → 0.
However, the Clayton copula, defined by equation (3.19), does not account for negative de-
pendence. It can be used when the correlation between two random variables exhibits a
strong left tail dependence - if smaller values are strongly correlated and hight values are
less correlated.

The Clayton copula can also be extended to account for negative dependence:

C(u1, u2; θ) = max{u−θ1 + u−θ2 − 1, 0}−
1
θ , (3.20)

with the dependence parameter θ ∈ [−1,∞) \ {0}.
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Figure 3.4: The Clayton copula for the continuous marginal case and the discrete marginal
case

Figure 3.4 shows the Clayton copula for the continuous and discrete marginal cases when
the dependence parameter θ = 4. The positive dependence between the two random variables
can be seen from the plots. We can see the strong left tail dependence and the weak right
tail dependence - smaller values are more correlated than large values. The case when the
dependence parameter is negative (θ = −0.5) is provided in Figure 3.5.
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Figure 3.5: The Clayton copula for the continuous marginal case and the discrete marginal
case with a negative dependence parameter
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3.5.5 Gumbel copula

The Gumbel copula has the following form:

C(u1, u2; θ) = exp
(
−((− log(u1))

θ + (− log(u2))
θ)

1
θ

)
, (3.21)

where the dependence parameter θ ∈ [1,∞). If θ = 1 then the marginals are independent.
Similarly to the Clayton copula it does not allow for negative dependence. However, unlike
the Clayton, the Gumbel copula exhibits strong right tail dependence and weak left tail
dependence. As a result the Gumbel copula is appropriate when outcomes are strongly
correlated at hight values but less correlated at low values.
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Figure 3.6: The Gumbel copula for the continuous marginal case and the discrete marginal
case

Figure 3.6 shows the Gumbel copula for the continuous and discrete marginal cases when
θ = 4. We can see the strong right tail dependence and the weak left tail dependence - larger
values are more correlated than smaller values.
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4 Model parameter estimation
In this section we examine parameter estimation methods for BINAR(1) models and

for copulas. We begin by providing an estimation method for discrete copulas which is
recommended in Genest and Nešlehová (2007). We also examine an additional estimation
method based on minimizing the difference between the empirical joint cdf and the copula.
Secondly, we analyse BINAR(1) model parameter estimation methods and provide an es-
timation method for estimating the copula dependence parameter separately. Estimation
methods are compared via Monte Carlo simulations.

4.1 Copula parameter estimation
Following Genest and Nešlehová (2007) and Nelsen (2006), discrete copulas can be es-

timated via the Full Maximum Likelihood (FML) method. We also examine an estimation
method based on the minimum distance between the empirical joint cdf and the theoretical
copula and compare it to the FML method via Monte Carlo simulations.

4.1.1 Full Maximum likelihood estimation

Let (x1,1, x2,1), ..., (x1,T , x2,T ) be non-negative integer valued variables and F1, F2 - discrete
cdfs with parameters β1, β2 respectively and let θ be the dependence parameter of a copula.
Since copulas provide the joint cdf, in order to derive the joint probability mass function
(pmf), we need to take the finite differences of the copula. In the bivariate case, the joint
pmf is:

c(F1(x1,t; β1), F2(x2,t; β2); θ) = P(X1,t = x1,t, X2,t = x2,t)

= C((F1(x1,t; β1), F2(x2,t; β2); θ)

− C((F1(x1,t − 1; β1), F2(x2,t; β2); θ)

− C((F1(x1,t; β1), F2(x2,t − 1; β2); θ)

+ C((F1(x1,t − 1; β1), F2(x2,t − 1; β2); θ). (4.1)

Then the log-likelihood function for the FML estimation method is:

LT (β1, β2, θ) =
T∑
t=1

log (c(F1(x1,t; β1), F2(x2,t; β2); θ))→ max
β1,β2,θ

. (4.2)

Numerical maximizations can be carried out via the optim function in the R statistical
software.

4.1.2 Estimation based on the distance between the empirical joint cumulative
distribution function and the copula

Based on Sklar’s theorem 3.1, we have that the discrete joint cdf H(·) can be expressed
via a discrete copula C(·). This means that:

H(x1,t, x2,t) = C(F1(x1,t; β1), F2(x2,t; β2); θ), ∀t = 1, ..., T. (4.3)

By substituting the joint cdf with its empirical expression we can estimate the copula pa-
rameters by minimizing the squared distance between the empirical cdf and the copula. The
Empirical Distance (ED) estimator can be calculated by minimizing:

D(β1, β2, θ) =
T∑
t=1

(
Ĥ(x1,t, x2,t)− C(F1(x1,t; β1), F2(x2,t; β2); θ)

)2
→ min

β1,β2,θ
, (4.4)

20



where

Ĥ(x, y) = ĤT (x, y) :=
1

T

T∑
t=1

1(xt,1 ≤ x, xt,2 ≤ y). (4.5)

By the strong law of large numbers: ĤT (x, y)
a.s.→ H(x, y), T → ∞, ∀x, y. Therefore,

D(β1, β2, θ)
a.s.→ 0 as T →∞.

4.1.3 Estimation method comparisons via Monte Carlo simulations

To illustrate the estimation methods, we run a Monte Carlo simulation 200 times for the
sample size of T = 100 and T = 2000. The copula selected was an FGM copula, defined in
equation (3.17) with Poisson marginals defined by eq. (3.14). The true parameter vector is
(λ1, λ2, θ) = (1, 1, 0.5).

FML estimator ED estimator
Sample size Parameter True Value MSE Bias MSE Bias

λ1 1 0.00968 0.01173 0.01349 -0.01109
T = 100 λ2 1 0.01020 -0.00175 0.01553 -0.02677

θ 0.5 0.10188 0.00364 0.39489 -0.21027
λ1 1 0.00058 -0.00115 0.00074 -0.00032

T = 2000 λ2 1 0.00057 -0.00292 0.00091 -0.00385
θ 0.5 0.00458 -0.00420 0.01828 -0.00488

Table 4.1: Monte Carlo simulation results
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Figure 4.1: Monte Carlo simulation results of FML and ED estimators.
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Figure 4.2: Monte Carlo simulation results of FML and ED estimators of θ.

The Monte Carlo simulations show that the FML estimates are closer to the actual
parameter values when the sample size is small and the estimate boxplots from Figure 4.2
show that the ED estimates are more scattered compared to the FML estimates. However,
for a larger sample size, the difference between the ED estimates and the FML estimates is
smaller although the FML estimation method is still superior in terms of its smaller mean
squared error and bias.

4.2 Parameter estimation of the BINAR(1) model with copula-
distributed innovations

Let Xt = (X1,t, X2,t)
′ be a non-negative integer-valued time series given in Def. 2.1 and

Rt = (R1,t, R2,t)
′ be non-negative integer-valued random variables where Rj,t has a finite

mean λj and variance σ2
j , j = 1, 2 and let Cov(Ri,t, Rj,s) = 0, t 6= s, ∀i, j ∈ {1, 2} with

marginals F1, F2 and their joint cdf linked by a copula C(·, ·).

4.2.1 Conditional least squares estimation (CLS)

The Conditional Least Squares estimation minimizes the squared distance between Xt

and its conditional expectation. We will follow the method provided in Silva (2005) for the
INAR(1) model and show that the parameter estimation does not differ for the BINAR(1)
model.

Using Theorem 2.1 we can define the vector of conditional means, conditionally on the
previous observations:

µt|t−1 :=

[
E(X1,t|X1,t−1)
E(X2,t|X2,t−1)

]
=

[
α1X1,t−1 + λ1
α2X2,t−1 + λ2

]
. (4.6)
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We also note that:

E(Xj,t|Xi,t−1, Xj,t−1) = E(αj ◦Xj,t−1 +Rj,t|Xi,t−1, Xj,t−1) = E(αj ◦Xj,t−1|Xi,t−1, Xj,t−1) + λj

= E

Xj,t−1∑
k=1

Yk|Xi,t−1, Xj,t−2

+ λj = E

(
∞∑
k=1

Yk1(k ≤ Xj,t−1)|Xi,t−1, Xj,t−2

)
+ λj

=
∞∑
k=1

E (Yk1(k ≤ Xj,t−1)|Xi,t−1, Xj,t−2) + λj =
∞∑
k=1

1(k ≤ Xj,t−1)E (Yk|Xi,t−1, Xj,t−2) + λj

= αjXj,t−1 + λj = E(Xj,t|Xj,t−1).

In order to calculate the CLS estimators of (α1, α2, λ1, λ2)
′, we define the vector of residuals

as the difference between the observations and their conditional expectation:

Xt − µt|t−1 =

[
X1,t − α1X1,t−1 − λ1
X2,t − α2X2,t−1 − λ2

]
.

Following Silva (2005), CLS estimators of a BINAR(1) model are found by minimizing the
residuals:

qj(α1, λ1) :=
N∑
t=2

(Xj,t − αjXj,t−1 − λj)2 → min
αj ,λj

, j = 1, 2. (4.7)

Taking the derivatives with respect to αj and λj, j = 1, 2 and equating them to zero we
have:

∂qj
∂λj

=
N∑
t=2

−2(Xj,t − λjXj,t−1 − λj) = 0,

λj =
1

N − 1

N∑
t=2

(Xj,t − αjXj,t−1) =
1

N − 1

(
N∑
t=2

Xj,t − αj
N∑
t=2

Xj,t−1

)
, (4.8)

∂qj
∂αj

=
N∑
t=2

−2Xj,t−1(Xj,t − λjXj,t−1 − λj) = 0,

N∑
t=2

Xj,tXj,t−1 − αj
N∑
t=2

X2
j,t−1 − λj

N∑
t=2

Xj,t−1 = 0. (4.9)

By substituting λj expression from (4.8) into equation (4.9) we get:

N∑
t=2

Xj,tXj,t−1 − αj

(
N∑
t=2

X2
j,t−1 −

1

N − 1

N∑
t=2

Xj,t−1

N∑
t=2

Xj,t−1

)
− 1

N − 1

N∑
t=2

Xj,t

N∑
t=2

Xj,t−1 = 0,

αj

(
N∑
t=2

X2
j,t−1 −

1

N − 1

N∑
t=2

Xj,t−1

N∑
t=2

Xj,t−1

)
=

N∑
t=2

Xj,tXj,t−1 −
1

N − 1

N∑
t=2

Xj,t

N∑
t=2

Xj,t−1,

αj

(
N∑
t=2

X2
j,t−1 − (N − 1)(X̄j)

2

)
=

N∑
t=2

(
Xj,tXj,t−1 −Xj,tX̄j

)
, X̄j =

1

N − 1

N∑
t=2

Xj,t−1,

αj

N∑
t=2

(Xj,t−1 − X̄j)
2 =

N∑
t=2

(Xj,t − X̄j)(Xj,t−1 − X̄j).
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Finally we get:

α̂CLSj =

∑N
t=2(Xj,t − X̄j)(Xj,t−1 − X̄j)∑N

t=2(Xj,t−1 − X̄j)2
, (4.10)

and substituting α̂CLSj into (4.8):

λ̂CLSj =
1

N − 1

(
N∑
t=2

Xj,t − α̂CLSj

N∑
t=2

Xj,t−1

)
. (4.11)

We have that the CLS estimators of αj and λj do not depend on the innovation dependence
parameter θ. In order to estimate θ we notice that:

E ((X1,t − α1X1,t−1 − λ1)(X2,t − α2X2,t−1 − λ2))
= E ((X1,t − α1X1,t−1 − λ1)(X2,t − α2X2,t−1 − λ2))
= E [((α1 ◦X1,t−1)− α1X1,t−1 + (R1,t − λ1))((α2 ◦X2,t−1 − α2X2,t−1) + (R2,t − λ2)]
= E [(α1 ◦X1,t−1 − α1X1,t−1)(α2 ◦X2,t−1 − α2X2,t−1)]

+ E [(α1 ◦X1,t−1 − α1X1,t−1)(R2,t − λ2)] + E [(α2 ◦X2,t−1 − α2X2,t−1)(R1,t − λ1)]
+ E [(R1,t − λ1)(R2,t − λ2)] = Cov(R1,t, R2,t), (4.12)

because :

E [(α1 ◦X1,t−1 − α1X1,t−1)(α2 ◦X2,t−1 − α2X2,t−1)]

= E [(α1 ◦X1,t−1)(α2 ◦X2,t−1)]− α2E [(α1 ◦X1,t−1)X2,t−1]− α1E [(α2 ◦X2,t−1)X1,t−1]

+ α1α2E [X1,t−1X2,t−1] = α1α2E(X1,t−1X2,t−1)− α1α2E(X1,t−1X2,t−1)

− α1α2E(X1,t−1X2,t−1) + α1α2E(X1,t−1X2,t−1) = 0.

From properties (f) and (h) in Theorem 2.1 we have:

E [(α1 ◦X1,t−1 − α1X1,t−1)(R2,t − λ2)]
= E [(α1 ◦X1,t−1)R2,t]− E [(α1 ◦X1,t−1)λ2]− E [α1X1,t−1R2,t] + E [α1X1,t−1λ2]

= α1EX1,t−1ER2,t − α1λ2EX1,t−1 − α1EX1,t−1ER2,t + α1λ2EX1,t−1 = 0,

E [(α2 ◦X2,t−1 − α2X2,t−1)(R1,t − λ1)]
= E [(α2 ◦X2,t−1)R1,t]− E [(α2 ◦X2,t−1)λ1]− E [α2X2,t−1R1,t] + E [α2X2,t−1λ1]

= α2EX2,t−1ER1,t − α2λ1EX2,t−1 − α2EX2,t−1ER1,t + α2λ1EX2,t−1 = 0,

E [(R1,t − λ1)(R2,t − λ2)] = E [R1,tR2,t]− E [R1,tλ2]− E [R2,tλ1] + λ1λ2

= E [R1,tR2,t]− λ1λ2 − λ1λ2 + λ1λ2

= E [R1,tR2,t]− λ1λ2 = Cov(R1,t, R2,t).

For the Poisson marginal case, the innovations R1,t and R2,t are joint by a copula with the
dependence parameter θ, so we can estimate the dependence parameter by minimizing the
squared difference:

S =
N∑
t=2

(
(X1,t − α̂CLS1 X1,t−1 − λ̂CLS1 )(X2,t − α̂CLS2 X2,t−1 − λ̂CLS2 )− Cov(R1,t, R2,t)

)2
→ min

θ

(4.13)

From the definition of covariance and equation (4.1) we have:

Cov(R1,t, R2,t) = E(R1,tR2,t)− ER1,tER2,t

=
∞∑
k=0

∞∑
s=0

k · s · c(F1(k), F2(s); θ)− λ1λ2.
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We can approximate the covariance:

Cov(R1,t, R2,t) ≈
M∑
k=0

M∑
s=0

k · s · c(F1(k; λ̂CLS1 ), F2(s; λ̂
CLS
2 ); θ)− λ̂CLS1 λ̂CLS2 . (4.14)

Depending on the values λ̂CLS1 and λ̂CLS2 , for values k, s > M : P(R1,t = k,R2,t = s) = 0.
Different values can be selected for k and s such that P(R1,t = k,R2,t = s) = 0 for k > M1

and s > M2. In Figure 4.3 we can see that if the marginals are Poisson with parameters
equal to 1, then the covariance of innovations joint with FGM copula is approximated after
setting M1 = M2 = M ≈ 8, regardless of the dependence parameter θ.

2 4 6 8 10

−
0.

8
−

0.
6

−
0.

4
−

0.
2

0.
0

0.
2

Approximate covariance with FGM copula and Poisson marginals with parameters λ1 = λ2 = 1

M1 = M2 = M

C
ov

ar
ia

nc
e

θ = 1
θ = 0

Figure 4.3: Approximate covariance with Poisson marginals and FGM copula, λ1 = λ2 = 1

Depending on the selected copula family, calculating (4.1) to get the analytical expression
on θ̂CLS may be difficult. However, we can use the optim package from R to minimize (4.13).
For other marginal distribution cases, where the marginal distribution has parameters other
than λj, equation (4.13) would need to be minimized by those additional parameters. Let
the additional parameter vector of the marginal cdf of innovation Rj,t be βj. Then:

S → min
β1,β2,θ

(4.15)

The asymptotic properties of the CLS estimators for the INAR(1) model case are provided
in Silva (2005).

4.2.2 Conditional maximum likelihood estimation (CML)

Following Pedeli and Karlis (2011) and Karlis and Pedeli (2013), BINAR(1) models can
be estimated via conditional maximum likelihood (CML). The conditional distribution of
the BINAR(1) process is:

P(X1,t = x1,t, X2,t = x2,t|X1,t−1 = x1,t−1, X2,t−1 = x2,t−1)

= P(α1 ◦X1,t−1 +R1,t = x1,t, α2 ◦X2,t−1 +R2,t = x2,t|X1,t−1 = x1,t−1, X2,t−1 = x2,t−1)

= P(α1 ◦ x1,t−1 +R1,t = x1,t, α2 ◦ x2,t−1 +R2,t = x1,t) (4.16)
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Let us calculate:

P(X1,t = x1,t, X2,t = x2,t|X1,t−1 = x1,t−1, X2,t−1 = x2,t−1) = f(X1,t−1, X2,t−1),

where

f(x, y) = P(α1 ◦ x+R1,t = x1,t, α2 ◦ y +R2,t = x2,t)

=

x1,t∑
k=0

x2,t∑
l=0

P(α1 ◦ x+R1,t = x1,t, α2 ◦ y +R2,t = x2,t, α1 ◦ x = k, α2 ◦ y = l)

=

x1,t∑
k=0

x2,t∑
l=0

P(α1 ◦ x = k)P(α2 ◦ y = l)P(R1,t = x1,t − k,R2,t = x2,t − l)

since αj ◦ x is the sum of x independent Bernoulli trials - it has the binomial distribution:

P(αj ◦ x = k) = P

(
x∑
i=1

Yi = k

)
=

{
0, if x < k(
x
k

)
αkj (1− αj)x−k, if x ≥ k

(4.17)

and

P(R1,t = x1,t − k,R2,t = x2,t − l) = c(x1,t − k, x2,t − s), (4.18)

where c(x1,t − k, x2,t − s) is the copula pmf, defined in eq. (4.1). We have that

P(X1,t = x1,t, X2,t = x2,t|X1,t−1 = x1,t−1, X2,t−1 = x2,t−1)

=

x1,t∑
k=0

x2,t∑
l=0

P(α1 ◦ x1,t−1 = k)P(α2 ◦ x2,t−1 = l)P(R1,t = x1,t − k,R2,t = x2,t − l).

(4.19)

Then, the log conditional likelihood function can be defined as:

l(α1, α2, λ1, λ2, θ) =
N∑
t=2

log (P(X1,t = x1,t, X2,t = x2,t|X1,t−1 = x1,t−1, X2,t−1 = x2,t−1))

(4.20)

for some initial values x1,1 and x2,1.
Since the likelihood depends on the marginal distribution parameters λ1, λ2, the proba-

bilities of the Bernoulli trial successes α1, α2 and the dependence parameter θ, then in order
to estimate the parameters we need to maximize the log conditional likelihood:

l(α1, α2, λ1, λ2, θ)→ max
α1,α2,λ1,λ2,θ

. (4.21)

Numerical maximization is straightforward with the optim function from R statistical soft-
ware.

As with the CLS estimator case, for other marginal distribution cases where the marginal
distribution has parameters other than λj, equation (4.21) would need to be minimized by
those additional parameters. Let the additional parameter vector of the marginal cdf of
innovation Rj,t be βj. Then:

l(α1, α2, λ1, λ2, β1, β2, θ)→ max
α1,α2,λ1,λ2,β1,β2,θ

. (4.22)

Asymptotic properties of the CML estimator are provided in Pedeli and Karlis (2011).
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4.2.3 Two-stage estimation based on CLS and CML

Depending on the range of the parameter attainable values and the sample size, CML
maximization might take some time to compute. Since CLS estimators of αj and λj are
easily derived (compared to the CLS estimator of θ, which depends on the copula pmf form
and needs to be numerically maximized), we can substitute the parameters of the marginal
distributions in eq. (4.21) with CLS estimates from equations (4.10) and (4.11). Then we
will only need to maximize the expression with regard to a single parameter θ. The 2-Stage
estimation method steps to estimate all the parameters are as follows:

1. Estimate λj and αj, j = 1, 2 via CLS.

2. Substitute λ̂CLS1 , λ̂CLS2 , α̂CLS1 , α̂CLS2 in equation (4.21) and estimate θ via CML.

4.2.4 Estimation method comparison via Monte Carlo simulation

We carried out a Monte Carlo simulation 200 times to test the estimation methods
with sample size 100 and 500. The generated model was a BINAR(1) with innovations
joint by an FGM copula with Poisson marginal distributions and the parameter vector
(α1, α2, λ1, λ2, θ) = (0.5, 0.8, 1, 2, 0.5). The results are provided in Table 4.2.

Sample Parameter True CLS estimator CML estimator 2-Stage estimator
size value MSE Bias MSE Bias MSE Bias

α1 0.5 0.00875 -0.01932 0.00511 -0.00366 0.00875 -0.01932
α2 0.8 0.00426 -0.02372 0.00099 -0.00326 0.00426 -0.02372

N = 100 λ1 1 0.03905 0.02697 0.02383 -0.00465 0.03905 0.02697
λ2 2 0.40501 0.21427 0.08672 0.01797 0.40501 0.21427
θ 0.5 0.21944 -0.07898 0.04549 -0.02335 0.04611 -0.03345
α1 0.5 0.00146 -0.00114 0.00080 -0.00042 0.00146 -0.00114
α2 0.8 0.00077 -0.00483 0.00022 -0.00115 0.00077 -0.00483

N = 500 λ1 1 0.00713 0.00427 0.00409 0.00262 0.00713 0.00427
λ2 2 0.07703 0.05385 0.01955 0.01594 0.07703 0.05385
θ 0.5 0.05466 0.02040 0.04549 0.02792 0.04611 0.02749

Table 4.2: Monte Carlo simulation results

It is worth noting that CML estimation via numerical maximization depends heavily on
the starting parameter values. If the starting values are selected too low, then the global
maximum is not found. In order to overcome this, we have selected the starting values equal
to the CLS parameter estimates. As a result, the CML estimates have a lower MSE and
bias compared to the CLS estimates. However, the estimates of θ via the 2-Stage estimation
method are very close to the CML estimates in terms of MSE and bias. Furthermore, since
in 2-Stage estimation numerical maximization is only carried out via a single parameter θ,
the starting parameter values have less of an effect on the numerical maximization. For the
2-Stage estimation method the estimates of αj and λj are calculated via the CLS method
and used in estimating the parameter θ via CML.

27



●

theta.CLS theta.CML theta.2SE

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

N = 100

(a) Boxplots of θ estimate, N = 100

theta.CLS theta.CML theta.2SE

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

N = 500

(b) Boxplots of θ estimate, N = 500

Figure 4.4: Monte Carlo simulation results.

Figure 4.4 shows the boxplots of θ estimates via different estimation methods. The rest of
the parameter boxplots can be found in Appendix A. Generally, all estimators perform quite
well: the median of the estimates is close to the true parameter values (which are represented
by horizontal lines). Compared to CLS estimates, the interquartile range is smaller for the
CML estimates of αj and λj parameters. We see that for both sample sizes the 2-Stage
estimator of the dependence parameter θ is very close to the CML estimator in terms of the
interquartile range. In fact, the interquartile range of the dependence parameter estimate is
very similar for all different estimation methods.

We can conclude that, while estimations of αj and λj are closer to the true parameter
values via CML estimation method, it is possible to use other estimation methods to estimate
the dependence parameter with a small loss of accuracy.

5 Application of default loan data
In this section we estimate a BINAR(1) model with the joint innovation distribution

modelled by a copula cdf for empirical data. The dataset consists of daily loan data which
includes loans that have defaulted (i.e. they have missed 3 consecutive loan monthly pay-
ments) and loans that haven’t defaulted. We will analyse and model the dependence between
daily loan defaults and non-defaulted loans as well as the presence of autocorrelation.

5.1 Loan default data
The data sample used is from an Estonian peer-to-peer lending company, Bondora. In

November of 2014 Bondora introduced a loan rating system which assigns a loan to a different
group based on its risk level. There are a total of 8 groups ranging from the lowest risk -
"AA" group - to the highest risk - "HR" group. However, the loan rating system could not
be applied to all older loans due to a lack of data needed for Bondoras rating model3. Since
a new rating model indicates new rules for accepting or rejecting loans, we have selected the
data sample from 2014-04-15 because from that date there were only a few defaulted loans
that did not have a rating to 2015-02-15 because of the fact that a default is considered when
there are 3 consecutive missed payments. Any latter dates, which are closer to the date that
this thesis was written, would have fewer loan defaults because some defaulted loans have

3see: https://www.bondora.com/blog/explaining-bondora-rating/, section "What will happen to the
statistics pages and data export? Will the old loans be re-evaluated?".
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had payments made in the first few months. We are analysing data consisting of 307 daily
observations which include:

• The amount of loans that were issued each day which have not defaulted
(variable ’CompletedLoans’);

• The amount of loans that were issued each day which have defaulted
(variable ’DefaultedLoans’).
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Figure 5.1: Bondora loan data: non-defaulted and defaulted loans by their issued date.

We note that the first 100 days, the mean and variance of non-defaulted loans was lower
compared to the mean and variance of later days. The change could be due to a variety
of reasons: the effect of the new loan rating system, which was officially implemented in
December of 2014, the effect of advertising or the fact that the amount of loans, issued to
people living outside of Estonia, increased. The analysis of the significance of these effects
is left for future research.
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Figure 5.2: Sample autocorrelation function plots.

min max mean variance
DefaultedLoans 0.00 24.00 7.89 25.77
CompletedLoans 0.00 31.00 8.92 46.29

Table 5.1: Summary statistics of the daily data of defaulted loans and non-defaulted loans.

The defaulted and non-defaulted loan data can be seen in Figure 5.1. Summary statistics
are provided in Table 5.1. There were days when there were 0 defaults with a maximum
of 24 defaulted loans in a day. Defaulted loans have a mean value of 7.89 and variance of
25.77. Non-defaulted issued loans ranged from 0 to 31 per day with an average of 8.92 and a
variance of 46.29. So, both time series exhibit overdispersion. From the time series plots we
see that the data might exhibit a seasonality effect. The sample autocorrelation function,
provided in Figure 5.2, also exhibits a seasonal pattern. The partial autocorrelation function
(PACF) is provided in Table A.3 of Appendix A. We check the seasonality by marking which
days were Saturdays and Sundays in Figure 5.3.
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Figure 5.3: Non-defaulted and defaulted loans by their issued date and weekends.

The drops in the amount of issued defaulted loans and non-defaulted loans occurs each
Saturday and Sunday, so we conclude that the data exhibits a seasonal effect. After removing
the seasonal effect we note that the correlation between the two time series is 0.21089 which
indicates that the dependence in the time series could be modelled by a copula.

We want to analyse, whether the amount of loans that have defaulted depends on the
amount of loans which have not defaulted but were issued on the same day, so we will consider
a BINAR(1) model with different copulas for the innovations. For the marginal distributions
of the innovations we will consider Poisson as well as negative binomial distributions. From
the Monte Carlo simulation results presented in Section 4.2, we will use the CML estimation
method since it has the lowest estimate MSE and bias according to Monte Carlo simulations.

5.2 Estimated models
We estimated a total of 16 BINAR(1) models with different distributions of innovations

which include combinations of:

• 4 different copula functions (FGM, Frank, Clayton or Gumbel);

• 4 different combinations of Poisson and negative binomial distributions (both marginals
are Poisson, both marginals are negative binomial or a mix of both).

The estimated parameter results are provided in Tables 5.2 through 5.5 with standard errors
in parenthesis. α̂1, λ̂1, σ̂

2
1 are the parameter estimates of non-defaulted loans and α̂2, λ̂2, σ̂

2
2
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are parameter estimates of defaulted loans. According to Pawitan (2001), the observed
Fisher information is the negative Hessian matrix, evaluated at the MLE. This means, that
the standard errors can be numerically derived from the Hessian matrix.

Copulas with Poisson marginals
FGM Frank Clayton Gumbel

α̂1 0.41275 0.41221 0.41029 0.40764
(0.02441) (0.02440) (0.02437) (0.02471)

α̂2 0.19093 0.19215 0.17919 0.18943
(0.03846) (0.03827) (0.03953) (0.03889)

λ̂1 5.60735 5.61312 5.67114 5.63629
(0.25376) (0.25365) (0.25367) (0.25604)

λ̂2 6.76414 6.75894 6.98387 6.67831
(0.34644) (0.34494) (0.35766) (0.34847)

θ̂ 0.34558 0.94879 0.18532 1.08005
(0.14577) (0.35237) (0.04588) (0.02875)

Log-likelihood -1828.7 -1827.712 -1818.207 -1823.828
AIC 3667.4 3665.424 3646.414 3657.656

Table 5.2: Parameter estimates for BINAR(1) model with Poisson marginals and different
copula functions

In Table 5.2 we estimated BINAR(1) models with Poisson marginals and different copula
functions. Comparing the log-likelihood and AIC values we see that the Clayton copula
provides the best fit for the data. We note that the estimated dependence parameter value
for the Clayton copula case is small, indicating weak dependence.

Copulas with negative binomial marginals
FGM Frank Clayton Gumbel

α̂1 0.44064 0.43860 0.43462 0.43574
(0.03104) (0.03112) (0.03101) (0.03150)

α̂2 0.24248 0.24258 0.23413 0.23163
(0.04986) (0.04941) (0.04978) (0.04993)

λ̂1 5.32757 5.34803 5.39955 5.40970
(0.37161) (0.37191) (0.37123) (0.37638)

λ̂2 6.30057 6.29526 6.39170 6.43102
(0.44916) (0.44559) (0.44880) (0.44983)

θ̂ 0.45976 1.22050 0.26666 1.16689
(0.18215) (0.43578) (0.08731) (0.05859)

σ̂2
1 18.1893 18.27902 18.07136 18.62115

(2.38261) (2.39610) (2.34728) (2.42026)
σ̂2
2 10.844 10.87849 10.80022 11.13189

(1.16778) (1.17342) (1.15866) (1.19834)
Log-likelihood -1715.07 -1714.097 -1710.906 -1711.95

AIC 3444.14 3442.194 3435.812 3437.9

Table 5.3: Parameter estimates for BINAR(1) model with negative binomial marginals and
different copula functions
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Since the summary statistics of the data sample showed, that the variance of the data is
greater than the mean, a negative binomial distribution may provide a better fit. We test
this by estimating BINAR(1) models with innovations distributed with negative binomial
marginal distributions and different copula functions. The estimation results are provided
in Table 5.3.

As in the Poisson marginal distribution case, the Clayton copula provides the best fit for
the data. The log likelihood is also smaller compared to the Poisson marginal distribution
case. The estimated variance parameters are larger compared to the estimated mean pa-
rameters which indicate that overdispersion is indeed present in the data. Other parameter
estimates do not differ significantly across different copula functions. However, for the nega-
tive binomial distribution case, the estimated mean parameters are larger and the estimated
α̂j parameters are smaller compared to the Poisson marginal distribution case, however,
the magnitude of difference is not large, indicating that regardless of selected marginal dis-
tributions and copula functions, the estimated values of α̂j and λ̂j do not exhibit large
differences. This also confirms that estimation via CLS is possible for BINAR(1) models,
since the estimators of α̂CLSj and λ̂CLSj do not depend on the distribution of innovations.

Copulas with Poisson and negative binomial marginals
FGM Frank Clayton Gumbel

α̂1 0.41282 0.41246 0.41214 0.40928
(0.02440) (0.02438) (0.02429) (0.02456)

α̂2 0.24340 0.24305 0.22126 0.23729
(0.04979) (0.04951) (0.05020) (0.04952)

λ̂1 5.59892 5.60049 5.61188 5.65121
(0.25357) (0.25323) (0.25266) (0.25533)

λ̂2 6.33936 6.34615 6.65183 6.27447
(0.44903) (0.44689) (0.45532) (0.44398)

θ̂ 0.38596 0.97657 0.17291 1.06760
(0.15896) (0.36825) (0.05024) (0.03142)

σ̂2
2 10.89328 10.83761 10.52941 10.01072

(1.17886) (1.16707) (1.11914) (1.07402)
Log-likelihood -1811.33 -1810.61 -1805.421 -1810.831

AIC 3634.66 3633.22 3622.842 3633.662

Table 5.4: Parameter estimates for BINAR(1) model with Poisson marginal distribution for
non-defaulted loan innovations and negative binomial marginal distribution for defaulted
loan innovations and different copula functions

Because copulas can link different marginal distributions it is interesting to see if copulas
with different discrete marginal distributions provide a better fit. BINAR(1) model param-
eter estimates, where non-defaulted loan innovations are modelled with Poisson marginal
distributions and defaulted loan innovations are modelled with negative binomial marginal
distributions, are provided in Table 5.4. BINAR(1) model parameter estimates where non-
defaulted loan innovations are modelled with negative binomial and defaulted loan innova-
tions are modelled with Poisson marginal distributions are provided in Table 5.5. In general,
changing one of the marginal distributions to a negative binomial provides a better fit,
compared to the Poisson marginal distribution case. As in the negative binomial marginal
distribution case, the estimates of αj and λj do not differ significantly compared to the Pois-
son marginal distribution BINAR(1) models. In both cases, the Clayton copula provides the
best fit. Since the variance of non-defaulted loans is higher than defaulted loans, modelling
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their innovations with a negative binomial marginal distribution provides a better fit than
the Poisson case, however, the smallest log-likelihood value is achieved when both marginal
distributions are modelled with negative binomial distributions, linked via a Clayton copula.

Copulas with negative binomial and Poisson marginals
FGM Frank Clayton Gumbel

α̂1 0.44003 0.43844 0.43152 0.43541
(0.03110) (0.03117) (0.03128) (0.03148)

α̂2 0.19015 0.19085 0.18614 0.18295
(0.03843) (0.03818) (0.03856) (0.03799)

λ̂1 5.35566 5.37315 5.50874 5.31839
(0.37265) (0.37310) (0.37562) (0.36983)

λ̂2 6.74058 6.73159 6.78868 6.82293
(0.34607) (0.34406) (0.34712) (0.34232)

θ̂ 0.40179 1.03931 0.21345 1.11175
(0.16837) (0.39240) (0.06612) (0.04250)

σ̂2
1 18.25381 18.28097 17.96076 17.29170

(2.39244) (2.39438) (2.32194) (2.18606)
Log-likelihood -1732.608 -1731.83 -1727.514 -1730.062

AIC 3477.216 3475.66 3467.028 3472.124

Table 5.5: Parameter estimates for BINAR(1) model with negative binomial marginal dis-
tribution for non-defaulted loan innovations and Poisson marginal distribution for defaulted
loan innovations and different copula functions

Since the Clayton copula provided the best fit, regardless of the selected marginal dis-
tributions, it accurately reflects the dependence between non-defaulted and defaulted loan
innovations compared to other applied copula functions. From copula descriptions from
Section 3, the Clayton copula is used for modelling strong left tail dependence, i.e. when
smaller values are more correlated than large values. This would indicate that if there is
a small amount of non-defaulted loans, then there is also a small amount of loans that de-
faulted on the same day. However, the dependence parameter is 0.26666, indicating that the
dependence between non-defaulted loans and defaulted loans is weak. We also note that the
dependence parameter is relatively close to the sample correlation value which is equal to
0.21089.
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6 Conclusions
In this thesis we have analysed different estimation methods for estimating parameters of

a BINAR(1) model, including the dependence parameter of its innovations, which are linked
via a copula. Monte Carlo simulations were carried out in order to compare different esti-
mation methods. Although estimations of BINAR(1) parameters via CML had the smallest
MSE and bias, estimations of the dependence parameter had smaller differences of MSE and
bias compared to other estimation methods, indicating that estimations of the dependence
parameter via different estimation methods do not exhibit large differences. While CML
estimates exhibit the smallest MSE, their estimation via numerical optimization relies on
the selection of the initial starting parameter values. These values can be selected via CLS
estimation.

An empirical application on loan data was carried out and 16 BINAR(1) models were es-
timated with different combinations of copula functions and marginal distribution functions.
The results showed that, regardless of the selected marginal distributions, out of the 4 copula
functions used, the Clayton copula always provided the best model fit. Furthermore, the
estimations of αj and λj (j = 1, 2) did not differ significantly throughout the models which
indicates that, even a misspecified marginal distribution does not lead to misspecification of
these parameters. This also confirms with the CLS estimation method, where αj and λj do
not depend on the distribution of the innovations.

Althrough selecting Poisson and negative binomial marginal distribution combinations
provided better models compared to models with only Poisson marginal distributions, the
models with both marginal distributions modelled via negative binomial distributions pro-
vided the smallest log-likelihood values which indicated that both defaulted and non-defaulted
loans exhibit overdispersion. The Clayton copula, which provided the best model fit, mod-
els variables, which exhibit strong correlation for smaller values and weaker correlation for
larger values, however, the estimated dependence parameter is relatively small compared to
the size of the interval of possible values it can attain, which indicates that the dependence
between defaulted and non defaulted loans is weak. Furthermore, the value of the depen-
dence parameter is similar to the value of the sample correlation between non-defaulted and
defaulted loans.

Finally, one can apply different copula functions in order to analyse whether the loan data
exhibits different forms of dependence from the ones discussed in this thesis. The asymptotic
properties of CLS estimations for the dependence parameter should also be analysed in future
research. Lastly, the model can be extended by analysing the presence of structural changes
within the data, as well as extending the BINAR(1) model with copula joint innovations to
account for the past values of other time series rather than only itself.
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A Appendix
Boxplots of Monte Carlo simulation results for parameters αj, λj, j = 1, 2 from Section

4.2.4 with sample size N = 100. The interquartile range is smaller for CML estimates and
the median is closer to the true parameter value compared to the CLS estimates for all
parameters.
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Figure A.1: Monte Carlo simulation results with sample size N = 100
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Boxplots of Monte Carlo simulation results for parameters αj, λj, j = 1, 2 from Section
4.2.4 with sample size N = 500. The median of CLS estimates is closer to the true parameter
values compared to the median of CLS estimates for the smaller sample size case. However,
the CML estimates are still superior in terms of smaller interquartile range and median
estimate values.
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Figure A.2: Monte Carlo simulation results with sample size N = 500
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Partial autocorrelation function plot of defaulted and non-defaulted loan data. The first
lag is significant, which suggests that the discrete data follows a first-order autoregressive
process. Because the data exhibits a seasonality effect (every Saturday and Sunday the
amount of issued defaulted and non-defaulted loans is very small compared to other week
days), the 6th and 7th lag are also significant.
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Figure A.3: Partial autocorrelation function plots of defaulted and non-defaulted loan data
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