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Abstract: The famous Riemann hypothesis (RH) asserts that all non-trivial zeros of the
Riemann zeta function ζ(s) (zeros different from s = −2m, m ∈ N) lie on the critical line
σ = 1/2. In this paper, combining the universality property of ζ(s) with probabilistic limit
theorems, we prove that the RH is equivalent to the positivity of the density of the set
of shifts ζ(s + itτ) approximating the function ζ(s). Here, tτ denotes the Gram function,
which is a continuous extension of the Gram points.
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1. Introduction
Let s = σ + it, σ ∈ R, t ∈ R, be a complex variable. The main object of analytic number

theory—the Riemann zeta function ζ(s)—is given by the Dirichlet series

ζ(s) =
∞

∑
m=1

1
ms , σ > 1,

or, equivalently, by the Euler product

ζ(s) = ∏
p∈P

(
1− 1

ps

)−1
, σ > 1, (1)

where P denotes the set of all prime numbers. L. Euler was the first who began to study the
function ζ(s); however, he did so with s ∈ R. In this way, he obtained identity (1).

B. Riemann, differently from Euler, began to consider ζ(s) as a function of a complex
variable [1]; he extended analytically the function ζ(s) to the whole complex plane, ex-
cept for a simple pole at the point s = 1 with residue 1, proving the functional equation

π−s/2Γ
( s

2

)
ζ(s) = π−(1−s)/2Γ

(
1− s

2

)
ζ(1− s), (2)

where Γ(s) denotes the Euler gamma function. He proposed a method to apply ζ(s) for the
investigation of the distribution of prime numbers in the set Z+. This method is connected
to the zero-distribution of ζ(s) in the strip 1/2 6 σ 6 1. Set

Axioms 2025, 14, 169 https://doi.org/10.3390/axioms14030169

https://doi.org/10.3390/axioms14030169
https://doi.org/10.3390/axioms14030169
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0002-7671-0282
https://doi.org/10.3390/axioms14030169
https://www.mdpi.com/article/10.3390/axioms14030169?type=check_update&version=1


Axioms 2025, 14, 169 2 of 13

π(x) = ∑
p6x
p∈P

1.

Riemann’s ideas have been realized in works by J. Hadamard [2] and C.J. de la Val-
lée Poussin [3–5]. They have proven independently the asymptotic distribution law of
prime numbers:

π(x) =
x∫

2

du
log u

+ O
(

xe−c
√

log x
)

, x → ∞, c > 0.

The proof is based on the non-vanishing of the function ζ(s) in the region

σ > 1− c1

log(|t|+ 2)
, c1 > 0.

Riemann also stated some conjectures. The most important of these, now called the
Riemann hypothesis (RH), concerns the zeros of the function ζ(s). From the functional
Equation (2) and the properties of the function Γ(s), we have ζ(−2m) = 0 for all m ∈ N.
The zeros s = −2m, m ∈ N, are well known and called trivial. Moreover, the func-
tion ζ(s) has infinitely many of the so-called nontrivial complex zeros lying in the strip
{s ∈ C : 0 < σ < 1}. The RH states that all nontrivial zeros are on the line σ = 1/2 or,
equivalently, ζ(s) 6= 0 for σ > 1/2.

The first result regarding the number of zeros of ζ(s) on the line σ = 1/2 belongs to
A. Selberg. Let

N(T) = #{ρ = σ + iγ : ζ(ρ) = 0, 0 < γ < T}

and

N0(T) = #
{

ρ =
1
2
+ iγ : ζ(ρ) = 0, 0 < γ < T

}
.

In [6], Selberg obtained that

lim inf
T→∞

N0(T)
N(T)

> 0.

A famous result in this direction was given by N. Levinson in [7], namely

lim inf
T→∞

N0(T)
N(T)

> 0.3474 >
1
3

.

The latter bound was improved in [8] to obtain

lim inf
T→∞

N0(T)
N(T)

> 0.4105 >
2
5

.

The best known result,

lim inf
T→∞

N0(T)
N(T)

>
5

12
,

was given in [9].
All large-scale computer calculations support the RH. For example, it was obtained

in [10] that the first 1013 nontrivial zeros of ζ(s) are on the line σ = 1/2.
The Riemann hypothesis is among the most important seven Millennium Prize prob-

lems of mathematics [11]; for its proof or disproof, a large sum is promised.
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Many equivalents of the RH in various terms are known. We mention some of
them below.

1. The RH and the estimate

π(x) =
x∫

2

du
log u

+ O
(√

x log x
)
, x → ∞,

are equivalent [12].
2. Let Λ(m), m ∈ N, be the von Mangoldt function, i.e.,

Λ(m) =

{
log p if m = pk, p ∈ P, k ∈ N,
0 otherwise.

The RH is equivalent to the estimate [13]

∑
m6x

Λ(m) = x + O
(

x1/2 log2 x
)

, x → ∞.

The equality

− ζ ′(s)
ζ(s)

=
∞

∑
m=1

Λ(m)

ms , σ > 1,

is valid. This indicates the importance of the functions Λ(m) and ζ(s) in the theory of
distribution of prime numbers.

3. Let µ(m) denote the Möbius function, i.e.,

µ(m) =

{
(−1)r if m = p1 · · · pr, p1, . . . , pr ∈ P,
0 if p2 | m, p ∈ P.

The RH is equivalent to the estimate [14]

∑
m6x

µ(m) = O
(

x1/2+ε
)

, x → ∞,

for every ε > 0.
The function µ(m) is connected to ζ(s) by the equality

1
ζ(s)

=
∞

∑
m=1

µ(m)

ms , σ > 1.

The convergence of the latter series for σ > 1/2 also is one of the criteria for the
RH [15].

4. The Bombieri–Weil positivity criterion. Let

G(s) =
∞∫

0

g(x)xs−1 dx.

The RH is equivalent to

∑
ρ

G(ρ)G(1− ρ) > 0

for every g ∈ C∞
0 (0, ∞), g(x) 6= 0, where summing runs over zeros ρ = 1/2 + iγ of ζ(s) [16].

5. Define
ξ(s) =

1
2

s(s− 1)Γ
( s

2

)
ζ(s).
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The RH is equivalent to the inequality [17]

Re
ξ ′(s)
ξ(s)

> 0, σ >
1
2

.

6. The RH is equivalent to the estimate

∞

∑
m=1

(−1)m+1

(m− 1)!ζ(2k)
xm = O

(
x1/2+ε

)
with every ε > 0 [18].

More equivalents of the RH can be found in [19,20].
In this paper, we are interested in equivalents of the RH connected to the universality

of ζ(s). Set D = {s ∈ C : 1/2 < σ < 1}. Denote by K the class of compact subsets of the
strip D having connected complements, and by H0(K) with K ∈ K a class of non-vanishing
continuous functions on K that are analytic inside K. Moreover, let measA stand for the
Lebesgue measure of a measurable set A on the real line. Then, the universality of ζ(s) is
described by the following statement.

Proposition 1 ([21], Corollary 5.3.6; see also [22–25]). Suppose that K ∈ K and f (s) ∈ H0(K).
Then, for every ε > 0,

lim inf
T→∞

1
T

meas

{
τ ∈ [0, T] : sup

s∈K
| f (s)− ζ(s + iτ)| < ε

}
> 0.

We note that the universality property of ζ(s) in the approximation of non-vanishing
analytic functions on discs of the strip D was discovered by S.M. Voronin [26]. Let
0 < d < 1/4 be a fixed number. Then, Voronin’s theorem states [26] that, for every non-
vanishing continuous function f (s) on the disc |s| 6 d and analytic inside this disc,
and ε > 0, there is a real number τ = τ(ε, f ) satisfying the inequality

max
|s|6d

∣∣∣∣ζ(s +
3
4
+ iτ

)
− f (s)

∣∣∣∣ < ε.

In Proposition 1, the universality of ζ(s) is stated in terms of a lower density for the set
of shifts ζ(s + iτ) approximating a given analytic function. Namely, Proposition 1 asserts
that the latter set has a positive lower density. Moreover, a version of universality for ζ(s)
in terms of a positive density is known [27,28].

Proposition 2. Suppose that K ∈ K and f (s) ∈ H0(K). Then, the limit

lim
T→∞

1
T

meas

{
τ ∈ [0, T] : sup

s∈K
| f (s)− ζ(s + iτ)| < ε

}

exists and is positive for all but at most countably many ε > 0.

From a mathematical point of view, a set is more precisely characterized by its density.
Thus, Proposition 2 has a certain advantage against Proposition 1. On the other hand,
the exceptional set of values of ε > 0 is not given effectively. Therefore, Proposition 2 has
only certain theoretical value. Moreover, we conjecture that Proposition 2 remains valid for
all ε > 0.
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B. Bagchi obtained [29] the equivalence of the RH in terms of the lower density of
the set of shifts ζ(s + iτ) approximating ζ(s). More precisely, the Bagchi theorem is of the
following form.

Theorem 1 ([29]). The RH is true if and only if, for every K ∈ K and ε > 0,

lim inf
T→∞

1
T

meas

{
τ ∈ [0, T] : sup

s∈K
|ζ(s)− ζ(s + iτ)| < ε

}
> 0.

In [30], the equivalence of the RH was described by self-approximation in the spirit of
Proposition 2.

Theorem 2 ([30]). The RH is true if and only if, for every K ∈ K, the limit

lim
T→∞

1
T

meas

{
τ ∈ [0, T] : sup

s∈K
|ζ(s + iτ)− ζ(s)| < ε

}

exists and is positive for all but at most countably many ε > 0.

There are several works on the positivity of a lower density

lim inf
T→∞

1
T

meas

{
τ ∈ [0, T] : sup

s∈K
|ζ(s + iτd)− ζ(s + iτ)| < ε

}

for all sets K ∈ K, ε > 0 with a real d; see [31–33]. By Theorem 1, this, with d = 0, implies
the RH.

It is well known that Proposition 1 remains valid for more general shifts ζ(s + iϕ(τ))
with a certain class of real functions ϕ(τ). In [34], the Gram function tτ has been used,
which is defined as follows. Denote by g(s) the ingredient π−s/2Γ(s/2) of the functional
Equation (2), and by θ(t) the increment in the argument of the function g(s) along the
segments connecting the points s = 1/2 and s = 1/2 + it. It is known [35] that the function
θ(t) is increasing for t > t∗ = 6.289835 . . . ; therefore, the equation

θ(t) = π(τ − 1), τ > 0,

has the unique solution tτ , which is called the Gram function. The following results
regarding the asymptotics of the function tτ as τ → ∞

tτ =
2πτ

log τ

(
1 +

log log τ

log τ

)
(1 + o(1))

and

t′τ =
2π

log τ

(
1 +

log log τ

log τ

)
(1 + o(1))

are known; see [36]. The points tn, n ∈ N, were studied in [37] by J.-P. Gram in connection
with the imaginary parts of nontrivial zeros of ζ(s). He observed that the interval (tn−1, tn]

with 1 6 n 6 15 contains one zero of the function

eiθ(t)ζ

(
1
2
+ it

)
,
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and conjectured that this is not true if n > 15. Later, this conjecture was confirmed by
various authors. It is well known that

tn ∼ γn, n→ ∞,

where {γn : n ∈ N} is the sequence of positive imaginary parts of nontrivial zeros of ζ(s).
For the first time, the function tτ in the approximation of analytic functions by gener-

alized shifts was applied in [34]. For j = 1, . . . , r, let χj(m) denote a Dirichlet character and

L(s, χj) =
∞

∑
m=1

χj(m)

ms , σ > 1,

the corresponding Dirichlet L-function. Moreover, let a1, . . . , ar be real algebraic numbers
that are linearly independent over the field of rational numbers Q. Suppose that Kj ∈ K
and f j(s) ∈ H0(Kj), j = 1, . . . , r. Then, it was obtained in [34] that, for every ε > 0,

lim inf
T→∞

1
T

meas

{
τ ∈ [0, T] : sup

16j6r
sup
s∈Kj

∣∣ f (s)− L(s + iajtτ , χj)
∣∣ < ε

}
> 0.

Moreover, “lim inf” can be replaced with “lim” for all but at most countably many
ε > 0.

From the latter result with r = 1 and a character modulo 1, we have the
following statement.

Theorem 3. Suppose that K ∈ K and f (s) ∈ H0(K). Then, for every ε > 0,

lim inf
T→∞

1
T

meas

{
τ ∈ [0, T] : sup

s∈K
| f (s)− ζ(s + itτ)| < ε

}
> 0.

Moreover, the limit

lim
T→∞

1
T

meas

{
τ ∈ [0, T] : sup

s∈K
| f (s)− ζ(s + itτ)| < ε

}

exists and is positive for all but at most countably many ε > 0.

The aim of this paper is to extend Theorems 1 and 2 by using generalized shifts
ζ(s + itτ). We will prove the following equivalents of the RH.

Theorem 4. The RH holds if and only if, for every K ∈ K and ε > 0,

lim inf
T→∞

1
T

meas

{
τ ∈ [0, T] : sup

s∈K
|ζ(s)− ζ(s + itτ)| < ε

}
> 0.

Theorem 5. The RH holds if and only if, for every K ∈ K, the limit

lim
T→∞

1
T

meas

{
τ ∈ [0, T] : sup

s∈K
|ζ(s)− ζ(s + itτ)| < ε

}

exists and is positive for all but at most countably many ε > 0.
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We notice that the shift ζ(s+ itτ) is only an example of a possible shift. Theorems 4 and 5
remain true also for other shifts satisfying statements of the type of Theorem 3. The choice
of the function tτ is only due to the illustration of its importance in the theory of ζ(s).

Considering the rapid progress of the approximation theory by shifts of zeta functions,
we expect that Theorems 4 and 5 will have a certain influence when considering the RH.

2. Limit Lemmas
For proofs of universality theorems in the approximation of analytic functions by shifts

of zeta functions, B. Bagchi proposed [21] to apply limit probabilistic theorems in the space
of analytic functions; see also [23,24]. We recall some facts connected to the latter approach.

Let X be a topological space with the Borel σ-field B(X ), and let P and Pn, n ∈ N, be
probability measures on (X ,B(X )). By definition, Pn converges weakly to P as n → ∞
(Pn

w−−−→
n→∞

P) if, for every real continuous bounded function g in X ,

lim
n→∞

∫
X

g dPn =
∫
X

g dP.

There are some equivalents of the weak convergence of probability measures in terms
of some classes of sets. Recall that the set A ∈ B(X ) is a continuity set of the measure
P if P(∂A) = 0, where ∂A denotes the boundary of the set A. We will use the following
convenient lemma.

Lemma 1. The following statements are equivalent:

(i) Pn
w−−−→

n→∞
P;

(ii) For all open sets G ⊂ X ,
lim inf

n→∞
Pn(G) > P(G);

(iii) For all continuity sets A of P,

lim
n→∞

Pn(A) = P(A).

For the proof, see, for example [38], Theorem 2.1.
Historically, the first applications of probabilistic methods in the theory of the function

ζ(s) were described by H. Borhr and B. Jessen. Let J denote the Jordan measure on R, R the
rectangle on the complex plane with edges parallel to the axes, and

A =

{
s ∈ C : σ >

1
2

}
\
⋃

β j+iγj

{
s = σ + iγj :

1
2
< σ 6 β j

}
,

where β j + iγj runs over all zeros of ζ(s) in the strip 1/2 < σ < 1. Then, they proved [39,40]
that the limit

lim
T→∞

1
T

J{τ ∈ [0, T] : σ + it ∈ A, log ζ(s + it) ∈ R}

exists and depends only on σ and R.
Later, for the description of the chaotic behavior of ζ(s) by limit theorems, a more

convenient method involving the weak convergence of probability measures began to
be cultivated.
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Denote by H(D) the space of analytic functions on the strip D equipped with the
topology of uniform convergence on compact sets. A probabilistic approach to the proof of
Theorem 3 is based on the weak convergence of the probability measure

PT(A)
def
=

1
T

meas{τ ∈ [0, T] : ζ(s + itτ) ∈ A}, A ∈ B(H(D)),

as T → ∞. For a limit theorem for PT , a certain topological structure is needed. Let

T = ∏
p∈P
{s ∈ C : |s| = 1}.

The infinite-dimensional torus T consists of all functions ω : P → {s ∈ C : |s| = 1},
and, with the operation of pairwise multiplication and product topology, it is a compact
topological group. Therefore, on (T,B(T)), the probability Haar measure mH exists, and we
have the probability space (T,B(T), mH). Denote by ω = (ω(p) : p ∈ P) elements of T,
and, on the probability space (T,B(T), mH), define the H(D)-valued random element
ζ(s, ω) by the product

ζ(s, ω) = ∏
p∈P

(
1− ω(p)

ps

)−1

.

Notice that the above infinite product, for almost all ω ∈ T, is uniformly convergent
on compact subsets of the strip D; see Theorem 5.1.7 of [23]. Let Pζ be the distribution of
the element ζ(s, ω); thus,

Pζ(A) = mH{ω ∈ T : ζ(s, ω) ∈ A}, A ∈ B(H(D)).

The probabilistic behavior of the function ζ(s) is described by the following lemma.

Lemma 2. We have
PT

w−−−→
T→∞

Pζ .

Proof. For A ∈ B(Hr(D)), define

PT,r(A) =
1
T

meas{τ ∈ [0, T] : (L(s + ia1tτ , χ1), . . . , L(s + iartτ , χr)) ∈ A}

and
PL1,...,Lr (A) = mr

H{ω ∈ Tr : (L(s, ω, χ1), . . . , L(s, ω, χr)) ∈ A},

where

L(s, ω, χj) = ∏
p∈P

(
1−

ω(p)χj(p)
ps

)−1

, j = 1, . . . , r,

with ω ∈ T. Here, mr
H is the Haar measure on (Tr,B(Tr)). Then, in [34], under the

hypothesis that a1, . . . , ar are algebraic numbers that are linearly independent over Q,
the relation

PT,r
w−−−→

T→∞
PL1,...,Lr

has been obtained. From this, with r = 1, a1 = 1, and χ1(m) ≡ 1, the lemma follows.

We note that Theorem 3 can be proven directly by a similar method to that of the
proofs of Propositions 1 and 2, with the application of the above-mentioned properties of
the function tτ .

The next ingredient for the proof of Theorems 4 and 5 is the support of the limit
measure Pζ in Lemma 2. Recall that the support of Pζ is a minimal closed set S ∈ H(D)
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such that Pζ(S) = 1. The set S consists of all elements g ∈ H(D), for which, for every open
neighborhood G, the inequality P(G) > 0 is satisfied.

Define
S = {g ∈ H(D) : g(s) 6= 0 on D, or g(s) ≡ 0}.

Lemma 3. The support of the measure Pζ is the set S.

The proof of the lemma is given in [21,23].
Since, by Lemma 2, the asymptotic behavior of ζ(s) is described by the measure Pζ ,

and, in view of Lemma 3, the support of Pζ consists of non-vanishing on D functions, we
intuitively feel that ζ(s) 6= 0 in D. This suggests Theorems 4 and 5.

3. Proofs of Theorems 4 and 5
We will introduce, in the spaceH(D), the metric that induces the topology of uniform

convergence on compact sets. Let {Kj : j ∈ N} ⊂ D be a set of compact embedded sets
such that

D =
∞
∪

j=1
Kj,

and every compact set K ⊂ D lies in some set Kj. It is well known—see [41]—that such
a sequence always exists. In our case, we can take, for example, closed rectangles. Now,
for g1, g2 ∈ H(D), set

ρ(g1, g2) =
∞

∑
j=1

2−j
sups∈Kj

|g1(s)− g2(s)|
1 + sups∈Kj

|g1(s)− g2(s)|
.

Then, ρ is the desired metric inH(D).

Proof of Theorem 4. Obviously, the necessity follows from the first part of Theorem 3.
If the RH is true, then, for every K ∈ K, the function ζ(s) lies in the set H0(K). Therefore,
by Theorem 3, for every K ∈ K and ε > 0,

lim inf
T→∞

1
T

meas

{
τ ∈ [0, T] : sup

s∈K
|ζ(s)− ζ(s + itτ)| < ε

}
> 0. (3)

The latter inequality holds easily also without using Theorem 3. In fact, for K ∈ K and
δ > 0, let

Gδ,K =

{
g ∈ H(D) : sup

s∈K
|g(s)− ζ(s)| < δ

}
.

Since K is a compact set, Gδ,K is an open neighborhood of ζ(s). If the RH is true, then
ζ(s) ∈ S. Hence, in view of Lemma 3, the set Gδ,K is an open neighborhood of the element
ζ(s) in the support of the measure Pζ ; thus,

Pζ(Gδ,K) > 0.

This, together with Lemmas 1 and 2, shows that

lim inf
T→∞

PT(Gδ,K) > Pζ(Gδ,K) > 0,

and the definitions of PT and Gδ,K prove inequality (3).
Sufficiency. Suppose that (3) is true. We will show that the RH is true as well.
On the contrary, suppose that the RH is not true. Then, ζ(s) has zeros in the strip

D; therefore, ζ(s) 6∈ S. Hence, by Lemma 3, ζ(s) is not an element of the support of the
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measure Pζ . By a support property, there is an open neighborhood G of ζ(s) such that

Pζ(G) = 0. Then, there is an open set Gδ
def
={g ∈ H(D) : ρ(g, ζ) < δ}, δ > 0, lying in the

set G. Our purpose is to prove that there exists a set K ∈ K and ε > 0 such that Gε,K lies in
Gδ. Let Kj0 be a set from the definition of the metric ρ such that

∑
j>j0

2−j <
δ

2
. (4)

By the definition of the sequence {Kj}, we have Kj0 ⊃ Kj for j = 1, . . . , j0. Therefore,
for g ∈ Gδ/2,Kj0

, by (4),

ρ(g, ζ) =

(
j0

∑
j=1

+ ∑
j>j0

)
1
2j

sups∈Kj
|g(s)− ζ(s)|

1 + sups∈Kj
|g(s)− ζ(s)| <

δ

2

j0

∑
j=1

1
2j + ∑

j>j0

1
2j < δ.

This shows that Gε,Kj0
lies in the set Gδ for all 0 < ε < δ/2. Therefore, Gε,Kj0

⊂ G for
the latter values of ε. In consequence, for 0 < ε < δ/2, we have

Pζ(Gε,Kl0
) = 0. (5)

The boundary ∂Gε,Kj0
lies in the setg ∈ H(D) : sup

s∈Kj0

|g(s)− ζ(s)| = ε

.

Therefore, ∂Gε1,Kj0
∩ ∂Gε2,Kj0

= ∅ for different positive ε1 and ε2. From this, it follows
that the set Gε,Kj0

is a continuity set of the measure Pζ for all but at most countably many
ε > 0. Hence, there is 0 < ε̂ < δ/2 such that the set Gε̂,Kj0

is a continuity set of Pζ and
satisfies (5). Therefore, by Lemmas 1 and 2,

lim
T→∞

PT(Gε̂,Kj0
) = Pζ(Gε̂,Kj0

) = 0.

Hence,
lim inf

T→∞
PT(Gε̂,Kj0

) = 0,

and this contradicts inequality (3). Therefore, the RH is true.

Proof of Theorem 5. Necessity. Suppose that the RH is true. Then, ζ(s) ∈ H0(K) for every
K ∈ K. Therefore, the second part of Theorem 3 implies that the limit

lim
T→∞

1
T

meas

{
τ ∈ [0, T] : sup

s∈K
|ζ(s)− ζ(s + itτ)| < ε

}
(6)

exists and is positive for all but at most countably many ε > 0.
This can be also proven directly. Using the notation of the proof of Theorem 4,

we have
Pζ(Gε,K) > 0. (7)

Moreover, as in the proof of Theorem 4, we obtain that the set Gε,K is a continuity set
of the measure Pζ , for all but at most countably many ε > 0. Therefore, by Lemmas 1 and 2,
we find by (7) that the limit (6) exists and is positive for all but at most countably many
ε > 0.
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Sufficiency. Suppose that the limit (6) exists and is positive for all but at most countably
many ε > 0. We have to prove that the RH is true.

On the contrary, suppose that the RH is not true. As in the proof of Theorem 4, we
obtain that there exists δ > 0 and a compact set Kδ ⊂ D such that the limit (6) exists and
is zero for all 0 < ε < δ/2. However, this contradicts the hypothesis that the limit (6) is
positive for all but at most countably many ε > 0, and this contradiction proves the RH.
The theorem is proven.

4. Conclusions
The famous Riemann hypothesis (RH) asserts that the function

ζ(s) =
∞

∑
m=1

1
ms , σ > 1,

and given by analytic continuation elsewhere, has zeros different from s = −2m, m ∈ N,
lying only on the line σ = 1/2. There are many equivalents of the RH. In the paper, we
propose equivalents of the RH stated in terms of the self-approximation of ζ(s) by shifts
ζ(s + itτ), where tτ is the solution of the equation

θ(t) = (τ − 1)π, τ > 0,

and θ(t) denotes the increment in the argument of the function π−s/2Γ(s/2) along the
segment connecting the points s = 1/2 and s = 1/2 + it. Let K be the class of compact sets
of the strip {s ∈ C : 1/2 < σ < 1} with connected complements. Then, the RH is true if
and only if the inequality

lim inf
T→∞

1
T

meas

{
τ ∈ [0, T] : sup

s∈K
|ζ(s)− ζ(s + itτ)| < ε

}
> 0

holds for every K ∈ K and ε > 0, or, for every K ∈ K, the limit

lim
T→∞

1
T

meas

{
τ ∈ [0, T] : sup

s∈K
|ζ(s)− ζ(s + itτ)| < ε

}

exists and is positive for all but at most countably many ε > 0.
The history of mathematics shows that the function ζ(s) has various connections with

physics and other natural sciences. At present, we do not see any connection between
the obtained criteria for the RH and physical phenomena, but this may be possible in the
future. We believe that the proof (or disproof) of the RH could have a certain influence on
investigations of some physical processes. On the other hand, it is impossible to prove the
RH with even very large numerical calculations.

For the function ζ(s), discrete universality theorems on the application of analytic func-
tions by shifts ζ(s+ iϕ(k)), k ∈ N, with certain functions are also known. Theorems 4 and 5
can be stated for Gram points. Moreover, the use of limit and universality theorems in
short intervals is possible.
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