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Abstract: Frailty is a common syndrome in the elderly, marked by an increased risk of
negative health outcomes such as falls, disability and death. It is important to detect
frailty early and accurately to apply timely interventions that can improve health results
in older adults. Traditional evaluation methods often depend on subjective evaluations
and clinical opinions, which might lack consistency. This research uses deep learning to
classify frailty from spectrograms based on IMU data collected during gait analysis. The
study retrospectively analyzed an existing IMU dataset. Gait data were categorized into
Frail, PreFrail, and NoFrail groups based on clinical criteria. Six IMUs were placed on
lower extremity segments to collect motion data during walking activities. The raw signals
from accelerometers and gyroscopes were converted into time–frequency spectrograms.
A convolutional neural network (CNN) trained solely on raw IMU-derived spectrograms
achieved 71.4 % subject-wise accuracy in distinguishing frailty levels. Minimal preprocess-
ing did not improve subject-wise performance, suggesting that the raw time–frequency
representation retains the most salient gait cues. These findings suggest that wearable
sensor technology combined with deep learning provides a robust, objective tool for frailty
assessment, offering potential for clinical and remote health monitoring applications.

Keywords: frailty; IMU; spectrogram; convolutional neural networks; classification; gait

1. Introduction
Frailty refers to a clinical syndrome characterized by diminished physiological reserves

that increase the risk of adverse health outcomes such as deteriorating mobility, disability,
falls, hospital admissions, and death [1]. Although frailty can be reversed, especially in
its initial phases [2–4], its detection often relies on subjective evaluations, such as Fried’s
five criteria (weight loss, exhaustion, inactivity, slowness and weakness) [1]. These criteria
may be prone to bias and lack feasibility for routine care, as self-reported measures can be
inconsistent [5–8]. Objective methods for frailty early detection are therefore highly sought
after [9,10].

A growing body of research suggests that gait parameters, such as stride time vari-
ability, step length and double support time, may offer early markers for frailty [11,12].
However, such studies typically require laboratory-based systems, such as camera systems,
force platforms, or computerized walkways [13–15], which are often costly and impractical
in daily clinical settings. Wearable devices like inertial measurement units (IMUs) provide
a promising alternative for continuous gait monitoring in real-world environments, espe-
cially combined with recent technological advancements in deep learning algorithms for
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signal classification [16–18]. IMUs can capture acceleration and angular velocity at multiple
body segments, potentially revealing subtle mobility alterations prior to clinical manifes-
tations of frailty [19–22]. Unlike traditional optical motion capture systems that require
multiple cameras, studies use one or more IMUs on different body parts to capture gait
dynamics. Data from a single IMU are effective for activity recognition via mobile phones
or smartwatches [23–26]. In gait analysis, even a single IMU on each foot can monitor gait
asymmetry and other parameters effectively [27–30]. Using multiple sensors improves
frailty evaluation by providing quantitative data to differentiate levels of frailty [31,32].

Although IMUs offer numerous advantages, the analyzing IMU data can be complex,
involving robust algorithms for gait events detection and intricate signal processing meth-
ods like filtering and noise reduction, which might produce varying outcomes regarding
the accuracy of feature extraction [32–35]. IMU-based human movement analysis can be
performed in time and frequency domains. Combining both analyses can enhance under-
standing of gait characteristics, particularly in pathological conditions like Parkinson’s
disease, stroke, or frailty [35–38].

The integration of machine learning (ML) algorithms and convolution neural network
(CNN) techniques by converting IMU time-domain data into time–frequency representa-
tions (e.g., spectrograms, Gramian Angular Field GAF, Recurrence Plot and Markov Transi-
tion Field images) has further enhanced the predictive accuracy for frailty identification,
classifying Parkinson’s disease patients, healthy controls and gymnast actions [36,39–43].
Arshad et al. successfully combined short time Fourier transform (STFT) and GAF repre-
sentations of IMU gait signals for frailty assessment [44]. These image-based approaches
leverage machine vision techniques as an alternative to optical motion capture systems,
enabling markerless gait classification through CNNs [36]. Beyond CNNs, other time
series classification algorithms (e.g., InceptionTime) have also proven effective for frailty
classification, achieving an 81% accuracy on test data [45,46]. Given that frailty datasets
are frequently small and heterogenous, there remains a need for optimized strategies to
harness IMU data—particularly minimally processed signals—without extensive feature
engineering [47–52].

This study aims to evaluate the feasibility and effectiveness of using raw or minimally
processed IMU-derived spectrograms for frailty classification via deep learning. Unlike
prior investigations that rely heavily on custom-engineered features or highly processed
signals, we focus on determining whether raw IMU data retains sufficient discriminatory
power to differentiate among Frail, PreFrail and NoFrail older adults. Additionally, we
compare multiple signal preprocessing approaches (e.g., baseline gravitational offset re-
moval, low-pass filtering) to assess their impact on classification performance. By reducing
the need for complex signal processing and leveraging spectrogram-based representations,
we seek to streamline frailty assessment for potential clinical and real-world applications,
thereby filling the gap in the existing literature where many proposed methods remain
resource-intensive or inconsistent across different populations.

2. Materials and Methods
This study was conducted retrospectively using an existing IMU dataset originally

collected from the study by Apšega et al., which investigated the association between frailty
levels and gait parameters derived from wearable sensors [32]. Although the original
publication focused on correlational analysis and descriptive statistics, the present work
extends those findings by performing a deep learning–based classification of frailty status.

Frailty Gait Database (FRGaitDB) comprises clinical screening data and IMU-based
recordings from 133 participants with an average age ± SD of 75.1 ± 8 and a body
mass index of 27.6 ± 5.8. The frailty level was categorized following Fried et al. [1]:
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NoFrail = no criteria; PreFrail = one or two criteria; and Frail = three or more criteria out of
the five components, consisting of weight loss, weakness, exhaustion, slowness and low
physical activity. Based on this evaluation, participants were assigned to Frailty (n = 35),
PreFrail (n = 67) and NoFrail (n = 31) groups. Six wireless inertial measurement units
(IMUs, Shimmer Research, Dublin, Ireland) were secured to the thighs, shins and feet
using straps. Subjects were instructed to walk 4 m at their normal speed, and data from
three separate trials were used for further processing and analysis. The sensors’ data were
collected through a Bluetooth wireless connection at a sampling rate of 256 Hz.

A multimodal deep learning model was developed to classify participants into three
frailty categories: Frail, PreFrail, and NoFrail. The data processing and classification model
architecture consisted of two parallel branches—image-based and clinical-based— and it is
shown in Figure 1.

Figure 1. Multimodal deep learning model architecture.

Data processing steps are described in subsequent sections.

2.1. IMU Data Acquisition and Preprocessing

The dataset comprised IMU sensor recordings from participants during gait trials.
Each participant had inertial measurement units attached to both lower limbs (thigh, shank
and foot). The IMU sensors recorded tri-axial accelerometer and gyroscope data across
three walking trials per participant.

2.1.1. IMU Data Preprocessing and Spectrogram Generation

The data were processed into three distinct datasets to evaluate the impact of prepro-
cessing on classification performance:

• Raw signals (no processing). Unaltered tri-axial accelerometer and gyroscope signals
were used to evaluate the baseline capability of the model to learn directly from
unfiltered sensor data. Examples of raw accelerometer and gyroscope signal are
shown in Figure 2.
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Figure 2. Raw gyroscope and accelerometer signals of IMU fixed on thigh segment.

• Preprocessed signals (baseline processing). In the baseline processing, accelerometer
data were detrended to remove gravitational offset [50]. For each gait trial, a baseline
gravitational component was estimated as the mean acceleration over samples 5 to 30,
corresponding to an initial standing phase, which was then subtracted from the entire
accelerometer signal along each axis, effectively isolating dynamic acceleration related
to movement (Figure 3). Gyroscope data were retained in their original form.

Figure 3. Baseline processed accelerometer signals of IMU fixed on thigh, shank and foot segments.

• Filtered signals (low pass filtering). The gravity-corrected accelerometer signals (from
the baseline processed dataset) and raw gyroscope signals were further processed
using a 2nd-order low-pass Butterworth filter with a cut-off frequency of 8 Hz, applied
separately to each axis (Figure 4). The selection of the 8 Hz cutoff frequency was
informed by the existing literature and gait frequency analysis. Typical human walking
involves frequency components predominantly below 10 Hz, with higher frequencies
generally attributed to noise or extraneous motion artifacts [52,53].
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Figure 4. Low pass filtered gyroscope and accelerometer signals of IMU fixed on thigh segment.

Accelerometer and gyroscope signals collected from IMUs were transformed into
time–frequency spectrograms to serve as input for deep learning models. The Short-Time
Fourier Transform (STFT) was applied to the raw, preprocessed and filtered IMU signals
using a sampling frequency of 256 Hz and a Hanning window of size 256 samples with
50% overlap, generating a time–frequency representation of the signal’s power spectral
density. To improve the visibility of spectral features, the power spectral density was
log-transformed. Each spectrogram was saved as a color image (RGB) with axes and labels
removed to ensure a clean input for the convolutional neural network (CNN). Figure 5
shows example spectrograms generated from accelerometer and gyroscope signals from the
foot segment. Despite the short walking distances (~4 m), we included the entire recorded
sequence, including acceleration and deceleration phases, to mirror a realistic clinical setup
and maintain trial consistency. Clinical studies indicate that relevant movement features
can emerge during transitional gait phases.

Figure 5. Spectrograms generated from accelerometer signals.

2.1.2. Data Partitioning and Leakage Control

All experiments used a subject-wise split: the three walking trials recorded for a given
participant were always assigned to the same training, validation or test partition to avoid
data leakage. The resulting fold sizes were 106/13/14 subjects (training/validation/test).
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2.2. Clinical Data

Clinical data contains the evaluation of participants based on frailty assessment
methodology and clinical features that were imported from an Excel spreadsheet and
then processed by normalization. Clinical features are organized into grip strength, physi-
cal activity, timed tests, balance tests, gait assessment, demographics and gait parameters
(Table 1). Descriptive statistics are reported as mean ± standard deviation, and differences
among the three frailty categories for each clinical or gait-related feature were evaluated
with an omnibus test. When the omnibus test reached significance (threshold p < 0.05), post
hoc pair-wise comparisons were carried out (Bonferroni-adjusted independent-samples
t-tests after ANOVA). Principal Component Analysis (PCA) was conducted within each
feature group to reduce dimensionality while maintaining 95% of the variance.

Table 1. Clinical evaluation features.

Feature Frail PreFrail NoFrail p-Value

Grip strength
Right 1 Grip Force 20.51 ± 8.82 27.58 ± 8.77 28.35 ± 7.58 0.00013
Left 1 Grip Force 20.31 ± 9.45 26.55 ± 9.83 27.90 ± 7.64 0.00142
Right 2 Grip Force 20.54 ± 9.09 28.19 ± 9.08 30.13 ± 7.39 0.00002
Left 2 Grip Force 20.57 ± 9.33 27.46 ± 10.05 28.71 ± 7.41 0.00049
Right 3 Grip Force 20.71 ± 9.05 28.73 ± 8.79 30.13 ± 7.58 0.00001
Left 3 Grip Force 20.60 ± 9.45 27.61 ± 9.59 28.58 ± 7.73 0.00039
Max Grip Force 23.06 ± 8.77 31.22 ± 8.73 31.81 ± 7.91 0.00001
Mobility
TUG time 15.67 ± 4.89 12.69 ± 4.53 7.64 ± 1.84 0.00000
Tinneti Test score 20.54 ± 3.90 22.28 ± 3.49 25.48 ± 2.71 0.00000
TT balance 11.40 ± 2.39 12.24 ± 1.99 14.23 ± 1.91 0.00000
TT gait 9.06 ± 2.04 10.03 ± 1.87 11.16 ± 1.37 0.00004
BERG balance 37.77 ± 6.81 40.91 ± 5.88 49.16 ± 7.37 0.00000
Dynamic Gait Index 14.26 ± 4.22 16.15 ± 3.50 19.32 ± 3.34 0.00000
Anthropometrics
Age 78.80 ± 7.50 74.00 ± 8.47 73.19 ± 6.34 0.00479
Height (cm) 160.86 ± 6.43 165.79 ± 9.59 162.74 ± 9.60 0.02418
Weight (kg) 68.43 ± 15.96 75.85 ± 15.69 76.13 ± 16.27 0.00604
BMI 26.47 ± 6.29 27.68 ± 5.67 28.72 ± 5.52 0.29165
Spatiotemporal Gait Parameters
Gait Velocity (m/s) 0.51 ± 0.13 0.63 ± 0.13 0.97 ± 0.16 0.00000
Gait Time (s) 8.42 ± 2.51 6.69 ± 1.61 4.25 ± 0.79 0.00000
Right Swing (s) 0.50 ± 0.08 0.51 ± 0.08 0.44 ± 0.06 0.00025
Left Swing (s) 0.53 ± 0.07 0.54 ± 0.06 0.48 ± 0.07 0.00007
Right Stance (s) 0.97 ± 0.21 0.84 ± 0.13 0.63 ± 0.11 0.00000
Left Stance (s) 0.93 ± 0.21 0.81 ± 0.13 0.59 ± 0.10 0.00000
Right Stride (s) 1.47 ± 0.25 1.35 ± 0.16 1.07 ± 0.15 0.00000
Left Stride (s) 1.46 ± 0.23 1.35 ± 0.16 1.06 ± 0.15 0.00000
Double Support (s) 0.21 ± 0.08 0.15 ± 0.07 0.08 ± 0.04 0.00000
Cadence 84.54 ± 12.98 91.32 ± 11.83 116.75 ± 13.17 0.00000
Step Time (s) 0.73 ± 0.13 0.67 ± 0.08 0.52 ± 0.06 0.00000
Right Swing (%) 34.51 ± 5.02 37.64 ± 4.38 41.28 ± 3.30 0.00000
Left Swing (%) 36.55 ± 4.71 40.35 ± 4.07 44.98 ± 3.50 0.00000
Right Stance (%) 65.49 ± 5.02 62.36 ± 4.38 58.72 ± 3.30 0.00000
Left Stance (%) 63.45 ± 4.71 59.65 ± 4.07 55.02 ± 3.50 0.00000

2.3. Subject-Based Data Splitting

To ensure realistic generalization and prevent data leakage between training and
testing, a subject-wise data split was applied. In total, 80% of participants were divided
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into training, 10% to validation and 10% to testing subsets. There were 108 spectrograms
per subject (3 axes of accelerometer and 3 axes of gyroscope per sensor, 6 sensors on 6 lower
leg segments and 3 trials), totaling 14364 samples per dataset. Each spectrogram file name
encoded the participant ID, sensor location (thigh, shank, foot), side (left, right), and signal
channel. These IDs were used to group all spectrograms belonging to the same participant.
Stratified random sampling based on frailty categories (Frail, PreFrail and NoFrail) was
implemented to ensure proportional allocation by frailty class, thereby preserving the
original class distribution within each subset. Participants were independently assigned
to training, validation and test subsets, ensuring that all spectrograms from a specific
participant were grouped within the same subset.

2.4. Deep Learning Model Architecture

The image branch (Figure 1) consisted of a pre-trained ResNet-50 convolutional neural
network (CNN), which was pre-trained on ImageNet, comprising 50 convolutional layers
organized into five main stages. ResNet-50 was chosen for its demonstrated effectiveness
in capturing intricate spatial hierarchies, including those in non-natural image domains
such as spectrograms [54,55]. Its deep residual architecture facilitates the efficient learning
of time–frequency patterns that indicate gait abnormalities and frailty-specific spectral
signatures. The initial convolutional layers employed a 7 × 7 kernel size, followed by
multiple 3 × 3 kernels in subsequent residual blocks. Early convolutional layers were frozen,
while layers 3 and 4 were fine-tuned during training to adapt to spectrogram data. The final
fully connected layer of ResNet-50 was replaced with a customized classification head that
features batch normalization, dropout regularization (with rates of 0.2 and 0.3), and ReLU
activation functions to reduce overfitting on relatively small datasets and enhance model
generalizability. The clinical branch consisted of a two-layer feedforward neural network
that processed the reduced clinical feature vector obtained after principal component
analysis (PCA). This network consisted of an input layer (with the same number of neurons
as the PCA-reduced feature set size), followed by hidden layers with 64 and 32 neurons,
each activated by ReLU and regularized with dropout (with a rate of 0.3). Outputs from both
branches were concatenated and passed through a fully connected fusion layer containing
256 neurons, a ReLU activation function and dropout regularization (rate of 0.5). The
spectrogram and clinical features were concatenated and passed through a fully connected
fusion layer, followed by a SoftMax output layer for final classification into the three
frailty categories.

2.5. Training Process

Model training and evaluation were conducted using GPU acceleration with CUDA. Due
to imbalanced class sizes, class weights were assigned inversely proportional to the frequency
of each class, i.e., 1.2 for Frail, 0.7 for PreFrail and 1.3 for NoFrail. During the training, the
cross-entropy loss function was used as the objective, and the Adam optimizer was utilized
with a learning rate of 0.0005. Early stopping with a patience of 5 epochs was applied to
avoid overfitting, monitoring the validation accuracy. A batch size of 32 was employed.
Each of the three spectrogram datasets—raw, baseline-processed and low-pass filtered—was
trained independently to assess the effect of signal conditioning on model performance. This
resulted in three separate trained models, each optimized under identical hyperparameters
and evaluation protocols. A 5-fold Stratified Cross-Validation was used to ensure balanced
train, validation and test splits, maintaining proportional class representation.

2.6. Evaluation Metrics

Assessment of classification accuracy is performed at both the image and subject scales.
Model performance was assessed at two levels:



Sensors 2025, 25, 3351 8 of 16

• Spectrogram-Level Evaluation. Classification accuracy, confusion matrix, sensitivity,
specificity and balanced accuracy were computed at the individual spectrogram level.

• Subject-Level Evaluation. Each participant was assigned a final predicted label using
a majority vote across all their spectrograms. Subject-level confusion matrices and
accuracy were also computed to reflect better real-world performance, where clinical
decisions would be based on whole-subject classification.

To determine whether the observed differences in classification accuracy and other
metrics among the raw, baseline and low-pass filtered methods were statistically significant,
a Friedman test was performed on the results obtained from 5-fold cross-validation. Each
fold’s performance metric (accuracy, F1-score, etc.) was treated as a repeated measure.
Where the Friedman test indicated significance (p < 0.05), a post hoc test (e.g., Nemenyi
test) was applied to identify which methods significantly differed.

Separate training on clinical data was performed to gauge the benefit of the clinical
features only, and accuracy and macro-F1 were averaged over the three cross-validation
folds (same splits as in the main experiment).

Additionally, to assess the possible effects of data leakage, an analysis was conducted by
comparing three evaluation scenarios: (a) subject-wise classification (where all spectrograms
from a subject are included in either the training, validation or test sets); (b) random split
classification (where spectrograms from the same subject could appear in several dataset
partitions) and (c) cross-evaluation classification (validating across different subjects).

3. Results
This study evaluated the classification performance of raw, processed, and low-pass

filtered IMU signals combined with clinical features, as well as an alternative approach
based solely on spectrogram representations of IMU-derived gait data. The primary
objective of this study was to evaluate whether raw or minimally processed IMU signals,
represented as spectrograms, could effectively differentiate between Frail, PreFrail, and
NoFrail individuals. The classification performance was assessed using precision, recall,
F1-score and overall accuracy, comparing the ability of different data processing techniques
to distinguish between Frail, PreFrail and NoFrail individuals.

Table 2 presents the classification performance across these datasets using a multi-
modal classification model.

Table 2. Classification performance results.

Class Precision Recall F1-Score Support Average Accuracy
(%)

Raw IMU data + clinical features
Frail 0.945 ± 0.075 0.925 ± 0.081 0.933 ± 0.070 756
PreFrail 0.881 ± 0.077 0.811 ± 0.108 0.841 ± 0.081 1512
NoFrail 0.703 ± 0.101 0.825 ± 0.099 0.752 ± 0.072 648 85.19
macro avg 0.843 ± 0.071 0.854 ± 0.071 0.842 ± 0.071 2916
weighted avg 0.858 ± 0.069 0.844 ± 0.073 0.845 ± 0.073 2916
Baseline processed IMU data + clinical features
Frail 0.993 ± 0.007 0.996 ± 0.006 0.995 ± 0.003 756
PreFrail 0.907 ± 0.037 0.854 ± 0.058 0.879 ± 0.047 1512
NoFrail 0.715 ± 0.106 0.801 ± 0.070 0.754 ± 0.087 648 88.15
macro avg 0.871 ± 0.045 0.884 ± 0.043 0.876 ± 0.045 2916
weighted avg 0.886 ± 0.041 0.879 ± 0.045 0.881 ± 0.044 2916
Low-pass filtered IMU data + clinical features
Frail 0.980 ± 0.035 0.979 ± 0.041 0.979 ± 0.024 756
PreFrail 0.915 ± 0.042 0.846 ± 0.056 0.878 ± 0.043 1512
NoFrail 0.719 ± 0.078 0.838 ± 0.066 0.773 ± 0.070 648 88.15
macro avg 0.871 ± 0.041 0.888 ± 0.041 0.877 ± 0.041 2916
weighted avg 0.888 ± 0.038 0.879 ± 0.042 0.881 ± 0.041 2916
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The findings reveal that a combination of raw IMU data and clinical features reached
an average accuracy of 85.19%, highlighting that even minimally processed signals hold
valuable information for classifying frailty. The precision and recall metrics for the Frail
and PreFrail categories were notably high (0.945 and 0.881 for precision, 0.925 and 0.811
for recall, respectively), implying that unprocessed sensor data alone forms a solid foun-
dation for classification. Nonetheless, the NoFrail category demonstrated lower precision
(0.703) and recall (0.825), pointing to a higher chance of incorrect classification for NoFrail
individuals. The macro-averaged F1-score for this method was 0.842, indicating a bal-
anced performance across all categories. Implementing preprocessing strategies on IMU
data, specifically stripping the gravitational element and normalizing signals, led to en-
hanced classification efficacy. The baseline processed IMU dataset saw a rise in accuracy
to 88.15%, with significant gains in identifying Frail individuals, where the F1-score went
up to 0.995. The PreFrail category experienced a moderate rise in F1-score (0.879), while
NoFrail classification remained unchanged (F1-score = 0.754). These results indicate that
preprocessing signals boost deep learning models’ capability to differentiate between frailty
categories, especially for the most critical cases. Further enhancement via low-pass filtering
of IMU signals kept the overall classification accuracy at 88.15%, with slight variations in
the performance of individual categories. The F1-score for NoFrail classification slightly
improved to 0.773, showing that filtering reduced noise and improved the model’s accuracy
in identifying NoFrail individuals. However, a slight drop in Frail classification (F1-score
= 0.979) suggests that removing high-frequency elements could have removed essential
gait-related data for the most severe frailty cases. Regardless, the macro-averaged F1-score
stayed consistent at 0.877, affirming the overall stability of both processing techniques.

The statistical significance tests using the Friedman test were performed on macro-
level performance (averaged across all classes) and per-class metrics for Frail, PreFrail, and
NoFrail. Recall in the Frail class had the largest Friedman statistic (3.50) but did not reach
significance (p = 0.1738). Precision and F1 also showed no significant differences (p = 0.9460
and p = 0.8187, respectively). No metric demonstrated significance in the PreFrail class (all
p-values > 0.05). Similarly, Friedman tests showed non-significant differences for precision,
recall and F1-score (highest statistic = 1.60) in the NoFrail class.

To further evaluate the feasibility of spectrogram-based frailty classification, models
were trained solely on time–frequency representations of IMU signals without explicit clinical
features. The dataset was structured as follows: a subject-level dataset containing n = 106
for training, n = 13 for validation, and n = 14 for testing subjects; a spectrogram-level dataset
containing Training n = 11448, Validation n = 1404, and Test n = 1512 spectrogram images.

Using a strict subject-wise split, the Raw spectrogram model reached 71.43% accuracy,
substantially higher than the Processed (64.29%) and Filtered spectrogram models (64.29%)
(Figure 6). These results suggest that aggressive filtering may remove subtle high-frequency
gait components informative for frailty staging.

After analyzing the top-performing spectrogram models through confusion matrix
analysis, the following test accuracies were observed: Raw spectrograms achieved 93.11%,
Processed spectrograms reached 97.22%, and Low-pass filtered spectrograms attained
92.14% (Figure 7).
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Figure 6. Subject-level classification confusion matrices comparing raw, processed, and filtered spectro-
gram models. Color intensity indicates classification accuracy (darker colors represent higher values).

Figure 7. Spectrogram-level classification confusion matrices comparing raw, processed and filtered
spectrogram models. Color intensity indicates classification accuracy (darker colors represent higher
values).

The numerical performance of the subject-level and spectrogram-level splits of
spectrogram-only models is summarized in Table 3.

Table 3. Classification performance results of spectrogram-only models.

Spectrograms Accuracy (%) Macro
Precision Macro Recall Macro F1

Subject-level
Raw 71.43 0.74 0.68 0.70
Baseline 64.29 0.67 0.62 0.63
Filtered 64.29 0.68 0.61 0.63
Spectrogram-
level
Raw 86.08 0.86 0.85 0.85
Baseline 97.22 0.97 0.97 0.97
Filtered 92.14 0.92 0.92 0.92
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These findings demonstrate that deep learning models trained solely on spectrogram
data can achieve high accuracy rates. Notably, the processed spectrograms provided the
highest classification performance with 97.22% accuracy. This indicates that the time–
frequency representations of IMU signals are effective for classifying frailty, even without
the inclusion of specifically designed clinical features.

The clinical feature block achieved an accuracy of 65.38%, lower than the 71.4%
accuracy obtained using raw spectrograms. Combining these two inputs increased the
accuracy to 72.75% (∆ = 1.35%).

Data leakage analysis shows that random splitting artificially inflates performance by
15.8% (Figure 8).

Figure 8. Effect of data leakage on test accuracy.

Results confirm a significant overestimation of classification performance when ran-
dom splits are used instead of subject-wise separation. In particular, the random split test
accuracy for the raw spectrogram model was 86.08%, whereas its subject-wise accuracy
was only 62.31%, revealing an overestimation factor of 1.38. This suggests that models
trained on spectrograms may memorize subject-specific patterns rather than generalizable
gait characteristics, leading to inflated performance in cross-validation scenarios that do
not enforce subject separation. The findings indicate that random distribution of spectro-
grams across the training, validation, and test sets results in exaggerated classification
performance, likely due to overfitting and feature redundancy when images from the same
subject are included in multiple partitions.

4. Discussion
The findings of this research offer insights into the possibility of categorizing frailty

status using deep learning applied to IMU-derived gait signals and spectrogram-based
representations. The results indicate that both raw and processed IMU signals have an
adequate ability to differentiate among Frail, PreFrail, and NoFrail individuals. However,
signal preprocessing is essential for improving classification performance, especially for



Sensors 2025, 25, 3351 12 of 16

detecting Frail individuals. Comparing raw, baseline processed and low-pass filtered IMU
signals revealed that preprocessing increased classification accuracy from 85.19% (raw) to
88.15% (processed and filtered). Spectrogram-based classification accuracy is similar to
the time-series classification using the InceptionTime model (81%); however, in a study
by Amjad et al., they did not perform classification on a subject-based level [46]. Arshad
achieved similar classification performance by combining STFT and GAF representations
of IMU gait signals of frailty subjects [43,44]. Although the processed and baseline filtered
methods produced slightly higher average performance metrics than raw in some cases
(e.g., accuracy, F1-score), the observed differences did not reach statistical significance.

The most significant enhancement was noted in the Frail category, where the F1-score
rose from 0.933 (raw) to 0.995 (processed). This implies that preprocessing boosts the
model’s capability to detect movement deficits linked to frailty, likely by decreasing sensor
noise and eliminating irrelevant signal variations. Nonetheless, classification performance
for NoFrail individuals was consistently lower across all datasets (F1-score: 0.752 for raw,
0.754 for processed, 0.773 for filtered), suggesting that distinguishing healthy older adults
from PreFrail individuals is still difficult. This is consistent with previous studies that
showed frailty transitions are gradual rather than binary, and gait changes may be more
subtle in early frailty stages [1,2]. Looking at the clinical features alone, in our previous
study we have determined that gait speed was the most sensitive parameter for the identi-
fication of frailty and stride time was sensitive for discriminating against PreFrail or Frail
from NoFrail [32]. Moreover, increased double support time was expressed in PreFrail
and Frail subjects. Further optimization, such as combining biomechanical parameters or
incorporating additional motion-based descriptors, could enhance NoFrail classification.
Notably, low-pass filtering did not significantly outperform baseline processing, indicating
that eliminating high-frequency components does not necessarily improve classification
performance. While filtering slightly enhanced NoFrail classification, it somewhat reduced
Frail classification accuracy, possibly due to the loss of some high-frequency gait features.
This underscores the significance of preserving signal integrity in the design of gait classi-
fication models. To determine whether performance differences among the raw, baseline
processed, and low-pass filtered methods were statistically significant, Friedman tests on
the classification metrics (accuracy, precision, recall and F1-score) were conducted. None of
the methods showed statistically superior macro-level and per-class metrics of accuracy,
precision, recall or F1-score. These findings suggest that the choice of signal preprocess-
ing does not systematically alter classification performance when combined with clinical
features, at least under our dataset and experimental conditions.

The assessment of spectrogram-based deep learning models, especially combining
them with clinical features, looks promising as an alternative strategy for classifying frailty.
The models relying solely on spectrograms demonstrated high accuracy in classification,
with the top-performing model (processed spectrograms) attaining an accuracy of 97.22%;
however, due to the still small subject number for machine learning applications, there is a
risk of overfitting and poor generalization. Time–frequency representations adequately cap-
ture pertinent gait features necessary for frailty classification, establishing them as a feasible
alternative to time-series methods. Nonetheless, a key issue in spectrogram-based classifi-
cation is data leakage, where spectrograms from the same individual might be split across
training, validation, and test sets. Our analysis showed that random spectrogram splitting
artificially increased test accuracy, causing overclassification bias. For instance, the test
accuracy for raw spectrogram classification rose from 62.31% (subject-wise split) to 86.08%
(random split), resulting in an overestimation factor of 1.38. This underscores the need for
subject-wise data separation to ensure models can generalize to new individuals instead of
memorizing individual-specific patterns. Despite this challenge, subject-wise spectrogram
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classification still produced encouraging results, with raw spectrograms achieving 71.43%
accuracy. Combining with clinical features only slightly increases accuracy to 72.75 %,
indicating a small but non-decisive gain. This implies that IMU-derived spectrograms
alone offer valuable insights for frailty assessment, even without clinical features. Future re-
search may investigate other spectrogram transformations, such as wavelet decomposition,
recurrence plots or deep feature embeddings, to enhance classification robustness.

The results of this research have significant implications for the screening of frailty and
its practical application in clinical settings. The capability to identify frailty with minimally
processed IMU data endorses the potential for automated, wearable-based assessments
in both clinical and home environments. In contrast to conventional frailty evaluations
that depend on clinical assessments or gait laboratories, our method shows that machine
learning can derive meaningful features from raw sensor data, which may lessen the need
for manual feature engineering. Furthermore, the high accuracy of spectrogram-based
models indicates that deep learning can effectively interpret time–frequency patterns in
IMU signals. This could lead to the incorporation of spectrogram-based frailty assessment
into mobile health applications or remote patient monitoring systems. However, our results
also highlight the importance of stringent evaluation protocols to maintain subject-wise
separation, thereby preventing the overestimation of classification performance.

There are multiple limitations to consider. First, the dataset utilized in this research
was gathered in controlled laboratory settings, which might not accurately reflect real-world
gait evaluations where external factors, such as uneven terrain and obstacles, add further
variability. Second, treating the three trials per participant as separate inputs enlarges the
training set and exposes the network to stride-to-stride variability. At the same time, the
subject-wise split guarantees that no information from an individual leaks into the valida-
tion or fold. The subject-wise partition and inverse-frequency class weighting in the loss
function prevent information leakage but cannot substitute for a larger, more diverse cohort.
Future studies should therefore enroll more participants to improve external validity. Third,
we analyzed only the accelerometer and gyroscope channels. Future investigations could
integrate additional sensor types, like force sensors or electromyography (EMG), to capture
more detailed movement characteristics. Fourth, examining self-supervised learning or
transformer-based models could improve classification accuracy by capturing extended
gait dynamics. Finally, despite the high performance of frailty classification, the ability
to clinically interpret deep learning models remains an issue. Upcoming work might
prioritize explainable AI approaches, like saliency maps or attention mechanisms, to deter-
mine which spectrogram areas or IMU signal patterns are most influential in classification
decisions. In future research, validating models on larger [46,56] and maybe more diverse
cohorts would be beneficial to ensure reliability and applicability. In parallel, exploiting
advanced time–frequency methods could also help to capture subtle gait adjustments and
patterns, thus enhancing early-stage frailty detection. Finally, sensitivity analyses that rank
the contribution of each sensor location could identify a minimal, patient-friendly IMU
configuration and reveal segment-specific gait signatures of frailty.

5. Conclusions
This research demonstrates that preprocessing signals enhance the precision of frailty

assessments, particularly in identifying Frail individuals. Although low-pass filtering
slightly benefits NoFrail classification, it may filter out significant high-frequency gait de-
tails. Raw IMU-derived spectrograms enabled a subject-wise frailty classification accuracy
of 71.4%, confirming that minimally processed wearable signals contain discriminative
gait patterns. Additional pre-processing did not improve and occasionally reduced perfor-
mance. While augmenting the model with clinical features can raise the headline accuracy,
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that benefit vanishes when strict subject separation is applied, underscoring the importance
of leakage-free evaluation protocols. Taken together, our results show that a fully passive,
wearable-only pipeline is feasible for frailty screening, and that careful control of signal
preprocessing is critical for reliable deployment. These findings highlight the promise of
IMU-based frailty evaluations in clinical settings.
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