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and Nomeda Valevičienė 3
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Abstract: Background and Objectives: Aortic stenosis (AS) leads to progressive left ventricular
(LV) dysfunction, making early detection crucial. Global longitudinal strain (GLS) is an
echocardiographic marker of subclinical LV dysfunction; however, echocardiography has
limitations, including operator dependency and acoustic variability. Cardiac magnetic
resonance (CMR) is a valuable complementary tool, and artificial intelligence (AI) may
enhance strain measurement accuracy, though its role in AS remains underexplored. To
evaluate the performance of an AI-based CMR feature tracking tool for the assessment
of LV global and segmental GLS in AS patients and compare results with the respective
measurements from healthy volunteers (control group), as well as with the GLS obtained
using the echocardiographic speckle tracking technique. Materials and Methods: This
retrospective study analysed 111 CMR exams (70 AS patients, 41 healthy controls) from
a single centre. AI-derived GLS values from gradient echo 2-, 3-, and 4-chamber CMR
views were manually reviewed for accuracy. Error rates, segmental, and global myocardial
strain differences were assessed between AS patients and the control group. Results: AI-
based CMR GLS strongly correlated with echocardiographic GLS (r = 0.694, p < 0.001)
and showed lower variability. The AI-derived GLS from CMR was significantly lower in
aortic stenosis patients compared to controls (−17.86 ± 3.47 vs. −20.70 ± 1.98). However,
AI-based strain analysis had an overall error rate of 6%, which was significantly higher
in AS patients (18.6%) compared to healthy controls (2.44%) (p = 0.0088). The 3-chamber
CMR view was the most error-prone (50% of isolated errors). Segmental strain variability
between AS patients and controls was most pronounced in basal segments, with smaller
differences in middle and apical segments. CMR demonstrated greater precision than
echocardiography, as indicated by a smaller standard deviation in GLS measurements (3.47
vs. 4.98). Conclusions: The AI-based CMR feature tracking technique provides accurate
and reproducible GLS measurements, showing strong agreement with echocardiographic
speckle tracking-based GLS. However, the higher error rates in AS patients compared to
controls underscore the need for more advanced AI algorithms to improve performance in
cardiac pathology.
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1. Introduction
Aortic stenosis (AS) is the most common acquired valvular heart disease. The preva-

lence of AS increases with age, from 0.2% in individuals aged 50–59 years to 9.8% in those
aged 80–89 years. The rise in incidence is expected in the next decades with the ageing
of the population [1,2]. The subclinical phase of AS is asymptomatic and does not affect
mortality. However, once symptoms like angina, syncope or heart failure appear, untreated
patients experience a notable decline in average survival, with a prognosis of 2 to 5 years
without intervention [3,4]. Early detection and intervention, however, are associated with
reduced all-cause, cardiovascular and non-cardiovascular mortality without an increase
in any procedure-related clinical outcomes among asymptomatic severe AS patients [5].
That is why imaging plays a huge role in the timely diagnosis, assessment of severity and
guiding interventions. Echocardiography is essential for confirming the diagnosis and
severity of AS, evaluating valve calcification, left ventricular function and wall thickness,
identifying concomitant valve diseases or aortic abnormalities and providing prognostic
information [6]. Echocardiography, however, has limitations such as poor acoustic win-
dows and operator dependency, which can make accurate quantification of AS difficult,
especially when discordant results among different stenotic indices are observed. CMR,
on the other hand, provides both a reliable and reproducible alternative for assessing the
aortic valve morphology and function, as well as structural and functional information
of the LV in AS patients [7]. Compared to transthoracic echocardiography (TTE), CMR
provides more precise assessments of LV volume, function and remodelling. Additionally,
it enables the detection of myocardial fibrosis—a critical factor in AS progression. Late
gadolinium enhancement (LGE) allows for the visualisation of focal myocardial scarring,
which is associated with adverse clinical outcomes, whereas T1 mapping facilitates the
quantification of diffuse interstitial fibrosis. CMR-based GLS analysis can also detect sub-
clinical myocardial dysfunction even in patients with preserved ejection fraction. Impaired
GLS has been correlated with AS progression and poor prognosis, highlighting its potential
in risk stratification and treatment planning [8]. As AI-driven methods continue to advance,
automated CMR-based strain analysis could further enhance diagnostic precision and
improve clinical decision-making. Recent advancements in artificial intelligence, especially
deep learning, have further transformed CMR. AI automates post-processing, enhances
diagnostic accuracy and streamlines workflows by reducing operator variability and im-
proving image quality [9]. Given these advancements, AI-based approaches have gained
increasing interest in cardiovascular imaging, particularly in the quantitative assessment of
myocardial function. This study aims to evaluate the performance of an AI-based CMR
feature tracking tool for the assessment of LV global and segmental GLS in AS patients and
compare results with the respective measurements from healthy volunteers (control group),
as well as with the GLS obtained using the echocardiographic speckle tracking technique.

2. Materials and Methods
2.1. Study Population

A total of 111 CMR cases were analysed in this study, 70 of severe AS patients before
surgical aortic valve replacement (precise patient cohort description can be found in [10])
and 41 of healthy controls. Patients included in this study were diagnosed with AS based
on echocardiographic criteria, following the guidelines of the European Society of Cardiol-
ogy [6]. Patients with standard contraindications for CMR were excluded. This study was
approved by the local biomedical research ethics committee (number: 158200-18/9-1014-
558, 4 September 2018; number 2023/7-1532-990, 4 July 2023; Vilnius Regional Biomedical
Research Ethics Committee) and conformed to the principles of the Helsinki Declaration.
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2.2. Imaging Protocols

CMR scans were performed at the Vilnius University Hospital Santaros Klinikos from
November 2018 to March 2024 using 1.5 T magnetic resonance scanners (either Philips
Ingenia Ambition (Eindhoven, The Netherlands) or Siemens Aera (Erlangen, Germany).
Three standard imaging views were captured: gradient echo cine 2-chamber, 3-chamber,
and 4-chamber.

Automated GLS measurements were analysed using SuiteHEART, Version 5.1.1
(Neosoft, Pewaukee, WI, USA). These analyses were fully automated, but all results were
manually reviewed for accuracy.

A trained research assistant (a medical student supervised by a radiologist) manually
corrected the epicardial and endocardial contours in cases where the AI tool failed to
accurately analyse these structures. After ensuring all cases were properly prepared,
segmental analysis of myocardial strain between patients with aortic stenosis and healthy
controls was conducted.

Echocardiography was performed using a Vivid ultrasound system (model S70, E9,
or E95, GE Healthcare, Horten, Norway) in patients with severe AS before surgical aortic
valve replacement and served as the reference standard for GLS measurements. From the
2D grey-scale images of the apical 2-, 3-, and 4-chamber views, LV GLS was measured and
processed off-line using commercially available software (EchoPac 112.0.1, GE Medical
Systems, Horten, Norway). The frame rate was adjusted to 50 to 80 frames/s. End-systole
was defined based on the closure click on the spectral tracing of the pulsed-wave Doppler
of AV flow. GLS was acquired using the average regional strain curves 16-segment model
for 2D speckle tracking echocardiography. Segments with poor quality tracking or aberrant
curves (despite manual adjustment) were removed from the analysis.

2.3. Data Analysis

Fisher’s exact test was applied to determine whether there is an association between
having AS and CMR AI’s interpretation needing manual corrections. The normality of
the GLS was checked by using a Kolmogorov–Smirnov test due to the sample size being
>50. After ensuring all cases were properly prepared, segmental analysis of myocardial
strain between patients with AS and healthy controls was conducted using Student’s t-test.
The threshold for statistical significance was set to p < 0.05. All statistical analyses were
performed using IBM SPSS Statistics, Version 27 (IBM Corp., Armonk, NY, USA).

3. Results
3.1. Performance of AI-Based CMR Strain Analysis

Each case consisted of 3 standard views (2-chamber view, 3-chamber view and 4-
chamber view), resulting in a total of 333 chamber views being evaluated by the artificial
intelligence program. Among these, 20 (6.0%) required manual corrections due to inaccura-
cies in the AI’s interpretation of myocardial strain.

Error Distribution Across Chamber Views:
2-Chamber View: 2 cases required corrections.
3-Chamber View: 11 cases required corrections.
4-Chamber View: 7 cases required corrections.
Even though 20 chamber views required manual corrections, these involved 14 CMR

cases, as shown in Figure 1. Overlapping errors were infrequent, 14.3% (2 cases) occurred in
both the 3- and 4-chamber cine views, and another 14.3% (2 cases) spanned all three views.
Among the remaining errors, 50% (7 cases) occurred exclusively in the 3-chamber cine view,
making it the most error-prone, while 21.4% (3 cases) were detected only in the 4-chamber
view. No standalone errors were detected in the 2-chamber view.



Medicina 2025, 61, 950 4 of 13

Figure 1. Error distribution and overlap across 2-chamber, 3-chamber, and 4-chamber views in
AI-based CMR strain analysis among affected individuals.

3.2. Comparison of the Performance of AI-Based CMR Feature Tracking Technique Between Aortic
Stenosis and Healthy Control Groups

The overall error rate was substantially higher in the AS group. Manual corrections
were required in at least one chamber view in 13 out of 70 patients (18.6%) within the
AS group. In contrast, only 1 in 41 healthy controls (2.4%) required manual intervention.
To assess the statistical significance of this observed difference, Fisher’s exact test was
applied. The test revealed a significant disparity in error rates between the two groups
(p = 0.0088), confirming that the AI system exhibited greater challenges in accurately
interpreting myocardial strain in patients with AS.

3.3. Critical Limitation in AI Performance

One case in the AS group, as shown in Figure 2, was entirely unanalysable by the AI.
In this instance, the automated LV segmentation failed, and strain analysis was impossible
until manual corrections were applied.

 

Figure 2. AI-based segmentation in CMR views of an aortic stenosis patient, illustrating challenges in
marking the endocardium (red) and epicardium (green) in 4-, 3-, and 2-chamber views.

3.4. Segmental and Global AI-Based CMR Myocardial Strain Analysis in AS Patients vs. Controls

The most notable differences were identified in the basal segments (Table 1). The Basal
Inferoseptal segment showed the greatest strain reduction, with AS patients averaging
−20.23 (SD = 5.77) compared to −28.09 (SD = 3.58) in healthy controls (mean difference:
7.86, p < 0.001). The smallest myocardial strain reductions were observed in the Basal
Anterolateral segment in AS patients vs. controls (−28.36, SD = 6.16 vs. −31.41, SD = 4.86,
mean difference: 3.05, p = 0.009) and the Basal Anterior segment (−21.66, SD = 6.48
vs. −24.89, SD = 4.85, mean difference: 3.23, p = 0.004). All basal segments (100%)
showed statistically significant differences in GLS between AS patients and healthy controls
(p < 0.05).
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Table 1. Mean GLS in Cardiac Segments Between Aortic Stenosis Patients and Healthy Controls.

Group Statistics and Independent Samples T-Test for Equality of Means: Mean GLS in Cardiac Segments Between
Aortic Stenosis Patients and Healthy Controls

Aortic Stenosis N Mean Mean Difference Std, Deviation Two-Sided p

Basal Anterior
No 40 −24.89

3.23
4.85

0.004
Yes 68 −21.66 6.48

Basal Anteroseptal
No 40 −21.03

6.11
5.40

<0.001
Yes 68 −14.92 5.83

Basal Inferoseptal
No 40 −28.09

7.86
3.58

<0.001
Yes 68 −20.23 5.77

Basal Inferior
No 40 −36.12

6.41
3.73

<0.001
Yes 68 −29.72 5.05

Basal Inferolateral
No 40 −36.10

6.20
3.51

<0.001
Yes 68 −29.90 5.69

Basal Anterolateral
No 40 −31.41

3.05
4.86

0.009
Yes 68 −28.36 6.16

Mid Anterior
No 40 −18.65

4.60
5.10

<0.001
Yes 68 −14.05 5.11

Mid Anteroseptal
No 40 −16.23

−0.23
4.63

0.837
Yes 68 −16.46 6.09

Mid Inferoseptal
No 40 −13.64

−0.87
5.52

0.473
Yes 68 −14.50 6.31

Mid Inferior
No 40 −16.84

3.22
5.16

0.007
Yes 68 −13.62 6.19

Mid Inferolateral
No 40 −15.35

1.09
5.36

0.385
Yes 68 −14.26 6.75

Mid Anterolateral
No 40 −19.29

2.29
5.38

0.079
Yes 68 −17.00 7.04

Apical Anterior
No 40 −15.08

−0.64
5.04

0.605
Yes 68 −15.72 6.81

Apical Septal
No 40 −16.79

0.57
4.34

0.592
Yes 70 −16.23 6.69

Apical Inferior
No 40 −10.59

−0.96
6.27

0.423
Yes 68 −11.55 5.80

Apical Lateral
No 40 −14.92

3.48
5.68

0.002
Yes 70 −11.45 5.38

Apex
No 40 −16.90

2.35
4.13

0.013
Yes 70 −14.55 5.54

The average reduction in GLS in middle segments was smaller, with greatest difference
between AS patients and healthy cohort in the Middle Anterior (−14.05, SD = 5.11 vs.
−18.65, SD = 5.10, mean difference: 4.60, p < 0.001) and Middle Inferior (−13.62, SD = 6.19
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vs. −16.84, SD = 5.16, mean difference: 3.22, p = 0.007) segments. The smallest average GLS
differences were seen in the Middle Anteroseptal (−16.46, SD = 6.09 vs. −16.23, SD = 4.63,
mean difference: −0.23, p = 0.837) and Middle Inferoseptal (−14.50, SD = 6.31 vs. −13.64,
SD = 5.52, mean difference: −0.87, p = 0.473) segments. In the middle segments, this
difference was statistically significant in 33% (2 out of 6) of segments.

The apical segments generally exhibited bigger global longitudinal strain as com-
pared with basal segments, with the most notable impairment observed in the Apical
Lateral segment, where the average strain was significantly reduced in AS patients (−11.45,
SD = 5.38) compared to controls (−14.92, SD = 5.68), resulting in a mean difference of 3.48,
p = 0.002. A significant reduction was also observed in the Apex (−14.55, SD = 5.54 vs.
−16.90, SD = 4.13, mean difference: 2.35, p = 0.013). All other apical segments (3 out of 5)
showed small differences between AS patients and healthy controls, none of which were
statistically significant.

AI-based GLS derived from CMR in AS patients was significantly reduced compared
to controls (−17.86 ± 3.47 vs. −20.70 ± 1.98), indicating impaired myocardial deforma-
tion in AS. The higher standard deviation in AS patients indicates greater variability in
strain measurements, likely due to heterogeneous myocardial remodelling and varying
disease severity.

3.5. Comparison of AI-Based CMR GLS with Echocardiography-Based GLS in AS Patient Cohort

CMR demonstrated a slightly higher mean myocardial strain value (−17.86, SD = 3.47)
compared to echocardiography (−18.00, SD = 4.98) in the same AS patient cohort. The
standard deviation for CMR was notably smaller (3.47 vs. 4.98). This indicates reduced
variability in strain measurements across patients. This precision was illustrated by boxplot
analysis (Figure 3). CMR showed a narrower interquartile range and fewer outliers, whereas
echocardiography displayed greater variability with a wider interquartile range and some
extreme outliers.

Figure 3. Boxplot Comparison of CMR and Echocardiography in Myocardial Strain Assessment.
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A strong concordance between the two methods was observed. It was supported
by a significant positive correlation (r = 0.694, p < 0.001). The mean difference between
CMR and echocardiography was −0.14, SD = 3.59, with a 95% confidence interval ranging
from −0.71 to 0.99, indicating no systematic bias (p > 0.05). These findings suggest that
differences between the two methods are attributable to random variability rather than
inherent methodological discrepancies.

4. Discussion
This is a retrospective study that compared the automatic LV myocardial strain analysis

of CMR images performed by the AI between an AS and healthy patients’ groups, as well
as the strain analysis between echocardiography and CMR. Our results demonstrate that
AI-based CMR strain analysis is a reliable tool that accurately found reduced GLS in the AS
group compared to healthy controls, with the most pronounced differences in the basal LV
segments. Additionally, we found a strong correlation between AI-based strain values and
echocardiographic strain measurements, with CMR showing lower variability between the
patients. Some CMR images required manual corrections of automatic segmentation done
by the AI, most often in the 3-chamber view images, with the errors being most prominent
in the AS patients’ group.

Speckle tracking echocardiography (STE) is the primary modality used for myocardial
strain assessment in a variety of heart diseases [11]. It is a widely available method for GLS
analysis that tracks the speckles of myocardium and their displacement [12]. In contrast,
the CMR feature tracking technique relies on the deformation of endocardial and epicar-
dial borders [13]. Compared to CMR, STE is a more accessible, faster, and less expensive
approach with lower inter-manufacturer variability; however, its accuracy depends on
adequate acoustic windows and may be limited in certain body types [14]. While STE is
the most often used tool for GLS analysis, CMR feature tracking is an additional tool and
may serve as a superior method in some cases due to echocardiographic limitations and
good CMR’s reproducibility [7,15,16]. Relative apical sparing (RAS) is a strain distribution
that has been observed for some patients with AS, where basal longitudinal strains are
more reduced compared to the apical segments [10,17]. While RAS is only observed in
about 15.3–18% of the AS patients, increased volume and pressure cause imbalanced LV
wall stress, which leads to reduced longitudinal function, especially notable at the basal
section of the LV [10,18,19]. Our study’s findings, based on AI-driven CMR feature tracking,
corresponded with these findings, showing the most notable differences between healthy
controls and the AS group at the basal LV segments (mean difference: 7.86, p < 0.001), with
all basal segments exhibiting statistically significant GLS differences (p < 0.05). The differ-
ence was less pronounced in the middle and apex segments, with statistical significance
observed only in the middle anterior (mean difference: 4.60, p < 0.001) and middle inferior
segments (mean difference: 3.22, p = 0.007), as well as the apical lateral segment (mean
difference: 3.48, p = 0.002) and the apex itself (mean difference: 2.35, p = 0.013). No statisti-
cally significant differences were found between the healthy patients and the AS cohort
in any other segments. These findings support the imbalanced decrease of the function of
different LV segments and also confirm the overall reduction of GLS in AS patients.

The analysis results of echocardiography and AI-based CMR feature tracking my-
ocardial strain measurements showed a strong correlation between the methods (positive
correlation: r = 0.694, p < 0.001). We also found the CMR method to have fewer variable
results and no marked outliers. Other studies have previously explored these techniques
and compared their measurements [15,16]. Good correlations were observed between the
GLS and CMR feature tracking, as well as with CMR LV ejection fraction. However, the
previous studies did not find enough evidence for interchangeable usage of both methods
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due to a wide limit of agreement or limited evidence in certain subgroups [15,20]. Although
our findings also demonstrated strong correlations, the cohort size may have been too small
and only included AS patients and healthy controls to definitively establish the equivalence
of both modalities. Potential advantages of CMR feature tracking have been proposed,
such as higher signal-to-noise ratio, good image reproducibility, poor acoustic windows
of echocardiography and high framerate requirement for STE, while echocardiography
benefits from faster obtainable images and is good at identifying speckles inside compact
myocardium, which is difficult to track for CMR [21].

CMR feature tracking is usually a semiautomated process using a propagation
method [20,22]. In our study, we used a fully automated AI-based CMR strain software,
which is under continued review, in the program SuiteHeart Version 5.1.1 (Neosoft, Pewau-
kee, WI, USA). Overall, we found this automatic instrument to be relatively precise, with
6% of all views requiring manual correction, most often in the 3-chamber and 4-chamber
views. However, mistakes were much more common for images of AS patients, compared
to the control group (18.6% vs. 2.4%). The usual reason for these errors was a failed LV
segmentation, usually caused by significant LV hypertrophy, common amongst AS patients,
which explains why the health control had many fewer inconsistencies [23]. AI tools being
less accurate in the pathology group in CMR feature tracking has been published before,
particularly in LV hypertrophy patients [24]. Difficulties in contouring the myocardium,
thicker left ventricle walls, and hypertrophied papillary muscles may prove challenging for
automatic tools to correctly mark endocardial and epicardial contours, potentially leading
to an overestimation of GLS [13,24]. Therefore, precise segmentation is essential. In our
cohort, after the human corrections, only 1 out of 111 cases was unable to be segmented and
analysed for GLS. Elevated values of STE due to apex foreshortening and focal myocardial
bulging in patients with LV hypertrophy have also been reported. [14,25].

AI is an evolving technology increasingly used in all cardiac imaging modalities,
including CMR, for more informative and accurate analysis [26]. AI is used in CMR to
complete a variety of tasks. Biventricular function evaluation of cine CMR images is a
time-consuming process that becomes faster using AI, and its semiautomated or fully
automated analysis provides a lower inter-operator variability [27]. Wang et al. [28] im-
plemented deep learning AI algorithms for left and right ventricle (RV) analysis. They
found good correspondence between human measurements and AI results for LV ejection
fraction (EF) and LV mass, while RV EF was less accurate. Another study integrated AI
into CMR for detecting aortic stenosis. The model achieved impressive results with 95%
recall and 96% precision in detecting aortic stenosis, even with limited data [29]. A study
by Evertz et al. [30] analysed a similar population to our study with severe aortic stenosis
patients undergoing transcatheter aortic valve replacement, assessed the prognostic value
of fully-automated LV function evaluation, and showed strong correlation with a manual
approach. Augustoet al. [31] found that machine learning based AI measures LV wall
thickness better than experts in patients with hypertrophic cardiomyopathy. Many studies
have recently explored fully automated CMR segmentation methods; however, there still
remain some challenges, such as hindered identification of basal and apical myocardium,
differentiation between trabeculae and myocardium, and difficulty generalising AI mod-
els [32]. These troubles are being addressed using more sophisticated AI algorithms [33,34].
There are promising results—for example, a study by Assadi et al. has shown good results
not only for four-chamber segmentation, but also for evaluating patient prognosis [35].
Another important field of analysis is contrast-free CMR imaging. Usually, late gadolinium
enhancement (LGE) is required to visualise myocardial scar, which develops due to several
different causes, such as myocardial infarction, myocarditis, sarcoidosis, different cardiomy-
opathies, and others [36]. Various deep learning and machine learning techniques are being
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explored to achieve an equivalent visualisation of the scarring without using contrast [37].
Xu et al. [38] used a generative adversarial network, a type of machine learning AI, and
achieved 96.98% accuracy for myocardial infarction area segmentation in contrast-free
CMR images. Another study used deep learning methods and showed good correlation
with both LGE images and histological samples [39]. Notable progress is underway in the
area of radiomics—the process of extraction of quantitative metrics from medical images,
which analyses the radiomic features of pixel distribution, shapes, texture and others [40].
This technique is also applicable to CMR and can augment the analysis of myocardial
structure, find subtle changes of the myocardium, help differentiate between diseases,
and have prognostic value [41]. Neisius et al. [42] used radiomics to distinguish patients
with LV hypertrophy due to hypertensive heart disease and hypertrophic cardiomyopathy
in T1 native maps. This method was also found to be feasible for improved CMR stress
perfusion [43], detecting myocardial scar [44,45], identifying fibrosis and inflammation in
patients with dilated cardiomyopathy [46], and cardiac sarcoidosis [47].

The older versions of the program Suiteheart, which we used in our study, have also
been applied in several other publications, some of which had certain similarities to our
work. Zhang et al. [48] compared three separate software packages, including Suiteheart.
The systems were able to differentiate between healthy controls and patients with preserved
EF heart failure, while Suiteheart’s gradient echo cine 4-chamber GLS correlated with out-
comes. A forementioned study by Evertz et al. [30] also used this software for the analysis
of patients with AS. A similar percentage of images required manual corrections compared
to our study’s AS group (15.8% vs. 18.6%). About 10 min of time saved per patient using
AI was emphasised in the article. Chudgar et al. further explored GLS analysis using
this program [49]. Other articles have described using it for automatic segmentation for
paediatric patients with or without congenital heart diseases [50], assessing biventricular
function after cardiac resynchronisation therapy [51], separating structural changes due to
cardiac amyloidosis and hypertensive patients with heart failure [52], and predicting car-
diovascular outcomes for HIV patients according to myocardial fibrosis and inflammation.
Backhaus et al. [53] used it for LV and RV volume and function evaluation and found the
algorithm to require fewer manual corrections for LV compared to RV.

Our study is another addition to the ocean of AI models that are being used for CMR
and other imaging modalities. We tested a new AI tool, which is under continued review,
and showed its viability for CMR strain analysis, which was comparable to echocardiogra-
phy GLS. The strain pattern was typical for AS patients, and almost all images could be
analysed automatically or with minimal manual corrections. The percentage of required
adjustments was similar to previously published studies.

Limitations

This is a small retrospective single-centre study that only included patients with AS
and healthy controls, so the results might not be applicable to other populations. Also, our
study did not compare the outcomes of patients relying on GLS results. Larger studies
are required to evaluate the AI program’s performance in other cardiac diseases as well
as its prognostic value. Some of the images required manual corrections, and investigator
bias may have altered the results. One patient could not be included in the analysis. This
highlights the need for good-quality images to be able to apply AI tools for the assessment.
It is also noteworthy that CMR is a more expensive and less accessible imaging modality
worldwide compared with echocardiography. Although the AI-based CMR feature tracking
technique is a feasible option to assess myocardial strain in all patients undergoing scans,
its wide adoption into clinical practice may be limited due to the low availability and high
cost of CMR scanners. However, a one-stop shop assessment by using all advancements
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of CMR techniques, including feature tracking, allows not only a more comprehensive
assessment of cardiac morphology, function and structure, but also allows for assessing
suitable changes at follow-up.

5. Conclusions
AI-based CMR shows high accuracy and precision for GLS measurements, good

agreement with the reference standard of echocardiography and reduced variability. CMR
performed well in strain analysis but had a 6% error rate. Errors were much higher in AS
patients (18.6%) than in healthy controls (2.4%). Segmental strain deficits were greatest in
basal myocardial segments in AS patients, where reduced strain was less pronounced in
middle and apical segments. Benefits of CMR in identifying subtle GLS impairments and
the potential for automated, consistent, reproducible measurements are emphasised, but
further refinement of AI algorithms to solve challenges in severe pathology and facilitate
the establishment of reference standards is also encouraged.
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