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 1. Introduction 
 Stroke  is  the  most  complex  public  health  challenge  and  is  responsible  for  millions  of  deaths. 

 It  is  not  just  the  second  leading  cause  of  death  globally,  but  it  also  complicates  lives  for  individuals 
 and  their  families  and  raises  problems  for  the  healthcare  system.  Despite  high  achievements  in 
 medical  treatment  and  preventive  strategies,  predicting  survival  following  stroke-related 
 complications  remains  a  challenging  endeavour.  This  uncertainty  highlights  the  necessity  for 
 predictive models to offer clinicians a more precise understanding of patient outcomes. 

 The  rise  of  machine  learning  (ML)  algorithm  applications  also  helps  healthcare  facilities 
 predict  stroke  patients'  physical  and  mental  well-being.  Machine  learning  models  have  the  potential 
 to  detect  patterns  and  correlations  that  escape  traditional  statistical  methods.  In  stroke  management, 
 such  models  could  reveal  robust  methods  for  early  identification  of  patients  at  risk  of  mortality, 
 leading  to  faster  interventions  and  tailored  treatments.  Nevertheless,  despite  the  progress,  not  all 
 ML  training  algorithms  work  correctly.  The  task  of  choosing  the  right  model  that  balances  accuracy 
 with its interpretability is a critical challenge that must be comprehensively addressed. 

 Numerous  researchers  have  explored  various  ML  algorithms  and  techniques  to  predict 
 clinical  outcomes  in  stroke  patients  (see  the  next  section),  with  models  such  as  Logistic  Regression 
 and  Random  Forest,  frequently  cited  for  their  performance.  However,  with  the  emergence  of  more 
 sophisticated  algorithms,  such  as  XGBoost  and  Neural  Networks,  there  is  a  growing  interest  in 
 comparative  evaluation,  employing  a  comprehensive  dataset  and  adequate  evaluation  metrics. 
 Moreover,  as  the  complexity  of  these  models  increases,  it  is  essential  to  determine  the  most 
 influential  predictors  shaping  their  outputs.  Knowing  which  features  are  most  important  in 
 determining a patient’s prognosis can be just as valuable as the prediction itself. 

 In  this  study,  we  aim  to  evaluate  the  performance  of  five  prominent  ML  classifiers:  Logistic 
 Regression,  Random  Forest,  Gradient  Boosting  (XGBoost),  Support  Vector  Machine  (SVM),  and 
 Neural Networks (MLPClassifier),  for predicting stroke-related mortality. 

 The  experimental  research  was  conducted  using  a  database  of  registered  stroke  cases  from 
 the  Neurology  Department  of  the  Clinical  Centre  in  Montenegro.  The  initial  database  consists  of 
 944  structured  patient  records,  encompassing  58  variables.  We  selected  10  variables  for  our  research 
 and  applied  specific  coding  to  their  value.  A  detailed  description  of  the  study  of  stroke  patients’ 
 database used is provided in section 4. 

 By  utilising  this  clinical  and  demographic  data  from  stroke  patients,  we  have  explored  the 
 accuracy  of  these  models  and  the  key  features  that  drive  their  predictions.  By  providing  a  full-scale 
 comparison  of  these  approaches,  we  aim  to  elucidate  the  performance  of  the  methods  and  offer  the 
 most  significant  promise  for  improving  stroke  care  in  terms  of  predictive  power,  accuracy,  and 
 interpretability. 

 The  next  section  is  intended  for  a  literature  review  of  ML  applications  for  stroke-related 
 datasets.  Section  3  provides  a  brief  overview  of  ML  techniques,  while  Section  4  introduces  the 
 stroke  database  used  in  our  research.  The  most  crucial  section  of  the  article  –  section  5  -  presents 
 the  results  of  our  study.  Finally,  the  article  concludes  with  a  dedicated  section  for  discussion  and 
 final remarks. 

 2. Literature Review 
 Machine  learning  (ML)  is  a  widely  recognised  tool,  frequently  referenced  in  healthcare 

 literature,  including  those  examining  the  aetiology  and  possible  complications  of  stroke.  Usually, 
 stroke  mortality  has  been  predicted  using  statistical  models,  like  Cox  proportional  hazards  and 
 logistic  regression.  The  popularity  of  these  methods  is  due  to  their  simplicity  and  ease  of 
 interpretation.  However,  their  performance  declines  when  modelling  complex  relationships  in  large 
 datasets,  which  force  researchers  to  explore  more  advanced  machine-learning  methods.  The 
 following  section  reviews  relevant  literature  concerning  the  application  of  ML  models  for 
 predicting stroke-related mortality. 
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 2.1. Logistic Regression 
 In  stroke  research,  the  most  widely  used  model  is  logistic  regression.  Wang  (2023)  and 

 Krikščiunienė  &  Sakalauskas  (2022)  found  that  logistic  regression  could  effectively  predict  stroke 
 mortality,  using  clinical  variables  such  as  age,  hypertension,  and  stroke  severity.  Although  this 
 method  is  straightforward,  it  exhibits  notable  limitations  when  dealing  with  more  complicated 
 datasets.  Logistic  regression's  assumption  of  a  linear  connection  between  variables  may  not 
 accurately represent the nature of medical data, especially in large, diverse patient groups. 

 2.2. Random Forest 
 Random  Forest  is  an  ML  method  that  constructs  ensembles  of  decision  trees  for  predictive 

 modelling  and  data-driven  inference.  It  aggregates  the  predictions  of  multiple  decision  trees,  at  the 
 same  time  reducing  the  risk  of  overfitting.  Random  Forest  handles  missing  data  better  than  many 
 traditional  methods.  Egegamuka  et  al.  (2024)  utilised  the  Random  Forest  method  to  predict  stroke 
 outcomes,  introducing  a  novel  outlier  detection  technique  to  eliminate  irrelevant  features. 
 Fernandez-Lozano  et  al.  (2021)  investigated  the  use  of  Random  Forest  for  predicting  mortality  and 
 morbidity  at  three  months  post-admission.  Although  this  model  was  more  accurate  than  logistic 
 regression,  it  comes  with  a  trade-off:  as  the  number  of  trees  increases,  it  becomes  harder  to  interpret 
 the model’s decisions. 

 2.3. XGBoost and Gradient Boosting Techniques 
 Gradient-boosting  algorithm  (XGBoost)  is  recognised  for  its  performance  in  classification 

 tasks.  Wang  et  al.  (2022)  identified  high-risk  aSAH  (aneurysmal  subarachnoid  haemorrhage) 
 patients  by  using  XGBoost  prognostic  model.  Chung  et  al.  (2023)  demonstrated  the  model's 
 performance  for  identifying  the  patients  receiving  different  AIS  (Acute  Ischemic  Stroke)  treatments 
 and provided clinical evidence for feature optimisation of AIS treatment strategies. 

 XGBoost’s  advantage  lies  in  its  ability  to  minimise  bias  and  variance  while  handling 
 missing  data  effectively.  It  also  provides  valuable  insights  into  the  importance  of  features,  helping 
 to  identify  the  factors  that  most  influence  patient  outcomes.  However,  its  complexity  can  be  a 
 barrier for those looking for transparent and interpretable models. 

 2.4. Support Vector Machines (SVMs) 
 Support  Vector  Machines  (SVMs)  are  helpful  in  cases  where  datasets  are  smaller  but 

 high-dimensional.  Feng  (2023)  and  Zhang  (2023)  showed  that  SVMs  could  accurately  predict 
 stroke  mortality,  particularly  when  paired  with  feature  selection  techniques.  Despite  this,  SVMs  can 
 be  less  intuitive  for  clinicians,  making  their  use  in  clinical  practice  more  challenging,  especially 
 compared to models that provide more precise insights into how predictions are made. 

 2.5. Neural Networks and Deep Learning 
 Neural  networks,  particularly  multi-layer  perceptrons  (MLP),  are  increasingly  used  to 

 predict  medical  outcomes  because  of  their  ability  to  model  complex  and  nonlinear  relationships 
 between  variables.  Cheon,  Kim,  &  Lim  (2019)  applied  Principal  Component  Analysis  (PCA)  with 
 quantile  scaling  to  extract  relevant  background  features  from  medical  records  and  predict  stroke 
 occurrence.  To  predict  stroke  mortality  and  identify  the  most  significant  risk  factors,  the  neural 
 network  was  also  employed  in  the  research  of  Someeh  et  al.  (2023).  They  reported  that  stroke 
 mortality  is  most  strongly  influenced  by  the  following  features:  smoking,  lower  education,  age,  lack 
 of  physical  activity,  diabetes,  and  body  weight.  However,  neural  networks  are  often  seen  as  "black 
 boxes",  because  they  do  not  readily  provide  interpretable  explanations  for  their  predictions,  making 
 it difficult for clinicians to trust and act upon the results without additional interpretative tools. 
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 2.6. Interpretable Machine Learning 
 The  challenge  of  balancing  accuracy  with  interpretability  is  a  common  theme  in  healthcare 

 applications  of  machine  learning.  Lundberg  &  Lee  (2017)  introduced  SHAP  (Shapley  Additive 
 explanations),  a  technique  that  makes  machine  learning  models  more  interpretable  by  attributing 
 prediction  outcomes  to  individual  features.  SHAP  has  proven  helpful  in  increasing  the  transparency 
 of  complex  models  like  XGBoost  and  neural  networks,  helping  to  make  their  predictions  more 
 understandable and applicable in clinical practice. 

 Fernandes  et  al.  (2024)  conducted  a  comprehensive  review  of  25  review  papers  published 
 between  2020  and  2024  on  machine-learning  and  deep-learning  applications  in  brain  stroke 
 diagnosis,  focusing  on  classification,  segmentation,  and  object  detection.  The  analysis  shows  that 
 advanced  ML  models,  such  as  Random  Forest,  XGBoost,  and  neural  networks  offer  significant 
 improvements  in  prediction  accuracy  over  traditional  methods,  but  lack  interpretability.  Logistic 
 regression  remains  a  favoured  method  for  its  ease  of  use,  but  it  lacks  the  predictive  power  of  these 
 newer models. 

 As  machine  learning  in  healthcare  continues  to  evolve,  researchers  must  focus  on 
 developing models that are both accurate and interpretable for medical professionals. 

 3. A Brief Overview of ML Techniques 
 For  this  research,  we  employ  five  machine  learning  (ML)  techniques  to  predict 

 stroke-related  mortality.  Each  method  adopts  a  unique  approach  to  learning  patterns  from  the  data, 
 and we outline them below with the key mathematical formulations. 

 3.1. Logistic Regression 
 Logistic  regression  is  a  linear  model  used  for  binary  classification.  It  estimates  the 

 probability  that  a  given  input  belongs  to  a  certain  class  based  on  a  linear  combination  of  input 
 features. 

 The model is defined as (1): 
 (1)  𝑃 ( 𝑦 =  1|  𝑋 ) =  1 
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 3.2. Random Forest Classifier 
 Random  Forest  is  an  ensemble-learning  method  that  combines  multiple  decision  trees  to 

 improve  predictive  performance.  It  averages  the  predictions  of  several  decision  trees  to  reduce 
 overfitting and variance. 

 For  each  tree,  predictions  are  made  based  on  majority  voting.  The  general  structure  for 
 decision  trees  is  based  on  recursively  splitting  the  dataset  according  to  feature  values  that  minimise 
 the Gini impurity (2): 

 (2)  𝐺𝑖𝑛𝑖  𝐷 ( ) =  1 −
 𝑖 = 1 

 𝐶 

∑  𝑝 
 𝑖 
 2 

 where  D  is a dataset, 𝑝𝑖 is the proportion of class  I  in  D, and C  is the number of classes. 

 The Random forest takes an average of all decision trees by voting. 
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 3.3. Gradient Boosting Machines (XGBoost) 
 XGBoost  (Extreme  Gradient  Boosting)  is  an  advanced  machine  learning  method  that  builds 

 multiple  small  models  (decision  trees)  in  sequence,  each  correcting  the  previous  model's  errors. 
 Instead  of  training  all  models  at  once,  XGBoost  builds  one  tree  at  a  time,  with  each  subsequent  tree 
 aiming  to  reduce  the  residual  errors  of  the  preceding  ones.  Initially,  XGBoost  minimises  an 
 objective  function,  comprising  the  logistic  loss  and  a  regularisation  term  that  penalises  tree 
 complexity.  After  adding  each  tree,  XGBoost  calculates  the  gradient,  which  guides  the  model  in 
 adjusting  its  predictions  to  get  closer  to  the  actual  values.  The  next  tree  is  built  to  minimise  the 
 difference  between  the  actual  values  and  the  predictions  (using  these  gradients).  The  final  prediction 
 is obtained by aggregating the results of all the individual trees. 

 3.4. Support Vector Machine (SVM) 
 Support  Vector  Machine  (SVM)  is  a  machine  learning  method  used  for  classification  tasks, 

 aiming  to  separate  data  into  two  different  groups  (like  predicting  "survival"  or  "non-survival"). 
 SVM  aims  to  find  the  best  boundary  (called  a  hyperplane)  that  separates  the  two  classes  as  clearly 
 as possible. 

 SVM  tries  to  find  a  line  (in  2D)  or  a  plane  (in  higher  dimensions)  that  divides  the  data  points 
 into  two  groups.  The  best  hyperplane  is  the  one  that  creates  the  most  significant  "gap"  or  margin 
 between the two groups. 

 SVM  doesn't  just  draw  any  boundary  between  the  groups,  it  looks  for  the  hyperplane  that 
 leaves  the  most  space  between  the  closest  points  of  each  group.  These  closest  points  are  called 
 support vectors. The wider the gap, the better the model. 

 Sometimes,  the  data  can't  be  separated  in  a  straight  line.  In  these  cases,  SVM  employs  a 
 technique  known  as  the  kernel  trick.  This  trick  transforms  the  data  into  a  higher-dimensional  space 
 where separating the groups with a hyperplane becomes easier. 

 Once  the  hyperplane  is  found,  new  data  points  are  classified  based  on  which  side  of  the 
 hyperplane  they  fall  on.  If  a  new  point  is  on  one  side  of  the  line,  it  belongs  to  class  A.  If  it's  on  the 
 other, it belongs to class B. 

 3.5. Neural Networks (MLPClassifier) 
 A  neural  network  consists  of  layers  of  interconnected  neurons.  Each  neuron  applies  a 

 weighted sum of inputs followed by a non-linear activation function. 
 For a single neuron, the output is given by (3): 

 (3)  𝑂𝑢𝑡𝑝𝑢𝑡 = σ ∙ (
 𝑖 = 1 

 𝑛 

∑ ω
 𝑖 
 𝑋 

 𝑖 
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 Where  are  the  weights,  b  is  the  bias  term,  and  )  is  an  activation  function,  often  the ω
 𝑖 

 σ ( ∙ 
 sigmoid function for binary classification. 

 The  neural  network  is  trained  by  minimising  a  loss  function,  typically  the  binary 
 cross-entropy for classification, using backpropagation (4): 

 (4)  𝐿 =−
 𝑖 = 1 

 𝑁 

∑ ( 𝑦 
 𝑖 
log  𝑙𝑜𝑔     𝑦 

^

 𝑖 ( ) + ( 1 −  𝑦 
 𝑖 
)   log  𝑙𝑜𝑔    ( 1 −  𝑦 

^

 𝑖 
))   

 In  models  like  Random  Forest  and  XGBoost,  feature  importance  is  derived  from  the 
 contribution  of  each  feature  to  splits  in  the  decision  trees.  For  models  like  SVM  and  Neural 
 Networks,  permutation  importance  can  be  used,  which  measures  the  change  in  model  performance 
 when a feature's values are randomly shuffled. 
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 4. Stroke Clinical Data Description 
 The  database  used  in  this  experimental  research  consists  of  clinical  data  records  of  stroke 

 patients  registered  by  the  neurology  department  of  the  Clinical  Centre  of  Montenegro,  operating  in 
 Podgorica,  Montenegro.  The  original  dataset  contains  944  structured  patient  records  and  58 
 variables.  Of  these,  50  are  categorical  variables  encoded,  using  a  {1,  2,  3}  scale  representing  'Yes', 
 'No',and  'Unspecified',  while  the  remaining  eight  include  demographic  information,  admission  date, 
 and  discharge  date.  The  data  were  collected  between  02/25/2017  and  12/18/2019.  The  demographic 
 data  of  stroke  patients  vary  by  age  (13  to  96  years)  and  gender  (485-male,  427-female).  For  our 
 research,  we  have  cleansed  the  initial  stroke  database,  re-encoded  selected  variables,  and  finally, 
 based  on  a  combination  of  domain  knowledge  from  clinical  neurologists  at  the  data  source,  we  have 
 selected an 11-variable database for research (Sakalauskas et al., 2022). 

 The  example  of  database  structure  and  data  records  is  presented  in  Table  1.  The  full  database 
 can be downloaded from  https://github.com/Virgilijus11/StrokeData.git  . 

 Table 1. Sample of data records and variables of the stroke cases database 

 Days at 
 Hospital 

 Vital 
 Status 

 Stroke 
 Type 

 Treatment 
 methods 

 Health 
 Status  Age  Gender 

 Past 
 Stroke 

 Stroke 
 Symptoms 

 Health 
 Com- 

 plications  Smoke 
 2  1  2  4  9  79  2  1  12  4  3 
 2  0  2  4  0  79  2  1  13  0  2 
 6  0  1  24  0  79  2  0  2  0  2 
 16  0  1  24  2  78  2  0  12  0  2 
 13  0  1  24  0  77  2  0  23  1  2 
 45  1  3  14  1  77  2  0  12  0  1 
 9  0  1  24  3  78  2  0  123  0  2 
 5  0  1  24  0  77  2  0  23  4  1 
 6  1  1  14  0  77  1  0  23  0  2 
 1  0  1  24  0  76  1  0  2  0  2 
 2  0  1  24  0  76  2  0  3  0  2 
 8  0  1  24  0  77  2  1  23  0  2 
 3  0  1  24  0  75  1  0  2  0  2 
 7  1  1  24  0  77  1  0  23  2  2 
 1  0  1  24  0  77  2  0  123  0  1 

 The variables of the stroke database are coded for applying the survival modelling 
 methodologies; their values are explained in Table 2. 

 A  stroke  is  a  medical  condition  where  there  is  an  interruption  in  cerebral  perfusion.  In 
 general,  stroke  is  classified  into  two  primary  types  of  strokes:  haemorrhagic  (Haemorrhage)  stroke 
 and  ischaemic  stroke  (Ishemic)  (Deljavan,  Farhoudi,  &  Sadeghi-Bazargani,  2018).  However,  the 
 definition  of  symptoms  enables  more  stroke  types  and  clinical  subtypes.  The  aetiology  of  stroke  is 
 often  associated  with  morbidities  of  patients,  such  as  diabetes  and  heart  diseases.  Therefore, 
 numerous potentially significant variables are registered in the stroke data sets. 

 Ischaemic  strokes  occur  when  cerebral  blood  vessels  become  obstructed,  restricting  blood 
 flow  to  the  brain.  This  type  of  stroke  makes  up  about  87%  of  all  stroke  cases  (Deljavan,  Farhoudi, 
 & Sadeghi-Bazargani, 2018). 
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 Table 2. The definition of stroke clinical database variables 

 Variable 
 name 

 Meaning and coding of data 

 Days at 
 Hospital 

 – the number of days after stroke till hospital admission 

 Vital Status  – 1: Event (death), 0: Alive/censored 
 Stroke Type  - 1: Ischemic, 2: Haemorrhage, 3: SAH, 4: Unspecified 
 Treatment 
 methods 

 -  0:  No  treatment,  1:  Anticoagulation,  2:  Dual  Antiplatelet  Therapy,  3: 
 Thrombolysis,  4:  Others,  Two  digit  codes:  mean  combined  treatment 
 methods, e.g., 24: means 2 and 4 are applied. 

 Health Status  -  Health  score  before  stroke  from  0:  best  to  9:  worst.  0:  Without  symptoms; 
 1:  Without  significant  disability  despite  symptoms;  2:  Minor  disability;  3: 
 Moderate  disability,  but  able  to  walk  independency;  4:  Moderate  disability, 
 not able to walk independency; 5: Major disability; 9: Unknown 

 Age  – Patient age, years 
 Gender  – 1: Male, 2: Female, 9: Unspecified 
 Past Stroke  – Stroke in the past. 1: Yes, registered in the patient health record, 0: No 
 Stroke 
 Symptoms 

 0:  No  symptoms,  1:  Impaired  consciousness,  2:  Weakness/paresis,  3:  Speech 
 disorder (aphasia), Several digit codes: 123-means all three symptoms 

 Health 
 complications 

 0:  unspecified,  1:  other  CV  (cardiovascular)  complications,  4:  other 
 complications, Several digit codes: 23: means 2 and 3 

 Smoke Status  1-Smokes, 2-No, 3-Smoked before 

 There  are  two  types  of  ischemic  strokes,  thrombotic  and  embolic  strokes,  which  differ  in 
 underlying pathophysiology. 

 A  thrombotic  stroke  is  caused  by  a  clot  forming  in  a  blood  vessel  of  the  brain,  often  related 
 to atherosclerosis. 

 An  ischaemic  stroke  can  be  embolic,  involving  a  blood  clot  that  travels  from  another  part  of 
 the  body  to  the  cerebral  circulation.  Approximately  15%  of  embolic  strokes  are  due  to  a  condition 
 called atrial fibrillation. 

 A  haemorrhagic  stroke  is  caused  by  bleeding,  which  may  occur  within  the  brain  parenchyma 
 or  in  the  subarachnoid  space.  This  is  the  cause  of  about  20%  of  all  strokes  (World  Stroke 
 Organization,  2019).  Haemorrhagic  strokes  are  classified  into  two  main  categories,  based  on  the 
 location  and  cause  of  bleeding:  intracerebral  haemorrhage  (haemorrhage)  and  subarachnoid 
 haemorrhages  (SAH).  Intracerebral  haemorrhages  are  caused  by  a  broken  blood  vessel  located  in 
 the  brain.  Severely  elevated  blood  pressure  can  cause  weakening  of  the  small  blood  vessels  in  the 
 brain.  It  may  be  related  to  anticoagulant  therapy.  The  second  category,  subarachnoid  haemorrhages 
 (SAH),  occurs  when  a  blood  vessel  gets  damaged,  leading  to  bleeding  in  the  area  between  the  brain 
 and  the  thin  tissues  that  cover  it.  A  ruptured  aneurysm,  AVM,  or  head  injury  can  cause  SAH.  SAH 
 is  a  less  common  type  of  haemorrhagic  stroke,  approximately  5–6%  of  all  strokes.  Due  to  its 
 distinct  aetiology,  it  is  allocated  to  the  separate  category  of  stroke  SAH.  The  other  types  of  stroke 
 include various cases such as Cryptogenic Stroke, Brain Stem Stroke, and others. 

 Recurrent  stroke  accounts  for  nearly  25%  of  all  stroke  cases.  Age  and  modifiable  lifestyle 
 factors,  such  as  smoking,  hypertension,  and  obesity,  are  among  the  common  predictors  of  stroke  and 
 its outcomes. 

 The  variables  in  the  research  data  set  were  prepared  according  to  the  clinical  characteristics 
 associated with the identified stroke subtypes. 
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 5. Performance Comparison of Binary Classification Models 
 In  this  research,  five  widely  used  binary  classification  models—Logistic  Regression  (LR), 

 Random  Forest  (RF),  Gradient  Boosting  Machines  (XGBoost),  Support  Vector  Machine  (SVM), 
 and  Neural  Networks  (MLPClassifier)—were  implemented  using  Python  to  predict  stroke-related 
 mortality.  The  main  goal  was  to  compare  their  performance  based  on  multiple  evaluation  metrics 
 and select the most effective model for the given task. 

 The  experiment  includes  four  stages:  model  training  and  evaluation,  testing  the  impact  of  the 
 training  set  size  on  accuracy,  feature  importance  analysis,  and  threshold-based  evaluation  of 
 Random  Forest  model  performance.  The  data  preprocessing,  model  implementation,  and  all 
 experiment  stages  were  conducted  using  Python  (Figure  1),  enabling  the  generation  of  all  results 
 presented in this research. 

 Figure 1. QR code for Python program 

 Before  applying  the  machine  learning  models,  the  dataset  underwent  several  preprocessing 
 steps:  handling  missing  values,  encoding  categorical  variables,  splitting  the  initial  database  into 
 training and testing sets and applying feature scaling where appropriate. 

 Missing  data  were  addressed  using  a  forward-filling  procedure  (  fill)  to  ensure  the 
 completeness  of  the  dataset.  For  all  categorical  features,  we  have  applied  an  encoding  procedure, 
 converting  them  into  numerical  form  to  ensure  compatibility  with  machine  learning  algorithms.  The 
 dataset  was  split  into  training  and  testing  sets  using  the  train_test_split()  function  from  the 
 scikit-learn..  The  initial  split  ratio  was  set  at  70%  of  all  records  for  training  and  30%  for  testing. 
 Also,  we  explored  the  effect  of  changing  this  ratio.  In  Logistic  Regression,  SVM,  and  Neural 
 Networks, we have applied feature scaling to ensure that the models converge efficiently. 

 Each  binary  classification  model  described  in  section  3  was  implemented  in  Python,  using 
 corresponding  Python  libraries.  The  implemented  function  trains  and  evaluates  the  following 
 models: 

 Logistic Regression  :  Logistic regression ()  from scikit-learn. 
 Random Forest Classifier  :  RandomForestClassifier()  from scikit-learn. 
 XGBoost  :  XGBClassifier() from XGBoost. 
 Support Vector Machine (SVM)  :  SVC()  from scikit-learn. 
 Neural Network (MLPClassifier)  :  MLPClassifier()  from scikit-learn. 

 To  optimise  model  performance,  a  grid  search  was  conducted  to  identify  the  optimal 
 hyperparameter  values.  The  models  were  trained  on  the  training  data  set  and  evaluated  on  the 
 testing set. 

 To assess and compare the models' performance, we used four evaluation metrics: 
 ●  Accuracy: The percentage of correct predictions; 
 ●  Precision: The percentage of correct predictions along the predicted positive cases; 
 ●  Recall: The percentage of correct predictions along the actual positive cases; 
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 ●  F1-Score: The harmonic mean of precision and recall; 
 Each  model’s  performance  was  recorded  using  these  metrics  and  compared  across  models  to 

 identify the best-performing one. 

 5.1. Performance of ML Models 
 The  results  of  the  research  are  summarised  in  Table  3,  which  compares  the  performance  data 

 for  all  binary  classification  models  in  the  case  of  a  training  set  size  of  70%  of  the  dataset  -  188 
 records  representing  the  "alive"  class  and  96  the  "deceased"  class.  The  random  state  parameter  here 
 is set equal to 42. 

 Table 3. Performance of various ML algorithms in predicting stroke-related mortality 
 Accuracy  Precision  Recall  F1 

 score 
 Logistic regression  0-alive  76.41%  0.77  0.91  0.84 

 1-dead  0.73  0.48  0.58 
 Random Forest  0-alive  79.93%  0.80  0.92  0.86 

 1-dead  0.78  0.56  0.65 
 XGBoost  0-alive  75.70%  0.80  0.85  0.82 

 1-dead  0.66  0.58  0.62 
 SVM  0-alive  76.41%  0.76  0.94  0.84 

 1-dead  0.78  0.42  0.54 
 MLPClassifier  0-alive  76.06%  0.80  0.85  0.82 

 1-dead  0.66  0.59  0.63 

 The  table  presents  the  results  of  five  different  binary  classification  models  in  terms  of  their 
 performance  for  predicting  stroke-related  mortality,  where  the  target  classes  are  "0"  (alive)  and  "1" 
 (dead).  The  performance  metrics  employed:  accuracy,  precision,  recall,  and  F1  score,  provide 
 insight into the models' predictive power and reliability. 

 Paired  t-test  analysis  comparing  model  performances  revealed  statistically  significant 
 differences at the 95% confidence level. 

 As  we  see  Logistic  regression  performs  well  in  predicting  the  "alive"  class,  with  high  recall 
 (0.91),  meaning  it  successfully  identifies  a  large  proportion  of  those  alive.  However,  it  struggles 
 with  predicting  the  "dead"  class,  with  a  much  lower  recall  (0.48),  indicating  a  high  rate  of  false 
 negatives. 

 The  Random  Forest  method  shows  the  highest  overall  accuracy  (79.93%)  and  performs  well 
 for  both  classes.  For  the  "alive"  class,  it  achieves  high  precision  and  recall,  while  for  the  "dead" 
 class,  recall  (0.56)  and  F1-score  (0.65)  significantly  improve  compared  to  logistic  regression, 
 enhancing its ability to identify mortality cases. 

 The  XGBoost  model  exhibits  relatively  balanced  performance,  though  it  demonstrates 
 slightly lower overall accuracy, particularly in its ability to identify patients at risk of death. 

 SVM  performance  in  predicting  the  "alive"  class  is  notably  high,  with  a  recall  of  0.94, 
 correctly  identifying  the  majority  of  surviving  patients.  However,  the  "dead"  class,  as  seen  from  the 
 low  recall  equal  to  0.42  means  it  misses  over  half  of  the  death  cases.  Consequently,  the  low  recall 
 reduces its effectiveness in predicting mortality. 

 The  accuracy  and  F1  score  of  MLPClassifier  are  comparable  with  XGBoost,  indicating  that 
 it may also have issues in accurately identifying mortality cases. 

 In  summary,  Random  Forest  emerged  as  the  best-performing  model  for  stroke-related 
 mortality  prediction,  especially  regarding  overall  accuracy  and  its  ability  to  identify  patients  likely 
 to  survive.  Nonetheless,  the  low  precision  and  recall  observed  for  class  ‘1  –  dead’  underscore  the 
 need to improve mortality prediction across all models 
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 5.2. Impact of the Training Set Size on Model Accuracy 
 During  the  next  experiment,  we  evaluated  the  impact  of  the  training  set  size  on  model 

 accuracy.  Figure  2  presents  the  variation  in  model  accuracy  as  the  training  set  size  is  systematically 
 adjusted.  This  graph  illustrates  the  dynamic  changes  in  the  accuracy  of  five  machine  learning 
 models  based  on  the  proportion  of  the  training  set  used,  ranging  from  0.9  to  0.1.  The  y-axis 
 represents  accuracy  in  percentages.  The  x-axis  shows  the  training  set  size  as  a  percentage 
 proportion of the total dataset. 

 Figure 2. Impact of the training set size on model accuracy. 

 The  Random  Forest  (RF)  graph  stands  out  with  the  highest  accuracy,  peaking  at  around  80% 
 accuracy  for  a  training  size  of  0.7.  However,  we  see  its  performance  sharply  drop  down  when  the 
 training  set  size  is  below  0.4,  indicating  that  it  may  not  generalise  well  as  the  training  set  decreases 
 further. 

 XGBoost  linear  graph  only  shows  the  best  performance  for  the  training  set  around  0.9. 
 Then,  it  is  stable  enough  between  0.7-0.2,  with  accuracy  consistently  around  75%.  If  the  training  set 
 size drops below 0.2, the accuracy falls accordingly. 

 Logistic  Regression  (LR)  for  all  set  sizes  performs  well  but  maintains  lower  accuracy  than 
 RF.  Its  peak  is  around  78%  with  a  training  set  of  0.4.  For  smaller  training  sets  (between  0.4  and 
 0.3), the performance of LR is very similar to RF. 

 SVM  linear  graph  demonstrates  a  performance  similar  to  the  logistic  regression  model. 
 When  the  training  set  proportion  is  0.3  or  lower,  SVM  performs  comparably  to  the  best-performing 
 RF  model.  Thus,  under  limited  training  data  conditions,  the  Support  Vector  Machine  model  may 
 offer  the  highest  accuracy.  Neural  Networks  (NN)  exhibited  the  lowest  overall  accuracy  across  all 
 training set sizes. 

 5.3. Feature Importance Score 
 Subsequently,  we  identify  the  most  critical  features  contributing  to  model  predictions.  Based 

 on  the  feature  importance  table  (Table  4)  across  multiple  models,  the  most  influential  predictors  of 
 stroke-related mortality were identified. 

 In  the  table,  the  feature  with  the  highest  impact  on  classification  accuracy  is  marked  by 
 number 1, and the weakest feature influence is marked by number 9. 

 The models’ feature importance scores were evaluated using the technique outlined below: 
 •  Random Forest and XGBoost use the Gini index; 
 •  Logistic Regression uses absolute coefficient values; 
 •  SVM and MLP use permutation importance. 
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 Table 4. Feature importance scores across models applied 
 LR  RF  XG 

 Boost 
 SVM  MLP 

 Classifier 
 Average 

 score 

 Health_Status  2  3  2  1  1  1.8 
 Age  1  1  9  4  2  3.4 

 Stroke_Symptoms  5  2  4  2  6  3.8 
 Health_complications  10  4  1  5  3  4.6 

 Smoke  6  6  3  3  5  4.6 
 Stroke_Type  4  7  5  6  4  5.2 

 Treatment_methods  3  5  6  9  8  6.2 
 Days_till_Hospital  8  9  7  8  9  8.2 

 Past_Stroke  7  10  8  7  10  8.4 
 Gender  9  8  10  10  7  8.8 

 The  ‘Average  Score’  refers  to  the  mean  rank  assigned  to  each  feature  across  all  models.  As 
 we  can  derive  from  the  column  Average  score  ,  the  Health  Status  ,  Age  and  Stroke  Symptoms  are  the 
 most  critical  features,  dominating  all  models  and  suggesting  that  patient-specific  health  factors 
 provide the most valuable information for mortality prediction. 

 Health  Complications  and  Smoke  features  are  mid-level  predictors,  reflecting  the  nuanced 
 differences in stroke severity and related complications. 

 Past  Stroke  and  Gender  are  the  least  important  features,  suggesting  that  historical  factors 
 and  demographic  information,  while  important,  are  overshadowed  by  more  immediate  clinical 
 indicators in determining stroke-related mortality. 

 These  insights  can  help  guide  clinical  focus  towards  key  factors  influencing  stroke 
 outcomes, aiding in prioritising treatment and care for high-risk patients. 

 Gender  and  Past  Stroke  were  identified  as  the  least  significant  variables,  suggesting  that 
 acute  clinical  indicators  are  more  significant  in  determining  stroke-related  mortality  than 
 demographic data and historical determinants. 

 Hence,  directing  clinician  attention  toward  important  variables  affecting  stroke  outcomes 
 can assist in prioritising high-risk patients' care and treatment. 

 5.4. Threshold-Based Evaluation of Random Forest Model Performance 
 Given  that  the  Random  Forest  model  demonstrated  superior  performance  in  predicting 

 stroke  outcomes  relative  to  the  other  models  tested,  its  behaviour  was  further  analysed  with  a  focus 
 on  the  impact  of  varying  the  classification  threshold.  In  stroke  mortality  prediction,  machine 
 learning  models  do  not  produce  categorical  labels  directly,  like  “alive”  or  “dead.”  Instead,  they 
 generate  a  probability  between  0  and  1  for  each  case.  Normally,  we  use  a  threshold  of  0.5,  meaning 
 if  the  predicted  probability  of  death  is  above  0.5,  the  model  predicts  that  the  patient  will  die. 
 However,  this  default  threshold  may  not  always  be  the  best  choice  -  especially  in  healthcare,  where 
 failing  to  identify  a  true  mortality  case  (false  negative)  can  be  more  detrimental  than  a  false  positive 
 prediction.  To  better  understand  model  behaviour,  we  evaluated  the  performance  of  the  Random 
 Forest  model  across  a  range  of  classification  thresholds.  Specifically,  we  looked  at  three  metrics: 
 precision  –  how  many  of  the  predicted  deaths  were  actually  correct,  recall  –  how  many  of  the  actual 
 deaths the model was able to catch, accuracy – the overall rate of correct predictions. 

 This type of threshold-based analysis is useful for several reasons: 
 ●  Customising for clinical priorities  : in some clinical  settings, it may be more important to 

 catch every possible high-risk patient (high recall), while in others it might be better to avoid 
 false alarms (high precision); 

 ●  Improving model understanding  : by seeing how precision,  recall, and accuracy change with 
 the threshold, we get a clearer picture of the model’s strengths and limitations; 
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 ●  Better decision-making  : this analysis helps determine the most appropriate threshold for 
 different clinical goals — whether we want to screen broadly or intervene selectively. 
 Using  Python’s  matplotlib.pyplot  library,  we  plotted  a  graph  (see  Figure  3)  that  shows  how 

 precision, recall, and accuracy behave as the threshold increases from 0.20 to 0.80. 

 Figure 3. Random Forest model performance across different threshold values 

 As  shown  in  the  figure,  precision  increases  consistently  as  the  threshold  rises  from  0.20 
 (0.497)  to  0.80  (0.862).  As  we  raise  the  threshold,  the  model  becomes  more  careful  in  predicting 
 death. 

 This  behaviour  is  useful  when  we  want  to  avoid  false  positives,  for  example,  before 
 assigning intensive treatments or issuing alerts that might worry patients or families. 

 Recall  drops  steadily  from  0.823  at  threshold  0.20,  to  0.260  at  threshold  0.80.  This  shows 
 that  as  we  raise  the  threshold,  the  model  becomes  too  cautious  -  and  starts  missing  real  death  cases. 
 At  lower  thresholds,  the  model  captures  more  actual  mortality  cases  but  at  the  cost  of  increased 
 false  positive  predictions.  At  higher  thresholds,  the  model  fails  to  detect  a  greater  number  of  actual 
 deaths,  as  it  only  predicts  mortality  when  the  probability  is  sufficiently  high.  This  trade-off  is 
 critical in stroke care, where missing a high-risk patient can have serious consequences. 

 Accuracy  follows  a  parabolic  trend,  increasing  up  to  a  threshold  of  0.50—where  it  peaks  at 
 0.803—after  which  it  gradually  declines.  Up  to  0.50,  the  model  becomes  more  balanced  between 
 false  positives  and  false  negatives,  which  improves  its  overall  accuracy.  Beyond  0.50,  even  though 
 precision continues to rise, recall falls too much, which also pulls accuracy down. 

 This  means  that  while  0.50  gives  the  best  balance,  it  might  not  align  with  clinical  priorities, 
 especially if catching all death risks is a higher priority than overall correctness. 
 Table 5 illustrates how this threshold behaviour translates into real-world clinical decision-making: 

 Table 5. Best Threshold options 
 Clinical Goal  Recommended 

 Threshold 
 Why? 

 Early  warning  / 
 screening 

 0.30 – 0.40  Higher recall (up to 0.73), catching more true deaths 

 Balanced 
 decision-making 

 0.50  Best overall accuracy (0.803) and solid precision 

 High-confidence 
 intervention 

 0.70 – 0.80  Very high precision (above 0.83), fewer false positives 
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 Therefore,  the  optimal  classification  threshold  should  be  selected  according  to  the  specific 
 priorities  of  the  clinical  context.  Using  lower  thresholds  when  not  missing  any  deaths  is  the  top 
 priority.  Conversely,  higher  thresholds  are  preferable  when  decision-making  requires  a  high  degree 
 of  certainty  prior  to  initiating  critical  interventions.  Use  the  middle  ground  (like  0.50)  when  you 
 need a balanced, all-purpose approach. 

 This  kind  of  threshold  analysis  doesn’t  just  improve  model  performance  —  it  helps  bridge 
 the  gap  between  AI  predictions  and  real  medical  decisions,  making  the  model  more  useful  in 
 practical, patient-focused settings. 

 6. Conclusion 
 In  the  present  study,  we  used  a  dataset  of  clinical  and  demographic  features  from  the 

 neurology  department  of  the  Clinical  Centre  of  Montenegro  to  assess  the  predictive  power  of  five 
 binary  classification  machine  learning  models:  Random  Forest,  XGBoost,  Support  Vector  Machine 
 (SVM),  Neural  Networks  (MLPClassifier),  and  Logistic  Regression  for  stroke-related  mortality.  By 
 evaluating  these  models  on  important  performance  criteria,  including  accuracy,  precision,  recall, 
 and  F1-score,  we  were  able  to  learn  more  about  their  predictive  abilities  and  overall  reliability.  To 
 determine  the  most  important  factors  influencing  mortality  forecasts,  we  also  looked  at  the 
 significance of attributes. 

 In  terms  of  accuracy  and  interpretability,  our  findings  show  that  ensemble-based  models 
 such  as  Random  Forest  and  XGBoost  fared  better  than  alternative  approaches.  These  models 
 emphasised  the  significance  of  health  status,  age,  and  stroke  symptoms  in  predicting  stroke 
 outcomes  by  repeatedly  identifying  them  as  the  most  significant  predictors.  Although  neural 
 networks  performed  competitively,  especially  in  precision  and  recall,  the  model's  interpretability 
 issues  continue  to  be  a  drawback  in  clinical  settings  where  knowing  the  underlying  causes  is 
 essential. 

 Notably,  despite  their  lower  accuracy,  simpler  models  such  as  Logistic  Regression  provide 
 more  accurate  insights  into  feature  relevance,  which  could  make  them  useful  in  situations  where 
 interpretability  and  transparency  are  crucial.  On  the  other  hand,  SVM  struggled  with 
 generalisability  across  various  test  set  sizes,  although  producing  excellent  results  for  particular 
 metrics. 

 To  further  examine  the  practical  applicability  of  our  best-performing  model,  we  conducted  a 
 threshold-based  evaluation  of  the  Random  Forest  classifier.  By  analysing  how  key  metrics: 
 precision,  recall,  and  accuracy  change  across  different  classification  thresholds,  we  revealed 
 important  trade-offs  relevant  to  clinical  decision-making.  Lower  thresholds  improved  recall  and 
 supported  broader  screening  strategies,  while  higher  thresholds  significantly  boosted  precision, 
 making  them  suitable  for  high-confidence  decisions.  The  analysis  confirmed  that  threshold  selection 
 can  be  tuned  to  align  with  different  clinical  priorities,  enhancing  both  flexibility  and  usability  of  the 
 model in real-world settings. 

 Despite  the  promising  results,  this  study  presents  several  notable  limitations.  The  dataset 
 was  derived  from  a  single  clinical  center,  which  may  limit  the  generalisability  of  the  findings  to 
 other  populations  or  healthcare  settings.  Additionally,  the  relatively  small  sample  size  increases  the 
 risk  of  overfitting,  particularly  in  complex  models  like  neural  networks.  External  validation  on 
 larger, multi-center datasets is essential to confirm the robustness of the proposed models. 

 Finally,  our  results  demonstrate  the  applicability  of  machine  learning  models  in  predicting 
 stroke-related  mortality,  with  Random  Forest  and  XGBoost  emerging  as  the  most  reliable  choices. 
 These  models  are  appropriate  for  practical  clinical  applications  due  to  their  high  performance  and 
 capacity  to  interpret  feature  importance.  By  enabling  the  early  identification  of  high-risk  patients 
 and  directing  more  individualised  treatment  plans,  this  study  highlights  the  potential  of  data-driven 
 approaches to enhance stroke management. 
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