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Abstract
Interactions between amyloid proteins represent the cornerstone of various
pathogenic pathways, including prion conversion and co-development of
distinct kinds of systemic amyloidosis. Various experimental methodologies
provide insights into the effects of such cross-interactions on amyloid self-
assembly, which range from acceleration to complete inhibition. Here, we
present a comprehensive review of experimental methods most commonly
used to study amyloid cross-interactions both in vitro and in vivo, such as
fluorescence-based techniques, high-resolution imaging, and spectroscopic
methods. Although each method provides distinct information on amyloid
interactions, we highlight that no method can fully capture the complexity of
this process. In order to achieve an exhaustive portrayal, it is necessary to
employ a hybrid strategy combining different experimental techniques. A
core set of fluorescence methods (e.g., thioflavin T) and high-resolution
imaging techniques (e.g., atomic force microscopy or Cryo-EM) are required
to verify the lack of self-assembly or alterations in fibril morphology. At the
same time, immuno-electron microscopy, mass spectrometry, or solid-state
NMR can confirm the presence of heterotypic fibrils.
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1 | INTRODUCTION

Protein aggregation into toxic species is frequently
linked to a variety of human diseases, collectively
known as protein misfolding diseases (PMDs) or protei-
nopathies. To date, 42 human fibril-forming proteins
(amyloids) have been implicated in different proteinopa-
thies (Buxbaum et al., 2024). These disorders range
from neurodegenerative diseases, such as amyloid-β
(Aβ) aggregation in Alzheimer’s disease (AD) and α-
Synuclein (AαSyn) aggregation in Parkinson’s disease
(PD) (Goedert, 2001; Hardy & Selkoe, 2002; Lücking &
Brice, 2000), to endocrine diseases, like the involve-
ment of islet amyloid polypeptide (AIAPP) in type 2 dia-
betes (T2D) (Hull et al., 2004), and visual impairments,
such as cataract caused by crystalline aggregation
(Roskamp et al., 2020).

Although the aggregation of proteins into fibrillar
structures is often associated with the development of
proteinopathies, this phenomenon is also utilized by
many biological systems for functional purposes
(Otzen, 2010). These naturally occurring functional
amyloids, found in a wide range of organisms from bac-
teria to humans, are involved in various functions, such
as cell adhesion, biofilm formation, hormone storage,
and antimicrobial defense (Romero & Kolter, 2014; Van
Gerven et al., 2015). In humans, the premelanosome
amyloid protein (PMEL17) functions prominently in pig-
ment biosynthesis (Louros et al., 2016) and antimicro-
bial peptides produced by the innate immune system
undergo amyloid-like aggregation, contributing to anti-
bacterial defense by disrupting bacterial cell mem-
branes (Bücker et al., 2022).

The term ‘amyloid’ initially used to describe extra-
cellular deposits of abnormally folded protein aggre-
gates, has broadened to encompass any peptide or
protein that forms cross-β-sheet fibrils (Buxbaum
et al., 2024). Regardless of their pathological or func-
tional roles, amyloids undergo a fundamental process
known as self-assembly (fibrillation), which enables
proteins or peptides to spontaneously form highly
ordered, multiscale fibrillar structures in various bio-
logical contexts (Dobson, 2003). This multi-stage phe-
nomenon (Figure 1a,b) could involve both primary and
secondary nucleation, during which protein monomers
spontaneously aggregate into dimers, subsequently
forming oligomers. These oligomers further polymer-
ize into protofibrils and eventually mature amyloid
fibrils, undergoing structural changes throughout the
process (Cohen et al., 2011; Törnquist et al., 2018).
Environmental factors could reverse this polymeriza-
tion, with fibrils disassembling back into oligomers or
monomers under specific conditions (P�almad�ottir
et al., 2025).

The complexity of amyloid self-assembly is coupled
with structural variability deriving from a phenomenon
known as ‘amyloid polymorphism’ (Close et al., 2018).

This variability is characterized by diverse fibril archi-
tectures, including twisted, helical, and rod-like struc-
tures, as well as multistranded fibril nodules and
twisted ribbons (Annamalai et al., 2016). Polymorphism
arises from variations in the number, orientation, or
substructure of protofibrils (Fändrich et al., 2009;
Fitzpatrick et al., 2013) and can also be influenced by
experimental or physiological conditions, or minor
structural modifications (Emendato et al., 2018; Zhou
et al., 2021). Structurally distinct polymorphous fibrils
can arise during self-assembly or due to cross-
interactions between various amyloidogenic proteins
(Zhang et al., 2015) making these fibrils even more
challenging to study.

1.1 | Cross-interactions between
amyloids

Self-assembly occurs through homogenous interac-
tions among identical molecules and can be signifi-
cantly modulated by environmental context. Such
interactions could influence the speed of self-assembly
and the conformation or composition of the resulting
fibrils. One of the most distinguishable properties of
amyloids is their ability to modulate the self-assembly
of other fibril-forming proteins or peptides. This can
happen through interactions between the same amy-
loids at different stages of assembly or through interac-
tions between different amyloid proteins and can even
lead to the development of hetero-fibrils composed of
two or more amyloid types (Konstantoulea et al., 2022).

These interactions result in amyloid cross-seeding,
cross-aggregation, or cross-amyloid inhibition (Ren
et al., 2019). Cross-aggregation involves different mono-
meric proteins forming mixed aggregates with unique
morphological characteristics and properties. In contrast,
cross-seeding involves preformed seeds or critical oligo-
meric nuclei of one protein inducing or accelerating the
fibrillation of another protein (Subedi et al., 2022). Cross-
seeding can help overcome the energy barrier required
for fibrillation when environmental or experimental condi-
tions hinder aggregation (Ma & Nussinov, 2012).

The first data confirming the existence of molecular
cross-talk between different amyloids was obtained by
studying the molecular structure of protein deposits, a
extracellular or intracellular accumulations of fibrils
(Mena et al., 2009). The coexistence of heterologous
protein aggregates, such as Aβ and AαSyn (Mandal
et al., 2006), Aβ and ATau (Buggia-Prévot et al., 2014),
Aβ and transthyretin (ATTR) (Li et al., 2013), AIAPP
and insulin (Ivanova et al., 2021), has been found in
amyloid deposits of patients simultaneously suffering
from several PMDs such as AD, transmissible spongi-
form encephalopathies (TSEs), PD, and T2D (Ivanova
et al., 2021; Luo et al., 2016a; Morales et al., 2013;
Nonaka et al., 2018). High prion transmissibility and
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F I GURE 1 Overview of amyloid fibrillation and stability across assembly states. (a) Schematic representation of the three stages of amyloid
fibrillation. The fibrillation process begins with the lag phase, where proteins exist in a dynamic equilibrium between soluble monomers and small
aggregates, with minimal thioflavin T (ThT) fluorescence intensity observed. During the nucleation phase, these small aggregates cluster into a stable
fibril nucleus, triggering a noticeable increase in ThT fluorescence as fibrils form. The elongation phase follows, characterized by the rapid addition of
monomers to the growing fibrils and a corresponding sharp rise in ThT fluorescence intensity, indicating the formation of mature fibrils. Finally, in the
plateau phase, fibril growth slows as the system approaches equilibrium, with ThT fluorescence intensity stabilizing as the concentration of remaining
monomers diminishes. (b) The varying stability levels across distinct assembly states for heterotypic and homotypic amyloid fibrils. The assembly
states range from stable, permanent interactions, marked as irreversible and characterized by strong intermolecular bonds between monomers, to
transient strong interactions, which require specific environmental factors or conformational changes for bond dissociation. The transient weak
interactions represent a reversible equilibrium, where bonds between monomers form and break spontaneously. Monomer populations of different
proteins are shown in gray and red, with double arrows indicating the reversibility of the process. External factors that trigger dissociation are noted,
with red lightning bolts denoting cases where a specific trigger is necessary for dissociation.
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cross-species conversion are linked to cross-interaction
and cross-seeding between different prion proteins (Luers
et al., 2013; Soto, 2012; Vishveshwara & Liebman, 2009).

In vitro experiments also proved the capacity of
some well-known amyloidogenic proteins to induce or
accelerate the aggregation of other proteins in the pro-
cess known as cross-seeding (Krebs et al., 2004). For
instance, it has been shown that Aβ peptide, under
specific conditions, seeds the polymerization process
of AαSyn (Ono et al., 2012), ATau (Guo et al., 2006) or
prion protein (APrp) (Morales et al., 2010).

Additionally, some functional amyloids rely on hetero-
geneous interactions as a basic principle (Zhou
et al., 2012). In Gram-positive bacteria like Staphylococ-
cus aureus, cross-interaction within phenol-soluble modu-
lins (PSM) is crucial for biofilm formation, stabilization,
increased virulence, and toxicity to non-self cells
(Zaman & Andreasen, 2020). PSM fibril polymorphism is
influenced by their propensity for self-assembly and
cross-interaction within the family (Cracchiolo et al., 2022;
Marinelli et al., 2016). Functional hetero-prion complexes
are essential for biological functions, such as the localized
synthesis of tubulin via co-aggregation of Sup35 protein
with prion amyloids from the stress granules protein Tia1
(Li et al., 2014).

Strikingly, amyloid proteins of very different origins
and entirely unrelated primary sequences have also
been revealed to be capable of cross-interacting with
each other. In particular, functional bacterial amyloids,
like CsgA and PSMα were found to accelerate AαSyn
aggregation in an experimental PD model in vitro
(Werner et al., 2020), as well as in mice (Sampson
et al., 2020). PSMα3 was also found to inhibit human
insulin aggregation (Kalitnik et al., 2024). These findings
might be explained by a cross-talk between bacterial
functional amyloids and human pathogenic amyloids
(Werner et al., 2020).

1.2 | Studies of amyloid interactions

Studying heterogeneous amyloid interactions is crucial
for understanding the mechanisms underlying their self-
assembly, particularly in the context of pathogenic amy-
loids, where aggregation can drive disease progression
or inhibition. Gaining deeper insights into what acceler-
ates or inhibits amyloid aggregation is of significant inter-
est, as it could lead to new therapeutic interventions for
amyloid-related diseases. Depending on the experimen-
tal approach, these interactions can be investigated
using computational simulations, in vitro biochemical
assays, or in vivo models, each offering distinct insights
into the consequences of heterogeneous interactions.

Computational approaches, such as molecular thread-
ing, offer cost-effective strategies to explore aggregation
mechanisms by, for example, the identification of interac-
tion interfaces. These insights often guide the design of

in vitro studies, which provide exact measurements of the
kinetics of aggregation or the morphology of resulting
fibrils. While this information is crucial for the mechanistic
understanding of amyloid cross-interactions, in vivo experi-
ments are vital for evaluating their physiological relevance
and impact within the complexity of living systems.

However, because no single experimental method
can fully capture the complexity of amyloid interactions,
a combination of approaches is often necessary. It is
also important to note that different techniques provide
varying levels of directness in the evidence they offer,
underscoring the need for a multifaceted analytical strat-
egy. Some methods yield immediate, direct insights into
amyloid structure and binding, while others require addi-
tional processing and interpretation, often involving addi-
tional calculations, probes, or markers.

2 | COMPUTIONAL STUDIES OF
AMYLOID INTERACTIONS

Although computational methods have always played a
significant role in the field of amyloid research (Santos
et al., 2020), they are limited in analyzing amyloid inter-
actions. Most studies in this area rely on molecular
dynamics simulations with atomistic or coarse-grained
force fields. Due to the high computational cost of such
simulations, research tends to focus on interactions
between shorter amyloid sequences, like AIAPP and
Aβ (Baram et al., 2016) or prion protein peptides origi-
nating from different species (Wang & Hall, 2018).

While structure-based methods are central to model-
ing cross-interactions, sequence analysis complements
them by revealing evolutionary and functional factors driv-
ing amyloid cross-talk. A motif-oriented study identified
sequence constraints shaped by interactions between
fungal prion amyloid motifs (Daskalov et al., 2015). Simi-
larly, a phylogenetic approach explores the diversity and
conserved motifs of CsgA homologs enabling cross-
species interactions (Dueholm et al., 2012).

The release of AmyloGraph, the first database on
amyloid interactions (Burdukiewicz et al., 2022), has
enabled the development of specialized tools to predict
how different amyloids might interact. PACT uses
Modeler-based molecular threading to assess cross-
interaction potential (Wojciechowski et al., 2023). Amy-
loComp not only evaluates the general cross-seeding
potential, but also estimates the structural compatibility
of sequences for hetero-fibril formation (Bondarev
et al., 2024).

3 | FIBRILLATION-CENTRIC STUDIES
OF AMYLOID INTERACTIONS

Since fibril-formation is a defining characteristic of amy-
loid proteins, most experimental methods investigate
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the kinetics of self-assembly or the structural properties
of resulting fibrils. This methodology expands naturally
to studies of amyloid cross-interactions which similarly
rely on tracking the impact of interaction on the self-
assembly kinetics or morphology of resulting fibrils.

3.1 | Fluorescence-based techniques

Various fluorescence techniques have been widely used
for detecting amyloid fibrils and studying the kinetics of
protein aggregation (Xu et al., 2016). Their modus oper-
andi involves the addition of an agent that alters its emis-
sion upon binding to amyloid fibrils. Thioflavin T (ThT), in
particular, is a ‘gold standard’ fluorescence dye that has
been used for monitoring amyloid fibril assembly for over
fifty years (Gade Malmos et al., 2017). ThT binds to β-
sheet-rich structures creating a characteristic blue shift
in the emission spectrum (from approximately 510 nm in
the free state to 480 nm) (Groenning, 2010; Sulatskaya
et al., 2011).

In protein-only solutions, the interaction of ThT with
mature amyloid fibrils is usually specific as fluorescence
originates only from the dye bound to amyloid fibrils.
Although ThT fluorescence analysis can be used to
identify isolated amyloid fibrils or amyloids in tissue sam-
ples, this method is more commonly used for monitoring
in vitro amyloid assembly over time (Groenning, 2010).

The kinetics of ThT fluorescence is typically described
by a sigmoidal curve that reflects the conformational and
morphological transformation of proteins during the fibrilla-
tion process, encompassing three different fibrillation
stages (Figure 1a) (Lee et al., 2007). Thus, an increase in
ThT fluorescence provides indirect evidence of protein
aggregation. Furthermore, computational analysis of the
time-dependent fluorescence change could elucidate the
dominant nucleation mechanism. Such analysis could be
conducted with Amylofit, which fits to the ThT kinetics
mathematical models discriminating between six different
mechanisms of aggregation covering all variants of fibrilla-
tion stages (Meisl et al., 2016).

Comparative analysis of ThT kinetics was vital in
determining the sequence specificity of cross-seeding.
The significant increase in ThT fluorescence when tur-
key lysozyme was seeded by hen lysozyme, compared
to the absence of such a response when seeded by
human α-lactalbumin, was sufficient evidence of the
sequence-based constraints of cross-seeding (Krebs
et al., 2004). This quality can also be exploited in the
studies of cross-α-fibrils (Zheng et al., 2018). However,
in this case, ThT seems to be less specific than for
cross-β-fibrils when confronted with microscopy imag-
ing (Tayeb-Fligelman et al., 2020).

Despite its advantages, ThT cannot reliably differen-
tiate between mature amyloid and pre-fibrillar speci-
mens. While ThT usually does not bind to amyloid
precursors, it can detect certain dimers, trimers, or β-

sheet-enriched oligomers (Carrotta et al., 2001), such as
those of insulin (Grudzielanek et al., 2006), ATTR
(Lindgren et al., 2005), and Aβ (Maezawa et al., 2008).
This unspecific binding extends to globular proteins like
acetylcholinesterase (De Ferrari et al., 2001) or albumin
(Sen et al., 2009) but also to polysaccharides (Keliényi,
1967) or nucleic acids (Mohanty et al., 2013). Therefore,
complementary biochemical and biophysical methods are
essential to confirm ThT assay results and prevent misin-
terpretation due to staining of non-amyloid samples. Addi-
tionally, the emission intensity of ThT is not always
linearly related to its binding, which is why equimolar con-
centrations are often recommended to avoid self-
quenching and variability, as ThT binding reaches satura-
tion at these concentrations (Lindberg et al., 2017). This
underscores the need for careful calibration of ThT’s
emission response in quantitative in vitro studies.

Another common dye in amyloid aggregation stud-
ies is the sodium salt of benzidinediazo-bis-1-naphthy-
lamino-4-sulfonic acid called Congo Red (CR). Initially
used in histopathology to detect amyloid deposits
(Yakupova et al., 2019), it has been employed to study
in vitro amyloid fibrils. However, CR may affect the pro-
tein aggregation process by inhibiting oligomerization
or disrupting existing aggregates; thus, while useful for
identifying amyloids, CR staining alone is insufficient
for studying protein cross-interactions.

In contrast to ThT and other dyes specific to amyloid
fibrils in general, antibodies paired with fluorescence
probes can selectively recognize distinct amyloid proteins.
Traditional sequence-specific epitopes target defined lin-
ear regions, whereas structural epitopes additionally rec-
ognize conformational features associated with particular
stages of fibrillation (Perchiacca et al., 2012). Due to their
regional specificity, antibodies can elucidate the mecha-
nisms of cross-interactions as in the case of AαSyn and
lysozyme (Vaneyck et al., 2021). Additionally, conforma-
tionally sensitive antibodies map transitions through
assembly states, expanding the understanding of the
fibrillation kinetics as shown in the case of interactions
between Aβ and TDP-43 (Shih et al., 2020).

3.2 | Imaging techniques

Morphological features of amyloid fibrils and early
aggregates are often assessed using high-resolution
imaging techniques. The most common methods are
various forms of microscopy, including atomic force
microscopy (AFM) (Adamcik et al., 2021) and electron
microscopy (EM) (Gras et al., 2011).

3.2.1 | Atomic force microscopy

AFM imaging uses a scanning probe with a cantilever
tipped to scan samples on a piezoelectric scanner. In
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tapping mode, the cantilever performs oscillatory vibra-
tions near its resonance frequency to ‘tap’ the sample,
preventing damage (Butt et al., 2005). Oscillation ampli-
tude variations are recorded as a three-dimensional
topographic map of the sample, providing detailed mor-
phological data on amyloid aggregates, including size,
shape, height, width, and contour length, which are useful
for tracking fibrillation kinetics and growth (Kellermayer
et al., 2008). AFM also measures mechanical properties,
such as stiffness, flexibility, and Young’s modulus by
applying force with an indenting probe (Ruggeri et al.,
2019). Variations in these properties can indicate amyloid
polymorphisms and differentiate fibrils from various pro-
tein samples (Kakinen et al., 2019).

More advanced AFM techniques provide interrela-
tion between the structure and kinetic parameters;
high-speed AFM is conducted in liquid environments to
visualize single protein structures and dynamics in real
time (Matveyenka et al., 2022; Watanabe-Nakayama,
Nawa, et al., 2020). It is particularly useful for studying
structural dynamics, fibrillation processes, cross-
aggregation, protein aggregation inhibitors, and effects
of surface properties on fibrillation (Adamcik &
Mezzenga, 2012; Kellermayer et al., 2008; Pires
et al., 2011; Watanabe-Nakayama, Sahoo, et al., 2020)
of homologous (Kakinen et al., 2019; Liu et al., 2012)
and heterologous fibrillation processes. Moreover, in
cross-aggregation cases (Watanabe-Nakayama, Nawa,
et al., 2020), high-speed AFM is used to search for inhib-
itors of protein aggregation (Kakinen et al., 2019) or
explore effects of surface hydrophobicity (Keller
et al., 2011) or surface changes (Moores et al., 2011;
Wang et al., 2011) on the fibrillation mechanisms and
kinetics.

However, the accuracy of AFM is its major limitation.
The width of fibril images can vary based on tip geometry,
necessitating calibration of tip dimensions for accurate
measurements (Adamcik & Mezzenga, 2012). Samples
may also interact with mica, altering their morphology
(Bednarikova et al., 2020; McAllister et al., 2005; Zhu
et al., 2002). Significant changes in fibril cross-sectional
dimensions can indicate heterogeneous fibrils, but distin-
guishing these from homogeneous fibrils requires a
detailed comparative analysis under controlled conditions
(Heid et al., 2023; Seeliger et al., 2012). Therefore, AFM
should be complemented by other methods, such as
vibrational spectroscopy (Matveyenka et al., 2022;
Rizevsky & Kurouski, 2020; Zhou et al., 2021) or electron
microscopy.

AFM-IR is an advanced technique combining AFM
with infrared (IR) spectroscopy, achieving a spatial res-
olution of 10 nm for nanoscale chemical and composi-
tional imaging (Dos Santos et al., 2023; Xiao &
Schultz, 2018). It probes protein aggregates by corre-
lating morphological and IR absorption spectra of single
fibrils (Otzen et al., 2021; Rizevsky & Kurouski, 2020;
Waeytens et al., 2021). The technique allows for

precise localization of IR signals and detailed observa-
tion of protein structures (Dos Santos et al., 2023; Otzen
et al., 2021), providing an effective tool for studying pro-
tein oligomers, protofibrils, and fibrils (Banerjee &
Ghosh, 2021; Waeytens et al., 2020, 2021; Xiao &
Schultz, 2018), even in the presence of lipids (Rizevsky
et al., 2022) and bacterial extracts (Otzen et al., 2021).
Recent studies using AFM-IR have revealed distinct
secondary structure distributions in hetero-fibrils formed
by AαSyn and TDP-43 prion-like domains, highlighting
heterotypic interactions and altered fibril morphology
(Dhakal et al., 2021). Overall, the AFM-IR combines the
advantages of AFM, including morphology mapping, IR
absorption, and stiffness measurement, with unparal-
leled nanoscale chemical characterization. However, it
requires complex instrumentation and can be prone to
artifacts from sample preparation (Mathurin et al., 2022;
Zhu et al., 2021).

3.2.2 | Electron microscopy

Another high-resolution technique commonly used for
analyzing amyloid fibril morphology in vitro is EM (Gras
et al., 2011). EM works by emitting electrons from a
cathode, which are then accelerated, collimated, and
focused before interacting with the sample. This inter-
action causes the electrons to lose kinetic energy,
resulting in various effects such as absorption, reflec-
tion, or emission from the sample (Burghardt &
Droleskey, 2006; Ryczkowski, 2012).

There are three types of EM, namely transmission
electron microscopy (TEM), scanning electron micros-
copy (SEM), and cryo-electron microscopy (Cryo-EM).
SEM is a straightforward, non-invasive technique com-
monly used to image surfaces and identify fibrils in tis-
sue samples (Horvath et al., 2018; Thieu et al., 2022;
Watanabe-Nakayama, Sahoo, et al., 2020), as well as
track in vitro aggregation over time (Bai et al., 2008;
Takai et al., 2014). For instance, SEM has effectively
monitored fibril formation on silicon substrates without
metal coating or staining due to attenuation effects
(Thieu et al., 2022). However, compared to other
methods, such as AFM or TEM, SEM provides lower
resolution, contrast, and brightness, severely limiting its
effectiveness for studying heteroaggregation or cross-
interaction (Gras et al., 2011; Takai et al., 2014; Thieu
et al., 2022), as well as details of the homoaggregation.

TEM creates images by passing electrons through
a thin sample, allowing imaging of structures down to a
few nanometers, including oligomers, protofibrils, and
mature fibrils (Adil & Ramakrishnan, 2023; Burghardt &
Droleskey, 2006). This technique provides both qualita-
tive and quantitative data on fibril morphology, such as
curvature, surface smoothness, and the periodicity of
twists (Bruggink et al., 2012; Goldsbury et al., 1997;
Gras et al., 2011; Periole et al., 2018). Like AFM, TEM
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is effective for in vitro fibril formation monitoring over
time (Shin et al., 2019).

A commonly used variation of TEM includes nega-
tive staining with a heavy metal stain. Uranyl acetate
negative staining is highly effective for studying cross-
seeding behaviors of amyloidogenic proteins over time
(Liang et al., 2022), and polymorphological features of
fibrils from heterogeneous self-assembly both in vitro
(Ge et al., 2023; Ivanova et al., 2021; Liang et al., 2022;
Lucas et al., 2022) and in vivo (Jiang et al., 2022).
Enhanced contrast allows detailed visualization of fibril
morphology, including general shape, size, length,
diameter, and finer details such as protofibril width,
crossover distance, and periodic twists (Liang
et al., 2022; Lucas et al., 2022).

Studies using negative staining have revealed how
different proteins influence fibril formation and morphol-
ogy. For example, insulin rapidly fibrillates in the presence
of various protein seeds, leading to aggregates with
diverse morphologies (Akbarian et al., 2020). Hen egg-
white lysozyme (HEWL) seeds significantly enhance BSA
aggregation and alter its morphology (Nirwal et al., 2021).
Additionally, TEM with negative staining has been used
to investigate the effects of mutant Aβ isoforms on fibril
assembly (Liang et al., 2022; Lucas et al., 2022), ATau
protein interaction (Nizynski et al., 2018), and the impact
of peptides such as AcPHF6 on Aβ fibrillation (Mohamed
et al., 2018). Recent studies have also shown how severe
acute respiratory syndrome coronavirus 2 spike amyloid
seeds induce fibrillation in human prion protein and Aβ
peptides (Larsson et al., 2023), and how casein and seri-
cin interact with Aβ peptides to produce varied fibril mor-
phologies (Ono et al., 2014).

Scanning transmission electron microscopy (STEM)
combines transmission EM with scanning mode, offer-
ing a useful method for monitoring amyloid formation
and assessing morphology, including heterogeneous
aggregation. STEM uses a focused electron beam to
scan the sample, with imaging resolution determined
by the beam diameter (Sousa & Leapman, 2012). One
of the most effective and frequent detectors in STEM is
the annular dark-field detector system (ADF-STEM),
which is particularly effective for measuring molecular
masses of isolated macromolecules, for example deter-
mining mass per length of an amyloid fibril (Chen
et al., 2009). Thanks to that, ADF-STEM was utilized to
indicate different morphology of fibrils derived from
seeding Aβ with seeds derived from two patients with
different AD clinical history and neuropathology (Lu
et al., 2013).

Immunolabeling approaches enable EM to deter-
mine the protein composition of assembled fibrils as it
involves an additional step of labeling the material with
specific antibodies, often conjugated with electron-
dense particles such as gold nanoparticles. The high
specificity of this method allows for the precise identifi-
cation of hetero-fibrils such as ATau-AIAPP formed

in vitro (Zhang et al., 2022). Moreover, the specificity of
immunolabeling can be used to discriminate between
co-aggregation and cross-seeding. For example, immu-
nogold TEM showed that although Aβ can induce self-
assembly of AαSyn, it is never incorporated into the
core of fibrils (Vadukul et al., 2023). Similarly,
the immunogold TEM indicated that seeds of lysozyme
and insulin are incorporated into the mature fibrils of
AαSyn (Yagi et al., 2005).

One of the main disadvantages of TEM, particularly
when supplemented by negative staining, is the poten-
tial impact of heavy metal ions on fibril morphology or
the fibrillation process itself (Berntsson et al., 2023;
Thieu et al., 2022). Additionally, gold nanoparticles
used in immuno-TEM can significantly accelerate or
impede the fibrillation process or alter fibril morphology
(Cabaleiro-Lago et al., 2008). Another drawback is the
challenging sample preparation, as high-quality sam-
ples should have a thickness comparable to the mean
free path of the electrons passing through them, not
exceeding a few tens of nanometers (Eichberger
et al., 2013). Despite these limitations, TEM remains one
of the most effective tools for studying both the morpho-
logical polymorphism in amyloid cross-interaction and co-
aggregation scenarios (Adil & Ramakrishnan, 2023).

Cryo-EM enables the in situ examination of
hydrated samples that have been rapidly frozen in liquid
ethane or propane, preserving their natural three-
dimensional structure and protecting them from destruc-
tion (Grudzielanek et al., 2006; Zielinski et al., 2021).
Cryo-EM does not require drying, staining, or surface
deposition. It allows for the determination of near-atomic
(less than 5 Å) protein structure in vitro and ex vivo
through density map reconstruction using advanced
computational methods (McGlinchey et al., 2021). To
extract 3D morphological information, multiple images
are needed (Cendrowska et al., 2020). Consequently,
Cryo-EM facilitates the precise determination of parame-
ters such as length, thickness, number of protofibrils,
and twists in fibrils (Li et al., 2018). It also allows for the
observation of dimers (Schmidt et al., 2016) and β-
sheet-derived conformations that can form oligomers,
protofibrils, and fibrils (Zielinski et al., 2021). Additionally,
Cryo-EM enables the study of monomeric self-assembly,
secondary nucleation, and surface-templated fibril
growth during cross-interaction, which are challenging to
identify using other microscopic methods (Gallardo
et al., 2020). Importantly, Cryo-EM has shown that
annexin A11 and TDP-43 form heteromeric amyloid
fibrils during frontotemporal lobar degeneration with
TDP-43 inclusions (Arseni et al., 2024).

The main challenge of Cryo-EM is the structural inho-
mogeneity of aggregates, which complicates the identifi-
cation of specific polymorphs and makes the analysis of
amorphous aggregates practically impossible (Yakupova
et al., 2019; Zielinski et al., 2021). However, Cryo-EM
offers advantages over other methods: unlike AFM,
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samples do not need to be adsorbed onto a surface, and
unlike TEM, the sample is not exposed to salt or low pH
during the staining process (Gras et al., 2011).

3.2.3 | Super-resolution microscopy

Exceeding the diffraction limit, super-resolution micros-
copy provides a completely unique overview of molecu-
lar events. It is vital in the research on amyloids, where
it enables a nanoscale visualization of mature fibrils
(Bhuskute et al., 2024). Super-resolution microscopy
combined with DNA-PAINT labeling allows for absolute
quantification of events related to the seeding of AαSyn
like the absolute number of aggregates inside and out-
side of cells, seeding probability, and the rate of secre-
tion of fibrils (Sang et al., 2021).

3.3 | Spectroscopic methods

3.3.1 | Vibrational spectroscopic methods

Vibrational spectroscopic methods, including IR and
Raman spectroscopy, analyze molecular interactions
with IR radiation and light scattering. IR techniques,
especially those combined with AFM or isotope label-
ing, are extensively used to study protein secondary
structures, including amyloids, by examining amide
bands (Wilkosz et al., 2020).

The Amide I band (1705–1595 cm�1) is sensitive to
protein secondary structures, with antiparallel β-sheets
showing strong absorption near 1630 cm�1 and weaker
near 1690 cm�1. A decrease in the low-wavenumber band
of β-sheets indicates structural changes or increased
hydrogen bonding (Barth, 2007; Hauser, 2013). During
aggregation, fibril formation is marked by a redshift of the
Amide I band, increased intensity, and a significant
decrease in full width at half maximum.

IR is advantageous for analyzing proteins in their
native states across varying pH and ionic conditions
with minimal sample preparation (Luers et al., 2013).
However, the technique requires relatively high peptide
and protein concentrations (Barth, 2007). A major draw-
back is the interference from water’s bending mode
around 1635 cm�1, which overlaps with the Amide I
band’s α-helix and random coil components (Fellows
et al., 2020). While IR spectroscopy effectively monitors
structural transitions from native to misfolded and fibrillar
forms, revealing detailed secondary structures through-
out aggregation, it does not directly confirm cross-
interactions and is primarily used to characterize fibrils
(Dhakal et al., 2021; Surmacz-Chwedoruk et al., 2012;
Ziaunys et al., 2023), including the lack of fibrillation
resulting from cross-interactions (Kalitnik et al., 2024).

Vibrational circular dichroism (VCD) is a powerful
spectroscopic technique that extends conventional

circular dichroism (CD) analysis into the infrared region,
providing detailed insights into the chiral centers and
molecular interactions of amyloid fibrils (Measey &
Schweitzer-Stenner, 2011). Unlike CD, which primarily
detects changes in secondary structure (Kardos
et al., 2025; Vadukul et al., 2019), VCD offers a more
refined view of fibril morphology, amyloid polymorphisms,
and intermolecular interactions, making it particularly valu-
able for studying amyloid–amyloid interactions (Krupov�a
et al., 2021). Given that amyloid fibrils exhibit distinct chi-
ral properties due to their highly ordered β-sheet arrange-
ments, VCD can detect subtle alterations in chirality that
arise during co-assembly or cross-interactions of different
amyloid species. These changes in vibrational optical
activity can provide valuable information on molecular
rearrangements occurring in heterotypic fibril formation
and structural remodeling (Kurouski et al., 2014). When
used alongside other biophysical methods, VCD contrib-
utes to a more comprehensive understanding of amyloid
aggregation mechanisms and cross-interactions.

3.3.2 | Nuclear magnetic resonance

Nuclear magnetic resonance (NMR) spectroscopy pro-
vides detailed information about protein structure and
dynamics at the molecular level. The sample is placed
in a strong magnetic field and subjected to radio-
frequency pulses, causing atomic nuclei spins to align
parallel or antiparallel to the magnetic field lines.
Absorption of electromagnetic radiation alters the spin
states, and the frequencies of the absorbed radiation
are recorded to produce a spectrum, revealing insights
into the supramolecular structure of proteins in the
sample (Gerothanassis et al., 2002).

NMR spectroscopy is effective for studying amyloid
aggregation at all of its stages, from conformational transi-
tions of monomers through oligomer formation to the
structural characterization of mature fibrils (Karamanos
et al., 2015). At the monomer level, NMR can be used to
investigate the structure of individual monomers as well
as conformational changes induced by cross-interactions.
For instance, the two-dimensional 1H-15N Heteronuclear
Single Quantum Correlation NMR has been shown to
detect changes in the chemical shifts of residues 15–17
and 34–36 of Aβ upon insulin addition, suggesting that
these regions interact with insulin monomers and inhibit
its aggregation (Luo et al., 2016b). A similar study exam-
ined interactions between ATTR and its mutants with Aβ,
identifying crucial amino acid residues for these interac-
tions (Li et al., 2013). Moreover, sequential determinants
crucial for the acceleration of AαSyn aggregation stimu-
lated by TDP-43 Prion-like domains were also detected
(Dhakal et al., 2021).

Since amyloid fibrils are typically noncrystalline,
insoluble aggregates, solid-state NMR (ssNMR) is fre-
quently used to study their architecture and structural
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dynamics (Tycko, 2011). The principles of ssNMR are
similar to those of liquid-state NMR spectroscopy and
are based on the effects of magnetic fields and radiofre-
quency pulses on nuclear spin interactions (Reif
et al., 2021). When combined with magic angle spinning
(MAS), which eliminates anisotropic interactions and
improves technique sensitivity, larger linewidths in
ssNMR spectra enable the collection of data on the
molecular structure, conformation, and dynamics of the
studied material (Leskes, 2018; Meier et al., 2017).
ssNMR of amyloid fibrils yields high-resolution quantita-
tive data on their supramolecular structure and peptide
conformations (Loquet et al., 2018; Tycko, 2011).

ssNMR has been used to determine the structure of
fibrils formed by RIPK1 and RIPK3 proteins, as well as
hetero-aggregates formed by both proteins together.
The observed consistency of chemical shifts indicated
that the core region is very stable, with the most vari-
ability occurring in the flanking regions. This stability
allowed for the reconstruction of the molecular structure
using computational methods (Mompe�an et al., 2018).
A similar approach was used to confirm the formation
of hetero-fibrils by Aβ40 and Aβ42 variants and to eluci-
date the molecular structure of these aggregates
(Cerofolini et al., 2020). An even more striking example
employed ssNMR to showcase the templating of Aβ40
and Aβ42 fibrils by seeds obtained from patients with
different clinical subtypes of AD (Qiang et al., 2017).

The main limitations of NMR spectroscopy are the
high cost of equipment and its maintenance (Tampieri
et al., 2021). Achieving a good signal-to-noise ratio often
necessitates high concentrations of isotopically labeled
proteins, which can increase aggregation (Karamanos
et al., 2015; Martial et al., 2018). Additionally, since
NMR-active nuclei other than hydrogen are scarce in
biological samples, isotope labeling is generally
required. Another challenge in NMR spectroscopy is sig-
nal broadening that occurs with larger test objects. Sig-
nals are influenced by various interactions around the
nucleus, such as dipolar interactions, which depend on
the molecule’s orientation relative to the magnetic field.
In solution, rapid molecular motion averages out these
effects, creating an isotropic system (Marion, 2013).
However, as the size of the molecules increases and
their motion slows, anisotropic effects become more pro-
nounced, resulting in weak and broad signals. This limits
the size of macromolecules that can be effectively stud-
ied in solution, although this issue can be partially miti-
gated using ssNMR (Karamanos et al., 2015).

3.3.3 | Mass spectrometry

Mass spectrometry (MS) has become a powerful ana-
lytical technique for detecting, structurally characteriz-
ing, and studying the folding and aggregation of
proteins and peptides. It enables time-resolved analysis
of dynamic processes with structural resolution (Chen &

Urban, 2013; Pukala, 2023; Ramesh, 2019). One of its
main advantages is the ability to analyze molecules in
heterogeneous mixtures without ensemble averaging,
maintaining equilibrium conditions throughout the pro-
cess. For instance, if aggregated proteins or oligomers
are enzymatically digested before MS analysis, the
resulting peptides can be separated based on their m/z
ratios, allowing for protein identification from biological
samples (Ramesh, 2019; Wagner & Gross, 2024).

Large biomolecules, such as proteins, require soft ion-
ization techniques to minimize fragmentation (Banerjee &
Mazumdar, 2012; Bronsoms & Trejo, 2015). Matrix-
assisted laser desorption/ionization (MALDI), usually
coupled with a time-of-flight mass spectrometer (TOF),
applies a laser energy-absorbing matrix to generate gas-
eous ions of peptides and proteins, predominantly in the
single charge state. This technique provides qualitative
data on the oligomeric composition based on m/z values
(Bronsoms & Trejo, 2015). MALDI-TOF MS has been
used to detect various sizes of oligomers and isomerized
variants of the Aβ peptide (Pekov et al., 2018; Wang
et al., 2018), as well as alterations in its isoform pattern
under secretase inhibitors (Portelius et al., 2011).

Native electrospray ionization (ESI) ESI-MS, with its
mild ionization process using volatile ammonium-based
buffers, preserves interactions between macromole-
cules by maintaining non-covalent bindings. This tech-
nique facilitates the direct detection and distinction of
various soluble oligomers and intact fibril assemblies
(Hu & Zheng, 2020; Tamara et al., 2022). Ion-mobility
mass spectrometry (IM-MS) provides information on
stoichiometry, composition, protein interactions, and
topology of protein complexes, capturing the repertoire
of conformational states adopted by protein assemblies
(Ben-Nissan & Sharon, 2018). It also allows for continu-
ous monitoring of oligomer formation and evaluation of
the structure and self-assembly mechanisms of higher-
order amyloid aggregates (Woods et al., 2013).

ESI-IMS-MS can be employed to investigate the
interactions between various amyloids and characterize
the consequent heterogeneous aggregates. For
instance, this technique allowed the identification of
hetero-fibrils formed after co-incubation of human and
rat AIAPP in vitro (Young et al., 2014). Furthermore,
ESI-IMS-MS was also applied to study the interaction
between AIAPP and Aβ40 in vitro at an equivalent
molar ratio. MS spectra analysis revealed that AIAPP
and Aβ40 monomers combined randomly to form het-
erogeneous assemblies. Notably, AIAPP accelerated
Aβ40, with the kinetics of heterogeneous polymers
resembling those of the more aggregation-prone AIAPP
and significantly faster than Aβ40 alone (Young
et al., 2015). Therefore, MS has proven to be a versa-
tile technique, offering complementary insights into the
process of amyloid fibril formation through the integra-
tion of various experimental approaches (Pukala,
2023). However, limitations include high costs, the
complexity of the equipment, and challenges related to
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sample preparation (Hu & Zheng, 2020). For native MS
for detecting intact protein assemblies, multidimen-
sional separation is essential since oligomeric com-
plexes can overlap at the same m/z, or a single species
may exist in different conformational states (Tamara
et al., 2022).

3.4 | Immunoprecipitation-based
approaches

Co-immunoprecipitation (Co-IP) is a versatile technique
used to detect physical interactions between proteins
by utilizing antibodies targeting a protein participating in
a protein complex such as mature fibril. A subsequent
analysis of the isolated complex (e.g., MS) could be
added to further characterize the exact fibril composi-
tion. This method is particularly useful when analyzing
amyloid interactions within in vivo systems where direct
observation is not possible.

Tissue samples are among the most commonly used
materials for Co-IP, as they preserve native protein inter-
actions occurring in physiological conditions. For exam-
ple, Co-IP was used to showcase that AIAPP
co-aggregates with ATau in human AD hippocamp
(Zhang et al., 2022). Moreover, Co-IP indicated that in
samples of brain tissue of AD patients, yeast prion Ure2p
co-localized with human ATau (Meng et al., 2023).

4 | PHENOTYPE-BASED STUDIES OF
AMYLOID INTERACTIONS

Understanding the molecular mechanisms of amyloid
cross-interactions in vitro does not always reflect their
functional consequences in living organisms. Therefore,

phenotype-based, in vivo studies reveal within a cellular
or organismal context the impact of these interactions
that would not be visible in more reductionist systems.
These approaches allow researchers to link molecular-
level knowledge of these interactions with observable
phenotypic outcomes, such as toxicity or disease
progression.

Model organisms provide a useful resource for
studying the phenotypes of progressing amyloid dis-
eases (Buxbaum, 2009). Especially, microinjections of
amyloids into model organisms could lead to the pro-
gression of associated proteinopathies. FapC seeds
injected into zebrafish promoted Aβ aggregation, evi-
denced by CR-stained brain tissues and impaired
motor functions (Javed et al., 2020). Injections of ATau-
AIAPP fibrils into the hippocampus of transgenic mice
showcased that previously shown in vitro seeding activ-
ity translates to the initiation of tauopathy (Zhang
et al., 2022). Injections of ATau seeding with yeast pro-
tein Ure2p into the brains of transgenic mice led to
much more extensive cognitive impairment than pure
Tau fibrils (Meng et al., 2023).

Amyloid proteins fused with tags facilitate the visuali-
zation of their aggregation behavior within cells. Tagging
prions with fluorescent markers enabled investigation of
their colocalization and templating of fibril morphology in
yeast (Du & Li, 2014).

The expression of selectively truncated protein
fragments allows for characterizing their intrinsic amyloid-
forming potential. In studying amyloid cross-interactions,
these fragments can function as seeds for wild-type amy-
loid proteins or proteins that do not typically exhibit
amyloid-like behavior. In fungi Chaetomium globosum,
truncated HeLo-like domain protein (HELLP) constructs
with prion-like properties were used to seed the full-length
protein, leading to cell death (Daskalov et al., 2016). This

F I GURE 2 Diverse
approaches and their relevance
to amyloid aggregation analysis.
Relevance of diverse
experimental methods to four
crucial aspects of amyloid
aggregation: Fibrillation kinetics,
secondary structure, fibril
morphology, and fibril
homogeneity. Each method is
positioned according to the
specific aspect(s) it can
effectively examine, highlighting
the complementary nature of
these techniques. This visual
representation underscores the
importance of integrating multiple
approaches to comprehensively
understand amyloid aggregation
and cross-interactions.
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behavior mimics the function of the HET-S protein, a prion
responsible for inducing cell death in other species of
fungi, Podospora anserina (Balguerie et al., 2003).

Besides elucidating the function of novel amyloid
proteins, constructs could be instrumental in the search
for therapies against amyloid-related diseases. Pep-
tides designed to mimic the Aβ amyloid core were
found to alleviate the effects of long-term potentiation
impairment on the ex vivo brain samples by inhibiting
self-assembly of IAPP and Aβ42 in addition to suppres-
sing their mutual cross-seeding (Taş et al., 2022).

Genetic engineering is essential for elucidating the
specific sequence elements required for the amyloido-
genic properties of a protein in vivo. In the case of PGRP-
LE, a protein of Drosophila melanogaster involved in its
humoral response, it enabled the identification of subse-
quences necessary for fibril formation, as well as those
that inhibit this process. Only constructs of PGRP-LE with
amyloid propensity were able to interact with another
amyloid protein, Imd, leading to cell death (Kleino
et al., 2017).

5 | CONCLUSIONS

Among the plethora of existing methods for studying
amyloid self-assembly, only a fraction is suitable to be
adapted to provide insight into the interactions between
different amyloid proteins during the aggregation. The
inference on the cross-interactions is based on either
indirect information resulting from altered kinetics of
aggregation, secondary structure, or the fibril morphol-
ogy, or direct information on the fibril homogeneity (the
presence of heterogeneous fibrils) (Figure 2).

ThT and other fluorescence-based methods can
confirm cross-interactions between two amyloidogenic
proteins by detecting altered aggregation kinetics.
These changes are reflected not only in different aggre-
gation rates but also in the altered length of the lag
phase or different maximum fluorescence. Due to its
relatively high accessibility, this method often becomes
the first choice to verify the putative impact of cross-
interaction.

TEM and AFM are examples of high-resolution imaging
techniques for analyzing fibril morphology and polymor-
phism. These methods are appropriate for investigating
amyloid formation throughout time and distinguishing and
characterizing various assembly states such as oligomers,
protofibrils, and full amyloid aggregates. TEM can also be
extended to almost provide the direct confirmation of
hetero-aggregates in conjunction with negative staining.
However, immuno-TEM is the critical high-resolution imag-
ing approach for displaying direct evidence of the presence
of heterogeneous fibrils and characterizing their architec-
ture. On the other hand, super-resolution microscopy
allows scrutiny of the fibrils on an unprecedented scale,
including the qualitative analysis of aggregates.

Vibrational spectroscopy, the most universal
approach to secondary structure analysis, provides
unique insights into the β-sheet types and fractional
distribution associated with specific fibril morphologies,
which are likely affected by cross-interactions. How-
ever, similarly to the fluorescence-based counterparts,
these methods should be complemented with high-
resolution imaging techniques, like AFM-IR, as they
cannot provide direct evidence of interactions.

A common challenge in amyloid research is detect-
ing and distinguishing multiple amyloidogenic proteins
within the same fibril. Co-IP selectively pulls down amy-
loid fibrils, enabling subsequent interaction analysis
with more discriminative methods, including MS and
NMR. These approaches can also provide direct
confirmation of the cross-interaction of two separate
amyloids, as well as substantial information on the
hetero-aggregate supramolecular structure, including
the configuration of the amino acids that constitute ini-
tial proteins. Furthermore, these methods can be uti-
lized to monitor the fibrillation process over time. Still,
their demanding infrastructural requirements and
harder interpretability make them less common in stud-
ies on amyloid cross-interactions.

Each of the described methods provides a partial
insight into amyloid cross-interactions. On their own,
they remain informative but still very limited in grasping
the intrinsic complexity of this phenomenon. Thus, the
only recommended approach is to combine indirect and
direct evidence to create a more complete outlook of
this process. This set of methods depends on the final
result of the interaction. The minimum set of experiments
necessary to confirm the lack of self-assembly or mea-
sure the alteration of fibril morphology consists of
kinetics- and secondary structure-monitoring methods,
as well as high-resolution imaging techniques. However,
to confirm the presence of hetero-aggregates, it is nec-
essary to additionally employ immuno-TEM, MS, or
ssNMR. Moreover, phenotype-based studies are obliga-
tory to fully investigate the impact of amyloid cross-
interaction on the living organism.
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