
Academic Editor: Zhibin Du

Received: 25 April 2025

Revised: 19 May 2025

Accepted: 21 May 2025

Published: 23 May 2025
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Abstract: For j = 1, . . . , r, let Qj be a positive definite nj × nj matrix, and ζ(sj; Qj) de-
note the corresponding Epstein zeta-function. In this paper, assuming that nj ⩾ 4 is even
and xTQjx ∈ Z,x ∈ Zr \ {0}, a joint limit theorem of Bohr–Jessen type for the functions
ζ(s1; Q1), . . . , ζ(sr; Qr), by using generalizing shifts ζ(σ1 + iφ1(t); Q1), . . . , ζ(σr + iφr(t); Qr),
is proved. Here, the functions φ1(t), . . . , φr(t) are increasing to +∞, with monotonic
derivatives φ′

j(t) satisfying the asymptotic growth conditions: φj(t) ≪ tφ′
j(t), and

φ′
j(t) = o(φ′

j+1(t)) as t → ∞. An explicit form of the limit measure is given. This theo-
rem extends and generalizes the previous result on the joint value-distribution of Epstein
zeta-functions.

Keywords: Epstein zeta-function; Haar measure; probability measures; weak convergence

1. Introduction
Let P, 2N,N,Z,Q,R,C denote the sets of all prime, positive even integer, positive

integer, integer, rational, real and complex numbers, respectively, and s = σ + it ∈ C.
Moreover, let Q be a positive definite n × n, n ∈ N, matrix and Q[x] = xTQx, x ∈ Zn =

Z× · · · × Z︸ ︷︷ ︸
n

. The Epstein zeta-function ζ(s; Q) is defined, for σ > n
2 , by the series

ζ(s; Q) = ∑
x∈Zn\{0}

(Q[x])−s,

and has the analytic continuation to the whole complex plane, except for the point s = n
2

which is a simple pole with residue πn/2(Γ( n
2 )
√

detQ)−1, where Γ(s) is the Euler gamma-
function. The function ζ(s; Q) was introduced by P. Epstein [1] with the aim of generalizing
the Riemann zeta-function

ζ(s) =
∞

∑
m=1

1
ms = ∏

p∈P

(
1 − 1

ps

)−1
, σ > 1,

and its functional equation

π− s
2 Γ
( s

2

)
ζ(s) = π− 1−s

2 Γ
(

1 − s
2

)
ζ(1 − s). (1)
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Clearly, for n = 1 and Q = (1), we have ζ(s; Q) = 2ζ(2s). Epstein’s attempt was successful,
and he obtained the functional equation for ζ(s; Q):

π−sΓ(s)ζ(s; Q) =
√

detQπs− n
2 Γ
(n

2
− s
)

ζ
(n

2
− s; Q−1

)
,

which, as in (1), is valid for all s ∈ C, and Q−1 denotes the inverse matrix of Q. This
and (1) show that ζ(s) has the symmetric functional equation, while in the functional
equation for ζ(s; Q), a new function ζ(s; Q−1) appears, but symmetry with respect to s is
preserved. Although the functions ζ(s) and ζ(s; Q) have functional equations of the same
Riemann type, their properties are quite different. For example, the function ζ(s) ̸= 0
in the half-plane of absolute convergence σ > 1, while there exist matrices Q such that
ζ(s; Q) has infinitely many zeros in the half plane σ > n

2 . Zero distribution of ζ(s; Q) is
also a significant problem, comparable to that of ζ(s), and has been studied by numerous
authors. We mention some results here. It is known that, for certain matrices, the Riemann
hypothesis for ζ(s; Q) does not hold; there exist zeros of ζ(s; Q) off the critical line σ = n

4 [2].
Moreover, it was shown in [3] that, differently from the case of ζ(s), the zeros of ζ(s; Q) are
generally not symmetric with respect to the line σ = n

4 . Estimates for the number of zeros in
the strips have been studied by E. Bobmbieri and J. Mueller [4], Y Lee [5], and others. Also,
it is known [6] that imaginary parts of the zeros of Epstein zeta-functions are uniformly
distributed modulo 1. Recently, an interesting formula for the sum of values of ζ(s; Q) over
the nontrivial zeros of ζ(s) was proved in [7]. Thus, Epstein provided mathematicians with
a novel object of algebraic and analytic nature, which has stimulated extensive research in
number theory and related fields.

The function ζ(s; Q) is an automorphic form with respect to an unimodular group;
it appears in the problems of algebraic number theory. It also has a range of practical
applications, including crystallography [8], quantum field theory [9,10] and temperature
and energy problems [11–14]. In general, the Epstein zeta-function is an attractive analytical
object and is widely studied.

Unfortunately, we do not know any monograph devoted to classical results on the
function ζ(s; Q). Some desired results can be found in the works on automorphic forms;
see, for example, [15,16].

In [17], we began to characterize the asymptotic behaviour of the function ζ(s; Q) by
using the Bohr–Jessen method [18,19], and techniques developed in [20]. Note that H. Bohr
and B. Jessen considered only the existence of density on certain sets (rectangles) for the
Riemann zeta-function, without giving an explicit form. Denote by B(X) the Borel σ-field
of the space X, and by measA the Lebesgue measure of a measurable set A ⊂ R. Then, the
asymptotic behaviour of ζ(s; Q) can be described by the asymptotics of

1
T

meas
{

t ∈ [0, T] : ζ(σ + it; Q) ∈ A
}

, A ∈ B(C),

as T → ∞. For this, it is convenient to use the weak convergence of probability measures.
Really, the function ζ(s; Q) is a class of Dirichlet series depending on the matrix Q.

This class is rather general in obtaining results that are full of sense. In order for the function
ζ(s; Q) to be close to number-theoretical objects, it is sufficient to limit ourself by matrices
Q for which Q[x] ∈ Z for all x ∈ Zn \ {0}. In this case, the function ζ(s; Q), for σ > n

2 , can
be expressed in the following form [21]:

ζ(s; Q) = ζ(s; EQ) + ζ(s; FQ),

where ζ(s; EQ) and ζ(s; FQ) are corresponding zeta-functions of a certain Eisenstein series
and modular forms of weight n

2 , respectively. Moreover, it is convenient to additionally
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require that n ∈ 2N and n ⩾ 4. Then, ζ(s; Q) is a combination of products of Dirichlet
L-functions and an absolutely convergent Dirichlet series [15,16]. More precisely, let q ∈ N
be such that q(2Q)−1 is an integral matrix, k and l positive divisors of q, χk and χl Dirichlet
characters modulo q/k and q/l, respectively, and

L(s, χk) =
∞

∑
m=1

χk(m)

ms , L(s, ψl) =
∞

∑
m=1

ψl(m)

ms , σ > 1,

the corresponding Dirichlet L-functions. Then, for σ > n−1
2 ,

ζ(s; Q) =
K

∑
k=1

L

∑
l=1

akl
ksls L(s, χk)L

(
s − n

2
+ 1, ψl

)
+

∞

∑
m=1

fQ(m)

ms , (2)

where akl ∈ C are certain numbers, the characters χk, 1 ≤ k ≤ K, are pairwise nonequiva-
lent, and χl , 1 ≤ l ≤ L, are pairwise nonequivalent too, and the Dirichlet series is absolutely
convergent in the half-plane σ > n−1

2 . In view of equality (2), the investigations of the
function ζ(s; Q), under the above hypotheses, reduce to those of Dirichlet L-functions.

For the definition of the limit measure in a limit theorem for ζ(s; Q), the set

Ω = ∏
p∈P

γp,

where γp = {s ∈ C : |s| = 1}, for all p ∈ P, plays a crucial role. The set Ω consists of all
functions from P into the unit circle. With the product topology and pointwise multiplica-
tion, the torus Ω is a compact topological group; therefore, on (Ω,B(Ω)), the probability
Haar measure m1H exists, and we arrive at the probability space (Ω,B(Ω), m1H). Let ω(p)
be the projection of ω ∈ Ω to the coordinate space γp, p ∈ P. Extend the function ω(p),
p ∈ P, to the set N by using the formula

ω(m) = ∏
pα∥m

ωα(p), m ∈ N,

where pα ∥ m means that pα | m, but pα+1 ∤ m. For an arbitrary Dirichlet L-function L(s, χ),
define

L(s, ω, χ) =
∞

∑
m=1

χ(m)ω(m)

ms .

The latter series, for almost all ω ∈ Ω, converges in the half-pane σ > 1
2 , and is a complex-

valued random element on (Ω,B(Ω), m1H). Moreover, for almost all ω ∈ Ω, the equality

L(s, ω, χ) = ∏
p∈P

(
1 − χ(p)ω(p)

ps

)−1

, σ >
1
2

,

is valid. For σ > n−1
2 , set

ζ(σ, ω; Q) =
K

∑
k=1

L

∑
l=1

aklω(k)ω(l)
kσlσ

L(σ, ω, χk)L
(

σ − n
2
+ 1, ω, ψl

)
+

∞

∑
m=1

fQ(m)ω(m)

mσ
.

Then, ζ(σ, ω; Q) is a complex-valued random element on (Ω,B(Ω), m1H), and let

Pσ;Q(A) = m1H{ω ∈ Ω : ζ(σ, ω; Q) ∈ A}, A ∈ B(C),
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be its distribution. The main result of [17] is the following theorem on the weak convergence for

PT,σ;Q(A) =
1
T

meas{t ∈ [0, T] : ζ(σ + it; Q) ∈ A}, A ∈ B(C).

Theorem 1. Suppose that σ > n−1
2 is fixed. Then, PT,σ;Q converges weakly to the measure Pσ;Q

as T → ∞.

In [22], a joint version of Theorem 1 has been obtained. For j = 1, . . . , r, let Qj be a positive
definite quadratic nj × nj matrix, and ζ(sj; Qj) be the corresponding Epstein zeta-function.
Denote s = (s1, . . . , sr), Q = (Q1, . . . , Qr) and ζ(s; Q) = (ζ(s1; Q1), . . . , ζ(sr; Qr)). On the
probability space (Ω,B(Ω), m1H), define the Cr-valued (Cr = C× · · · ×C︸ ︷︷ ︸

r

) random element

ζ(σ, ω; Q) = (ζ(σ1, ω; Q1), . . . , ζ(σr, ω; Qr)),

where σj >
nj−1

2 , and

ζ(σj, ω; Qj) =

Kj

∑
k=1

Lj

∑
l=1

akljω(k)ω(l)
kσj lσj

L(σj, ω, χkj)L
(

σj −
nj

2
+ 1, ω, ψl j

)
+

∞

∑
m=1

fQj(m)ω(m)

mσj
,

with corresponding aklj ∈ C, Kj ∈ N, Lj ∈ N, and Dirichlet characters χkj and ψl j,
j = 1, . . . , r.

For A ∈ B(Cr), define

P̂ζ(A) =P̂ζ,σ;Q(A) = m1H

{
ω ∈ Ω : ζ(σ, ω; Q) ∈ A

}
and

P̂T(A) =P̂T,σ;Q(A) =
1
T

meas
{

t ∈ [0, T] : ζ(σ + it; Q) ∈ A
}

.

Then, in [22], the following limit theorem has been given.

Theorem 2. Suppose that σj >
nj−1

2 is fixed, where j = 1, . . . , r. Then, P̂T converges weakly to
the measure P̂ζ as T → ∞.

In [23], a generalization of Theorem 1 has been given, i. e., the weak convergence for

1
T

meas{t ∈ [T, 2T] : ζ(σ + iφ(t); Q) ∈ A}, A ∈ B(C),

with a certain differentiable function φ(t) has been obtained as T → ∞. The aim of this
paper is to prove a joint version of the above-mentioned theorem from [23]. We note that
using generalized shifts ζ(σ + iφ(t); Q) allows for the more complete characterization of
the asymptotic behaviour of the function ζ(s; Q).

Let T0 > 0 be a fixed sufficiently large number. We say that a collection of real-valued
functions (φ1(t), . . . , φr(t)) defined for t ⩾ T0 belongs to the class Ur(T0) if the following
conditions are satisfied:

1◦ for every j = 1, . . . , r, φj(t) is an increasing to +∞ function;
2◦ for every j = 1, . . . , r, φj(t) has a monotonic derivative φ′

j(t) such that

φj(t) ≪ tφ′
j(t);
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3◦ for every j = 2, . . . , r and k ≤ j, φ′
k(t) = o

(
φ′

j(t)
)

as t → ∞.

For example, we can take φj(t) = tα+j with fixed α > 0. We recall that a ≪θ b, b > 0,
means that there exists a constant c = c(θ) > 0 such that |a| ≤ cb.

For the statement of a joint limit theorem with shifts ζ(σ + iφj(t); Q), we need a new
probability space. Let Ω be the same group as above. Define

Ωr = Ω1 × · · · × Ωr,

where Ωj = Ω for all j = 1, . . . , r. Then, by the classical Tikhonov theorem, Ωr is a
compact topological group. Therefore, on (Ωr,B(Ωr)), the probability Haar measure mH

can be defined. Note that the measure mH is the product of the Haar measures mjH on
(Ωj,B(Ωj)), j = 1, . . . , r. Thus, we have the probability space (Ωr,B(Ωr), mH). Denote by
ωj the elements of Ωj and by ω = (ω1, . . . , ωr) the elements of Ωr. Now, on the probability
space (Ωr,B(Ωr), mH), the Cr-valued random element

ζ(σ, ω; Q) =
(
ζ(σ1, ω1; Q1), . . . , ζ(σr, ωr; Qr)

)
,

is defined, where σj >
nj−1

2 , and

ζ(σj, ωj; Qj) =

Kj

∑
k=1

Lj

∑
l=1

akljωj(k)ωj(l)
kσj lσj

L(σj, ωj, χkj)L
(

σj −
nj

2
+ 1, ωj, ψl j

)
+

∞

∑
m=1

fQj(m)ωj(m)

mσj
, j = 1, . . . , r.

Let Pζ be the distribution of the random element ζ(σ, ω; Q), i.e.,

Pζ(A) =Pζ;σ,Q(A) = mH

{
ω ∈ Ωr : ζ(σ, ω; Q) ∈ A

}
, A ∈ B(Cr).

Define

PT(A) =PT,σ;Q(A) =
1
T

meas
{

t ∈ [T, 2T] : ζ(σ + iφ(t); Q) ∈ A
}

, A ∈ B(Cr),

where φ(t) = (φ1(t), . . . , φr(t)), and

ζ(σ + iφ(t); Q) = (ζ(σ1 + iφ1(t); Q1), . . . , ζ(σr + iφr(t); Qr))

with

ζ(σj + iφj(t); Qj) =

Kj

∑
k=1

Lj

∑
l=1

aklj

kσj+iφj(t)lσj+iφj(t)
L(σj + iφj(t), χkj)

·L
(

σj + iφj(t)−
nj

2
+ 1, ψl j

)
+

∞

∑
m=1

fQj(m)

mσj+iφj(t)
.

Theorem 3. Suppose that (φ1(t), . . . , φr(t)) ∈ Ur(T0), and σj >
nj−1

2 is fixed, where j =

1, . . . , r. Then, PT converges weakly to the measure Pζ as T → ∞.

Thus, Theorem 3 provides a joint extension of Theorem 2. We emphasize the im-
portance of condition 3◦ in the definition of the class Ur(T0). It is important to mention
that probabilistic limit theorems accurately reflect the chaotic behaviour of the functions
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ζ(s1; Q1), . . . , ζ(sr; Qr), and can be applied to further investigations related to approxima-
tion problems.

The proof of Theorem 3 is divided into parts. First, the weak convergence on Ωr is
established. Next, some absolutely convergent Dirichlet series are considered, and finally,
the assertion of Theorem 3 is proved.

2. Case of Ωr

For A ∈ B(Ωr), define

RT(A) = RT,Ωr ,φ(A)

=
1
T

meas
{

t ∈ [T, 2T] :
((

p−iφ1(t) : p ∈ P
)

, . . . ,
(

p−iφr(t) : p ∈ P
))

∈ A
}

.

Lemma 1. Suppose that (φ1(t), . . . , φr(t)) ∈ Ur(T0). Then, RT converges weakly to the Haar
measure mH as T → ∞.

Proof. We have to prove that the Fourier transform fT(k1, . . . , kr) = fT,Ωr ,φ(k1, . . . , kr) of
RT (where kj =

(
k jp : k jp ∈ Z, p ∈ P

)
, j = 1, ..., r) converges to the Fourier transform

f (k1, . . . , kr) =

1 if (k1, . . . , kr) = (0, . . . , 0),

0 if (k1, . . . , kr) ̸= (0, . . . , 0),

of the Haar measure mH as T → ∞. Here, 0 denotes the collection of zeros.
By the definition of RT , we have

fT(k1, . . . , kr) =
∫

Ωr

(
r

∏
j=1

∏
p∈P

∗
ω

kjp
j (p)

)
dRT =

1
T

2T∫
T

(
r

∏
j=1

∏
p∈P

∗p−ikjp φj(t)

)
dt

=
1
T

2T∫
T

exp

{
−i

r

∑
j=1

φj(t)∑
p∈P

∗k jp log p

}
dt, (3)

where the star “*” shows that only a finite number of integers k jp are distinct from zero.
Obviously,

fT(0, . . . , 0) = 1. (4)

Thus, it remains to consider the case (k1, . . . , kr) ̸= (0, . . . , 0). Set

A(t) =
r

∑
j=1

φj(t)∑
p∈P

∗k jp log p =
r

∑
j=1

κj φj(t),

where
κj = ∑

p∈P

∗k jp log p.

It is well known that the set of logarithms of prime numbers is linearly independent over
Q. Therefore, there exist j ∈ {1, . . . , r} such that κj ̸= 0. Let j0 = max(j : κj ̸= 0). Then,
by the definition of the class Ur(T0), we have, for j ⩽ j0,

A′(t) = ∑
j⩽j0

κj φ
′
j(t) = κj0 φ′

j0(t)(1 + o(1)), t → ∞.

Hence, by the identity
1

1 + a
= 1 − a

1 + a
, a ̸= −1,
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we find
1

A′(t)
=

1
κj0 φ′

j0
(t)

(1 + o(1)), t → ∞.

Therefore,

2T∫
T

cos(A(t))dt =

2T∫
T

1
A′(t)

cos(A(t))d(A(t))

=
1

κj0

2T∫
T

1
φ′

j0
(t)

cos(A(t))d(A(t)) +
1

κj0

2T∫
T

o(1)
φ′

j0
(t)

cos(A(t))d(A(t))

=
1

κj0

2T∫
T

1
φ′

j0
(t)

d(sin(A(t))) +
2T∫
T

o(1)(1 + o(1))
A′(t)

d(sin(A(t)))

=
1

κj0

2T∫
T

1
φ′

j0
(t)

d(sin(A(t))) +
2T∫
T

o(1) cos(A(t))dt. (5)

The function φ′
j0
(t), by 2◦ of the class Ur(T0), is monotonic and non-negative. Therefore,

by the second mean value theorem,

2T∫
T

1
φ′

j0
(t)

d(sin(A(t))) =


1

φ′
j0
(T)

ξ∫
T

d(sin(A(t))) if φ′
j0
(t) is increasing,

1
φ′

j0
(2T)

2T∫
ξ

d(sin(A(t))) if φ′
j0
(t) is decreasing,

T ⩽ ξ ⩽ 2T. Since φ′
j0
(T) ⩾

φj0 (T)
T and φj0(T) → ∞ as T → ∞, we have that

2T∫
T

1
φ′

j0
(t)

d(sin(A(t))) = o(T), T → ∞.

This and (5) show that
2T∫

T

cos(A(t))dt = o(T), T → ∞.

Similarly, it follows that

2T∫
T

sin(A(t))dt = o(T), T → ∞.

Thus, in view of (3), in the case (k1, . . . , kr) = (0, . . . , 0),

lim
T→∞

fT(k1, . . . , kr) = 0,

and this together with (4) proves the lemma.

3. Case of Absolute Convergence
Lemma 1 and the properties of weak convergence make it possible to obtain a limit

lemma for ζN(σ; Q) involving certain absolutely convergent Dirichlet series. Let θ > 0 be a
fixed number, and

vN(m) = exp
{
−
(m

N

)θ
}

, m, N ∈ N.
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Define

LN

(
σj −

nj

2
+ 1, ψl j

)
=

∞

∑
m=1

ψl j(m)vN(m)

mσj−
nj
2 +1

, l = 1, . . . , Lj, j = 1, . . . , r.

Since vN(m) with respect to m decreases exponentially, the latter series are absolutely

convergent for all finite σj. Moreover, as nj ⩾ 4, we have that σj >
nj−1

2 ⩾ 3
2 > 1. Hence,

the series for L(σj, χkj), k = 1, . . . , Kj, j = 1, . . . , r, are absolutely convergent. Therefore,

ζN(σj; Qj) =

Kj

∑
k=1

Lj

∑
l=1

aklj

kσj lσj
L(σj, χkj)LN

(
σj −

nj

2
+ 1, ψl j

)
+

∞

∑
m=1

fQj(m)

mσj
, (6)

where j = 1, . . . , r, is a combination of absolutely convergent Dirichlet series. Let

ζN(σ; Q) =
(
ζN(σ1; Q1), . . . , ζN(σr; Qr)

)
,

and
ζN(σ, ω; Q) =

(
ζN(σ1, ω1; Q1), . . . , ζN(σr, ωr; Qr)

)
,

where ζN(σj, ωj; Qj) is obtained from ζ(σj, ωj; Qj) by putting LN

(
σj −

nj
2 + 1, ψl j

)
in the

place of L
(

σj −
nj
2 + 1, ψl j

)
, where j = 1, . . . , r. Then, ζN(σj, ωj; Qj), where j = 1, . . . , r, is

also a combination of absolutely convergent Dirichlet series. Let the function uN,σ;Q : Ωr →
Cr be given by

uN(ω) = uN,σ;Q(ω) = ζN(σ, ω; Q), σj >
nj − 1

2
, j = 1, . . . , r.

In virtue of the absolute convergence of the series in ζN(σ, ω; Q), the function uN(ω) is con-
tinuous, and hence (B(Ωr),B(Cr))-measurable. Then, the measure WN = WN,σ;Q = mHu−1

N ,
where

mHu−1
N (A) = mH

(
u−1

N A
)

, A ∈ B(Cr),

can be defined. For A ∈ B(Cr), define

PT,N(A) =PT,N,σ;Q(A) =
1
T

meas
{

t ∈ [T, 2T] : ζN(σ + iφ(t); Q) ∈ A
}

.

Lemma 2. Suppose that (φ1(t), . . . , φr(t)) ∈ Ur(T0). Then, PT,N converges weakly to WN

as T → ∞.

Proof. From the definitions of RT , PT,N and uN , we have

PT,N(A) =
1
T

meas
{

t ∈ [T, 2T] : uN

((
p−iφ1(t) : p ∈ P

)
, . . . ,

(
p−iφr(t) : p ∈ P

))
∈ A

}
=

1
T

meas
{

t ∈ [T, 2T] :
((

p−iφ1(t) : p ∈ P
)

, . . . ,
(

p−iφr(t) : p ∈ P
))

∈ u−1
N A

}
= RT

(
u−1

N A
)

for all A ∈ B(Cr). Therefore, PT,N = RTu−1
N . Now, Lemma 1 and the preservation of weak

convergence under continuous mappings, see, for example, Theorem 5.1 of [24], show that
PT,N converges weakly to the probability measure mHu−1

N as T → ∞.

The measure WN is an important ingredient of the proof of Theorem 3. We see that WN

is independent on the functions φ1(t), . . . , φr(t). Therefore, we can use some statements
from [22] to prove the following lemma.
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Lemma 3. The probability measure WN converges weakly to Pζ as N → ∞.

Proof. By Lemma 8 from [22], the sequence of probability measures {WN : N ∈ N} is tight,
i.e., for every ϵ > 0, there exists a compact set K = K(ϵ) ∈ Cr such that

WN(K) > 1 − ϵ

for all N ∈ N. Hence, by the Prokhorov theorem, see, for example, Theorem 6.1 of [24],
the above sequence is relatively compact. This means that every subsequence of {WN} has
a subsequence weakly convergent to a certain probability measure on (Cr,B(Cr)). Thus,
there exists a sequence {WNl} ⊂ {WN} such that WNl converges weakly to the measure
Pσ;Q as l → ∞. In the proof of Theorem 2 from [22], it is obtained that Pσ;Q coincides with
Pζ . Since the sequence {WN} is relatively compact, from this we have that WN converges
weakly to Pζ as N → ∞.

4. Estimate in the Mean
To derive Theorem 3 from Lemma 2, we have to show the nearest ζN(σ + iφ(t); Q) to

ζ(σ + iφ(t); Q). Let, for sj = (sj1, . . . , sjr), j = 1, 2,

dr(s1, s2) =

(
r

∑
j=1

|sj1 − sj2|
)1/2

.

Lemma 4. Suppose that (φ1(t), . . . , φr(t)) ∈ Ur(T0) and σj >
nj−1

2 , j = 1, . . . , r. Then,

lim
N→∞

lim sup
T→∞

1
T

2T∫
T

dr

(
ζ(σ + iφ(t); Q), ζN(σ + iφ(t); Q)

)
dt = 0.

Proof. Clearly,

2T∫
T

dr

(
ζ(σ + iφ(t); Q), ζN(σ + iφ(t); Q)

)
dt

≪
r

∑
j=1

2T∫
T

∣∣ζ(σj + iφj(t); Qj)− ζN(σj + iφj(t); Qj)
∣∣dt.

Therefore, it suffices to show that

lim
N→∞

lim sup
T→∞

1
T

2T∫
T

|ζ(σ + iφ(t); Q)− ζN(σ + iφ(t); Q)|dt = 0

for Q and σ satisfying the hypotheses of Theorem 1, and φ(t) satisfying 1◦ and 2◦ of the
class Ur(T0). However, the latter equality was proved in [23] and Lemma 2. We only
mention that, in view of (6), it is suficient to prove that

lim
N→∞

lim sup
T→∞

1
T

2T∫
T

|L(σ + iφ(t), χ)− LN(σ + iφ(t), χ)|dt = 0 (7)
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for σ > 1
2 . For this, the representation

LN(s, χ) =
1

2πi

θ+i∞∫
θ−i∞

L(s + z, χ)lN(z)
dz
z

with lN(z) = z
θ Γ
( z

θ

)
Nz, is applied. Thus, the latter representation, the mean square estimate

2T∫
T

|L(σ + iφ(t) + iτ, χ)|2dt ≪σ,χ,φ T(1 + |τ|)

for all real τ, and the classical estimate

Γ(σ + it) ≪ exp{−c|t|}, c > 0,

lead to equality (7).

5. Proof of Theorem 3
Theorem 3 follows from Lemmas 2–4 and the following statement on convergence in

distribution
( D−→

)
; see, for example, Theorem 4.2 from [24].

Lemma 5. Suppose that the space (X, ρ) is separable, and the X-valued random elements Xnk and
Yn, n, k ∈ N, are defined on the same probability space with measure P. Let

Xnk
D−−−→

n→∞
Xk and Xk

D−−−→
k→∞

X,

and, for every ϵ > 0,
lim
k→∞

lim sup
n→∞

P{ρ(Xnk, Yn) ⩾ ϵ} = 0.

Then, Yn
D−−−→

n→∞
X.

Proof of Theorem 3. Let ξT be a random variable defined on a certain probability space
with the measure P and uniformly distributed in the interval [T, 2T]. Define the Cr-valued
random element

XT,N = XT,N,σ;Q = ζN(σ + iφ(ξT); Q)

and
XT = XT,σ;Q = ζ(σ + iφ(ξT); Q),

and denote by YN = YN,σ;Q the Cr-valued random element having the distribution WN .
Then, in view of Lemma 2, we have

XT,N
D−−−→

T→∞
XN , (8)

while Lemma 3 implies that

YN
D−−−→

N→∞
Pζ . (9)
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Moreover, by Lemma 4, for every ϵ > 0,

lim
N→∞

lim sup
T→∞

P{dr(XT,N , XT) ⩾ ϵ}

= lim
N→∞

lim sup
T→∞

1
T

meas
{

t ∈ [T, 2T] : dr

(
ζ(σ + iφ(t); Q), ζN(σ + iφ(t); Q)

)
⩾ ϵ

}
⩽ lim

N→∞
lim sup

T→∞

1
ϵT

2T∫
T

dr

(
ζ(σ + iφ(t); Q), ζN(σ + iφ(t); Q)

)
dt = 0.

This, together with (8) and (9), shows that the random elements XT,N , XT and YN satisfy
the hypotheses of Lemma 5. Therefore,

XT
D−−−→

T→∞
Pζ ,

and this is equivalent to the assertion of the theorem.

6. Conclusions
For j = 1, . . . , r, let Qj be a positive definite nj × nj matrix, such that xTQjx ∈ Z for all

x ∈ Zr \ {0}, nj ∈ 2N and nj ⩾ 4. In this paper, it is obtained that, for a collection of Epstein
zeta-functions ζ(s; Q) =

(
ζ(s1; Q1), . . . , ζ(sr; Qr)

)
, a limit theorem on weakly convergent

probability measures with generalized shifts ζ(σ+ iφ(t); Q) is valid, where φj(t) are certain
differentiable functions. The proven theorem generalizes the main result of [22] obtained
for φj(t) = t. Note that the main theorem remains valid even if the functions φj(t) coincide
for some j. For example, one may consider φj(t) = t logαj t with different αj > 0. Also,
polynomials φj(t) = ajt

αj + · · ·+ a0, with aj > 0 and different αj > 0, can be used.
As shown in the proof of Lemma 1, using generalized shifts ζ(σj + iφj(t); Qj) makes

it possible to obtain a desired rate of convergence for RT to mH . We conjecture that this
phenomenon is also preserved for the measures PT and Pζ .

The next paper will be devoted to a joint generalized discrete version, i.e., for weak
convergence of

1
N + 1

#
{

N ⩽ k ⩽ 2N : ζ(σ + iφ(k); Q) ∈ A
}

, A ∈ B(Cr),

as N → ∞. Here, #A denotes the number of elements of the set A.
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23. Laurinčikas, A.; Macaitienė, R. A generalized Bohr-Jessen type theorem for the Epstein zeta-function. Mathematics 2022, 10, 2042.

[CrossRef]
24. Billingsley, P. Convergence of Probability Measures, 2nd ed.; John Wiley & Sons: New York, NY, USA, 1999.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s10986-018-9396-1
http://dx.doi.org/10.1007/s10986-025-09678-y
http://dx.doi.org/10.1007/s002200050472
http://dx.doi.org/10.1142/S0217751X92003379
http://dx.doi.org/10.1016/0370-2693(96)00004-4
http://dx.doi.org/10.1007/BF01594180
http://dx.doi.org/10.1007/s00025-018-0909-3
http://dx.doi.org/10.1007/BF02547516
http://dx.doi.org/10.1007/BF02547773
http://dx.doi.org/10.1023/A:1015432614102
http://dx.doi.org/10.1007/s00025-021-01422-5
http://dx.doi.org/10.3390/math10122042

	Introduction
	Case of r
	Case of Absolute Convergence
	Estimate in the Mean
	Proof of Theorem 3
	Conclusions
	References

