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Abstract
In this article, the estimators based on data from independent non-probability and probability
samples are combined to estimate finite population parameters. Assuming that the values of the
study variable are available in both samples, the integration of the non-probability and probability
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estimator. By evaluating the variance of the former estimator, the randomness of the underlying
non-probability sample is taken into account through the distribution of the estimated propensity
scores. This approach is then compared with a variance estimator based on the asymptotic
variance and with a bootstrap variance estimator. The proposed linear combination is not
sensitive to the misspecification of the model for the propensity scores due to the incorporated
estimator of the bias of the IPW estimator. The number of Lithuanian companies possessing
websites is estimated in a simulation study. By combining the sample survey data and big voluntary
sample data, the properties of the introduced estimators are demonstrated numerically.
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1. Introduction

Probability sampling methods are a generally accepted approach for surveying
finite populations. Even for a relatively small probability sample from a finite
population, valid inferences can be drawn using a known sampling design and
models. Over the years, probabilistic sample-based methods have been well-
developed for solving various finite population problems (Cochran 1977; Särndal
et al. 1992; Tillé 2020; Wu and Thompson 2020).

However, with time passing, the situation is changing. Nowadays, probability
surveys have significant drawbacks: their costs are relatively high, participation
rates are decreasing, and the accuracy of estimates becomes lower. At the
same time, the number of non-probability data sets is increasing. They consist of
administrative data sources that record business events, data derived by sensors
and machines when measuring events and situations in the physical world, and so
on (Japec et al. 2015). Compared to a probability sample, the large non-probability
data sources have a lower data acquisition cost per unit. However, they also
require substantial reorganization to align with a structure conclusive to statistical
calculations, and the (usually) unknown basis of their formation makes unbiased
estimation from such samples very hard.

Nevertheless, non-probability data sets have received much attention from
researchers and practitioners during the past decades, and active research is under-
way to utilize them effectively by combining them with probability survey data.
Lohr and Raghunathan (2017) review statistical methods that have been proposed
for combining information from multiple probability samples and other sources to
answer research and societal questions. Zhang (2019) examines the conditions
under which descriptive inference can be based directly on the observed distribu-
tion in a non-probability sample. An overview of the methods devoted to the non-
probability samples is presented in Wu (2022), with a subsequent discussion in the
same issue of the Survey Methodology journal. Lothian et al. (2019) discuss chal-
lenges arising for Central Statistical Agencies when linking disparate data sets
across time, space, and sources.

The explosion of interest in non-probability samples in the twenty-first century
is demonstrated graphically in Salvatore (2023). As mentioned above, one
reason for this is increased data availability and lower relative costs compared to
collecting data from probability samples. However, the risk of bias is obvious
because of an unknown data generation mechanism. And if the selection bias is
not taken into account, then even a huge non-probability sample may lead to lower
accuracy results than a small probability sample (Meng 2018).

The options for correcting the non-probability sample selection bias depend on
the additional information available. One of the scenarios considered in the litera-
ture is to assume that the study variable is observed only in the non-probability
sample, and the independent reference probability sample contains both sampling
design information on the same target population and the auxiliary variables which
are common for both samples (Chen et al. 2020; Kim and Wang 2019; Yang et al.
2020). The reference probability sample is unnecessary, and analysis is technically
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simpler when the values of the auxiliary variables are available for the whole popu-
lation (Burakauskait_e and Čiginas 2023). This happens when access to high-quality
population registers is available. Another situation encountered in practice is when
the study variable is observed in both samples (Kim and Tam 2021; Rueda et al.
2023; Tam and Kim 2018). More data integration scenarios are reviewed in Yang
and Kim (2020) and Rao (2021).

This paper looks at the case of non-probability and probability samples that are
available independently from a common target population. Both samples contain
the study variable, and the auxiliary variables are known for all elements in the
frame population, which we assume is identical to the target population. An inverse
probability weighting (IPW) estimator, where the estimated propensity scores are
used to weigh the non-probability sample observations, is applied to estimate the
population total of the study variable within this framework. A propensity score
adjustment is one of the approaches used to correct the sample selection bias, where
the propensity scores model the participation of the population elements in the
non-probability sample (Liu et al. 2023; Wu and Thompson 2020). An alternative
to this estimator is the traditional design-based estimator, using only the probabil-
ity sample information and auxiliary variables.

We consider data integration through a linear combination of these two estima-
tors, called the composite estimator. Similar composite estimators for non-
probability and probability samples are applied in Elliott and Haviland (2007),
Tam and Kim (2018), Zhang (2019), and Rueda et al. (2023). To optimize the com-
bination, the variance and the possible bias of the IPW estimator should be prop-
erly evaluated, while the variance of the (approximately) unbiased design-based
estimator is estimated using conventional methods. Our study considers only the
bias and the variance of the estimators; we do not consider non-response and other
non-sampling errors.

Variance estimators for the IPW estimator have been proposed before.
Assuming a logistic regression model for the propensity scores, Chen et al. (2020)
propose a simple plug-in variance estimator obtained from its asymptotic variance,
and for a general parametric model for the propensity scores, Kim and Wang
(2019) applied a sandwich formula to obtain a consistent variance estimator. None
of these variance estimators consider the randomness effect of the unknown non-
probability sample collection mechanism.

We propose the variance estimator accounting for this type of randomness
through the distribution of the estimated propensity scores. Elliott and Valliant
(2017) and Liu et al. (2023) give some recommendations on the resampling of non-
probability samples. For comparison, we also apply the bootstrap procedure pro-
posed by Chauvet (2007) and its algorithm presented in Mashreghi et al. (2016) to
estimate the variance of the IPW estimator that takes into account the randomness
of the non-probability sample. The estimator of the total and its variance estima-
tors based on a non-probability sample are considered in Section 2.

The IPW estimator is sensitive to the misspecification of the model for the pro-
pensity scores, which may result in biased estimates. We propose to estimate the
bias of the IPW estimator utilizing the data from both non-probability and
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probability samples in Section 3. In Section 3, we examine the properties of the
proposed estimation approach and investigate the appropriate weight of the IPW
component when we take the non-probability sample randomness and the
proposed bias correction into account. We provide a numerical example through a
simulation experiment studying Lithuanian companies possessing websites in
Section 4. The main novelty of our work is in the two proposed variance estima-
tion methods and in the composite estimator of the population total, which
demonstrates low sensitivity to the misspecification of the model for the propensity
scores. The discussion and conclusions are presented in Section 5.

2. Non-Probability Samples

Let the finite population U= f1, :::,Ng consisting of N labeled elements be avai-
lable. A study variable y with the fixed values y1, :::, yN is defined for each popula-
tion element. The parameter of interest is the total

ty =
XN

k = 1

yk : ð1Þ

Let x 0ð Þ, :::, x mð Þ be m+ 1 auxiliary variables with the values known for the whole
population U. For the element k 2 U, these variables attain a vector value
xk = xk0, :::, xkmð Þ0 with xk0 = 1.

A non-probability sample B � U is available. The mechanism of its formation is
unknown, but the values yk , k 2 B, are observed and may be used for estimation of
the total ty. We assume that this sample may be considered random.

In this section, we construct the estimator of the total ty based on the non-
probability sample under certain assumptions on its origin and present some of
its properties. Treating the non-probability sample as random, we propose two
variance estimators for this estimator. For comparison, the variance estimator by
Chen et al. (2020) will be used.

We consider the Hájek-type estimator of the total ty:

btB =
NbN Xk2B

bw�kyk , where bN =
X
k2B

bw�k , ð2Þ

which is based on the estimated pseudo-weights bw�k (a term introduced by Elliott
(2009)) constructed for the non-probability sample elements.

2.1. Estimation of Pseudo-Weights

Let the number rk be the value of the pseudo-inclusion variable r describing the
belonging of the unit k 2 U to the sample B with the value rk = 1 if k 2 B and
rk = 0 otherwise. The model for the variable r will be constructed using data xk ,
k 2 U. Valliant (2009) notes that ‘‘a super-population model is a way of formaliz-
ing a relationship between a target variable and auxiliary data.’’ In our case, the
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role of the target variable is played by the variable r, and we aim to establish its
relationship with the auxiliary variables x 0ð Þ, x 1ð Þ, :::, x mð Þ. We define N random bin-
ary variables R1, :::,RN with observed values r1, :::, rN in the finite population U.
Each random variable Rk is associated with the value of the study variable yk and
the vector of auxiliary variable values xk . It is called a pseudo-inclusion indicator.

Random variables Rk are non-identically distributed according to the
Bernoulli p�k

� �
distribution. The probability p�k =P Rk = 1 j xk , ykð Þ is called a pro-

pensity score. It is used to describe the probability that the population element
k 2 U belongs to the non-probability sample B. We are going to apply a combina-
tion of the quasi-randomization approach (Elliott and Valliant 2017), using
pseudo-inclusion probabilities p�k , k 2 U, together with the super-population
framework (Hartley and Sielken 1975).

Construction of the non-probability sample-based estimator of the total
Equation (1) needs some assumptions for the pseudo-inclusion indicators Rk , simi-
lar to those in Wu (2022):

(A1) the pseudo-inclusion indicator Rk and the variable value yk are independent
given the covariates xk , P Rk = 1 j xk , ykð Þ=P Rk = 1 j xkð Þ, k 2 U;

(A2) all probabilities p�k are positive: p�k.0, k 2 U;
(A3) the finite population elements enter the non-probability sample with

probabilities p�k independently of each other, that is, the random variables
Rk and Rl, k, l 2 U, k 6¼ l, are conditionally independent given xk and xl:
P Rk = 1,Rl = 1 j xk , xlð Þ=P Rk = 1 j xkð ÞP Rl = 1 j xlð Þ.

Remark 1. Assumption (A2) ensures that all population elements can get to the
non-probability sample, while assumption (A1) means a non-informative collection
of the non-probability sample. Assumption (A3) implies that the non-probability
sample size is random. Therefore, we consider the entry of the population elements
into the sample B approximated by a Poisson sampling design if (A2) and (A3)
hold (Särndal et al. 1992, p. 85). We call it a Poisson pseudo-sampling design in
the context of non-probability samples.

Remark 2. Assumptions (A1), (A2), and (A3) place significant restrictions on non-
probability samples, which have prompted discussion among survey statisticians.
For instance, a sample of volunteers may not be missing at random and thus fail to
meet the assumption (A1). A shift away from strict reliance on assumption (A1) is
emerging in some recent studies (Beaumont 2020; Kim and Morikawa 2023; Liu
et al. 2024), although this shift is still in its early stages. Wu (2022) dedicated
Section 7 of his article to revising the assumptions. In cases where (A2) is violated,
he suggests considering the ‘‘stochastic under-coverage’’ scenario. Assumption (A3)
covers only a subset of all possible non-probability samples. For example, non-
probability samples based on incomplete administrative data may satisfy (A3),
whereas network and quota samples often may not satisfy it.

To estimate the propensity scores under assumptions (A1) to (A3), a super-
population parametric logistic regression model for distribution of Rk is applied:
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p�k =p xk ,bð Þ= expfx0kbg
1+expfx0kbg , k 2 U , ð3Þ

where b= b0,b1, :::,bmð Þ0 is the vector of the real-valued parameters to be
estimated. This model is fitted using the observed data f rk , xkð Þ, k 2 Ug specifying
the non-probability sample B. After the estimate bbN = ðbb0, :::, bbmÞ0 of the model
parameter b is obtained, it is plugged in Equation (3) to get the estimated propen-
sity scores

bp�k =p xk , bbN

� �
, k 2 U : ð4Þ

Then the estimator Equation (2) with the pseudo-weights bw�k = 1=bp�k is the IPW
estimator of the total ty.

To estimate the vector parameter b of the propensity scores p�k , the maximum
likelihood (ML) method is used. Due to the conditional independence of the indi-
cators Rk , k 2 U, the ML method starts with defining the likelihood function

L bð Þ=
YN

k = 1

p xk ,bð ÞRk 1� p xk ,bð Þð Þ1�Rk

and its log-likelihood function

l bð Þ= log L bð Þð Þ=
XN

k = 1

Rkx
0
kb� log 1+exp x0kb

� �� �� �
:

The function l bð Þ is continuous and has partial derivatives with respect to the com-
ponents of b of any order. The ML estimator bbN of the parameter b is found by
solving the system of nonlinear equations

∂

∂bj

l bð Þ=
XN

k = 1

Rk � p xk ,bð Þð Þxkj = 0, j= 0, :::,m: ð5Þ

Since the estimator bbN depends on the random variables Rk , k = 1, :::,N , it is itself
a random variable. Replacing the random variables Rk by their realizations rk ,
iterative methods are applied to solve approximately the equation system (5). The
Newton–Raphson algorithm is frequently used for this purpose. Alternative ways
to evaluate b are based on estimating equations or calibration equations (Wu and
Thompson 2020); however, the ML method is quite often used to fit the logistic
regression model.

2.2. Variance Estimator Under the Randomized Propensity Scores

The variance of the estimator btB in (2) is studied in Chen et al. (2020) under the
model Equation (2) for the propensity scores, where the ML estimator bbN for the
model parameter b is assumed to be consistent and is treated as fixed when
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deriving the variance. We present asymptotic properties of bbN . Utilizing these
properties, the variance estimator for the IPW estimator btB of the population total
ty, taking into account Poisson pseudo-sampling design and randomness in bbN , is
constructed.

The collection of the pseudo-inclusion indicators R1, :::,RN defines in our study a
super-population.

Fahrmeir and Kaufmann (1985) presented the conditions that ensure the consis-
tency and asymptotic normality of the ML estimators for the generalized linear
models. Their result belongs to the field of classical statistics because they deal with
a sample of independent observations.

In the paper, we use one of the generalized linear models–logistic regression
model–for the super-population with the pseudo-inclusion indicators R1, :::,RN . In
order to get the asymptotic properties of the logistic regression model parameter
estimator, the result for the generalized linear model should be adapted. We herein
use the adaptation performed in Fahrmeir and Tutz (2001), Section 2.2. To state
the proposition, an additional technical assumption is required:

(A4) the components of the auxiliary vectors x1, :::, xN are uniformly bounded,
and the matrix X= x01, :::, x

0
N

� �
is of a full rank.

Proposition. If for the pseudo-inclusion indicators R1, :::,RN assumptions (A1) to
(A4) are valid, then the randomML estimator bbN obtained in the super-population
for the parameter b in Equation (3) has the following properties:

(i) The probability that bbN exists and is unique tends to 1 for N ! ‘.
(ii) If b denotes the ‘‘true’’ value of the logistic regression model parameter,

then for N ! ‘ we have bbN ! b in probability.

(iii) The random variable
ffiffiffiffi
N
p bbN � b

� �
converges in distribution to the ran-

dom variable Z;Nm+ 1 0, i�1 bð Þ
� �

, where i bð Þ=limN!‘N�1I bð Þ and

I bð Þ=X0V bð ÞX with the matrices

X=
x10 ::: x1m

::: ::: :::
xN0 ::: xNm

0@ 1A and V bð Þ=
p�1 1� p�1
� �

::: 0

0 ::: 0

0 ::: p�N 1� p�N
� �

0@ 1A:
It follows from the proposition that for a large N , the vector parameter b can

be approximated in the super-population by the values of the normally distributed
random vector

b bbN

� �
;N m+ 1

bbN , I
�1 bbN

� �� �
ð6Þ

with the density function of the multivariate normal distribution denoted further

by u bbN

� �
. The realization of bbN in the finite population should be followed by its

inclusion in (6).
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The IPW estimator btB is influenced by two dependent random components.
Both components are caused by the non-probability sample collection process. One
component is the direct effect of the pseudo-inclusion indicators Rk , k = 1, :::,N ,
on the estimated pseudo-weights and the resulting estimate of the population total.
The random pseudo-inclusion indicators Rk also lead to uncertainty in the ML esti-

mator bbN of the logistic regression model parameter b. The second random com-

ponent is the effect of the uncertainty in the ML estimator bbN on the estimated
pseudo-weights and resulting estimate of the finite population total. As noted in
Remark 1, we consider the distribution of element pseudo-inclusion indicators as a

Poisson pseudo-sampling design and denote it by q. The distribution of bbN , as well
as the parameter b itself, is approximated by the multivariate normal distribution

of b bbN

� �
given in Equation (6) and is denoted by z.

By replacing the value b in the logistic regression model Equation (3) with the vector

b bbN

� �
, we get the value ep�k =p xk , b bbN

� �� �
, which approximates the propensity

score p�k . We aim to estimate an anticipated variance Var btB

� �
(Isaki and Fuller 1982),

taking into account pseudo-sampling design and uncertainty in b estimation.
If the probabilities ep�k truthfully reflect the element belonging to the non-

probability sample mechanism, then for a fixed value of b bbN

� �
–with the

corresponding probabilities denoted by ep�
kjz (here we adopt the notation of

Särndal et al. (1992, Chapter 8.3))–the ratio estimator btB in Equation (2) based on
the Poisson pseudo-sampling design is approximately unbiased, and its approxi-
mate conditional variance is

AVarq btB j z
� �

=
XN

k = 1

1ep�
kjz
� 1

 !
yk � ty=N
� �2

: ð7Þ

We estimate this variance by a modified formula appropriate for a Poisson sample
(Z Liu and Valliant 2023):

dVarq btB j z
� �

=
X
k2B

1ep�
kjz
� 1

 !
yk �btB=N
� �2

ep�
kjz

: ð8Þ

Taking into account two distributions, q and z, the anticipated variance Varzq btB

� �
of the estimator btB can be decomposed by the law of the total variance (Särndal
et al. 1992, p. 136):

Var btB

� �
=Varzq btB

� �
=VarzEq btB j z

� �
+EzVarq btB j z

� �
: ð9Þ

The subscript q indicates that the variance and expectation are calculated
according to the distribution of the indicators fRk , k 2 Ug, and the subscript z

means the variance and expectation by the distribution N m+ 1
bbN , I

�1 bbN

� �� �
.

Due to the approximate unbiasedness of the estimator btB for a fixed value of the
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random variable b bbN

� �
, the first term in the relationship Equation (9) can be con-

sidered negligible. Then from Equation (9) we get the approximation

Varzq btB

� �
ffi EzVarq btB j z

� �
ffi EzAVarq btB j z

� �
: ð10Þ

The expectation I=EzVarq etB j z
� �

is by the multivariate normal distribution with

the density u bbN

� �
and can be written as an integral and further approximated

according to (10):

I=EzVarq btB j z
� �

=

Z
<m+ 1

Varq btB j z
� �

u bbN

� �
dbbN ffi

Z
<m+ 1

AVarq etB j z
� �

u bbN

� �
dbbN :

ð11Þ

The Monte–Carlo approximation (Fahrmeir and Tutz 2001, Appendix A.5) of the
integral gives us

dVarzq btB

� �
= bI = 1

J

XJ

j= 1

dVarq btB j b jð Þ bbN

� �� �
ð12Þ

for a large integer number of repetitions J . Here the term dVarq btB j b jð Þ bbN

� �� �
is

the estimator (8) of the variance Varq btB j z
� �

with the propensity scores ep� jð Þ
k ,

k 2 B, obtained by inserting the jth simulated value b jð Þ bbN

� �
into Equation (3).

Expression Equation (12) means that the anticipated variance estimator dVarzq btB

� �
equals empirical average of the design based estimators of variance dVarq btB

� �
with

the estimates of the parameter b spread around bbN according to the distribution

N m+ 1
bbN , I

�1 bbN

� �� �
.

Let us summarize the simulation procedure to implement the estimator
Equation (12) of variance Equation (9).

Variance estimation algorithm:

1. Compute the ML estimate bbN for the parameter b of the logistic regression
model (3) replacing Rk by rk . Calculate the propensity score estimates bp�k ,
k 2 U, from (3).

2. Do the following calculations for each j= 1, . . . , J : simulate b jð Þ bbN

� �
by

Equation (6) using the estimates bp�k , k 2 U; calculate ep� jð Þ
k , k 2 B, from

Equation (3) using the simulated vector b jð Þ bbN

� �
instead of b; evaluate the

jth constituent in Equation (12).
3. Compute the average bI in Equation (12).
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In what follows, we call the estimator Equation (12) a smooth variance estima-
tor. Two more estimators of the variance Var btB

� �
are presented for comparison: an

estimator by Chen et al. (2020), which considers the non-probability sample
described only by the pseudo-inclusion indicators, and a bootstrap variance esti-
mator, taking into account the randomness of the non-probability sample. They all
are compared in the simulation study.

2.3. Variance Estimator Based on Asymptotic Variance

The IPW estimator of the population total ty with the ML estimator of the para-
meter b also has been considered in Chen et al. (2020). These authors ascertained
the properties of the IPW estimator btB given by Equation (2). They have shown
that assuming the logistic regression model for the propensity scores under condi-
tions (A1) to (A3) and some additional regularity conditions, the IPW estimator is
asymptotically unbiased and derived its asymptotic variance. Chen et al. (2020) use
this approximate variance to build a plug-in estimator of Var btB

� �
=Varq btB

� �
. Due

to completely known auxiliary data, the variance estimator has a simpler expres-
sion (Burakauskait_e and Čiginas 2023):

dVar að Þ
q
btB

� �
=
X
k2B

1� bp�k� � yk �btB=Nbp�k � bb02xk

	 
2

, ð13Þ

where

bb02 = X
k2B

1bp�k � 1

	 

yk �btB=N
� �

x0k

( ) X
k2U

bp�k 1� bp�k� �
xkx

0
k

( )�1

,

given the non-probability sample B.
The variance estimator Equation (13) considers the non-probability sample

described only by pseudo-inclusion indicators.

2.4. Bootstrap Variance Estimator

Elliott and Valliant (2017) propose to use resampling methods to estimate the var-
iances of the estimators based on the non-probability samples. They suggest that
for the estimators like the IPW estimator btB in Equation (3), the bootstrap variance
estimator should incorporate the variability in estimating the propensity scores and
the variability caused by the sample selection mechanism in estimating the popula-
tion total.

Elliott and Valliant (2017) mention that, given the estimates of pseudo-inclusion
probabilities, design-based formulas may be used for point estimates and their var-
iances. Mashreghi et al. (2016) presented the implementation of the bootstrap algo-
rithm by Chauvet (2007) to estimate the variance of the IPW estimator Equation
(2) for Poisson sampling. We have replaced the propensity scores p�k by their esti-
mates and applied this algorithm to estimate Var btB

� �
because this follows from
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assumption (A3). Moreover, to take into account the randomness of the non-
probability sample, the bootstrap variance estimator is averaged over the distribu-
tion of the estimated propensity scores.

Bootstrap variance estimation algorithm:

1. Compute the ML estimate bbN for the parameter b of the logistic regression
model Equation (3). Calculate the propensity score estimates bp�k , k 2 U,
from Equation (3).

2. Simulate b bbN

� �
by Equation (6) using the estimates bp�k , k 2 U. Calculate

ep�k , k 2 B, from Equation (3) with the simulated vector b bbN

� �
in place of

b.
3. Repeat the pair yk , ep�k� �

, 1=ep�k� �
times for all k 2 B to create U f , the fixed

part of the bootstrap population.
4. To complete the bootstrap population, U�, construct the set Uc� by selecting

independently elements from yk , ep�k� �
, k 2 B

� �
with the probability

1=ep�k � 1=ep�k� �
for the kth pair. Denote the bootstrap population by

U�=U f [ Uc�= �yk , �p�k
� �

, k 2 U�
� �

, where �yk , �p�k
� �

is the kth pair of this

population corresponding to one of those in the initial sample

yk , ep�k� �
, k 2 B

� �
. In addition, each inclusion probability �p�k , k 2 U�, is

scaled by the factor nB=
P

l2U� �p�l , ensuring that their sum across the boot-

strap population remains constant.
5. Draw the bootstrap sample B� elements independently from U�, with the

probability �p�k for the kth unit in U�.
6. Compute the bootstrap estimate bt�B by Equation (2) using the data

�yk , �p�k
� �

, k 2 B�
� �

.

7. Repeat Steps 5 and 6 a large number of times, T , to obtain bt� 1ð Þ
B , :::,bt� Tð Þ

B .
Calculate

bV �T =
1

T � 1

XT

t= 1

bt� tð Þ
B ��t�B

� �2

, where �t�B =
1

T

XT

t = 1

bt� tð Þ
B :

8. Repeat Steps 4 to 7 a large number of times, D, to get bV �1T , :::,
bV �DT . Calculate

the estimate

�V �DT =
1

D

XD

d = 1

bV �dT :

9. Repeat Steps 2 to 8 a large number of times, L, to get �V �1DT , :::,
�V �LDT .

Calculate the estimate

Čiginas et al. 659



dVar� btB

� �
=

1

L

XL

l= 1

�V �lDT ð14Þ

of the variance Var btB

� �
for the IPW estimator Equation (2).

The asymptotic unbiasedness of this variance estimator, based on estimated
pseudo-inclusion probabilities, remains unestablished and could be a focus of
future research.

3. Design-Based and Composite Estimators of the Total and
Estimation of Their Variances

The mechanism by which an element is included in the non-probability sample is
unknown. Therefore, even a carefully constructed IPW estimator may not suffi-
ciently correct the selection bias of this sample. If an additional, albeit much
smaller, independently selected probability sample is available in which the study
variable is observed, it provides supplementary information about the population
and can be used to deal with the possibly biased IPW estimator Equation (2). For
this purpose, we integrate both samples through a linear combination of the IPW
and design-based estimators.

Let us assume that, independently of sample B, a probability sample A is selected
from the same population U according to the sampling design p �ð Þ, and the values
yk , k 2 A, are observed. The samples A and B may overlap. Let Ik be the selection
indicator for a unit k 2 U, selected to the sample A with the value Ik = 1 if k 2 A

and Ik = 0 otherwise.
The design-based estimator of the population total ty is defined as:

btA =
X
k2A

wkyk , ð15Þ

which is at least approximately unbiased, according to the randomness induced by
the probability sampling design p �ð Þ. This estimator may be the Horvitz–
Thompson estimator with exactly or approximately known inclusion probabilities
pk =P Ik = 1ð Þ and weights wk = 1=pk , k 2 A, or another estimator using auxiliary
data (Särndal et al. 1992); or the Hájek estimator

btA =
NbN Xk2A

wkyk with bN =
X
k2A

wk :

The integration of both samples–non-probability and probability–is done
through the composite estimator of the total ty:etc

y =etc
y að Þ=abtB + 1� að ÞbtA ð16Þ

with the coefficient 0 < a < 1 minimizing the mean squared error (MSE) of the esti-
mator etc

y að Þ. Since the samples A and B are selected independently, the estimators
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btA and btB are independent as well, implying that Cov btA,btB

� �
= 0. Assuming further

that the estimator btA is unbiased, the MSE can be expressed as

MSE etc
y að Þ

� �
=a2MSE btB

� �
+ 1� að Þ2Var btA

� �
, ð17Þ

where MSE btB

� �
=Var btB

� �
+ Bias btB

� �� �2
with a possibly non-negligible bias

component

Bias btB

� �
=E btB

� �
� ty: ð18Þ

The minimum value of the function MSE etc
y að Þ

� �
in Equation (17) is attained at

a=a0 for

a0 =
Var btA

� �
Var btA

� �
+MSE btB

� � , ð19Þ

and the coefficient a0 has to be estimated from the data available. Here, the

variance Var btA

� �
is readily estimated using the standard design-based methods

(Särndal et al. 1992; Wolter 2007), while the estimation of the variance Var btB

� �
depends on the specific choice of the pseudo-weights bw�k in Equation (2) and other

assumptions as considered in Section 2. If the pseudo-weight bw�k construction

method correctly reflects the population unit involvement in the non-probability

sample mechanism, then an approximately unbiased estimator btB can be expected.

Otherwise, the estimator btB can be significantly biased. We further propose an esti-

mator of the bias Bias btB

� �
to evaluate the optimal coefficient a0 Equation (19)

properly.
Let us study the variability of the composite estimator Equation (16) of the pop-

ulation total. Three different estimators of the variance Var btB

� �
for the IPW esti-

mator Equation (2) are considered: the new estimator dVarzq btB

� �
given by Equation

(12), the estimator dVar að Þ
q
btB

� �
of Chen et al. (2020) given by Equation (13), and the

bootstrap estimator dVar� btB

� �
from Equation (14). Denote further by dVar btB

� �
any

of these estimators.
Since the study variable is observed in the probability sample A, the true popula-

tion total ty in the expression of the bias Equation (18) is at least approximately

unbiasedly estimated using btA, while btB is taken as the estimator of the population

parameter E btB

� �
. Then the estimator

dBias btB

� �
=btB �btA ð20Þ

of the bias is at least approximately unbiased, with the variance

Var dBias btB

� �� �
=Var btB

� �
+Var btA

� �
due to the independence of the estimators btA

and btB. The bias estimator Equation (20) is suggested also by Elliott and Haviland
(2007).
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Then, after the estimator dVarp btA

� �
of the variance Var btA

� �
=Varp btA

� �
of the

design-based estimator btA in Equation (15) is chosen, the optimal coefficient a0 in
Equation (19) for the composition Equation (16) is estimated by

ba0 =
dVarp btA

� �
dVarp btA

� �
+dVar btB

� �
+ btB �btA

� �2
:

Finally, the composite estimator

btc
y =etc

y ba0ð Þ= ba0btB + 1� ba0ð ÞbtA ð21Þ

of the population total ty is obtained, and its MSE is estimated by

dMSE btc
y

� �
= ba0

dVar btB

� �
+ btB �btA

� �2
� �

:

This formula is derived by inserting ba0 into (17). The more the estimator btB is
biased or highly fluctuating, the lower its coefficient ba0 in the composition
Equation (21). The efficiency of the composite estimator Equation (21) of ty for
different choices of the variance estimator dVar btB

� �
is examined in the simulation

study.
The estimator btB, based on the non-probability sample, is biased but has low

variance. In contrast, the estimator btA, supported by the probability sample, is
unbiased but exhibits relatively high variance. By combining these two estimators,
the composite estimator ‘‘borrows strength’’ from both, similar to techniques
used in small area estimation (Rao and Molina 2015). This approach mitigates
the weaknesses of the individual components, leading to an estimator with
comparatively lower variance and reduced bias. The effectiveness of this method is
demonstrated in the simulation study.

4. Numerical Experiment

A numerical study aims to compare the estimators considered, show the alternation
of their accuracy when the researcher fails to specify the propensity score model
precisely enough and demonstrate the composite estimator’s usefulness regardless
of the probability sample size. The essence of the numerical experiment is to simu-
late the problem environment by repeatedly generating the non-probability and
probability samples, estimating the population total and the variances of its estima-
tors by several methods, and studying the distributions of the estimators obtained.
The results allow us to compare the accuracy of the estimators and show the condi-
tions under which any of these estimators can be efficient.

4.1. Simulation Data

The data set used in the simulations is constructed using three data sets (sources)
with the same record identifier. The first is the probability sample data set from
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the Lithuanian Information and Communication Technology (ICT) survey, with
the binary study variable y indicating whether the enterprise has a website. For its
selection, stratified simple random sampling is used. The values of other variables,
such as the number of employees and the indicators of economic activity, are
known for the whole survey population of size N = 13 884. One more completely
known auxiliary variable y� is derived from the second, web-scraped data set. This
binary variable approximates the study variable y quite well. The third data set,
containing values of the variable y, is provided by a private company. This data
source is a voluntary non-probability sample covering about 56% of the survey
population.

The pseudo-real population U of the real size N = 13 884 is constructed by
linking these three data sets. The y values in the probability survey sample are
supplemented with observations in the non-probability sample, and further infor-
mation is gathered about the remaining unknown values. In the population
obtained, the contingency coefficient between y and y�, measuring the relationship
strength between these variables, equals 0:55 (while the maximal possible value
of the contingency coefficient for 232 frequency table is 0:7071). The auxiliary
variables x 0ð Þ, :::, x mð Þ include the web-scraped variable y�, the number of employees,
and some variables indicating economic activity.

4.2. Simulation Procedure

The simulation procedure consists of the following steps:

1. The logistic regression model Equation (3) is fitted using the linked non-
probability sample. Then, the estimates Equation (4) of the propensity
scores are obtained for all population elements. They are used further as
Poisson sample selection probabilities.

2. Two independent samples are constructed from the pseudo-real population
U. The first is a stratified simple random sample A mimicking an original
ICT survey sampling design. For simulation purposes, two versions of the
probability samples of different sizes are considered: sample A1 of size 3 091

and a smaller sample A2 of size 1 052. Two different approaches are
employed to collect the second sample B. In the first case, sample B1 is
selected using the Poisson sampling design, with the selection probabilities
obtained in Step 1, with the expected sample size equal to 7 750. In the
second case, a stratified simple random sample B2 of size 7 742 is selected
after the pseudo-real population is divided into strata according to the
enterprise size (5 strata by the number of employees).

Three combinations of probability and non-probability samples are considered:
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(a) Case 1. A1 is used as sample A, and B1 is used as sample B. This combina-
tion corresponds to an existing situation investigating whether integrating
both samples improves estimation accuracy.

(b) Case 2. A2 is used as sample A, and B1 is used as sample B. This combina-
tion uses a probability sample that is three times smaller (cheaper), allow-
ing us to investigate the usefulness of the probability sample in reducing
the biases of the estimates obtained from the non-probability sample.

(c) Case 3. A2 is used as sample A, and B2 is used as sample B. This case con-
siders a scenario where the probability sample size is small, and the non-
probability sample is represented by a sample that does not satisfy assump-
tions (A1) and (A3) and has a structure that is not harmonized with the
estimation methodology.

3. Using the generated samples A and B, the following estimates are calculated:

(a) A set of covariates is chosen from the collection x 0ð Þ, :::, x mð Þ, and a
logistic regression model (3) is applied to the non-probability sample
B to get the estimates bp�k , k 2 U, of the propensity scores. These esti-
mates are then used to evaluate the estimator btB of the population
total ty and three estimators of the variance Var btB

� �
:

� the proposed smooth estimator Equation (12), calculated with
J = 300;

� the bootstrap estimator Equation (14) with parameters T = 500,
D= 10, and L= 20;

� the variance estimator Equation (13) by Chen et al. (2020).
(b) Using the probability sample A, the population total ty is estimated

by applying the regression estimator btreg
A based on the auxiliary

variable y�.
(c) The Hájek estimator of the total, calculated from sample A, serves as a

benchmark in the simulations.
(d) The composite estimators Equation (21) of ty are calculated using each

of the estimates of variance Var btB

� �
listed in (a).

(e) The naive estimator N
P

k2B yk=NB of ty is calculated, where NB is the
size of sample B.

4. Steps 2 and 3 are repeated R= 1000 times. The numerical characteristics, like
the average over the repetitions, are calculated for each estimator of interest.

The selection of covariates for the logistic regression model in Step 3 is needed
to imitate a situation where the data are not well-known to the researcher. The fol-
lowing three logistic regression models of different quality levels are used:

I The model includes all possible covariates that are the same as those used to
estimate the pseudo-inclusion probabilities in Step 1.

II The model incorporates all covariates, except for the number of employees,
which has a smaller impact on the values of the study variable y than the
variable y�:

III The model includes all the covariates without the variable y�:
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The quality comparison of the logistic regression models is performed using the
Akaike information criterion and presented in Table 1. The model with a lower
value of this criterion fits the data better.

According to the values of the Akaike criterion, the logistic regression models
are classified as strong, weak, and poor.

4.3. Simulation Results

The numerical characteristics of the simulated estimates, namely their empirical
means, biases, standard deviations, and root mean square errors (RMSE), are
obtained for both estimates of the population total and variance: where bu rð Þ,
r = 1, :::,R, are the realizations of bu, while the population parameter u denotes ty

or Var btB

� �
.

First of all, the estimators of the variance Var btB

� �
based on the non-probability

samples used in Cases 1 to 3 are graphically overviewed. The variance estimates are
the same for Cases 1 and 2 because they are applied to the same non-probability
sample and are presented in Figure 1. For Case 3, the variance estimates are pre-
sented in Figure 2.

The vertical lines in Figures 1 and 2 represent the empirical variance

Varemp btB

� �
=

1

R� 1

XR

r= 1

bt rð Þ
B �Mean btB

� �� �2

, ð22Þ

where bt rð Þ
B , r = 1, :::,R, are the IPW estimates obtained by (2), and Mean btB

� �
is their

average. The proposed smooth variance estimator is expected to be greater than the
empirical variance because it accounts for both the variability in estimating the pro-
pensity scores and the variability caused by the sample collection mechanism in esti-
mating the population total. In contrast, the empirical variance considers the non-
probability sample described only by pseudo-inclusion indicators.

Considering Figure 1, for the poor model, all variance estimators, including the
proposed smooth estimator Equation (12), are higher than the empirical variance
Equation (22), behave similarly and have higher variability compared to other
model cases. For the strong and weak model cases, the smooth estimator behaves
similarly to the bootstrap estimator, while the variance estimates by Chen et al.
(2020) are, on average, lower.

In Case 3 (Figure 2), as compared to Cases 1 and 2 (Figure 1), we observe the
same trends in the variance estimates, except for the fact that the bootstrap

Table 1. Quality Classification of Logistic Regression Models.

Model Akaike criterion Model quality

Model I 17,504 Strong
Model II 17,825 Weak
Model III 18,742 Poor
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variance estimates have a much wider spread than other variance estimates. This
difference may be because, in Case 3, the non-probability sample does not satisfy
assumptions (A1) and (A3), and the bootstrap variance estimation is more sensitive
to this factor due to resampling.

Figure 1. Variance estimates for the estimator t̂B in Cases 1 and 2.

Figure 2. Variance estimates for the estimator t̂B in Case 3.
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The means and standard deviations of the variance estimates in Table 2 numeri-
cally express the situation presented in Figures 1 and 2.

The results in Table 2 confirm that in Case 3, the SD of the bootstrap variance
estimator is comparatively large. The Chen et al. (2020) variance estimator consis-
tently yields the lowest mean estimates across all models and cases, as it does not
account for the variability caused by the sample collection mechanism. The smooth
variance estimator generally produces higher mean estimates, while its SD remains
similar to that of the Chen et al. (2020) estimator. This suggests that incorporating
two sources of variability increases the value of the variance estimator without
inflating its variability.

The results for all estimators of the population total ty are presented in Figures
3 to 5, which correspond to Cases 1 to 3. Here Composite 1 denotes the composite
estimator (21), with the coefficient ba0 using the smooth estimator of variance,
Composite 2 uses the variance estimator of Chen et al. (2020), and Composite 3 is
based on the bootstrap variance estimator. The estimator btB is denoted by NP.

Figures 3 to 5 depict the positions of the simulated estimates relative to the
known true value ty = 10 672 of the population total, indicated by a straight line.
The naive estimates of the total, using the non-probability sample B as a simple
random sample from the population, exhibit a significant bias across all cases. The
estimates btB (NP estimates) demonstrate a narrow spread for all cases, regardless of
which logistic regression model is utilized. In Cases 1 and 2, where the role of the
non-probability sample is played by a sample selected using the Poisson sampling
design with the pseudo-selection probabilities obtained in Step 1, the estimator btB is
nearly unbiased for the strong model, exhibits some bias for the weak model, and
demonstrates a significant bias for the poor model. When the role of the non-
probability sample is played by a sample selected in a different manner in Case 3,

Table 2. Accuracy Measures of the Estimators of Variance for t̂B.

Model Estimator Cases 1 and 2 Case 3

Mean SD Mean SD

Strong Smooth, cVarzq t̂Bð Þ 1 539 41 1 903 26

Chen et al., cVar að Þ
q t̂Bð Þ 1 365 40 1 779 26

Bootstrap, cVar� t̂Bð Þ 1 557 46 1 841 159

Weak Smooth, cVarzq t̂Bð Þ 1 399 34 1 891 26

Chen et al., cVar að Þ
q t̂Bð Þ 1 217 34 1 714 24

Bootstrap, cVar� t̂Bð Þ 1 403 70 1 838 155

Poor Smooth, cVarzq t̂Bð Þ 2 424 49 2 099 19

Chen et al., cVar að Þ
q t̂Bð Þ. 2 391 49 2 049 18

Bootstrap, cVar� t̂Bð Þ 2 385 88 2 079 185
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Figure 3. Estimates of the population total ty in Case 1.

Figure 4. Estimates of the population total ty in Case 2.

668 Journal of Official Statistics 41(2)



the bias of the estimator btB decreases (compared to the naive estimator); neverthe-
less, it still remains considerable. The behavior of composite estimates remains con-
sistent regardless of the method used to estimate the optimal weight a0. In all
cases, their spread is narrower than that of the regression estimates applied to the
probability sample for the strong and weak models; however, they do not outper-
form regression estimates when the quality of the logistic regression model for the
propensity scores is poor.

In the case where A1 is used as sample A and B2 is used as sample B, the same
tendencies as in Figure 5 are observed. Due to the larger probability sample size
and the lower variance of the unbiased estimator, the spread of the estimates is
slightly narrower. The figure for this case is not shown.

The smooth variance estimator is efficient when assumptions (A1) and (A3) for
the pseudo-inclusion indicators Rk hold, and the logistic regression model used to
estimate pseudo-inclusion probabilities, bpk , is sufficiently strong (well specified).
As the quality of this model declines, the bias in the smooth variance estimator
increases. However, in our application, a composite estimator alleviates this issue
across any variance estimator, as the bias of the estimator btB is notably larger than
its variance due to the relatively large non-probability sample.

The numerical summary of Figures 3 to 5 is provided in Tables 3 to 5,
respectively.

Figure 5. Estimates of the population total ty in Case 3.
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The accuracy measures in Tables 3 to 5 corroborate the observed behavior (refer
to Figures 3–5, respectively) of all three composite estimators, indicating their
insensitivity to the choice of the variance estimator based on the non-probability
sample. For the high-quality (strong) logistic regression model, the NP estimator
based solely on the non-probability sample achieves the lowest RMSE for all cases.
However, this estimator exhibits a significant bias under the poor model.
Simulation results demonstrate that composite estimators are much more stable
due to the bias of the NP estimator incorporated into their expression. Even with a
poor model for the propensity scores, it is possible to obtain an almost unbiased
composite estimator, albeit with an RMSE comparable to that of the regression
estimator applied to the probability sample. In the case of the weak model, compo-
site estimators exhibit a smaller bias than the NP estimator, but their RMSE s are
higher. It is noteworthy that the accuracy characteristics of composite estimators
remain consistent regardless of the differences observed between the variance esti-
mates for the NP estimator of the total (see Table 2).

5. Conclusions and Discussion

The estimates of the population total based on a non-probability sample usually
are biased. The nature of the non-probability sample is typically unknown; how-
ever, there is no reason to presume that it is not random in some specific applica-
tions. One of the ways to decrease the bias of the estimator of the total using a non-
probability sample is to assume the probabilistic nature of this sample and use it
for estimation and inferences.

The assumption of an independent entry of elements into the non-probability
sample with probabilities estimated by the propensity scores from the logistic

Table 3. Accuracy Measures for the Estimators of the Population Total ty = 10 672 in Case 1.

Model Estimator Mean Bias SD RMSE

Hájek 10 676 4 149 149
Regression 10 684 12 111 112
Naive 9 761 �911 46 912

Strong NP estimator 10 671 �1 36 36
Composite 1 10 682 10 82 82
Composite 2 10 682 10 81 82
Composite 3 10 682 10 82 82

Weak NP estimator 10 734 62 34 71
Composite 1 10 700 28 84 88
Composite 2 10 700 28 84 88
Composite 3 10 700 28 84 88

Poor NP estimator 9 695 �977 47 978
Composite 1 10 673 1 113 113
Composite 2 10 673 1 113 113
Composite 3 10 673 1 113 113
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regression model is well-suited for this purpose. The accuracy of the IPW estimator
of the total depends on how well the propensity score model is specified. As the
simulation results show, if the model adequately reflects the mechanism of forma-
tion of a non-probability sample, then the IPW estimator may have an insignificant
bias. Otherwise, the IPW estimator is biased, and a probability sample with an
approximately unbiased estimator of the total is needed. The proposed composite
estimator with the bias component included in its coefficient gives nearly unbiased
estimates in the case of any logistic regression model for the propensity scores.

Table 4. Accuracy Measures for the Estimators of the Population Total ty = 10 672 in Case 2.

Model Estimator Mean Bias SD RMSE

Hájek 10 700 28 338 339
Regression 10 704 32 248 250
Naive 9 761 �911 46 912

Strong NP estimator 10 671 �1 36 36
Composite 1 10 690 18 176 177
Composite 2 10 690 18 176 177
Composite 3 10 691 19 177 178

Weak NP estimator 10 734 62 34 71
Composite 1 10 714 42 176 181
Composite 2 10 714 42 176 181
Composite 3 10 714 42 176 181

Poor NP estimator 9 695 �977 47 978
Composite 1 10 644 �28 265 267
Composite 2 10 644 �28 265 267
Composite 3 10 644 �28 265 267

Table 5. Accuracy Measures for the Estimators of the Population Total ty = 10 672 in Case 3.

Model Estimator Mean Bias SD RMSE

Hájek 10 700 28 338 339
Regression 10 704 32 248 250
Naive 10 392 �280 41 283

Strong NP estimator 10 533 �139 31 143
Composite 1 10 637 �35 192 195
Composite 2 10 637 �35 192 195
Composite 3 10 636 �36 192 195

Weak NP estimator 10 540 �132 31 135
Composite 1 10 639 �33 190 193
Composite 2 10 639 �33 190 193
Composite 3 10 638 �34 190 193

Poor NP estimator 10 374 �298 41 301
Composite 1 10 605 �67 225 235
Composite 2 10 605 �67 225 235
Composite 3 10 604 �68 225 235
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However, it is not enough to assume a probabilistic sample pseudo-selection
mechanism for a non-probability sample. One should also consider the possible
randomness in this mechanism, as it is done for the proposed smooth estimator of
variance. This estimator averages the known estimator of the variance of the
ratio estimator over the distribution of propensity score estimates. According to
the simulation results, if the model for the propensity scores is not poor, then this
average value is close to the value of the bootstrap estimator of variance, and its
spread is not wider than that for the bootstrap. The advantage of the smooth
variance estimator over the bootstrap variance estimator becomes even more
pronounced when the non-probability sample formation mechanism significantly
differs from that described by the logistic regression model.

In our setup, the values of the study variable are available in both non-
probability and probability samples. In practice, if the collection of probability
sample data is expensive, then a small probability sample may be selected and
utilized through composite estimation to decrease the bias of the IPW estimate.
The simulation study demonstrates that the composite estimator is more efficient
than the estimator based on a small probability sample and performs comparably
to the estimator based on a large probability sample. Moreover, regardless of the
probability sample size, composite estimators significantly improve the accuracy of
other estimators of the population total if the underlying logistic regression model
is well-specified.

Further research could focus on integrating probability and non-probability
samples over time, addressing non-sampling errors, and estimating nonlinear
population parameters while accounting for the randomness of the non-probability
sample.
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Rennes 2.

Chen, Y., P. Li, and C. Wu. 2020. ‘‘Doubly Robust Inference with Nonprobability Survey

Samples.’’ Journal of the American Statistical Association 115 (532): 2011–21. DOI:

https://doi.org/10.1080/01621459.2019.1677241.

Cochran, W. G. 1977. Sampling Techniques. 3rd ed. John Wiley & Sons.

Elliott, M. N., and A. Haviland. 2007. ‘‘Use of a Web-Based Convenience Sample to

Supplement a Probability Sample.’’ Survey Methodology 33 (2): 211–5.

Elliott, M. R. 2009. ‘‘Combining Data from Probability and Non-Probability Samples Using

Pseudo-Weights.’’ Survey Practice 2 (6): 1–7. DOI: https://doi.org/10.29115/SP-2009-0025.

Elliott, M. R., and R. Valliant. 2017. ‘‘Inference for Nonprobability Samples.’’ Statistical

Science 32 (2): 249–64. DOI: https://doi.org/10.1214/16-sts598.

Fahrmeir, L., and H. Kaufmann. 1985. ‘‘Consistency and Asymptotic Normality of the

Maximum Likelihood Estimator in Generalized Linear Models.’’ The Annals of Statistics

13 (1): 342–68. DOI: https://doi.org/10.1214/aos/1176346597.

Fahrmeir, L., and G. Tutz. 2001. Multivariate Statistical Modelling Based on Generalized

Linear Models. 2nd ed. Springer. DOI: https://doi.org/10.1007/978-1-4757-3454-6.

Hartley, H. O., and R. L. Sielken, Jr. 1975. ‘‘A ‘Super-Population Viewpoint’ for Finite

Population Sampling.’’ Biometrics 31 (2): 411–22. DOI: https://doi.org/10.2307/2529429.

Isaki, C. T., and W. A. Fuller. 1982. ‘‘Survey Design Under the Regression Superpopulation

Model.’’ Journal of the American Statistical Association 37 (377): 89–96. DOI: https://doi

.org/10.2307/2287773.

Japec, L., F. Kreuter, M. Berg, P. Biemer, P. Decker, C. Lampe, J. Lane, C O’Neil, and A.

Usher. 2015. ‘‘Big Data in Survey Research: AAPOR Task Force Report.’’ Public Opinion

Quarterly 79 (4): 839–80. DOI: https://doi.org/10.1093/poq/nfv039.

Kim, J. K., and K. Morikawa. 2023. ‘‘An Empirical Likelihood Approach to Reduce

Selection Bias in Voluntary Samples.’’ Calcutta Statistical Association Bulletin 75 (1):

8–27. DOI: https://doi.org/10.1177/00080683231186488.

Kim, J. K., and S.-M. Tam. 2021. ‘‘Data Integration by Combining Big Data and Survey

Sample Data for Finite Population Inference.’’ International Statistical Review 89 (2):

382–401. DOI: https://doi.org/10.1111/insr.12434.

Kim, J. K., and Z. Wang. 2019. ‘‘Sampling Techniques for Big Data Analysis.’’ International

Statistical Review 87 (1): 177–91. DOI: https://doi.org/10.1111/insr.12290.

Liu, A.-C., S. Scholtus, and T. de Waal. 2023. ‘‘Correcting Selection Bias in Big Data by

Pseudo-Weighting.’’ Journal of Survey Statistics and Methodology 11 (5): 1181–203. DOI:

https://doi.org/10.1093/jssam/smac029.

Liu, Y., M. Yuan, P. Li, and C. Wu. 2024. ‘‘Statistical Inference with Nonignorable Non-

Probability Survey Samples.’’ ArXiv e-prints. https://arxiv.org/abs/2410.02920.

Liu, Z., and R. Valliant. 2023. ‘‘Investigating an Alternative for Estimation from a

Nonprobability Sample: Matching Plus Calibration.’’ Journal of Official Statistics 39 (1):

45–78. DOI: https://doi.org/10.2478/jos-2023-0003.

Lohr, S. L., and T. E. Raghunathan. 2017. ‘‘Combining Survey Data with Other Data

Sources.’’ Statistical Science 32 (2): 293–312. DOI: https://doi.org/10.1214/16-STS584.

Lothian, J., A. Holmberg, and A. Seyb. 2019. ‘‘An Evolutionary Schema for Using ‘It-Is-

What-It-Is’ Data in Official Statistics.’’ Journal of Official Statistics 35 (1): 137–65. DOI:

http://dx.doi.org/10.2478/JOS-2019-0007.

Čiginas et al. 673

https://doi.org/10.3390/math11081782
https://doi.org/10.3390/math11081782
https://doi.org/10.1080/01621459.2019.1677241
https://doi.org/10.29115/SP-2009-0025
https://doi.org/10.1214/16-sts598
https://doi.org/10.1214/aos/1176346597
https://doi.org/10.1007/978-1-4757-3454-6
https://doi.org/10.2307/2529429
https://doi.org/10.2307/2287773
https://doi.org/10.2307/2287773
https://doi.org/10.1093/poq/nfv039
https://doi.org/10.1177/00080683231186488
https://doi.org/10.1111/insr.12434
https://doi.org/10.1111/insr.12290
https://doi.org/10.1093/jssam/smac029
https://arxiv.org/abs/2410.02920
https://doi.org/10.2478/jos-2023-0003
https://doi.org/10.1214/16-STS584
http://dx.doi.org/10.2478/JOS-2019-0007
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