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Abstract: Stoke is found to be a leading cause of mortality and
long-term disability worldwide, forcing effective predictive models to
identify at-risk individuals and optimise treatment plans. In this study,
we evaluate the performance of various machine learning (ML)
algorithms in predicting stroke-related mortality. Five binary
classification models—Logistic Regression (LR), Random Forest (RF),
Gradient Boosting Machines (XGBoost), Support Vector Machine
(SVM), and Neural Networks (MLPClassifier)-were applied to a
dataset containing clinical and demographic features of stroke patients
registered by the neurology department of the Clinical Centre of
Montenegro. Each model was trained and evaluated using standard
classification metrics: accuracy, precision, recall, and Fl-score. Also,
the imporiance of the feature was analysed to find the key predictors of
stroke mortality across different models. The research shows the
Random Forest and XGBoost performance over simpler models,
proposing superior accuracy and interpretability. By analysing how
precision, recall, and accuracy changes across a range of
classification thresholds, we gained deeper insight into the models
reliability under different clinical conditions. This analysis revealed
clear trade-offs: lower thresholds improve recall (reducing the risk of
missed death predictions), while higher thresholds enhance precision
(minimising false positives). The findings support the selection of
threshold values tailored to specific clinical priorities, such as early
warning,  balanced  risk  assessment, or  high-confidence
decision-making.

Keywords: artificial intellicence; data mining; healthcare data;
stroke; machine learning algorithms, threshold value.

How to cite: Sakalauskas, V. & Kriksciuniene, D. (2025). Binary
classification models for stroke outcome prediction. BRAIN: Broad
Research in Artificial Intelligence and Neuroscience, 16(2), 296-310.
https://doi.org/10.70594/brain/16.2/22

©2025 Published by EduSoft Publishing. This is an open-access article under the CC BY-NC-ND license &=

296


mailto:virgilijus.sakalauskas@go.kauko.lt
https://orcid.org/0000-0002-5572-8889
mailto:dalia.kriksciuniene@knf.vu.lt
https://orcid.org/0000-0002-0730-3763

BRAIN. Broad Research in June 2025
Artificial Intelligence and Neuroscience Volume 16, Issue 2

1. Introduction

Stroke is the most complex public health challenge and is responsible for millions of deaths.
It is not just the second leading cause of death globally, but it also complicates lives for individuals
and their families and raises problems for the healthcare system. Despite high achievements in
medical treatment and preventive strategies, predicting survival following stroke-related
complications remains a challenging endeavour. This uncertainty highlights the necessity for
predictive models to offer clinicians a more precise understanding of patient outcomes.

The rise of machine learning (ML) algorithm applications also helps healthcare facilities
predict stroke patients' physical and mental well-being. Machine learning models have the potential
to detect patterns and correlations that escape traditional statistical methods. In stroke management,
such models could reveal robust methods for early identification of patients at risk of mortality,
leading to faster interventions and tailored treatments. Nevertheless, despite the progress, not all
ML training algorithms work correctly. The task of choosing the right model that balances accuracy
with its interpretability is a critical challenge that must be comprehensively addressed.

Numerous researchers have explored various ML algorithms and techniques to predict
clinical outcomes in stroke patients (see the next section), with models such as Logistic Regression
and Random Forest, frequently cited for their performance. However, with the emergence of more
sophisticated algorithms, such as XGBoost and Neural Networks, there is a growing interest in
comparative evaluation, employing a comprehensive dataset and adequate evaluation metrics.
Moreover, as the complexity of these models increases, it is essential to determine the most
influential predictors shaping their outputs. Knowing which features are most important in
determining a patient’s prognosis can be just as valuable as the prediction itself.

In this study, we aim to evaluate the performance of five prominent ML classifiers: Logistic
Regression, Random Forest, Gradient Boosting (XGBoost), Support Vector Machine (SVM), and
Neural Networks (MLPClassifier), for predicting stroke-related mortality.

The experimental research was conducted using a database of registered stroke cases from
the Neurology Department of the Clinical Centre in Montenegro. The initial database consists of
944 structured patient records, encompassing 58 variables. We selected 10 variables for our research
and applied specific coding to their value. A detailed description of the study of stroke patients’
database used is provided in section 4.

By utilising this clinical and demographic data from stroke patients, we have explored the
accuracy of these models and the key features that drive their predictions. By providing a full-scale
comparison of these approaches, we aim to elucidate the performance of the methods and offer the
most significant promise for improving stroke care in terms of predictive power, accuracy, and
interpretability.

The next section is intended for a literature review of ML applications for stroke-related
datasets. Section 3 provides a brief overview of ML techniques, while Section 4 introduces the
stroke database used in our research. The most crucial section of the article — section 5 - presents
the results of our study. Finally, the article concludes with a dedicated section for discussion and
final remarks.

2. Literature Review

Machine learning (ML) is a widely recognised tool, frequently referenced in healthcare
literature, including those examining the aetiology and possible complications of stroke. Usually,
stroke mortality has been predicted using statistical models, like Cox proportional hazards and
logistic regression. The popularity of these methods is due to their simplicity and ease of
interpretation. However, their performance declines when modelling complex relationships in large
datasets, which force researchers to explore more advanced machine-learning methods. The
following section reviews relevant literature concerning the application of ML models for
predicting stroke-related mortality.
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2.1. Logistic Regression

In stroke research, the most widely used model is logistic regression. Wang (2023) and
Kriks¢iuniené & Sakalauskas (2022) found that logistic regression could effectively predict stroke
mortality, using clinical variables such as age, hypertension, and stroke severity. Although this
method is straightforward, it exhibits notable limitations when dealing with more complicated
datasets. Logistic regression's assumption of a linear connection between variables may not
accurately represent the nature of medical data, especially in large, diverse patient groups.

2.2. Random Forest

Random Forest is an ML method that constructs ensembles of decision trees for predictive
modelling and data-driven inference. It aggregates the predictions of multiple decision trees, at the
same time reducing the risk of overfitting. Random Forest handles missing data better than many
traditional methods. Egegamuka et al. (2024) utilised the Random Forest method to predict stroke
outcomes, introducing a novel outlier detection technique to eliminate irrelevant features.
Fernandez-Lozano et al. (2021) investigated the use of Random Forest for predicting mortality and
morbidity at three months post-admission. Although this model was more accurate than logistic
regression, it comes with a trade-off: as the number of trees increases, it becomes harder to interpret
the model’s decisions.

2.3. XGBoost and Gradient Boosting Techniques

Gradient-boosting algorithm (XGBoost) is recognised for its performance in classification
tasks. Wang et al. (2022) identified high-risk aSAH (aneurysmal subarachnoid haemorrhage)
patients by using XGBoost prognostic model. Chung et al. (2023) demonstrated the model's
performance for identifying the patients receiving different AIS (Acute Ischemic Stroke) treatments
and provided clinical evidence for feature optimisation of AIS treatment strategies.

XGBoost’s advantage lies in its ability to minimise bias and variance while handling
missing data effectively. It also provides valuable insights into the importance of features, helping
to identify the factors that most influence patient outcomes. However, its complexity can be a
barrier for those looking for transparent and interpretable models.

2.4. Support Vector Machines (SVMs)

Support Vector Machines (SVMs) are helpful in cases where datasets are smaller but
high-dimensional. Feng (2023) and Zhang (2023) showed that SVMs could accurately predict
stroke mortality, particularly when paired with feature selection techniques. Despite this, SVMs can
be less intuitive for clinicians, making their use in clinical practice more challenging, especially
compared to models that provide more precise insights into how predictions are made.

2.5. Neural Networks and Deep Learning

Neural networks, particularly multi-layer perceptrons (MLP), are increasingly used to
predict medical outcomes because of their ability to model complex and nonlinear relationships
between variables. Cheon, Kim, & Lim (2019) applied Principal Component Analysis (PCA) with
quantile scaling to extract relevant background features from medical records and predict stroke
occurrence. To predict stroke mortality and identify the most significant risk factors, the neural
network was also employed in the research of Someeh et al. (2023). They reported that stroke
mortality is most strongly influenced by the following features: smoking, lower education, age, lack
of physical activity, diabetes, and body weight. However, neural networks are often seen as "black
boxes", because they do not readily provide interpretable explanations for their predictions, making
it difficult for clinicians to trust and act upon the results without additional interpretative tools.
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2.6. Interpretable Machine Learning

The challenge of balancing accuracy with interpretability is a common theme in healthcare
applications of machine learning. Lundberg & Lee (2017) introduced SHAP (Shapley Additive
explanations), a technique that makes machine learning models more interpretable by attributing
prediction outcomes to individual features. SHAP has proven helpful in increasing the transparency
of complex models like XGBoost and neural networks, helping to make their predictions more
understandable and applicable in clinical practice.

Fernandes et al. (2024) conducted a comprehensive review of 25 review papers published
between 2020 and 2024 on machine-learning and deep-learning applications in brain stroke
diagnosis, focusing on classification, segmentation, and object detection. The analysis shows that
advanced ML models, such as Random Forest, XGBoost, and neural networks offer significant
improvements in prediction accuracy over traditional methods, but lack interpretability. Logistic
regression remains a favoured method for its ease of use, but it lacks the predictive power of these
newer models.

As machine learning in healthcare continues to evolve, researchers must focus on
developing models that are both accurate and interpretable for medical professionals.

3. A Brief Overview of ML Techniques

For this research, we employ five machine learning (ML) techniques to predict
stroke-related mortality. Each method adopts a unique approach to learning patterns from the data,
and we outline them below with the key mathematical formulations.

3.1. Logistic Regression
Logistic regression is a linear model used for binary classification. It estimates the
probability that a given input belongs to a certain class based on a linear combination of input
features.
The model is defined as (1):
P(y = 11X) = —crr (1)

1+e

where P(y = 1|X) is the probability of the target class; X, O, .y & are the coefficients

(weights) and X P Xn are the input features.

3.2. Random Forest Classifier

Random Forest is an ensemble-learning method that combines multiple decision trees to
improve predictive performance. It averages the predictions of several decision trees to reduce
overfitting and variance.

For each tree, predictions are made based on majority voting. The general structure for
decision trees is based on recursively splitting the dataset according to feature values that minimise
the Gini impurity (2):

C
Gini(D)=1~ ¥ p’ 2)
i=1

where D is a dataset, pi is the proportion of class I in D, and C is the number of classes.

The Random forest takes an average of all decision trees by voting.
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3.3. Gradient Boosting Machines (XGBoost)

XGBoost (Extreme Gradient Boosting) is an advanced machine learning method that builds
multiple small models (decision trees) in sequence, each correcting the previous model's errors.
Instead of training all models at once, XGBoost builds one tree at a time, with each subsequent tree
aiming to reduce the residual errors of the preceding ones. Initially, XGBoost minimises an
objective function, comprising the logistic loss and a regularisation term that penalises tree
complexity. After adding each tree, XGBoost calculates the gradient, which guides the model in
adjusting its predictions to get closer to the actual values. The next tree is built to minimise the
difference between the actual values and the predictions (using these gradients). The final prediction
is obtained by aggregating the results of all the individual trees.

3.4. Support Vector Machine (SVM)

Support Vector Machine (SVM) is a machine learning method used for classification tasks,
aiming to separate data into two different groups (like predicting "survival" or "non-survival").
SVM aims to find the best boundary (called a hyperplane) that separates the two classes as clearly
as possible.

SVM tries to find a line (in 2D) or a plane (in higher dimensions) that divides the data points
into two groups. The best hyperplane is the one that creates the most significant "gap" or margin
between the two groups.

SVM doesn't just draw any boundary between the groups, it looks for the hyperplane that
leaves the most space between the closest points of each group. These closest points are called
support vectors. The wider the gap, the better the model.

Sometimes, the data can't be separated in a straight line. In these cases, SVM employs a
technique known as the kernel trick. This trick transforms the data into a higher-dimensional space
where separating the groups with a hyperplane becomes easier.

Once the hyperplane is found, new data points are classified based on which side of the
hyperplane they fall on. If a new point is on one side of the line, it belongs to class A. Ifit's on the
other, it belongs to class B.

3.5. Neural Networks (MLPClassifier)

A neural network consists of layers of interconnected neurons. Each neuron applies a
weighted sum of inputs followed by a non-linear activation function.

For a single neuron, the output is given by (3):

n
Output = o'( ) ooin, + b) 3)
i=1

Where W, are the weights, b is the bias term, and o(+) is an activation function, often the

sigmoid function for binary classification.
The neural network is trained by minimising a loss function, typically the binary
cross-entropy for classification, using backpropagation (4):

N

L == 3 (,loglog ()+ @ =y)loglog 1 =3) @

In models like Random Forest and XGBoost, feature importance is derived from the
contribution of each feature to splits in the decision trees. For models like SVM and Neural
Networks, permutation importance can be used, which measures the change in model performance
when a feature's values are randomly shuffled.
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4. Stroke Clinical Data Description

The database used in this experimental research consists of clinical data records of stroke
patients registered by the neurology department of the Clinical Centre of Montenegro, operating in
Podgorica, Montenegro. The original dataset contains 944 structured patient records and 58
variables. Of these, 50 are categorical variables encoded, using a {1, 2, 3} scale representing 'Yes',
'No',and 'Unspecified’, while the remaining eight include demographic information, admission date,
and discharge date. The data were collected between 02/25/2017 and 12/18/2019. The demographic
data of stroke patients vary by age (13 to 96 years) and gender (485-male, 427-female). For our
research, we have cleansed the initial stroke database, re-encoded selected variables, and finally,
based on a combination of domain knowledge from clinical neurologists at the data source, we have
selected an 11-variable database for research (Sakalauskas et al., 2022).

The example of database structure and data records is presented in Table 1. The full database
can be downloaded from https://github.com/Virgilijus11/StrokeData.git.

Table 1. Sample of data records and variables of the stroke cases database

Health
Days at Vital Stroke Treatment Health Past Stroke Com-
Hospital Status Type methods Status Age Gender Stroke Symptoms plications Smoke
2 1 2 4 9 79 2 1 12 4 3
2 0 2 4 0 79 2 1 13 0 2
6 0 1 24 0 79 2 0 2 0 2
16 0 1 24 2 78 2 0 12 0 2
13 0 1 24 0 77 2 0 23 1 2
45 1 3 14 1 77 2 0 12 0 1
9 0 1 24 3 78 2 0 123 0 2
5 0 1 24 0 77 2 0 23 4 1
6 1 1 14 0 77 1 0 23 0 2
1 0 1 24 0 76 1 0 2 0 2
2 0 1 24 0 76 2 0 3 0 2
8 0 1 24 0 77 2 1 23 0 2
3 0 1 24 0 75 1 0 2 0 2
7 1 1 24 0 77 1 0 23 2 2
1 0 1 24 0 77 2 0 123 0 1

The variables of the stroke database are coded for applying the survival modelling
methodologies; their values are explained in Table 2.

A stroke is a medical condition where there is an interruption in cerebral perfusion. In
general, stroke is classified into two primary types of strokes: haemorrhagic (Haemorrhage) stroke
and ischaemic stroke (Ishemic) (Deljavan, Farhoudi, & Sadeghi-Bazargani, 2018). However, the
definition of symptoms enables more stroke types and clinical subtypes. The aetiology of stroke is
often associated with morbidities of patients, such as diabetes and heart diseases. Therefore,
numerous potentially significant variables are registered in the stroke data sets.

Ischaemic strokes occur when cerebral blood vessels become obstructed, restricting blood
flow to the brain. This type of stroke makes up about 87% of all stroke cases (Deljavan, Farhoudi,
& Sadeghi-Bazargani, 2018).
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Table 2. The definition of stroke clinical database variables

Variable Meaning and coding of data

name

Days at — the number of days after stroke till hospital admission

Hospital

Vital Status — 1: Event (death), 0: Alive/censored

Stroke Type - 1: Ischemic, 2: Haemorrhage, 3: SAH, 4: Unspecified

Treatment - 0: No treatment, 1: Anticoagulation, 2: Dual Antiplatelet Therapy, 3:

methods Thrombolysis, 4: Others, Two digit codes: mean combined treatment
methods, e.g., 24: means 2 and 4 are applied.

Health Status - Health score before stroke from 0: best to 9: worst. 0: Without symptoms;
1: Without significant disability despite symptoms; 2: Minor disability; 3:
Moderate disability, but able to walk independency; 4: Moderate disability,
not able to walk independency; 5: Major disability; 9: Unknown

Age — Patient age, years

Gender — 1: Male, 2: Female, 9: Unspecified

Past Stroke — Stroke in the past. 1: Yes, registered in the patient health record, 0: No

Stroke 0: No symptoms, 1: Impaired consciousness, 2: Weakness/paresis, 3: Speech

Symptoms disorder (aphasia), Several digit codes: 123-means all three symptoms

Health 0: unspecified, 1: other CV (cardiovascular) complications, 4: other

complications complications, Several digit codes: 23: means 2 and 3

Smoke Status  1-Smokes, 2-No, 3-Smoked before

There are two types of ischemic strokes, thrombotic and embolic strokes, which differ in
underlying pathophysiology.

A thrombotic stroke is caused by a clot forming in a blood vessel of the brain, often related
to atherosclerosis.

An ischaemic stroke can be embolic, involving a blood clot that travels from another part of
the body to the cerebral circulation. Approximately 15% of embolic strokes are due to a condition
called atrial fibrillation.

A haemorrhagic stroke is caused by bleeding, which may occur within the brain parenchyma
or in the subarachnoid space. This is the cause of about 20% of all strokes (World Stroke
Organization, 2019). Haemorrhagic strokes are classified into two main categories, based on the
location and cause of bleeding: intracerebral haemorrhage (haemorrhage) and subarachnoid
haemorrhages (SAH). Intracerebral haemorrhages are caused by a broken blood vessel located in
the brain. Severely elevated blood pressure can cause weakening of the small blood vessels in the
brain. It may be related to anticoagulant therapy. The second category, subarachnoid haemorrhages
(SAH), occurs when a blood vessel gets damaged, leading to bleeding in the area between the brain
and the thin tissues that cover it. A ruptured aneurysm, AVM, or head injury can cause SAH. SAH
is a less common type of haemorrhagic stroke, approximately 5—6% of all strokes. Due to its
distinct aetiology, it is allocated to the separate category of stroke SAH. The other types of stroke
include various cases such as Cryptogenic Stroke, Brain Stem Stroke, and others.

Recurrent stroke accounts for nearly 25% of all stroke cases. Age and modifiable lifestyle
factors, such as smoking, hypertension, and obesity, are among the common predictors of stroke and
its outcomes.

The variables in the research data set were prepared according to the clinical characteristics
associated with the identified stroke subtypes.
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5. Performance Comparison of Binary Classification Models

In this research, five widely used binary classification models—Logistic Regression (LR),
Random Forest (RF), Gradient Boosting Machines (XGBoost), Support Vector Machine (SVM),
and Neural Networks (MLPClassifier)—were implemented using Python to predict stroke-related
mortality. The main goal was to compare their performance based on multiple evaluation metrics
and select the most effective model for the given task.

The experiment includes four stages: model training and evaluation, testing the impact of the
training set size on accuracy, feature importance analysis, and threshold-based evaluation of
Random Forest model performance. The data preprocessing, model implementation, and all
experiment stages were conducted using Python (Figure 1), enabling the generation of all results
presented in this research.

Figure 1. OR code for Python program

Before applying the machine learning models, the dataset underwent several preprocessing
steps: handling missing values, encoding categorical variables, splitting the initial database into
training and testing sets and applying feature scaling where appropriate.

Missing data were addressed using a forward-filling procedure (fill) to ensure the
completeness of the dataset. For all categorical features, we have applied an encoding procedure,
converting them into numerical form to ensure compatibility with machine learning algorithms. The
dataset was split into training and testing sets using the train_ test split() function from the
scikit-learn.. The initial split ratio was set at 70% of all records for training and 30% for testing.
Also, we explored the effect of changing this ratio. In Logistic Regression, SVM, and Neural
Networks, we have applied feature scaling to ensure that the models converge efficiently.

Each binary classification model described in section 3 was implemented in Python, using
corresponding Python libraries. The implemented function trains and evaluates the following
models:

Logistic Regression: Logistic regression () from scikit-learn.
Random Forest Classifier: RandomForestClassifier() from scikit-learn.
XGBoost: XGBClassifier() from XGBoost.

Support Vector Machine (SVM): SVC() from scikit-learn.

Neural Network (MLPClassifier): MLPClassifier() from scikit-learn.

To optimise model performance, a grid search was conducted to identify the optimal
hyperparameter values. The models were trained on the training data set and evaluated on the
testing set.

To assess and compare the models' performance, we used four evaluation metrics:

e Accuracy: The percentage of correct predictions;
e Precision: The percentage of correct predictions along the predicted positive cases;
e Recall: The percentage of correct predictions along the actual positive cases;

303



V. Sakalauskas & D. Kriksciuniene - Binary Classification Models for Stroke Outcome Prediction

e F1-Score: The harmonic mean of precision and recall;
Each model’s performance was recorded using these metrics and compared across models to
identify the best-performing one.

5.1. Performance of ML Models

The results of the research are summarised in Table 3, which compares the performance data
for all binary classification models in the case of a training set size of 70% of the dataset - 188
records representing the "alive" class and 96 the "deceased" class. The random state parameter here
is set equal to 42.

Table 3. Performance of various ML algorithms in predicting stroke-related mortality

Accuracy Precision Recall FI1

score
Logistic regression | 0-alive 76.41% 0.77 0.91 0.84
1-dead 0.73 0.48 0.58
Random Forest | (0-alive 79.93% 0.80 0.92 0.86
1-dead 0.78 0.56 0.65
XGBoost | 0-alive 75.70% 0.80 0.85 0.82
1-dead 0.66 0.58 0.62
SVM | 0-alive 76.41% 0.76 0.94 0.84
1-dead 0.78 0.42 0.54
MLPClassifier | 0-alive 76.06% 0.80 0.85 0.82
1-dead 0.66 0.59 0.63

The table presents the results of five different binary classification models in terms of their
performance for predicting stroke-related mortality, where the target classes are "0" (alive) and "1"
(dead). The performance metrics employed: accuracy, precision, recall, and F1 score, provide
insight into the models' predictive power and reliability.

Paired t-test analysis comparing model performances revealed statistically significant
differences at the 95% confidence level.

As we see Logistic regression performs well in predicting the "alive" class, with high recall
(0.91), meaning it successfully identifies a large proportion of those alive. However, it struggles
with predicting the "dead" class, with a much lower recall (0.48), indicating a high rate of false
negatives.

The Random Forest method shows the highest overall accuracy (79.93%) and performs well
for both classes. For the "alive" class, it achieves high precision and recall, while for the "dead"
class, recall (0.56) and Fl-score (0.65) significantly improve compared to logistic regression,
enhancing its ability to identify mortality cases.

The XGBoost model exhibits relatively balanced performance, though it demonstrates
slightly lower overall accuracy, particularly in its ability to identify patients at risk of death.

SVM performance in predicting the "alive" class is notably high, with a recall of 0.94,
correctly identifying the majority of surviving patients. However, the "dead" class, as seen from the
low recall equal to 0.42 means it misses over half of the death cases. Consequently, the low recall
reduces its effectiveness in predicting mortality.

The accuracy and F1 score of MLPClassifier are comparable with XGBoost, indicating that
it may also have issues in accurately identifying mortality cases.

In summary, Random Forest emerged as the best-performing model for stroke-related
mortality prediction, especially regarding overall accuracy and its ability to identify patients likely
to survive. Nonetheless, the low precision and recall observed for class ‘1 — dead’ underscore the
need to improve mortality prediction across all models
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5.2. Impact of the Training Set Size on Model Accuracy

During the next experiment, we evaluated the impact of the training set size on model
accuracy. Figure 2 presents the variation in model accuracy as the training set size is systematically
adjusted. This graph illustrates the dynamic changes in the accuracy of five machine learning
models based on the proportion of the training set used, ranging from 0.9 to 0.1. The y-axis
represents accuracy in percentages. The x-axis shows the training set size as a percentage
proportion of the total dataset.

Accuracy dynamic of models

LR RF XGBoost SV === MM

Accurasy in %
1
]
]
L}
1
]
4

-
-------

—

0.8 0.7 0.6 0.5 0.4 03 0.2 0.1

Training set size

Figure 2. Impact of the training set size on model accuracy.

The Random Forest (RF) graph stands out with the highest accuracy, peaking at around 80%
accuracy for a training size of 0.7. However, we see its performance sharply drop down when the
training set size is below 0.4, indicating that it may not generalise well as the training set decreases
further.

XGBoost linear graph only shows the best performance for the training set around 0.9.
Then, it is stable enough between 0.7-0.2, with accuracy consistently around 75%. If the training set
size drops below 0.2, the accuracy falls accordingly.

Logistic Regression (LR) for all set sizes performs well but maintains lower accuracy than
RF. Its peak is around 78% with a training set of 0.4. For smaller training sets (between 0.4 and
0.3), the performance of LR is very similar to RF.

SVM linear graph demonstrates a performance similar to the logistic regression model.
When the training set proportion is 0.3 or lower, SVM performs comparably to the best-performing
RF model. Thus, under limited training data conditions, the Support Vector Machine model may
offer the highest accuracy. Neural Networks (NN) exhibited the lowest overall accuracy across all
training set sizes.

5.3. Feature Importance Score
Subsequently, we identify the most critical features contributing to model predictions. Based
on the feature importance table (Table 4) across multiple models, the most influential predictors of
stroke-related mortality were identified.
In the table, the feature with the highest impact on classification accuracy is marked by
number 1, and the weakest feature influence is marked by number 9.
The models’ feature importance scores were evaluated using the technique outlined below:
* Random Forest and XGBoost use the Gini index;
» Logistic Regression uses absolute coefficient values;
* SVM and MLP use permutation importance.
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Table 4. Feature importance scores across models applied

LR RF XG SVM MLP Average
Boost Classifier score

Health_Status 2 3 2 1 1 1.8
Age 1 1 9 4 2 34
Stroke Symptoms 5 2 4 2 6 3.8
Health _complications | 10 4 1 5 3 4.6
Smoke 6 6 3 3 5 4.6
Stroke_Type 4 7 5 6 4 5.2
Treatment methods 3 5 6 9 8 6.2
Days_till Hospital 8 9 7 8 9 8.2
Past Stroke 7 10 8 7 10 8.4
Gender 9 8 10 10 7 8.8

The ‘Average Score’ refers to the mean rank assigned to each feature across all models. As
we can derive from the column Average score, the Health Status, Age and Stroke Symptoms are the
most critical features, dominating all models and suggesting that patient-specific health factors
provide the most valuable information for mortality prediction.

Health Complications and Smoke features are mid-level predictors, reflecting the nuanced
differences in stroke severity and related complications.

Past Stroke and Gender are the least important features, suggesting that historical factors
and demographic information, while important, are overshadowed by more immediate clinical
indicators in determining stroke-related mortality.

These insights can help guide clinical focus towards key factors influencing stroke
outcomes, aiding in prioritising treatment and care for high-risk patients.

Gender and Past Stroke were identified as the least significant variables, suggesting that
acute clinical indicators are more significant in determining stroke-related mortality than
demographic data and historical determinants.

Hence, directing clinician attention toward important variables affecting stroke outcomes
can assist in prioritising high-risk patients' care and treatment.

5.4. Threshold-Based Evaluation of Random Forest Model Performance

Given that the Random Forest model demonstrated superior performance in predicting
stroke outcomes relative to the other models tested, its behaviour was further analysed with a focus
on the impact of varying the classification threshold. In stroke mortality prediction, machine
learning models do not produce categorical labels directly, like “alive” or “dead.” Instead, they
generate a probability between 0 and 1 for each case. Normally, we use a threshold of 0.5, meaning
if the predicted probability of death is above 0.5, the model predicts that the patient will die.
However, this default threshold may not always be the best choice - especially in healthcare, where
failing to identify a true mortality case (false negative) can be more detrimental than a false positive
prediction. To better understand model behaviour, we evaluated the performance of the Random
Forest model across a range of classification thresholds. Specifically, we looked at three metrics:
precision — how many of the predicted deaths were actually correct, recall — how many of the actual
deaths the model was able to catch, accuracy — the overall rate of correct predictions.

This type of threshold-based analysis is useful for several reasons:

e Customising for clinical priorities: in some clinical settings, it may be more important to
catch every possible high-risk patient (high recall), while in others it might be better to avoid
false alarms (high precision);

e [mproving model understanding: by seeing how precision, recall, and accuracy change with
the threshold, we get a clearer picture of the model’s strengths and limitations;
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® Better decision-making: this analysis helps determine the most appropriate threshold for
different clinical goals — whether we want to screen broadly or intervene selectively.
Using Python’s matplotlib.pyplot library, we plotted a graph (see Figure 3) that shows how
precision, recall, and accuracy behave as the threshold increases from 0.20 to 0.80.

Precision, Recall, and Accuracy vs. Threshold
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Figure 3. Random Forest model performance across different threshold values

As shown in the figure, precision increases consistently as the threshold rises from 0.20
(0.497) to 0.80 (0.862). As we raise the threshold, the model becomes more careful in predicting
death.

This behaviour is useful when we want to avoid false positives, for example, before
assigning intensive treatments or issuing alerts that might worry patients or families.

Recall drops steadily from 0.823 at threshold 0.20, to 0.260 at threshold 0.80. This shows
that as we raise the threshold, the model becomes too cautious - and starts missing real death cases.
At lower thresholds, the model captures more actual mortality cases but at the cost of increased
false positive predictions. At higher thresholds, the model fails to detect a greater number of actual
deaths, as it only predicts mortality when the probability is sufficiently high. This trade-off is
critical in stroke care, where missing a high-risk patient can have serious consequences.

Accuracy follows a parabolic trend, increasing up to a threshold of 0.50—where it peaks at
0.803—after which it gradually declines. Up to 0.50, the model becomes more balanced between
false positives and false negatives, which improves its overall accuracy. Beyond 0.50, even though
precision continues to rise, recall falls too much, which also pulls accuracy down.

This means that while 0.50 gives the best balance, it might not align with clinical priorities,
especially if catching all death risks is a higher priority than overall correctness.

Table 5 illustrates how this threshold behaviour translates into real-world clinical decision-making:

Table 5. Best Threshold options

Clinical Goal Recommended Why?
Threshold

Early  warning / 0.30 - 0.40 Higher recall (up to 0.73), catching more true deaths
screening
Balanced 0.50 Best overall accuracy (0.803) and solid precision
decision-making
High-confidence 0.70 — 0.80 Very high precision (above 0.83), fewer false positives
intervention
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Therefore, the optimal classification threshold should be selected according to the specific
priorities of the clinical context. Using lower thresholds when not missing any deaths is the top
priority. Conversely, higher thresholds are preferable when decision-making requires a high degree
of certainty prior to initiating critical interventions. Use the middle ground (like 0.50) when you
need a balanced, all-purpose approach.

This kind of threshold analysis doesn’t just improve model performance — it helps bridge
the gap between AI predictions and real medical decisions, making the model more useful in
practical, patient-focused settings.

6. Conclusion

In the present study, we used a dataset of clinical and demographic features from the
neurology department of the Clinical Centre of Montenegro to assess the predictive power of five
binary classification machine learning models: Random Forest, XGBoost, Support Vector Machine
(SVM), Neural Networks (MLPClassifier), and Logistic Regression for stroke-related mortality. By
evaluating these models on important performance criteria, including accuracy, precision, recall,
and F1-score, we were able to learn more about their predictive abilities and overall reliability. To
determine the most important factors influencing mortality forecasts, we also looked at the
significance of attributes.

In terms of accuracy and interpretability, our findings show that ensemble-based models
such as Random Forest and XGBoost fared better than alternative approaches. These models
emphasised the significance of health status, age, and stroke symptoms in predicting stroke
outcomes by repeatedly identifying them as the most significant predictors. Although neural
networks performed competitively, especially in precision and recall, the model's interpretability
issues continue to be a drawback in clinical settings where knowing the underlying causes is
essential.

Notably, despite their lower accuracy, simpler models such as Logistic Regression provide
more accurate insights into feature relevance, which could make them useful in situations where
interpretability and transparency are crucial. On the other hand, SVM struggled with
generalisability across various test set sizes, although producing excellent results for particular
metrics.

To further examine the practical applicability of our best-performing model, we conducted a
threshold-based evaluation of the Random Forest classifier. By analysing how key metrics:
precision, recall, and accuracy change across different classification thresholds, we revealed
important trade-offs relevant to clinical decision-making. Lower thresholds improved recall and
supported broader screening strategies, while higher thresholds significantly boosted precision,
making them suitable for high-confidence decisions. The analysis confirmed that threshold selection
can be tuned to align with different clinical priorities, enhancing both flexibility and usability of the
model in real-world settings.

Despite the promising results, this study presents several notable limitations. The dataset
was derived from a single clinical center, which may limit the generalisability of the findings to
other populations or healthcare settings. Additionally, the relatively small sample size increases the
risk of overfitting, particularly in complex models like neural networks. External validation on
larger, multi-center datasets is essential to confirm the robustness of the proposed models.

Finally, our results demonstrate the applicability of machine learning models in predicting
stroke-related mortality, with Random Forest and XGBoost emerging as the most reliable choices.
These models are appropriate for practical clinical applications due to their high performance and
capacity to interpret feature importance. By enabling the early identification of high-risk patients
and directing more individualised treatment plans, this study highlights the potential of data-driven
approaches to enhance stroke management.
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