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A B S T R A C T

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can have a serious course 
with many complications, especially in immunocompromised individuals. In such persons, other latent virus 
infections may contribute to disease pathology, in particular viruses which infect immune cells such as Epstein- 
Barr virus (EBV) and cytomegalovirus (CMV).
Methods: In this study, serology-based assays were conducted to analyse antibody responses to SARS-CoV-2 spike 
protein (SP), EBV Epstein-Barr nuclear antigen (EBNA)-1 and CMV phosphoprotein (pp)52 in naturally SARS- 
CoV-2-infected individuals, non-infected healthy controls (HCs) and vaccinated healthy controls (VHCs) to 
identify an association between SARS-CoV-2 antibodies and EBV and CMV antibodies in order to determine 
whether latent EBV and CMV infected individuals are more prone to become infected with SARS-CoV-2. 
Moreover, SARS-CoV-2, EBV, and CMV antibody responses were characterized in serum from patients with 
relapsing-remitting multiple sclerosis (RRMS), a chronic inflammatory disease strongly associated with EBV 
infections, to determine whether the serologic virus antibody profile varies in immunocompromised RRMS in-
dividuals upon SARS-CoV-2 vaccinations compared to VHCs.
Results: Significantly elevated SP IgG, IgM and IgA levels were identified in SARS-CoV-2-infected immunocom-
petent individuals when compared to non-infected HCs. However, no correlation was found to serum antibodies 
between SARS-CoV-2, EBV, and CMV in individuals infected with SARS-CoV-2 and in VHCs, suggesting that 
latent infections with neither EBV nor CMV associates to SARS-CoV-2 infection. Moreover, no significant dif-
ference in SP IgG, IgA and IgM levels was observed between vaccinated RRMS patients and VHCs, indicating that 
the immune system of immune deficient RRMS patients and VHCs respond identical to SARS-CoV-2 vaccinations.
Conclusion: Collectively, SARS-CoV-2 SP antibody levels reflect the vaccination and infection history and do not 
associate with EBV and CMV serostatus.

1. Introduction

One of the most critical functions of the immune system is to protect 
the host from infections. A well-functioning immune system efficiently 
neutralizes infections, whereas immuno-compromised individuals are 
more vulnerable to infections [21]. Whether resulting from impaired 

cellular functions, the absence of central proteins in immune regulation 
or the presence of autoreactive cells, immunocompromised individuals 
are more exposed to infections such as severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2), cytomegalovirus (CMV) and 
Epstein-Barr virus (EBV), and may suffer from recurring infections [35].

SARS-CoV-2 is one of the recent viruses identified to cause a 
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worldwide pandemic, coronavirus disease-2019 (COVID-19) [22]. As of 
June 2024, >775 million cases of COVID-19 counting >7 million deaths 
have been reported to the WHO (https://covid19.who.int/). 
SARS-CoV-2 is a single-stranded RNA virus, whose genome only encodes 
relatively few proteins [12]. Some of the important proteins include 
spike protein (SP), nucleocapsid, membrane and envelope proteins, 
which are essential for production of complete virus particles [64].

SARS-CoV-2 belongs to the coronavirus family, which causes ill-
nesses ranging from common colds to more severe diseases such as 
Middle East respiratory syndrome coronavirus (MERS-CoV) [13,34,51, 
64]. SARS-CoV-2 typically induces respiratory infections, which can be 
asymptomatic or cause fever, cough, severe pneumonia, and in worst 
cases death [16]. Immunocompromised individuals have been reported 
to have a more severe disease course and a poorer outcome compared to 
healthy individuals [28]. Especially individuals with hematologic ma-
lignancies have been reported to have an increased risk for associated 
morbidity and mortality, which limit prevention, treatment and clear-
ance of the SARS-CoV-2 virus [28]. Based on this, SARS-CoV-2 has been 
extensively studied due to the potential threat on society [28,31,59].

SARS-CoV-2 infections were originally described as highly conta-
gious and rapidly spreading, resulting in a high infection rate [7,52,63]. 
Similar to SARS-CoV-2, EBV infections are associated with a high 
infection rate, as EBV infects at least 95 % of the adult population [32,
43,50]. EBV infections are associated with severe diseases such as 
various carcinomas and various chronic immune defective diseases such 
as multiple sclerosis (MS) [6,9,19,20,32,33,49,57,62]. Although pre-
senting with a high infection rate, EBV infections are often not discov-
ered in immunocompetent individuals and most EBV infections remain 
subclinical [53]. When infected with EBV during or after adolescence, 
EBV commonly causes infectious mononucleosis, which among others 
increases the risk of developing MS [25,39,61]. Upon initial infection, 
EBV persists for lifetime by remaining latent in among others memory B 
cells [2,18,30,36,46,56,68]. After primary infection is resolved and la-
tency is established, antibodies to the latent EBV nuclear antigen-1 
(EBNA-1) are produced at high levels, indicating a persistent, yet sub-
clinical latent infection [11,56]. Occasionally, EBV reactivates and en-
ters more active latent and lytic states. Healthy individuals are mostly 
asymptomatic to reactivations, whereas reactivation in immunocom-
promised individuals may have fatal outcomes [46,68].

Similar to EBV, Cytomegalovirus (CMV) is a human herpes virus that 
is endemic throughout the world with rates reaching 100 % in some 
developing countries [27,40]. Primary CMV infection is usually 
asymptomatic in immunocompetent individuals, although nearly 10 % 
of infected individuals present with symptoms similar to the self-limiting 
mononucleosis-like syndrome [40,41,58]. CMV infections may cause 
substantial morbidity and mortality in immunocompromised in-
dividuals or patients suffering from hematological disorders [26]. 
Similar to EBV, CMV remains latent in the host upon the acute phase of 
initial infection and is thought to reactivate, leading to a smoldering 
latent infection [3].

Virologic relations to EBV and CMV can be difficult to determine, as 
individuals infected with SARS-CoV-2 typically are infected with EBV 
and/or CMV prior to SARS-CoV-2 infection. It has been indicated that 
human herpes viruses reactivate during SARS-COV-2 infection, however 
it is unclear whether reactivation of CMV and/or EBV infections occurs 
in the context of a severe SARS-CoV-2 infection or whether smoldering 
latent infections influence the pathogenesis of SARS-CoV-2 infections [1,
24,69].

In this study we describe serologic virus antibody levels in SARS- 
CoV-2 infected individuals, healthy controls (HCs), vaccinated healthy 
controls (VHCs) and immunocompromised relapsing-remitting multiple 
sclerosis (RRMS) patients, to determine a possible serologic correlation 
between SARS-CoV-2, CMV and EBV antibodies.

2. Materials and methods

2.1. Materials

Alkaline phosphatase (AP)-conjugated anti-human IgG/IgA/IgM, 
Tris base, Tris HCL and para-nitrophenylphosphate (pNPP) substrate 
tablets were from Sigma (St. Louis, Mo, USA). NaCl was purchased from 
Unikem (Copenhagen, Denmark). Diethanolamine, Tween 20, Na2CO3, 
NaHCO3, phenol red and MgCl2 were from Merck (Darmstade, Ger-
many). The ectodomain of SP from SARS-CoV-2 was from Baltymas 
(Vilnius, Lithuania) and was produced in-house at the institute of 
Biotechnology, Vilnius University, Lithuania. CMV pp52 was from 
Prospec Protein Specialists (Ness-Ziona, Israel). Full-length EBV EBNA1 
was from MyBiosource (San Diego, CA, USA). PolySorb microtiter plates 
were from Thermo Fisher, NUNC (Roskilde, Denmark).

2.2. Human patient samples

Serum samples were collected from SARS-CoV2-infected individuals 
(n = 96) and HCs (n = 100), which represented Caucasians of both 
genders and all ages (Table 1). Samples were collected from SARS-CoV- 
2-positive individuals visiting a clinical physician between April and 
December in 2020. The majority of the enrolled SARS-CoV-2 infected 
individuals experienced relative mild disease symptoms and only a 
limited number of the included individuals required additional care for 
recovery. SARS-CoV-2-positive serum samples were collected at the 
Department of Clinical Immunology, Copenhagen University Hospital, 
Rigshospitalet, Copenhagen, Denmark and were used anonymously. 
Samples were tested positive for SARS-CoV-2 by PCR prior to 
enrollment.

Samples from HCs were from the Danish Blood Bank at Statens 
Serum Institut, Copenhagen, Denmark. HCs samples were negative for 
any known diseases and were used anonymously. HCs were negative for 
both SARS-CoV-2 infection and vaccination. HCs were enrolled prior to 
the SARS-CoV-2 pandemic.

Serum samples from vaccinated HCs (VHCs) (n = 15) and RRMS 
patients (n = 13) were collected at the department of Neurology, Rig-
shospitalet Glostrup, Denmark, which was approved by the Regional 
Scientific Committee of Copenhagen (no H-19036891). RRMS patients 
enrolled were newly diagnosed and had not received any immune 
modulating treatments. All VHCs and RRMS patients had been vacci-
nated three times in average with a 50:50 ratio of Moderna and Pfizer- 
BioNTech vaccines. None of the RRMS patients had been naturally 
infected with SARS-CoV-2 prior to vaccination. Vaccinated individuals 
were recruited from May 2021 to June 2023.

None of the RRMS patients enrolled received any MS-related therapy 
at the time of sample collection to ensure that serum antibody levels 
were not influenced by treatment strategy, as some disease-modifying 
treatments may reduce vaccine responses [10,17]. Signed informed 
consent was obtained from all participants.

Table 1 
Patient characteristics. Serum from four cohorts were included: fully vaccinated 
healthy controls (VHCs), patients with severe acute respiratory syndrome- 
corona virus-2 (SARS-CoV-2) infection, non-infected healthy controls (HCs) 
and fully vaccinated relapsing-remitting multiple sclerosis (RRMS) patients.

SARS-CoV-2-infected 
individuals

VHC Vaccinated RRMS 
patients

HCs

n 96 15 13 100
Gender (M:F) - 5:10 4:9 50:50
Average age 

(years)
- 43.19 40.54 41.32

Age range 
(years)

- 26–68 18–66 19–65

N.H. Trier et al.                                                                                                                                                                                                                                 Immunology Letters 274 (2025) 107004 

2 

https://covid19.who.int/


2.3. Detection of virus antibodies in serum samples

Virus antibody levels were quantified by enzyme-linked immuno-
sorbent assay as previously described [29,38]. Briefly, ninety-six-well 
PolySorb microtiter plates were coated with virus antigen (EBV 
EBNA1, CMV pp52, SARS-CoV2 SP) (1 µg/mL) diluted in carbonate 
buffer (15 mM Na2CO3, 35 mM NaHCO3, 0.5 % Phenol red, pH 9.6) and 
incubated over night at room temperature (RT). Unbound protein was 
removed by washing the wells with Tris-Tween-NaCl (TTN) buffer (50 
mM Tris, 1 % Tween 20, 0.3 M NaCl, pH 7.5) (200 µL) for 3 × 1 min. 
Following rinsing, the wells were further blocked by addition of TTN to 
all wells and incubation at RT for 30 min on a shaking table. TTN buffer 
was removed, followed by addition of human sera diluted in TTN 
(1:100) (100 µL) and the plate incubated at RT with gentle shaking. After 
1 hour of incubation, excess serum was removed and the wells were 
rinsed with TTN for 3 × 1 min, goat anti-human IgG-AP(/IgM-AP/I-
gA-AP) was added to all wells (1 µg/mL) and incubated as previously 
described. Unbound antibody-enzyme conjugates were removed by 
washing the wells with TTN for 3 × 1 min (200 µL), whereafter 
AP-substrate buffer (1 mg/mL pNPP in 1 M diethanolamine, 0.5 mM 
MgCl2, pH 9.8) was added to all wells. Bound antibodies were quantified 
by measuring absorbances at 405 nm using a microplate reader (Mo-
lecular Devices, Menlo Park, CA, USA). Corrected absorbances were 
obtained by subtracting the background signal for each sample from its 
respective absorbance at 650 nm.

For calculation of SP IgG, EBNA1 IgG and CMV IgG concentrations a 
standard curve (U/mL) was generated by using two folds serial dilution 
of a positive serum pool, starting from a 1:100 dilution. A pool of anti- 
SP-positive samples diluted in TTN (1:100) was used as a high positive 
control. All samples were tested in duplicates and the mean of blank 
replicates was subtracted from the measured absorbances before final 
antibody concentrations.

2.4. Data analysis

Myassays.com was used to generate a 4-parametric logistic curve fit, 
where initial absorbances corrected for background noise was used to 
calculate IgG levels (U/mL) in the individual samples.

Statistical analyses and visualization of results obtained were con-
ducted using GraphPad Prism software (v 5, Graphpad, San Diego, CA, 
USA). Pearsons’s correlation analyses were determined, where r was 
defined as follows: 0–0.25 = no correlation, 0.25–0.5 = weak positive 
correlation, 0.5–0.75 = moderate positive correlation, 0.75–1.0 =
strong positive correlation. Statistical significance was assessed by 
nonparametric unpaired two-tailed Mann Whitney tests. Significant 
difference is indicated by: *: p< 0.05, **: p< 0.01, ***: p< 0.001.

3. Results

3.1. Screening of patient sera for antibody reactivity to severe acute 
respiratory syndrome-coronavirus-2 spike protein

Initially, preliminary screenings were conducted to determine total 
SP Ig levels in serum pools from SARS-CoV-2 infected individuals, HCs, 
VHCs, and RRMS patients. Elevated IgG levels were observed in SARS- 
CoV-2-infected and VHC pools, whereas reduced IgM and IgA levels 
were observed when compared to IgG levels. SARS-CoV-2 SP IgG, IgM, 
and IgA levels were notably elevated in infected individuals compared to 
HCs, whereas SP IgA and IgG levels were reduced when compared to 
VHCs and RRMS patient pools (Fig. 1). In contrast, SARS-CoV-2-infected 
individuals presented with elevated IgM levels when compared to the 
vaccinated pools, VHCs and RRMS patients. Both VHCs and RRMS pools 
obtained similar SP IgG and IgA levels, whereas elevated SP IgM levels 
were found for the VHC pool when compared to the RRMS pool. Indi-
vidual SARS-CoV-2-infected serum samples presented with significantly 
elevated SP IgG, IgM and IgA levels compared to HCs (p< 0.0001) 
(Fig. 2). Moreover, all SP antibody isotypes examined effectively sepa-
rated SARS-CoV-2 infected individuals from non-infected HCs, as illus-
trated by AUC scores ranging between 0.8167 (SP IgA) to 0.9970 (SP 
IgG) (p< 0.0001).

High sensitivities were obtained for SP IgA and SP IgM, depending on 
the defined specificity. Presenting with a specificity of 95 %, sensitivities 
of 56–57 % were obtained, whereas sensitivities of 68–82 % were ob-
tained with a specificity of 80 %. In contrast, SP IgG yielded a sensitivity 
of 99 % and a specificity of 100 %, clearly illustrating that S IgG almost 
perfectly separates SARS-CoV-2-infected individuals from non-infected 
individuals (Fig. 2, Table 2).

Thorough characterization of serologic SP antibody levels in natu-
rally infected individuals demonstrated that 99, 73nd 55 % of serum 
samples were positive for IgG, IgM and IgA, respectively (Fig. 3). In 
total, 31 % of samples were positive for all three isotypes, whereas 20 % 
only expressed IgG and IgM. Thirty-five % of infected samples only 
presented with one isotype, of these 34 % were only positive for IgG and 
finally 1 % was weakly positive for IgM.

Further characterization revealed that patient samples positive for 
all three isotypes (IgG+ IgA+ IgM+) in general presented with the 
highest individual isotype responses when compared to the remaining 
groups. This observation was however only statistically significant for 
SP IgG levels (p= 0.0125 for IgG+ IgA+ IgM-) (p< 0.0001 for IgG+ IgA- 
IgM+ (p= 0.0002 for IgG+ IgA- IgM-) and SP IgM level when compared 
to the IgG+ IgA- IgM+ group (p= 0.0274). No significant difference in 
SP IgA levels was observed between the IgA positive groups (p= 0.1246 
for IgG+ IgA+ IgM-) examined in this cohort.

Fig. 1. Antibody pool reactivity to spike protein in severe acute respiratory syndrome coronavirus-2-infected individuals, healthy controls, vaccinated healthy 
controls and relapsing-remitting multiple sclerosis patients analysed by enzyme-linked immunosorbent assay. (A) SP IgG reactivity in serum pools. (B) SP IgM 
reactivity in serum pools. (C) SP IgA reactivity in serum pools.
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3.2. Screening for spike protein IgG, IgM and IgA in SARS-CoV-2 
vaccinated individuals

Following screening of serum samples from naturally SARS-CoV-2- 
infected individuals, serum from VHCs and vaccinated RRMS patients 
were analysed for SP Ig reactivity and compared to non-infected HCs 
(Fig. 4). Serum samples from RRMS patients and VHCs presented with 
elevated SP IgG, IgM and IgA titers when compared to HCs (p< 0.0001). 
No significant difference in SP IgG (p= 0.3568), IgM (p = 0.3814) and 
IgA (p = 0.4610) levels was determined between RRMS patients and 
VHCs samples tested, indicating that the immune system of VHCs and 
vaccinated RRMS patients respond equally to SARS-CoV-2 vaccination. 
Analysis of isotype profiles found that 73 % and 93 % of VHCs and RRMS 
samples were positive for both all three isotypes (IgG, IgM and IgA), 
respectively. Collectively, SP antibody profiles in VHCs and RRMS pa-
tients at first glance appeared to differ when compared to naturally 
SARS-CoV-2 infected individuals.

3.3. Antibody correlation in serum of relapsing-remitting multiple 
sclerosis patients, infected individuals and vaccinated healthy controls

To thoroughly characterize the humoral antibody response to SP in 
these individuals, correlations between SP IgG, IgA and IgM were 
determined.

As presented, significant correlations were identified between SP 
antibody isotypes SARS-CoV-2-infected individuals (Fig. 5). Weak pos-
itive correlations were evident for SP IgM and IgG (r= 0.2073, p=
0.0427) and for IgA and IgG (r= 0.3175, p= 0.0016), whereas a mod-
erate positive correlation was identified between SP IgA and IgM (r=
0.4753, p< 0.0001). In contrast, no significant correlations could be 
determined for SP antibody levels detected in samples from VHCs (p>
0.05), although a weak positive non-significant correlation was deter-
mined between SP IgA and IgG levels (r= 0.2386, p= 0.3918). Similarly, 
weak positive correlations were identified for IgG and IgA (r= 0.2224, 
p= 0.4652) and IgA and IgM (r= 0.4878, p= 0.0908) in vaccinated 
RRMS patients, although not statistically significant.

Fig. 2. Spike protein IgG, IgM and IgA in severe acute respiratory syndrome-coronavirus-2-individuals and non-infected healthy controls analysed by enzyme-linked 
immunosorbent assay. (A) SPIgG reactivity. (B) SP IgM reactivity. (C) SP IgA reactivity. (D) ROC curve for SP IgG in infected individuals and HCs. (E). ROC curve for 
SP IgM in infected individuals and HCs. (F). ROC curve for SP IgA in infected individuals and HCs.

Table 2 
Spike protein IgA, IgG and IgM reactivities in severe acute respiratory syndrome-coronavirus-2 positive individuals and non-infected healthy controls. SP IgA and S IgM 
sensitivities were determined based on 80 % (*) and 95 % (**) specificities.

SARS-CoV-2 infected individuals Non-infected healthy controls

 IgG IgA IgM IgG IgA IgM
n 96 100
Mean 2.12 0.49 1.00 0.18 0.11 0.24
Range 0.20–3.73 0.03–4.01 0.06–2.85 0.05–0.55 0.01–0.37 0.02–0.65
Sensitivity 99 68*(56**) 82*(57**) - - -
Specificity 100 80(95) 80(95) - - -
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3.4. EBV EBNA1 and CMV pp52 virus antibody levels in SARS-CoV-2 
associated samples

To investigate serologic correlations between SARS-CoV-2 and some 
of the most common viruses, EBV and CMV, antibody levels to EBV 
EBNA1 and CMV pp52 were determined in SARS-CoV-2-infected in-
dividuals, VHCs and RRMS patient samples and compared to serum SP 
IgG levels.

Fig. 6A illustrates antibody reactivity to SARS-CoV-2 SP, EBV EBNA1 

and CMV pp52 in SARS-CoV2-infected individuals. EBV EBNA1 IgG and 
CMV pp52 IgG were significantly lower when compared to SP IgG levels 
(p< 0.0001). Moreover, CMV pp52 IgG levels were significantly elevated 
when compared to EBNA1 IgG (p= 0.0003). In contrast, a potential trend 
indicated elevated EBNA1 IgG levels in VHCs (p= 0.0564) and RRMS 
patients (p= 0.0727) compared to SP IgG levels. No difference in CMV 
pp52 IgG and SP IgG levels were observed for VHCs (p= 0.9669) and 
RRMS patients (p= 0.3560) in this patient population. A potential trend 
indicated elevated EBNA1 IgG titers in serum from RRMS patients when 

Fig. 3. Isotype distribution spike protein antibodies in SARS-CoV-2 infected individuals analysed by enzyme-linked immunosorbent assay. Samples were identified as 
positive by subtracting the GNS+2SD for the HCs for all respective antibody isotypes. A. Venn diagram illustrating SP IgG, IgM and IgA isotype distribution in SARS- 
CoV-2-infected individuals. B. Individual SP Ig levels based on distribution profile.

Fig. 4. Reactivity of sera from relapsing-remitting multiple sclerosis patient, vaccinated healthy controls and non-infected healthy controls to spike protein. Samples 
were identified as positive by subtracting the GNS+2SD for the HCs for all respective antibody isotypes. (A) SP IgG reactivity. (B). SP IgM reactivity. (C). SP IgA 
reactivity. (D). Isotype distribution in RRMS patients. (E) Isotype distribution in VHCs.

Fig. 5. Antibody correlations between spike protein antibody isotypes IgG, IgA and IgM in SARS-CoV-2-infected individuals (A-C), vaccinated healthy controls (D-F) 
and vaccinated relapsing-remitting multiple sclerosis patients (G-I).
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compared to CMV pp52 IgG (p= 0.0727), which is in accordance with 
the profound role of EBV in the development of MS [9,33,67].

Following evaluation of virus IgG levels, correlations between SP 
IgG, SP IgA and SP IgM and EBV EBNA1 IgG and CMV pp52 IgG were 
determined (Fig. 7, Table 3). As illustrated, no correlations in this cohort 
were identified between SP IgG, IgM and IgA to neither EBNA-1 IgG nor 
CMV pp52 IgG in SARS-CoV2-infected individuals. Moreover, no 
notable correlation was determined between CMV pp52 and EBV EBNA1 
IgG levels when compared to SARS-CoV-2 SP IgG, IgA and IgM (Table 3) 
in VHCs and RRMS patient samples analyzed.

Collectively, based on serologic studies the current findings do not 
indicate that serum SP Ig levels in SARS-CoV-2-infected individuals 
correlate with neither CMV or EBV IgG. These findings may indicate that 
immune responses to natural infections and vaccine antigens differ in 
response and composition, which even may be compromised due to the 

Fig. 6. SARS-CoV2 Spike protein IgG, EBV EBNA1 IgG and CMV pp52 IgG in serum of SARS-CoV-2-infected individuals, vaccinated healthy controls and vaccinated 
relapsing-remitting multiple sclerosis patients. (A) Virus IgG levels in SARS-CoV-2-infected individuals. (B). Virus IgG levels in SARS-CoV-2 vaccinated healthy 
controls. (C). Virus IgG levels in serum of SARS-CoV2-vaccinated relapsing-remitting multiple sclerosis patients.

Fig. 7. Correlation between EBV EBNA1 IgG, CMV pp52 and SP IgG, IgM and IgA in SARS-CoV-2-infected individuals. A. Correlation between SP IgG and EBNA1 IgG. 
B. Correlation between SP IgM and EBNA1 IgG. C. Correlation between SP IgA and EBNA1 IgG. D. Correlation between SP IgG and pp52 IgG. E. Correlation between 
SP IgM and pp52 IgG. F. Correlation between SP IgA and CMV pp52 IgG.

Table 3 
Correlations between SARS-CoV-2 Ig and EBV EBNA1 IgG and CMV pp52 in 
SARS-CoV-2-infected individuals, vaccinated healthy controls and relapsing- 
remitting multiple sclerosis patients.

SP IgG SP IgM SP IgA

SARS-CoV2-infected individuals   
EBV EBNA-1 − 0.0471 0.1539 0.0753
CMV pp52 0.1828 0.0705 0.1664
Vaccinated healthy controls   
EBV EBNA-1 − 0.2707 0.0872 − 0.1537
CMV pp52 0.0510 - 0.0012 − 0.0670
Multiple sclerosis patients   
EBV EBNA-1 0. 0598 0.2303 − 0.1729
CMV pp52 − 0.1618 0.2048 − 0.2457
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immune status of the infected and/or vaccinated individuals. This re-
mains to be elaborated.

4. Discussion

In this study, serologic antibody levels associated to SARS-CoV-2, 
EBV and CMV infections were investigated. Most naturally, pre-
liminary pool screenings found that SP IgG levels were significantly 
elevated in naturally infected SARS-CoV-2 individuals compared to non- 
infected HCs, whereas SP IgG and IgA levels were elevated in vaccinated 
individuals when compared to infected SARS-CoV-2 and HCs, suggesting 
that antibody responses to vaccines yield high antibody titers compared 
to natural infection, which is in accordance with the literature [5,54,
65]. Lower antibody responses in naturally infected individuals with 
mild symptoms compared to those with more severe disease courses 
have been reported, which conforms to that the majority of the enrolled 
individuals experienced relative mild disease courses and only a limited 
number of the included SARS-CoV-2 positive individuals required hos-
pitalization [4,14,47].

Following pool screenings, individual patient samples were screened 
for SP IgA, IgM and IgG reactivity to determine the serologic humoral 
immune response to SP. Results obtained demonstrated distinct differ-
ences in antibody profiles following natural SARS-CoV-2 infection. 
Ninety-nine % of the naturally infected HCs were positive for SP IgG, 
whereas approximately 53 % of the serum samples were positive for all 
three isotypes. These findings are in contrast to isotype distributions 
obtained for the vaccinated RRMS patients and VHCs, describing that 
close to 100 % of all samples were positive for all 3 antibody isotypes. 
The presence of SP antibody profiles has previously been analysed with 
respect to disease severity, but no correlation between the presence of 
isotype-specific SARS-CoV-2 antibodies and the disease course could be 
determined in this cohort, [42].

The difference in antibody isotype distribution may be ascribed the 
difference in immune responses generated as a response to a natural 
infection when compared to a vaccine-generated immune response. 
These findings are supported by that antibody isotype distribution cor-
relations between the three groups were different, as the highest cor-
relations were determined for the infected HCs, whereas no notable 
correlations were observed for VHCs and vaccinated patients with 
RRMS. Collectively, these main findings appear to be associated with 
differences in the infection/vaccination status, rather than a poor hu-
moral immune response in immunocompromised RRMS patients, as 
RRMS and VHCs present with similar antibody levels and distribution 
profiles compared to naturally infected individuals.

These observations are in accordance with recent studies describing 
the frequency of COVID-19 in immunocompromised individuals, 
showing that these individuals do not experience increased suscepti-
bility to SARS-CoV-2 infection nor experience more severe forms of 
COVID-19 [37,45,48].

No serologic correlation was observed between SP IgG and CMV 
pp52 IgG or EBV EBNA1 IgG in the examined cohort, suggesting SARS- 
CoV-2 infection is not associated with CMV or EBV coinfection or/and 
that coinfection not necessarily leads to a more severe disease outcomes, 
which previously has been suggested [15,55]. SARS-CoV-2 infection has 
been suggested to reactivate EBV, as studies describe that SARS-CoV-2 
infection reactivates EBV at a higher rate than in non-infected in-
dividuals [8]. In this process, the presence of SARS-COV-2 antigens from 
an inflammatory stimulus may lead to terminal differentiation and 
activation of latent EBV in B cells, allowing transition from the latent to 
the lytic phase of the virus [15,55]. Although no correlation between 
EBV and SARS-CoV-2 could be determined at the serologic level, 
SARS-CoV-2 infection may lead to reactivation of EBV, which has been 
suggested to result in more severe SARS-CoV-2 disease courses [1,24].

A few reports on SARS-CoV-2 and CMV co-infection have been 
described [44,60,66,69]. Previous findings reported that CMV seropos-
itivity was associated with more than twice the risk of hospitalization 

due to SARS-CoV-2 infection and that CMV seroprevalence was higher 
for hospitalized SARS-CoV-2 infected individuals [69]. CMV replication 
predominates in the lungs, a major reservoir for CMV, and local reac-
tivation may cause lung injury and/or result in complications associated 
with CMV and critical illness [23]. Thus, CMV infection has the potential 
to shape the course of SARS-CoV-2 infections, which typically target the 
upper respiratory tract, either because of CMV reactivation or due to the 
broader reshaping of cytotoxic lymphocyte populations [69]. Further-
more, it has been suggested that CMV-seropositive individuals may have 
a higher baseline level of innate immune activation, leading to a greater 
inflammatory response and increased disease severity during 
SARS-CoV-2 infection [44].

Collectively, SARS-CoV-2 SP antibody levels reflect the vaccination 
and infection history of the individuals and does not depend on the EBV 
or CMV serostatus for infection.
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