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Abstract: Gastroenterology faces significant challenges due to the global burden of gas-
trointestinal (GI) diseases, driven by socio-economic disparities and their wide-ranging
impact on health and healthcare systems. Advances in molecularly imprinted polymers
(MIPs) offer promising opportunities for developing non-invasive, cost-effective diagnostic
tools that enhance the accuracy and accessibility of GI disease detection. This research
explores the potential of MIP-based sensors in revolutionizing gastrointestinal diagnostics
and improving early detection and disease management. Biomarkers are vital in diag-
nosing, monitoring, and personalizing disease treatment, particularly in gastroenterology,
where advancements like MIPs offer highly selective and non-invasive diagnostic solu-
tions. MIPs mimic natural recognition mechanisms, providing stability and sensitivity even
in complex biological environments, making them ideal for early disease detection and
real-time monitoring. Their integration with advanced technologies, including conducting
polymers, enhances their functionality, enabling rapid, point-of-care diagnostics for gas-
trointestinal disorders. Despite regulatory approval and scalability challenges, ongoing
innovations promise to revolutionize diagnostics and improve patient outcomes through
precise approaches.

Keywords: molecularly imprinted polymers; synthetic receptors; biosensors; gastrointestinal
disorders; biomedical diagnostics

1. Introduction
Gastroenterology has emerged as a critical field in present-day medicine due to the

increasing ubiquity of gastrointestinal (GI) and digestive diseases and their profound im-
pact on global health [1]. Digestive diseases, driven by enteric infections in lower-income
regions and colorectal cancer in higher-income areas, account for a significant global disease
burden, with prevalence and impact closely tied to socio-economic conditions [1]. Gas-
trointestinal diseases like peptic ulcer disease [2], gastritis [3], duodenitis, gastroesophageal
reflux disease [4], and celiac disease [5] pose global healthcare challenges, reflecting dis-
parities in socio-economic development and healthcare access [6] in both low-income and
high-income regions. GI diseases are significant because they cause widespread suffering,
can lead to fatal outcomes, and place a heavy burden on healthcare systems through fre-
quent hospitalizations and high costs. Analyzing hospital discharge data [7,8], previous
studies determined that GI conditions were common as primary diagnoses and frequently
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arose as secondary issues, often complicating patient care [7]. The results of GI disease
research from studies in both the United States and Europe [9] show a significant burden,
with millions of healthcare encounters, hundreds of thousands of deaths [10], and billions
in annual costs, as these conditions are highly prevalent worldwide [10].

Understanding these patterns highlights the importance of early detection strategies
to reduce their impact on patients and healthcare systems alike. Accurate diagnostic tools
are crucial for GI disease as their varied clinical presentations often lead to misdiagnosis
or delayed diagnosis, and current methods, including serological tests (for celiac disease
and others), suffer from inconsistencies and limited global accessibility [5]. Currently, the
most appropriate diagnostics in gastroenterology are colonoscopy, gastroscopy, and/or
biopsy [11–13]. These invasive diagnostics are uncomfortable and often require seda-
tion [14], which can discourage patients from undergoing examinations. Therefore, new
technology and methods for using biomarkers are being developed, which will help in the
future to more easily and, in some cases, more accurately determine conditions or stages of
GI disorders. However, many challenges arise in this area because the biomarkers used
in GI are characterized by deficiencies in specificity and sensitivity, so current biomarkers
of GI diseases (e.g., fecal calprotectin, C-reactive protein) may not reliably distinguish
between conditions or stages of the disease [15–17]. New biomarkers and new technologies
in the field of sensors are very promising [18–23].

Recent progress in analytical chemistry enables the design of novel analytical systems
based on synthetic receptors [24] using molecularly imprinted polymers (MIPs) [25–27].
The importance of advancing MIP-based diagnostic tools is becoming increasingly ev-
ident [28]. This issue became extremely important during the wake of the COVID-19
pandemic, which highlighted the critical role of rapid tests and sensors [29,30], includ-
ing sensors based on MIPs due to the SARS-CoV-2 virus spike [31] and nucleocapsid [32]
proteins. Improved diagnostics are essential for the early detection of diseases, as many con-
ditions, such as colorectal cancer [33] and inflammatory bowel diseases (IBD) [34,35], begin
with non-specific or asymptomatic presentations, leading to delayed diagnoses and poorer
outcomes [36]. Considering these developments in the determination of protein-based
biomarkers, similar advanced sensors are also needed to differentiate between overlap-
ping symptoms of common gastrointestinal disorders while minimizing the discomfort
and invasiveness associated with traditional methods like colonoscopies. Non-invasive,
cost-effective technologies, including molecular sensors and biomarkers, not only enhance
accessibility but also align with the growing demand for personalized medicine by en-
abling precise, tailored treatments based on individual profiles. Furthermore, emerging
challenges, from antibiotic-resistant infections to rare GI cancers [37], underscore the need
for sophisticated approaches.

This integrated summary presents the potential of applying MIP sensors in gastroin-
testinal diagnostics while also exploring future perspectives in the field.

2. Methods
To address the research question of how molecularly imprinted polymer (MIP) ad-

vanced hydrogels serve as tools for gastrointestinal diagnostics, we conducted a systematic
literature search across three major scientific databases: ScienceDirect (Scopus), Web of
Science, and PubMed. The search was performed in 2025 and included English-language
studies without restrictions on publication year to ensure a comprehensive review (Fig-
ure 1). The queries focused on key terms such as “Molecularly Imprinted Polymers” and
“Gastrointestinal Diagnostics,” as well as broader searches using “MIP” and “in vivo” to
capture a wide scope of relevant research. The initial results yielded a large number of
studies, with ScienceDirect returning 1266 papers for MIPs in gastrointestinal diagnostics
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and over 35,000 for MIPs in general, while Web of Science and PubMed produced fewer
but highly specific results.
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Figure 1. Adapted PRISMA-type [38] literature search strategy.

To refine the selection, duplicate articles were removed by identifying redundant
DOI entries across platforms. Studies that did not specifically investigate or fit MIPs in
gastrointestinal diagnostics were excluded, alongside papers which only briefly mentioned
the topic without providing substantial experimental or analytical depth. Preference
was given to research that included detailed methodologies, experimental validation,
and/or clinical applications. Additionally, studies from the authors’ working group were
incorporated due to their direct relevance and alignment with the research objectives. To
maintain focus, if a paper presented clear references to key ideas, no further sources were
added merely to increase volume.

By applying these criteria, the final selection of articles ensured a strong foundation
for understanding the role of molecularly imprinted polymer hydrogels in gastrointestinal
diagnostics. This process streamlined the dataset and highlighted high-value contributions
in the field, ensuring that the included research offered meaningful insights rather than
redundant or marginally relevant findings.

3. Current GI Diagnostics and Possibilities of Novel Tools’ Integration
Gastrointestinal diseases can be localized to the GI tract, such as reflux esophagitis

and peptic ulcers, or be associated with systemic disorders like IBD. They may even cause
systemic issues through primary GI pathologies, such as vitamin deficiencies from malab-
sorption [39]. The nature of the disease varies by the specialized function of the affected GI
region, leading to different causes and manifestations [39]. For example, irritable bowel
syndrome (IBS) is a GI disorder marked by changes in bowel habits accompanied by ab-
dominal discomfort or pain without identifiable structural or biochemical abnormalities.
Its pathogenesis involves various factors, including altered GI motility, visceral hyper-
sensitivity, post-infectious responses, brain–gut interactions, changes in gut microbiota,
bacterial overgrowth, food sensitivities, carbohydrate malabsorption, and intestinal inflam-
mation [40–42]. The variety of possible causes of GI disorders leads to the need for early
diagnostic or non-invasive tools to detect the issue. Emerging diagnostic technologies, like
liquid biopsy and advanced molecular imaging, offer non-invasive ways to detect GI disor-
ders early, enabling timely interventions before symptoms appear. Integrating genetic and
omics data enhances predictive models, helping identify high-risk individuals and inform
personalized prevention strategies. Additionally, treatment approaches are evolving, with
precision medicine guiding the development of targeted therapies, including immunother-
apies, gene therapies, and microbiome-based interventions, which could revolutionize
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the management of conditions such as inflammatory bowel disease and diabetes [41,43].
Another opportunity is to apply electrochemical methods to develop biosensors that can be
applied in GI disease diagnostics.

Molecular imprinting technology involves creating recognition sites within polymer
networks that are specifically designed to bind template molecules. During polymerization,
template molecules form covalent or non-covalent interactions with functional monomers,
which cross-link to form copolymers. Once the template is removed, the resulting molecu-
larly imprinted polymers possess cavities with precise recognition capabilities for the target
molecule, enabling both physical and chemical binding [44] (Figure 2).
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Molecular recognition is fundamental to numerous biological processes, particularly
in biosystems. It involves dynamic receptor–ligand binding on the cell membrane, enabling
cells to interact, transmit signals, and respond to external stimuli effectively [44]. The
carcinoembryonic antigen (CEA) is a glycoprotein absent in healthy adults but expressed
in various cancer tissues, including colorectal, breast, and pancreatic cancers. Researchers
have developed sensors for detecting CEA using MIPs combined with electrosensors
or optical devices, such as Raman spectroscopy with a pseudo-immune-sandwich assay.
These methods show promise, but challenges remain, such as impaired performance in
integrated systems and the need for simpler synthesis procedures for clinical use [45].
H. pylori is linked to various stomach-related diseases, including gastric cancer, with
cytotoxin-associated gene A (CagA) being the primary virulence factor which enables its
establishment in human gastric cells [46]. A novel MIP-based electrochemical sensor was
developed for the ultrasensitive detection of the vacuolating cytotoxin A (VacA) toxin from
H. pylori, a key factor in its pathogenesis. The sensor, featuring a SiO2 NP-decorated MIP on
a screen-printed electrode, was created by polymerizing over the electrode using VacA as a
template antigen, and it demonstrated high sensitivity and a low detection limit. The sensor
effectively detected VacA with minimal interference from other substances within a linear
range of 0.01–100 ng/mL [47]. A highly sensitive MIP-based electrochemical biosensor was
developed for detecting CagA using a reduced graphene oxide and gold-coated, screen-
printed electrode platform. The sensor exhibited high sensitivity, a low detection limit,
and a linear range of 0.05–50 ng/mL, with minimal interference from other substances,
demonstrating a strong binding affinity for the CagA antigen [46].

Celiac disease is a chronic immune-mediated condition of the small intestine triggered
by dietary gluten in genetically predisposed individuals. Gluten ingestion in susceptible
people causes inflammation in the upper small intestine, leading to mucosal damage which
reduces nutrient absorption, including fat-soluble vitamins, iron, B12, and folic acid. At the
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same time, oats are typically non-immunogenic [48]. Diagnostics are pivotal in managing
the increasing global prevalence of celiac disease and supporting the development of
non-dietary therapies. Advances in understanding its immune pathogenesis and the
role of serology have led to the partial acceptance of non-biopsy diagnosis in specific
cases. This approach may expand further as methods for detecting gluten-specific celiac
disease CD4+ T cells and the acute immune response to gluten ingestion become more
accessible [49]. The evolving diagnostic landscape emphasizes current practices, limitations,
the gluten challenge test, and the potential for diagnostics targeting the disease’s root
cause—gluten-specific immunity [49]. In an era during which pharmaceuticals, including
new drugs, repurposed treatments, and supplements, may complement the gluten-free
diet in managing celiac disease, it is essential to evaluate the current diagnostic rigor, the
limitations of dietary therapy, and the lack of objective markers for disease severity [50].

3.1. Biomarkers

Biomarkers are used in clinical practice and research to diagnose diseases, predict
disease risks, monitor treatment success, identify patients who could benefit from specific
medications, and anticipate potential side effects, offering a comprehensive view of cel-
lular activities. In diagnostics, biomarkers form the foundation of in vitro tests, aiding in
disease detection, monitoring progression, and predicting treatment responses, especially
in precision medicine. Identifying and clinically validating biomarkers is essential for
advancing diagnostics in various fields, including cancer, with liquid biopsies offering a
promising, non-invasive alternative for diagnosis [51]. Identifying high-risk individuals or
diagnosing early disease is a key aspect of primary prevention and a crucial strategy for
effective treatment and improving overall survival [52]. Tumor biomarkers, produced by
tumors or in response to tumors, play a critical role in cancer screening, early diagnosis,
prognosis prediction, recurrence detection, and monitoring treatment efficacy. Advances in
molecular biology technologies have significantly improved the discovery and detection of
sensitive, specific biomarkers, contributing to personalized medicine and better cancer pa-
tient outcomes [33,53]. Biomarkers are essential tools for diagnosing GI disorders, serving
as indicators of disease presence or severity. There are various diagnostic biomarkers, in-
cluding serological, immunological, fecal, and genetic markers (such as non-coding RNAs),
which have biological functions and diagnostic roles [54].

Biomarkers from fluidic consistency (Table 1) samples (blood, urine, stool, saliva) are
most suited for MIP sensors, as such sensors are engineered to detect biomarkers’ molecules
selectively. The biomarker’s molecule binds to the MIP (whereby chemical interactions (e.g.,
hydrogen bonding, van der Waals forces, electrostatic interactions) between the biomarker
and the imprinted polymeric site occur), and a measurable signal is generated.



Gels 2025, 11, 269 6 of 18

Table 1. Fluidic samples for biomarker detection.

Fluid Biomolecules Biomarkers Ref.

Bl
oo

d-
Ba

se
d

Bi
om

ar
ke

rs

Proteins

Carcinoembryonic Antigen (CEA):
Commonly elevated in colorectal cancer.
CA 19-9: Associated with pancreatic and
biliary cancers.
Alpha-Fetoprotein (AFP): Used in
hepatocellular carcinoma diagnosis.
C-Reactive Protein (CRP): Indicates
inflammation in conditions like
inflammatory bowel disease (IBD).
Serum Albumin: Lower levels are often
linked to liver disease.

[17,55–65]

Enzymes

Amylase and Lipase: Indicators of
pancreatic inflammation (e.g., pancreatitis).
Aspartate Transaminase (AST) and Alanine
Transaminase (ALT): Reflect liver function.

[66,67]

Cytokines

Tumor Necrosis Factor-Alpha (TNF-α):
Elevated in IBD and Crohn’s disease.
Interleukins (e.g., IL-6, IL-8): Markers of
inflammation and cancer progression.

[68–73]

Nucleic
Acids

Circulating Tumor DNA (ctDNA): Useful
for detecting genetic mutations in GI
cancers.
MicroRNAs (e.g., miR-21): Associated with
gastric and colorectal cancers.

[74–80]

Metabolites

Bilirubin: Indicates liver function or
obstruction in bile ducts.
Lactate: Can reflect hypoxia or tumor
metabolism in cancers.

[81–84]

Sa
liv

a-
Ba

se
d

Bi
om

ar
ke

rs Proteins

Cytokines (e.g., IL-8): Indicators of oral and
esophageal cancers or systemic
inflammation.
Amylase: Reflects salivary gland or
pancreatic function.

[85–89]

DNA/RNA MicroRNAs (e.g., miR-21): Associated with
GI cancer detection.

[90,91]

St
oo

l-
Ba

se
d

Bi
om

ar
ke

rs

Proteins

Fecal Calprotectin: A marker for IBD and
colorectal cancer.
Fecal Immunochemical Test (FIT): Detects
occult blood in stool, used in colorectal
cancer screening.

[92–96]

DNA/RNA

Methylated DNA (e.g., SEPT9): Found in
stool for colorectal cancer screening.
Microbial DNA (e.g., alterations in gut
microbiome composition): Associated with
various GI diseases.

[22,97–101]

U
ri

ne
-B

as
ed

Bi
om

ar
ke

rs

Proteins

Urinary Peptides (e.g., MMP-9): Linked to
gastric cancer.
Nitrites: May indicate infection (e.g.,
Helicobacter pylori).

[102–105]

Metabolites
Volatile Organic Compounds (VOCs):
Associated with colorectal cancer and GI
inflammation.

[106–108]

Genetic
Material

Urinary MicroRNAs (e.g., miR-92a):
Indicators of colorectal cancer.

[109–112]
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Although many potential biomarkers are still in the research phase and have not been
validated for real-life clinical use in diagnosing specific GI diseases, their future prospects
are promising. The variability in results from current studies highlights the need for large-
scale, multicenter trials with standardized methods, as well as broader genomic coverage in
diagnostic approaches [52]. Proteomic-based markers hold promise but are costly, limiting
their routine use, while epigenetic markers, which can be detected in both bodily fluids and
tissues, show great potential. However, due to their sensitivity to environmental factors
and aging, they must be used cautiously, and a combination of genetic, epigenetic, and
proteomic approaches is recommended for clinical practice in gastric tumor diagnosis and
prognosis [113]. Advancements in molecular diagnostics, such as single-cell sequencing,
are expected to improve accuracy, reduce costs, and increase the availability of biomarkers,
making them a key component of personalized medicine in the near future [52].

MIP sensors mimic natural recognition mechanisms by creating synthetic binding sites
within a polymer matrix that are complementary in shape, size, and chemical functional-
ity [114] to the target biomarker; therefore, biomarkers can provide accurate, non-invasive
diagnostics and real-time monitoring for conditions like colorectal cancer, IBD, and liver
diseases. MIP-based sensors are particularly useful for detecting biomarkers due to their
high selectivity, enabling precise binding to target molecules. This makes them invaluable
in diagnostics. Several molecular imprinting techniques can be used to develop MIP-
based sensors. For example, molecular imprinting (MI) develops selective recognition
sites in polymers for specific target molecules [115]. It involves polymerizing a functional
monomer around a template molecule, which is later removed to leave imprinted cavities.
Electrochemical molecular imprinting combines MI with electrochemical techniques to
detect target molecules via electrical signals [116]. Surface molecular imprinting (SMI)
focuses on imprinting directly on a material’s surface, providing high sensitivity. Ryma
et al. demonstrate that human monocyte-derived macrophages exhibit strong M2a-like
pro-healing polarization when cultured on type I rat-tail collagen fibers, but not on collagen
I films, suggesting the importance of 3D structural motifs in inducing macrophage polar-
ization. The strategy of “melt electrofibrillation” was developed to create highly aligned
nanofibrils of synthetic polymers resembling native collagen I, successfully triggering
M2-like polarization in macrophages. These biomimetic fibrillar structures, particularly
from poly(ε-caprolactone), induce macrophage elongation and polarization at a level com-
parable to interleukin-4 treatment [117]. Another study introduced a new ultrasensitive
and universal “Raman indicator” sensing strategy for detecting protein biomarkers using a
glass capillary-based molecularly imprinted SERS sensor. The sensor uses an inner SERS
substrate layer for signal enhancement and an outer polydopamine imprinted layer for
selective protein recognition, with imprinted cavities controlling the flow of a Raman
indicator to reflect protein capture. This platform allows for the specific, reproducible
detection of proteins, including trypsin enzyme, at low concentrations in biological samples
without the need for sample preparation, offering a fast, general, and effective approach
for point-of-care bioassays [118]. A new chiral discrimination strategy, the “inspector”
recognition mechanism (IRM), is proposed using a chiral imprinted polydopamine (PDA)
layer on a surface-enhanced Raman scattering (SERS) tag. The IRM works by detecting
permeability changes in the imprinted PDA layer after chiral recognition, where the correct
enantiomer fills the cavities, and the wrong enantiomer does not. An aminothiol inspector
molecule is introduced to scrutinize the recognition status, decreasing the SERS signal only
when it passes through vacant or non-specifically occupied cavities, ensuring the specific
discrimination of chiral molecules regardless of their size, functional groups, or optical
activities [119]. These strategies are widely used in biosensors to detect biomolecules,
toxins, and pathogens.
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To sum up, MIPs are synthesized by polymerizing functional monomers around
a target template molecule, which is later removed, leaving specific recognition sites
(Figure 2). These materials function by selectively binding to their target analytes through
complementary interactions, mimicking natural receptors. MIPs offer advantages such as
high selectivity, stability, and reusability, but they may have limitations in template removal,
binding kinetics, and batch-to-batch reproducibility. Compared to classical methods like
antibodies or enzymatic assays, MIPs provide a cost-effective and robust alternative, with
recent advancements enhancing their sensitivity and applicability in various fields.

3.2. Molecularly Imprinted Polymers In Vivo

Recently, over the past quinquennial, MIPs have been increasingly integrated into com-
plex in vivo studies, demonstrating their potential for biomedical applications. Researchers
have investigated the biodistribution, clearance, cytotoxicity, and adjuvant properties
of nanoMIPs in six-week-old pathogen-free Sprague Dawley rats following oral and in-
travenous administration [120]. The results showed that low-dose nanoMIPs were not
rapidly sequestered by the reticuloendothelial system, persisted in tissues without major
toxicity, crossed the blood–brain barrier, and were excreted through urine and feces [120].
Additionally, epidermal growth factor receptor (EGFR)-imprinted nanoMIPs exhibited
weak adjuvant properties for ovalbumin, indicating both potential risks in therapeutic
payload delivery and promising applications in immunotherapy [120]. MIPs have also
been explored for targeted drug delivery in vivo. A magnetic MIP was synthesized and
tested in a rheumatoid arthritis rat model. Using Fe2O3@mSi as the core for surface im-
printing, dopamine as the monomer, and methotrexate loaded during polymerization,
the MIP achieved a loading capacity of 201.165 ± 0.315 µmol/g. In a complete Freund
adjuvant induced arthritis rat model, a 3D magnet-bearing construct facilitated targeted
magnetic MIP delivery, significantly improving paw edema, paw diameter, gait score, and
weight, as confirmed by histopathology [121]. These findings suggest that these MIPs effec-
tively target inflammation sites and outperform free methotrexate in alleviating arthritic
symptoms [121].

Further research has demonstrated the need for MIP-based innovations in oncology.
Scientists developed a stealth radiation sensitizer using Au-embedded molecularly im-
printed polymer nanogels (Au MIP-NGs) to enhance low-dose X-ray radiation therapy [122].
Surface plasmon resonance confirmed their strong affinity for human serum albumin, en-
abling the formation of an albumin-rich protein corona which granted stealth properties
in vivo [122]. In a pancreatic cancer mouse model, Au MIP-NGs significantly improved
radiation therapy efficacy, inhibiting tumor growth even at low X-ray doses (2 Gy) [122].
This approach underscores the potential of nanomaterial–protein interaction control for
advancing cancer treatment, diagnostics, and theranostics [122]. Beyond oncology, MIPs
are also being investigated for real-time in vivo monitoring applications. Researchers have
developed fully reversible MIP sensors based on electrostatic repulsion, overcoming the
slow-release kinetics of traditional MIPs [123]. By applying a small electrical potential,
these sensors enable repeated analyte release and detection. A dopamine sensor with
a 760 pM detection limit demonstrated high accuracy across 30 sensing-release cycles,
successfully detecting <1 nM dopamine from PC-12 cells in vitro [123]. This innovation
offers a reliable approach for continuous health monitoring and other charged-molecule
sensing applications [123].

In gastrointestinal applications, a catheter-based MIP sensor was developed to mea-
sure histamine concentrations in the human duodenum, aiding in the diagnosis of gut
disorders like IBS [124]. Utilizing impedance spectroscopy and MIPs, synthesized from
acrylic acid monomers, the sensor maintained high specificity and stability in intestinal
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fluid. Validated in a simulated duodenal environment, the sensor demonstrated a detec-
tion range of 5–200 nM, corresponding to physiological and disease-associated histamine
levels [124], making this platform have potential applications in cardiovascular, urological,
gastrointestinal, and neurovascular diagnostics.

Despite promising results in animal models [125–128], future research should focus
on innovative methods such as 3D organ models derived from stem cells. While large
animal models, including primates, may still be necessary for final validation before clinical
trials, efforts should prioritize reducing the use of animal testing where possible. The
integration of MIPs into advanced in vitro models, organ-on-a-chip systems, and AI-driven
simulations could further refine and accelerate their translation into clinical applications.

4. Perspectives of MIP-Based Sensors
The development of polymer science is particularly relevant, as polymers have long

been used in bioscience and medical areas in various forms. Imprinting polymeric tech-
nologies at the molecular level paved the way for a new era of MIP. Originally designed to
mimic the binding behavior of natural antibodies, MIPs have evolved to serve as synthetic
receptors, replicating the function of a wide range of natural receptors in analytical applica-
tions. MIPs can be useful in diagnostics in several aspects: MIPs are used as recognition
elements in biosensors, mimicking the specificity of antibodies for detecting biomarkers;
MIPs can be functionalized with fluorescent or magnetic nanoparticles (NPs) for imaging-
based diagnostics; finally, MIPs are employed as selective tools to isolate and concentrate
specific analytes from complex biological samples such as blood, urine, or saliva. Elec-
trodes, as more affordable and versatile components, can serve as effective sensors when
coated with molecularly imprinted materials, enabling the selective detection of analytes
through electrochemical signals. These sensors can be designed to target both large and
small molecules, suitable for analytes with a wide range of molecular weights.

MIPs are highly suitable for gastroenterology detection because they selectively recog-
nize and bind specific biomarkers, even in complex biological samples like gastric fluids.
Their stability, cost-effectiveness, and adaptability to non-invasive sensor platforms make
them ideal for advancing the early diagnosis and monitoring of gastrointestinal disorders.
Therefore, it is important and beneficial to learn about the perspectives of MIPs. Natu-
ral receptors like antibodies and enzymes are highly specific but can be expensive, lack
variability, and require careful storage. Synthetic receptors, such as aptamers, are also
specific and sensitive but are costly to produce and may have limited stability in harsh
conditions. In contrast, MIPs offer a distinct advantage in terms of cost-effectiveness, as
they are synthesized through relatively simple, scalable processes using readily available
materials. The diagnostic applicability of molecularly imprinted polymers (MIPs) can
be compared to natural and synthetic receptors based on several key factors: specificity,
sensitivity, stability, and cost-effectiveness. However, the specificity of MIPs can sometimes
be lower than that of natural receptors, especially in complex biological samples.

MIP-based sensors are ideal for future personalized use due to their high selectivity
for target biomarkers, even in complex samples, combined with their exceptional stability
under varying conditions, reusability, and compatibility with diverse fluid types. Their
versatility and scalability allow for miniaturization into portable or wearable devices,
making them perfect for non-invasive, real-time, and continuous health diagnostics.

The rapid advancements in gastroenterology also highlight the growing demand
for highly compatible implantable sensors and biosensors capable of detecting disease-
specific biomarkers. Due to their superior biocompatibility and adaptability, polymer-based
composites have demonstrated exceptional potential for applications such as scaffold de-
velopment [129] and the incorporation of living cells [130]. These materials are especially
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relevant in addressing challenges in gastrointestinal disease diagnostics, where the sensitive
and specific detection of biomarkers like C-reactive protein, fecal calprotectin, or mucosal
antibodies is critical for early and accurate disease detection [131,132]. By improving the
biocompatibility of conducting polymer-based structures, researchers have paved the way
for safer and more effective biomedical tools. For instance, these materials have shown
promise in gastrointestinal therapeutic applications, such as localized drug delivery sys-
tems and bioresorbable sensors for monitoring intestinal health [133,134]. Therefore, by
mimicking biological receptors, MIP sensors can selectively bind to biomarkers associated
with gastrointestinal diseases, including specific proteins, metabolites, and microbial mark-
ers. Their robust and customizable design allows for enhanced sensitivity and specificity,
making them ideal for real-time monitoring in complex biological environments such as
the gut [135].

Composite materials, especially hydrogels derived from conducting polymers, have
emerged as highly biocompatible options due to their significant water content [136].
Their biocompatibility can be significantly enhanced by incorporating compatible mate-
rials for synthesis and modification as well [137]. The exceptional biocompatibility of
these hydrogel-based composites paves the way for their application in attachable [138],
wearable [139], and other advanced biosensors [140].

The potential of conducting polymers in developing advanced biomedical devices
particularly in the area of gastrointestinal diseases is growing. Research has shown that
conducting polymers, such as polypyrrole, demonstrate significant compatibility with vari-
ous entrapped proteins [141,142]. For instance, polypyrrole has been used to immobilize
glucose oxidase, maintaining the enzyme’s activity and facilitating electron transfer in
glucose biosensors [143]. Monitoring blood glucose levels is crucial in managing the gas-
trointestinal complications associated with diabetes, such as gastroparesis. Gastroparesis,
characterized by delayed gastric emptying, can lead to unpredictable glucose absorption,
resulting in erratic blood sugar levels [144]. Additionally, polypyrrole’s lack of negative
effects on hematological parameters reinforces its suitability for biomedical applications.
Research involving polypyrrole NPs has shown no significant cytotoxicity, indicating their
potential for safe use in medical devices. Other conducting polymers, such as polyani-
line and polythiophene, as their derivatives, are also known for their compatibility in
biomedical applications. These materials have been explored for their biocompatibility and
potential use in various tissue engineering and biosensing applications [145].

Despite the critical need for biocompatibility in implantable devices, most studies
in this field have focused on evaluating the compatibility of conducting polymers with
basic biological molecules such as enzymes and DNA [146,147]. However, such studies
often fall short of assessing the intricate biocompatibility essential for clinical applications.
Advanced biocompatibility testing involving cell lines or animal models is necessary to
address this limitation comprehensively. The adaptability of MIPs allows them to be used in
conjunction with cell line and animal model experiments. For example, MIPs could monitor
localized cellular responses or inflammatory markers, bridging the gap between in vitro
and in vivo biocompatibility evaluations. MIPs can be fabricated using various functional
monomers and cross-linkers, which enable the design of materials with specific mechanical
and chemical properties [148]. This versatility ensures that the sensors meet the stringent
requirements of implantable medical devices. MIPs can be engineered to interact with
specific molecules in a controlled manner. By incorporating biocompatible polymers during
the imprinting process, MIPs can enhance compatibility with living tissues and reduce
adverse reactions in implantable devices. Despite the opportunity to improve the binding
affinity in vitro, the application of MIPs in vivo remains challenging. Several strategies can
be employed to optimize MIPs, such as optimizing the functional monomers, cross-linker
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modification, and solvent selection during polymerization. In addition, post-imprinting
treatments like solvent washing, heat activation, or the incorporation of nanomaterials can
increase surface area and enhance binding capacity. However, biological matrices, such as
blood and tissues, contain interfering molecules that lead to non-specific binding, reducing
the MIP’s recognition capability. Due to degradation by enzymes or environmental factors,
the stability of MIPs can be decreased in vivo. The size and accessibility of the target
molecules limit MIP effectiveness. Large MIPs may not penetrate tissues, while small MIPs
may lack sufficient binding sites.

It is important to emphasize that the toxicity, biocompatibility, and biodegradability of
MIPs for in vivo applications should be enhanced. Using biocompatible monomers and
polymers might reduce immune responses and improve MIP safety [149]. Incorporating
biodegradable materials such as poly(lactic acid) or poly(ε-caprolactone) into the MIP
structure allows for controlled degradation over time, reducing long-term accumulation in
the body [150,151]. To ensure safe in vivo applications, in vitro testing should be conducted
to assess the long-term effects and clearance of MIPs from the body.

In addition, significant advancements in MIP-based diagnostic tools have not yet
been tested in clinical trials. The main reasons might be associated with biocompatibility
and safety concerns. Understanding of in vivo interactions with nanoMIPs is still limited,
especially regarding the impact of binding cavities on internalization, biodistribution, and
clearance. This knowledge gap highlights the need for further research into the behaviors
of nanoMIPs once they enter the bloodstream and interact with blood components, tissues,
and cellular microenvironments [120]. In order to translate created medical devices to
clinics, comprehensive safety and efficacy examination is needed, including pre-clinical and
clinical trials. These regulatory frameworks could be challenging to undergo and might
delay the approval and adoption of novel technologies [152]. Developing high-sensitivity
and -selectivity MIPs in complex biological matrices, such as gastrointestinal fluids, remains
challenging. The presence of various interfering substances can affect the binding affinity
and specificity of MIPs, complicating their performance in real-world clinical settings [153].

5. Conclusions and Future Perspectives
In conclusion, molecularly imprinted polymers represent a promising advancement

in the field of gastrointestinal medical diagnostics. Their ability to selectively bind target
molecules makes them valuable for detecting biomarkers associated with gastrointestinal
disorders. Customizing MIPs to recognize specific analytes enhances their sensitivity and
specificity, paving the way for more accurate diagnostic tools. Moreover, the stability and
durability of these polymers facilitate their use in harsh gastrointestinal environments,
ensuring reliable performance. As research progresses, integrating MIPs with advanced de-
tection technologies based on the application of sensors will likely amplify their diagnostic
capabilities. This synergy of electronics and MIPs could lead to rapid, point-of-care testing
that improves medical treatment outcomes through timely interventions. Additionally,
MIPs can be designed to target a wide range of compounds, ranging from proteins to
small metabolites, broadening their applicability in gastrointestinal diagnostics. The im-
plementation of MIPs in clinical settings has the potential to revolutionize gastrointestinal
diagnostics, enhancing early detection and personalized treatment strategies. However,
some challenges in this area still remain, including the need for regulatory approval and
large-scale production, but ongoing innovations are addressing these hurdles. As techno-
logical progress moves forward, continued research and collaboration will be crucial in
unlocking the full potential of molecularly imprinted polymers in healthcare.
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