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Abbreviations: 

Abbreviation: Definition: 

4CH Four-Chamber 

ACSNet Anatomical Convolutional Segmentation Network 

AI Artificial Intelligence 

ANN Artificial Neural Network 

BA Balanced Accuracy 

CMR Cardiovascular Magnetic Resonance 

CNN Convolutional Neural Network 

CoV Coefficient of Variation 

DL Deep Learning 

ECV Extracellular Volume 

EDV End-Diastolic Volume 

EDVi End-Diastolic Volume Index 

EF Ejection Fraction 

FCN Fully Convolutional Network 

FT Feature Tracking 

GAN Generative Adversarial Network 

GLS Global Longitudinal Strain 

GRS Global Radial Strain 

GCS Global Circumferential Strain 

HCM Hypertrophic Cardiomyopathy 

HfpEF Heart Failure with Preserved Ejection Fraction 

ICC Intraclass Correlation Coefficient 

ICD Implantable Cardioverter-Defibrillator 

LGE Late Gadolinium Enhancement 

LV Left Ventricle / Left Ventricular 

MI Myocardial Infarction 

ML Machine Learning 

MWT Maximum Wall Thickness 

R Pearson Correlation Coefficient 

RV Right Ventricle / Right Ventricular 
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SCD Sudden Cardiac Death 

TRL Technology Readiness Level 

VNE Virtual Native Enhancement 

XAI Explainable Artificial Intelligence 

 

 

Summary/Abstract: 

 

Objectives: Currently the analysis of cardiovascular magnetic resonance (CMR) images is entirely 

dependent on the expertise of individual trained professionals and thus is time consuming and 

introduces observer variation. Artificial intelligence (AI) is becoming more and more relevant when 

it comes to addressing these limitations, allowing for automation of repetitive processes such as 

analysis of cardiac morphology, function and myocardial structure. The aim of this review was to 

assess the role of AI in CMR imaging, with a specific focus on three domains: volumetry and mass, 

myocardial scar detection and quantification, and myocardial wall thickness measurements. To 

accomplish this task a systematic review was conducted using the PRISMA technique including high-

quality studies published between November 2020 and January 2024. 

Results: In total, 15 studies were analyzed. Compared to human expert evaluation, CMR-based AI 

systems have been shown to significantly reduce intra- and interobserver variabilities, with 

segmentation Dice scores of ≥ 0.90 for both left and right ventricular volumetry and ICCs up to 0.94 

for left ventricular volume measurements. For myocardial wall thickness, AI demonstrated improved 

test–retest reproducibility with a CoV of 4.3%, compared to 5.7–12.1% for human observers. In the 

field of tissue characterization, AI solutions allow assessment of myocardial fibrotic changes without 

contrast media; for instance, Virtual Native Enhancement (VNE) achieved an ICC of 0.94 compared 

to LGE for scar burden. These advances are valuable in clinical practice for decision-making and 

reduce required sample sizes in research. AI-based analysis also significantly improves efficiency, 

reducing analysis time from 10–15 minutes to under 30 seconds in some implementations. Despite 

advancement of AI based CMR analysis the need for expert oversight and manual review in more 

complex cases is still needed, as well as generalizability, data standardization, and ethical issues still 

limits widespread use of AI solutions in CMR image analysis. 

Conclusions: Across all three analyzed domains, AI consistently demonstrated improvements in 

reproducibility, efficiency, and diagnostic consistency when compared to traditional manual human 

expertise-based methods. Successful integration of AI into clinical CMR workflows will depend in 
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the future on further validation in larger patient cohorts, cross-center generalizability, and sustained 

expert supervision. 

 

Key Words: Artificial Intelligence; Cardiovascular Magnetic Resonance Imaging; Wall Thickness 

Measurement; Cardiac Volumetry; Myocardial Mass; Myocardial Scar Detection; Deep Learning; 

Segmentation; Clinical Workflow Optimization; Observer Variability. 

 

Introduction: 

     Cardiovascular magnetic resonance (CMR) imaging is widely acknowledged as a gold-standard 

modality for non-invasive cardiac assessment, offering highly detailed and accurate visualization of 

cardiac structures, function, and pathology. Due to its exceptional ability to capture precise 

myocardial details as well as characterize myocardial structure, CMR has become a cornerstone in 

the diagnosis, monitoring, and management of a diverse array of cardiovascular diseases (CVDs), 

including cardiomyopathies, myocardial infarction, congenital heart defects, and other conditions 

characterized by structural or functional cardiac abnormalities. 

     However, despite these strengths, the accuracy of CMR interpretation is closely linked to clinician 

experience and skill level. This dependence introduces observer variability, characterized by 

discrepancies in measurements and interpretations not only between different clinicians (inter-

observer variability) but also within the same clinician over repeated assessments (intra-observer 

variability). Such variability is most apparent in segmentation tasks, which involve outlining left and 

right ventricular (LV and RV) volumes, measuring myocardial wall thickness or mass, or identifying 

myocardial tissue structural changes through late gadolinium enhancement (LGE) imaging. 

Additionally, traditional manual segmentation techniques require extensive manual contouring, 

typically taking clinicians several minutes. This time-intensive nature leads to efficiency challenges, 

specifically with regards to high-volume clinical settings where quick and consistent interpretation is 

crucial.  AI-based methods have demonstrated real time savings in this context. With some of the 

studies showing that automated segmentation tools can complete accurate volumetric analysis in a 

fraction of the time needed for manual contouring (1). Given these limitations, there has been growing 

interest to explore computational solutions that could help improve the accuracy and efficiency of 

CMR interpretation. 

     Artificial intelligence (AI) has begun to show great promise in medical imaging and is presenting 

opportunities to automate complex image analysis tasks, with the potential to improve diagnostic 

accuracy as well as and streamline clinical workflows. The application of AI-driven segmentation 
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methods has already demonstrated potential in addressing some limitations associated with manual 

image interpretation. Fully convolutional networks trained on large-scale datasets have shown 

human-level results in the segmentation of LV and RV boundaries, achieving robust accuracy across 

a variety of measurements (2). Other proposed tools use architectures incorporating anatomical priors 

to quantify biventricular function, volume, mass, and ejection fraction within seconds. (3). 

Innovations like this point toward AI-tools for clinicians becoming more mature and relevant lately. 

     For example, the automatic quantification of the left ventricle via AI systems has been shown to 

decrease the processing time whilst keeping close agreement with manual expert analysis, needing 

only minimal corrections (4). More recent developments include virtual native enhancement (VNE) 

which facilitates detailed images without the use of contrast (5). The implications and technical details 

will be discussed later in the results section. In parallel to VNE, another branch of AI enabled systems 

took on the challenge of automating fibrosis and scar quantification to further bolster the analysis of 

clinically relevant metrics without falling victim to the variation that is inherent to manual analysis 

(6). The components that make up the variance in the analysis of CMR images, specifically with 

regards to the analysis of left ventricular ejection fraction and mass will be visualized in the following 

Figure. 
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Figure 1: Contributions of scan–rescan, inter-observer, and intra-observer variability to 

measurement error in CMR-derived left ventricular ejection fraction and mass. 

Computational solutions leave scan-rescan variability. (Reproduced with permission from: 

Bhuva AN, Bai W, Lau C, Davies RH, Ye Y, Bulluck H, et al. A multicenter, scan–rescan, human 

and machine learning CMR study. JACC Cardiovasc Imaging. 2019 Oct;12(10):1829–

40. https://doi.org/10.1016/j.jcmg.2018.08.025. Licensed under CC BY 4.0.) (7). 

 

     Figure 1 is a visual representation of the make-up of variation that is encountered in human expert 

analysis. In human analysis the variance in both mass and ejection fraction is made up of inter-

observer, intra-observer and scan-rescan variabilities, with intra-observer variance making up the 

largest part. As evidenced by the illustration, AI allows for the elimination of variance between 

observers and, with regards to Mass, leads to an overall lower coefficient of variation. Although the 

diagram provides a very important notion, it also demonstrates that although AI has the power to 



 8 

significantly improve accuracy, in areas like Ejection fractions, the overall coefficient of variation is 

still larger than that of humans.  

     Furthermore, AI-driven segmentation benefits from its ability to consistently interpret extensive 

annotated datasets, potentially decreasing observer variability seen in manual approaches and 

improving reproducibility across clinical settings. Beyond the LV, automated techniques have also 

been helpful in enhancing the accuracy of four-chamber cine imaging, including improved 

characterization of the RV, which has traditionally posed difficulties due to its complex geometry.  

     Additionally, AI-based myocardial deformation analysis technique (feature tracking) is 

increasingly being employed to detect subtle changes in myocardial strain patterns, thus offering 

potential benefits in prognostication and patient management, particularly in diseases such as 

hypertrophic cardiomyopathy (HCM) and heart failure. These approaches have also demonstrated 

potential in high-risk clinical scenarios, such as predicting sudden cardiac death (SCD), guiding 

patient stratification for implantable cardioverter-defibrillator (ICD) therapy, and informing treatment 

strategies based on detailed analysis of myocardial fibrosis and structural remodeling (8). 

      Beyond just segmentation tasks, AI models that have been trained on CMR data have shown 

increasing potential in spotting subtle imaging markers. Such markers could be used to check disease 

progression and other outcomes. Features like this are often hard to properly detect by hand. By 

having another tool that can help in identifying diseases earlier, more informed clinical decisions can 

be made, and thus better care can be provided for patients. Recent studies have shown that some AI 

systems are able to with increasing accuracy predict adverse cardiological events by recognizing 

imaging patterns that can be associated with underlying diseases. Although these advances see to be 

very promising, there needs to be great care when implementing AI systems, and expert oversight is 

needed. This becomes clearer when looking at more complex cases, or cases that very close to certain 

borders. In these situations, human expert evaluation cannot be replaced yet, demonstrating the need 

for a combination of these two pillars of image analysis. With these questions in mind, this thesis 

systematically evaluates the performance and clinical viability of AI in comparison to human expert 

assessment across three key areas of CMR analysis:  

1. Myocardial wall thickness measurement, with particular attention to diagnostic accuracy 

and reproducibility in myocardial hypertrophy. 

2. Volumetric and mass quantification, evaluating automated segmentation approaches in the 

functional analysis of both left and right ventricles. 

3. Myocardial scar detection and quantification, examining the reliability of AI methods in 

detecting and quantifying myocardial fibrosis and infarction 
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Methodology: 

1. Data Sources and Search Strategy 

     This systematic review was conducted using the PRISMA (Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses) technique. Included are studies and papers that investigate 

the diagnostic accuracy of AI applications in CMR wall thickness measurements, volumetry and mass 

as well as myocardial scar detection and quantification. As illustrated in Figure 2, the search strategy 

for this review was meticulously designed to include relevant and high-quality studies published 

between November 2020 and January 2024 using the following keywords with MeSH terms. We have 

used three concepts: artificial intelligence (“artificial intelligence”), diagnostic value (“diagnostic 

value” OR “diagnosis”), and cardiac MRI (“Cardiovascular magnetic resonance” OR “CMR” OR 

“cardiac magnetic resonance” OR “late gadolinium enhancement” OR “delayed gadolinium 

enhancement” OR “LGE” OR “wall thickness” OR “volumes” OR “mass” OR “scar” OR “ejection 

fraction”). The terms were combined by “OR” in each domain, and then concepts were combined by 

“AND”.  Search results were imported into Zotero reference management software (Zotero version 

6.0.37). 

 

2. Study selection:   

To determine study eligibility, the following inclusion criteria were used: 

(1) CMR must have been performed with either 1.5 T or 3 T field strength machine; 

(2) AI techniques such as machine learning and convolutional neural networks were considered 

relevant; 

(3) Study should be written in English language; 

(4) All non-freely available texts were excluded to ensure that the review could be based on sources 

that are readily accessible; 

(5) Data on AI accuracy assessment against human expert evaluation should be present; 

(6) Must revolve around one of the three previously determined topics: wall thickness measurements, 

volumetric and mass assessments, myocardial scar detection and quantification.  

 

3. Study Quality:  

When selecting sources, the Preferred Reporting Items for Systematic Reviews and Meta Analyses 

(PRISMA) where followed. 
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Figure 2: PRISMA search strategy flow chart according to 2009 guidance. 

 

 

Basic Principles of AI Used for Diagnostic Purposes in CMR: 

 

     AI applications in CMR primarily leverage machine learning (ML) and deep learning (DL) 

techniques, particularly convolutional neural networks (CNNs), which have demonstrated 

remarkable success in various diagnostic tasks.  

 

1. Machine Learning and Deep Learning in Cardiovascular Magnetic Resonance (CMR): 

     In recent years, machine learning (ML) has emerged as a game-changer in cardiovascular imaging, 

including CMR. ML refers to a family of computational techniques that enable systems to recognize 

patterns and make data-driven predictions without requiring specific, hand-coded instructions. 
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Among these techniques DL, a specialized branch of ML, has shown tremendous promise, 

particularly through its use of artificial neural networks (ANNs). These networks, modeled loosely 

after the human brain, consist of multiple layers that progressively extract complex features from 

data. 

     Within the DL category, convolutional neural networks (CNNs) have become the gold standard 

for medical image analysis. CNNs are especially well-suited for processing visual information, such 

as CMR images, because of their ability to automatically detect and learn relevant features like edges, 

textures, and structures. Their application in CMR imaging has significantly advanced the automated 

segmentation of cardiac chambers, myocardial tissue characterization, and even disease 

classification. 

 

Figure 3: Pipeline of a convolutional neural network (CNN) applied to cardiac magnetic 

resonance (CMR) image segmentation. (Reproduced with permission from: Fotaki A, et al. 

Licensed under CC BY 4.0.) (9) 

 

     As illustrated in Figure 3, a typical CNN architecture used for CMR segmentation consists of an 

input layer that receives the original image, followed by multiple hidden layers where feature 

extraction occurs through convolution and pooling operations. These layers capture increasingly 

complex patterns within the image. The extracted features are then passed to fully connected layers 

that perform classification, ultimately generating an output, such as delineated contours of the left 

ventricular cavity. This automated approach streamlines image interpretation and has demonstrated 

performance comparable to that of human experts in tasks like cardiac chamber segmentation. 
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2. AI in Image Acquisition and Preprocessing: 

     While much attention is given to AI's role in image analysis, it is equally impactful in optimizing 

the image acquisition process itself. Standard CMR protocols can be lengthy and demanding, often 

requiring patients to remain still for extended periods. This can be uncomfortable and, in some cases, 

unfeasible, particularly for critically ill or pediatric patients. 

     AI-driven methods, particularly those leveraging compressed sensing 

techniques and reconstruction algorithms, are now being used to: 

• shorten scan times by acquiring fewer data points without compromising diagnostic accuracy; 

• enhance image resolution, ensuring that even with shorter acquisitions, image quality remains 

clinically acceptable; 

• correct for motion artifacts, such as those caused by breathing or irregular heartbeats, by 

applying intelligent post-processing techniques. 

     Taken together, these advancements help create a more comfortable experience for patients and 

reduce the likelihood of repeat scans. This not only improves overall workflow efficiency but also 

eases the burden on healthcare systems. 

 

3. AI in Segmentation and Feature Extraction: 

     Segmenting cardiac structures is one of the most time-consuming and demanding parts of CMR 

analysis. Clinicians are often required to manually outline areas such as the LV, RV, and myocardium 

across numerous image slices and phases of the cardiac cycle. This manual approach not only takes 

considerable time but can also lead to variability between and within observers, where even 

experienced clinicians might produce slightly different results on the same scan. 

     To address these challenges, AI-based segmentation tools, particularly those using convolutional 

neural network (CNN) architectures, are increasingly being used to: 

• automatically delineating the LV, RV, and myocardial contours, reducing the need for manual 

intervention; 

• improving reproducibility and standardization across different datasets and institutions; 

• enhancing scar quantification in late gadolinium enhancement (LGE) imaging, a critical step 

in diagnosing myocardial fibrosis and scarring. 

     AI-based segmentation tools are now capable of achieving human-expert-level accuracy, with the 

added benefit of performing tasks 10 to 20 times faster than manual methods. In high-volume clinical 

environments, this time savings translates into faster reporting, reduced workload for clinicians, and 

more timely patient care. 

 

4. AI the principles of AI-based clinical trials, specifically data/training models: 
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Another essential principle in the development of AI models for clinical use is the careful handling 

of training and validation processes. Machine learning algorithms typically require large, high-quality 

datasets to achieve reliable performance and to avoid overfitting, a phenomenon where models 

capture noise instead of meaningful patterns. As outlined by Tam et al., most AI studies to date have 

relied heavily on internal validation techniques, such as k-fold cross-validation, which assess model 

consistency within the training data but do not guarantee generalizability (10). True external 

validation, involving testing on an independent patient cohort, remains uncommon yet is crucial for 

demonstrating a model’s real-world applicability. Without robust external validation, reported 

performance metrics may overestimate a model’s clinical utility, highlighting the importance of 

rigorous study design and transparent reporting in AI-based clinical trials. 

     This process is summarized in Figure 4, which illustrates the typical workflow for supervised 

learning, beginning with data collection and model training, followed by internal validation, and 

concluding with external validation on an independent dataset to ensure generalizability (10). 

 

 

Figure 4: Typical supervised learning workflow, including data preparation, model training, 

internal validation, and external validation. Reproduced with permission from Tam DY et al. 

Artificial intelligence to predict mortality: The rise of the machines. J Am Coll Cardiol. 

2020;75(23):2844–6. License Number: 6016521038349 (10) 

 

Results:  

 

I. Wall Thickness Measurements: 

 

     Accurately quantifying the maximum wall thickness (MWT) of the left ventricle is crucial for 

diagnosing, managing, and risk stratifying patients with hypertrophic cardiomyopathy (HCM). 
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However, as previously mentioned, this measurement remains susceptible to human variability (8). 

Addressing this challenge, Augusto et al. conducted a study comparing the reproducibility of an AI-

driven machine learning model with assessments made by 11 international expert observers. Their 

analysis included 60 adult patients with HCM, each undergoing paired CMR scans on the same day, 

resulting in a dataset of 1,440 individual MWT measurements (8). 

 

     The AI system demonstrated superior consistency compared to the human experts. Specifically, 

the model achieved a test-retest difference of 0.7 mm (SD 0.6), whereas variability among the experts 

ranged from 1.1 mm (SD 0.9) to 3.7 mm (SD 2.0), depending on the observer (8). The coefficient of 

variation (CoV) was also lower for the AI model at 4.3%, compared to 5.7% to 12.1% for the human 

group (8). Figure 5 visually illustrates this difference, showing the AI model’s narrower limits of 

agreement relative to each expert. Furthermore, Bland-Altman analysis reinforced the AI’s 

advantage, with limits of agreement between −2.0 mm and 1.7 mm, while the least consistent expert 

showed limits exceeding 10 mm (8). 

 

Figure 5: Bland-Altman plots comparing test-retest agreement for maximum wall thickness (MWT) 

between AI and 11 international experts. (Reproduced with permission from: Augusto JB, Davies 

RH, Bhuva AN, et al. Diagnostic performance of machine learning in hypertrophic cardiomyopathy 

using cardiovascular magnetic resonance. JACC Cardiovasc Imaging. 2020;13(5):1125–1136. 

Licensed under CC BY 4.0.) (8) 

     The diagnostic consistency of AI also outperformed that of the experts. For the HCM threshold of 

MWT >15 mm, AI reclassified only 8% of patients between test and retest. In contrast, human experts 

reclassified between 7% and 20% of patients (8). Across the cohort, AI diagnosed 64% of patients 

with HCM, aligning within the broader and more variable range of 45% to 83% reported by experts 
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(8). These results highlight the significant inconsistency that remains in manual interpretation. This 

variability is further illustrated by the variation across all observers (Figure 6), in the example of 

extreme septal hypertrophy. 

 

Figure 6: Example of segmentation in extreme septal hypertrophy (Reproduced with permission 

from: Augusto JB, Davies RH, Bhuva AN, et al. Diagnostic performance of machine learning in 

hypertrophic cardiomyopathy using cardiovascular magnetic resonance. JACC Cardiovasc Imaging. 

2020;13(5):1125–1136. Licensed under CC BY 4.0.) (8) 

     In Figure 6 on the left side, nine expert readers selected different image phases and drew 

measurements in different locations, leading to a wide range of values and noticeable differences 
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between the two scans. In contrast, the ML algorithm (right side) automatically selected the optimal 

phase for both scans and produced nearly identical measurements, with less than a 1 mm difference. 

his example illustrates how AI may help reduce variability and improve the reliability of cardiac 

imaging, especially in complex cases like hypertrophic cardiomyopathy. AI also showed greater 

consistency when it came to risk stratification, specifically in ICD decision-making, where it 

maintained 100% agreement between test and retest scans adhering to the MWT >30 mm threshold. 

Three human experts altered ICD recommendations on retest, affecting the clinical management of 

up to four patients (8). The study also reported that the machine learning model demonstrated lower 

scan–rescan variability compared to the group of 11 experts (8). Furthermore, with regards to HCM 

Risk-SCD scores, the system was able to produce a minimal change of 0.19% over repeated scans(8). 

In comparison, expert analysis showed a greater dispersal or results, reaching 0.59% (8). With regards 

to clinical trials and research, improvements in accuracy and consistency allow for smaller participant 

numbers, for example being able to detect a change of 2 mm in MWT could require a reduction in 

sample size by an average factor of 2.3 (8). The observed reduction where in a range from a factor of 

1.6 to 4.6 (8). These results are promising for their potential impact on clinical care as well as  with 

a regard to trial efficiency and reducing the related costs. The interclass correlation coefficient (ICC) 

for human observers was calculated at 0.82 (95% CI 0.69-0.90), with two-thirds of the experts pairs 

having poor concordance (concordance correlation coefficient <0.90) (8). In one extreme case 2 

observers disagreed by 11.4 mm on one single scan (8). The system utilized in this case was based 

on a convolutional neural network (CNN) that was trained on 1,923 patients with various cardiac 

conditions, from multiple centers. In order to further bolster their approach, a mathematical approach 

in the Laplace equation was applied. With this method researchers could establish a dense 

correspondance between myocardial borders by calculating the maximum distance between them (8).  
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Figure 7: AI-based measurement of left ventricular wall thickness using Laplace’s equation. 

(Reproduced with permission from: Augusto JB, Davies RH, Bhuva AN, et al. Diagnostic 

performance of machine learning in hypertrophic cardiomyopathy using cardiovascular magnetic 

resonance. JACC Cardiovasc Imaging. 2020;13(5):1125–1136. Licensed under CC BY 4.0.) (8)  

 

     As is illustrated in Figure 7, machine learning first outlines the inner and outer walls of the left 

ventricle at end-diastole. These outlines act as reference points for solving Laplace’s equation, which 

creates a smooth gradient across the heart muscle. From this gradient, the algorithm draws evenly 

spaced lines that run straight from the inner to the outer wall. Wall thickness is then measured along 

each line, and the longest one represents the maximum thickness. This approach avoids overlapping 

or inconsistent measurements and ensures greater accuracy and reproducibility than manual methods. 

     Human variance was driven by several factors, including differing choices of slice selection, 

cardiac phase identification, and variability in selecting precise measurement locations. Inconsistent 

handling of trabeculation and papillary muscle inclusion further contributed to inter-observer 
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differences. By applying standardized rules across all images and cardiac phases, AI was able to avoid 

a majority of these issues.  

     In summary, AI based solutions for MWT measurements are on a promising path. Across the 

bench, results in a range very similar to those of experts where achieved, however there remained 

some areas in which occasional errors remained. This was a theme that spanned nearly all assessed 

papers in this portion and specifically underlines the need for expert oversight and manual review in 

more complex cases, as well as during the development of programs that are AI powered and are 

meant to improve clinical practice.  

 

II. AI in Volumetric and Mass Assessments: 

 

     Artificial intelligence (AI) systems are being used with increasing frequency in the assessment of 

ventricular volumes and myocardial mass. Some of these systems have begun to tackle human 

constraints, with a growing body of evidence highlighting improvements across a variety of clinical 

contexts.  

     As has been highlighted previously, AI algorithms, specifically Deep Learning architectures like 

Fully Convolutional Neural Networks (FCNNs), have been shown to robustly agree with manual 

segmentations performed by trained experts. Bai et al. employed the previously mentioned 

architecture of an FCN and trained it on a dataset consisting of 4,875 subjects and 93,500 pixelwise 

annotated images. The results were assessed using technical metrics like Dice coefficients and other 

clinically relevant metrics like left ventricular end-diastolic volume (LVEDV) and end-systolic 

volumes (LVESV). Within their large-scale validation study, the employed FCN architecture was 

able to report Dice similarity coefficients of 0.94 for LV segmentation and 0.90 for right ventricular 

(RV) segmentation, ranges that are comparable to those of human experts (2). 
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Table 1: Comparison of AI segmentation variability against human observer (O1, O2, O3) 

variability across volumetric parameters. (Reproduced with permission from: Bai W, Sinclair M, 

Tarroni G, Oktay O, Rajchl M, Vaillant G, et al. Automated cardiovascular magnetic resonance 

image analysis with fully convolutional networks. J Cardiovasc Magn Reson. 2018;20(1):65. 

Licensed under CC BY 4.0.) (2) 

     The data presented in Table 1 illustrates the variability in volumetric measurements between an 

automated AI segmentation model and manual expert analysis, as well as among human observers. 

The “Auto vs Manual” column shows how AI-derived values compare to those obtained by experts 

across a large dataset of 600 subjects. In contrast, the “O1 vs O2,” “O2 vs O3,” and “O3 vs O1” 

columns reflect inter-observer variability between three independent human experts, each reviewing 

the same 50 cases. Within left ventricular stroke volume (LVSV), ejection fraction (LVEF) and 

cardiac output (LVCO) the variability achieved was either lower or within that of the experts. The 

relative difference for right ventricular ejection fraction (RVEF) was seen to be higher within the 

human observer group. Reaching up to 12.3%, compared to 7.5% for AI versus manual results (2). 

Results like these further support AI´s potential to reduce subjectivity in cardiac measurements via 

more consistency. The paper of Hatipoglu et al. assessed a commercially available segmentation tool 
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in a cohort of 300 patients with various cardiac pathologies like hypertrophic cardiomyopathies or 

ischemic heart disease. The segmentation tool was able to achieve an intraclass correlation coefficient 

(ICC) of 0.959 for LV EDV and 0.946 for LV ejection fraction (EF) (8). However, reproducibility 

for RV metrics was somewhat lower, with RVEF yielding an ICC of 0.784, likely because of the 

RV’s complex geometry and anatomical variability (1). Hatipoglu et al. showed that CoV for LVEDV 

decreased from 9.1% with manual expert analysis to 3.5% with AI-assisted contouring, while CoV 

for RVEF fell from 9.9% to 7.1% with AI intervention (1). Although undeniably these are 

improvements, the physicians participating in this reserach underwent a survey on their confidence 

in the AI-system. While being receptive to new and improved technology, they universally expressed 

concerns about overall system validity and transparency, issues that will re-emerge later this paper. 

This before mentioned decrease in the CoV is further visualized in the Bland–Altman plot (Figure 8), 

which highlights the narrower limits of agreement when using AI for left ventricular volume and 

ejection fraction calculation. 
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Figure 8: Bland–Altman plot demonstrating improved agreement between manual and AI 

analysis for left ventricular volumes and ejection Fraction (Adapted from Hatipoglu S., Gatehouse 

P., Alpendurada F. et al., Int J Cardiovasc Imaging. 2022;38:2413–2424. Licensed under CC BY 

4.0.)(1) 
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     Figure 8 presents Bland–Altman plots comparing manual measurements of LV parameters with 

those derived from a fully automated AI method (left column) and a combined approach that includes 

manual adjustment of AI-generated contours (right column). In each plot, the blue horizontal 

line represents the mean difference (bias) between the two methods, while the red dashed lines mark 

the 95% limits of agreement (±1.96 standard deviations). The pink dotted line illustrates the 

regression trend, indicating whether the measurement difference varies across the range of values. 

Each orange dot corresponds to an individual patient comparison. In the top row, the fully automated 

method tended to underestimate LVEDVi compared to manual analysis, with a bias of 7.6 mL/m², 

which was reduced to 0.4 mL/m² in the combined method, alongside narrower limits of agreement 

(1). A similar improvement is seen in the middle row for LVESVi, where the bias decreased from 2.2 

mL/m² to 1.3 mL/m² following manual correction (1). The bottom row shows that although the 

average difference in LVEF was small, the fully automated method exhibited wider variability and a 

downward trend, which appeared more stable in the combined method. Overall, these observations 

support that supplementing AI-derived measurements with expert review offers the best results.  

     The time-intensive nature of manual contouring, requiring on average 10 to 15 minutes per scan, 

presents significant workflow bottlenecks, especially in high-throughput clinical environments. In 

contrast, AI models process complete datasets in a fraction of that time. The paper by Böttcher et al. 

assessed whether an automated volumetric anlysis that is based on a deep learning architecture could 

reduce segmentation time. With a reduction of segmentation time to a median of 8.4 seconds, they 

proved that a signifcant increase in efficiency could be achieved (4). Similarly Hatipoglu et al. also 

supported these findings by reporting that when compared to manual segmentation, AI-based analysis 

was roughly 42 times faster (1). Such results are promising and could have great impact, especially 

in centers where large datasets are processed or where the timely anlysis of scans is important.  

     A great benefit that AI seems to offer is its versatility across a range of pathologies. Whilst accurate 

results across healthy populations alone are promising, AI based systems have been shown to also be 

highly accurate in more complex cohorts. For example, Hatipoglu et al. demonstrated consistent 

performance in segmentation in cases involving dilated cardiomyopathy, hypertrophic 

cardiomyopathy, ischemic heart disease, and other congenital heart defects (1). Adaptability like this 

could prove especially helpful in centers that see a greater variety of pathologies, like specialized 

cardiac care centers. Bai et al. where further able to support this finding by using their fully 

convolutional network (FCN)-based model on over 1,734 participants in the UK Biobank dataset, 

showing its capacity to handle population-level imaging studies (2). Being able to scale AI models 

like this could prove to be highly beneficial when fast anaylsis of large amounts of data is needed.  

     Despite these clear advantages, several studies have also pointed out recurring limitations that are 

related to volumetric and mass assessment. Issues related to this are the occasional failure to produce 
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accurate delineation results for endocardial cotours or to pick the innappropriate cardiac phase. This 

is especially evident in the anylsis of the right ventricle (RV). A possible reasonsn for this could be 

the greater anatomical variability of the RV. More issues where encountered by Hatipoglu et al., who 

found that segmentation errors often arose from underfitting of the LV endocardial border or due to 

inconsistent handling of trabeculations and papillary muscles (1). Bai et al. found that on rare 

occasions AI could produce biologically implausible measurements, and further underline the need 

for expert review and oversight (2). With these issues in mind, the proper control mechanisms need 

to be in place in order for safe and effective adoption of AI supported systems. Also, specifically in 

mire cimolex cases, the need for expert oversight cannot be overstated.  

     Another issue that emerged was that of dataset generalizability. Curiale et al. was able to show 

that models that are trained on a very specific dataset, will perform less effectively when used in local 

datasets. This could be due to simple discrepancies in scanner technologies, imaging protocols and 

simply due to different patient demographics (3). Their findings underscore the need for retraining 

and fine-tuning AI algorithms to ensure that diagnostic performance remains consistently high across 

all settings. 

      Overall, AI is not only changing simple imaging tasks but its also proving an effective tool in 

clinical research and trials. With faster analysis and sufficiently accurate results, the impact on 

research and clincial trials is not to be overseen. More efficient and accurate segmentation allows for 

more effective servicing of large-scale studies as it greatly reduces the manual labor required for the 

analysis of cardiac anatomy and allows for more standardized collection of data. Bai et al. pointed 

out that their AI system's reproducibility was critical for use in multi-center trials where inter-site 

variability could otherwise confound volumetric measurements (2). 

     The literature so far suggests that AI can offer marked improvements over manual segmentation, 

particularly in terms of speed, reproducibility, and consistency. LV quantification consistently 

demonstrates higher reliability across studies, whereas RV assessment continues to pose a greater 

challenge, however with AI still achieving clinically acceptable results. Papers like that of Bhuva et 

al. highlighted the human limitations by noting that much of the error in expert analysis stems from 

observer-related factors, further underscoring that automated methods could play an important role 

in standardization of measurements (7). AI is increasingly regarded as a transformative tool in 

medical imaging. Deep learning models provide exceptional efficiency and reproducibility, however 

their application is most effective when combined with human expert oversight, to ensure that 

occasional segmentation errors can be dealt with. The evidence strongly supports the integration into 

clinical practice, where it has the potential to streamline numerous processes.  

 

III. AI for Myocardial Scar Detection and Quantification 
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     Artificial intelligence (AI) has shown considerable promise in the automated detection and 

quantification of myocardial scar and fibrosis on cardiac magnetic resonance (CMR) imaging. Two 

of the selected studies, one by Popescu et al. and the other by Zhang et al., assess AI’s capability in 

improving the efficiency, accuracy, and through that the reproducibility of myocardial scar 

assessments.  

     Popescu et al. used the Anatomical Convolutional Segmentation Network (ACSNet). ACSNet is 

a DL model that is able to automatically segment LV myocardium, blood pool and scar regions in 

late gadolinium enhanced (LGE) CMR images. This program achieved segmentation results that had 

a balanced accuracy (BA) of 96% for the identification of LV region of interest (ROI) (6). 

Additionally, ACSNet achieved a dice coefficient of 0.93 for the segmentation of the LV and 0.79 

for myocardium segmentation (6). When applied to scar regions, ACSNet achieved a Dice coefficient 

of 0.57 and a BA of 75%, clearly outperforming previous interobservers and many other existing 

algorithms.  

      This minimal difference suggests that AI can closely replicate expert performance, while 

significantly reducing manual workload and variability. Importantly, the model performed reliably 

across different regions of the LV, including the apex and base areas where traditional methods often 

struggle due to high variability between observers. (6). This is visually demonstrated in Figure 8, 

which shows ACSNet’s scar segmentation closely matching manual contours across LV regions, also 

including areas prone to high interobserver disagreement. 

 

Figure 9: ACSNet-based scar segmentation results overlaid on late gadolinium enhancement 

(LGE)-CMR images. The figure illustrates the original image in the first row (Left Ventricle 

LGE-CMR), the manually segmented portion in the middle row (Ground Truth Segmentation) 
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followed by the ACSNet Predicted Segmentation. (Adapted with permission from: Popescu DM, 

et al. Anatomically informed deep learning for myocardial infarction segmentation from late 

gadolinium enhancement cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 

2022;24(1):14. Licensed under CC BY 4.0.) (6) 

     As is visualized in the Figure 9, the top row shows the original short-axis CMR scans; the middle 

row depicts ground truth annotations for scar (red) and gray zone (yellow); and the bottom row 

displays ACSNet’s automated predictions. Patients 1–3 show typical cases with high concordance 

between predicted and manual segmentations. This can be seen by comparing the Gray Zone and Scar 

predicted areas to the ground truth row. Patient 4 is used to represent an outlier with reduced gray 

zone accuracy. Although the ACSNet undermeasured the Gray Zone of patient 4, it was still able to 

accurately predict scar tissue, demonstrating the robustness of the programm. 

     In contrast to ACSNet, Zhang et al. focused on developing Virtual Native Enhancement (VNE), a 

novel AI technology capable of generating LGE-like images without the need for contrast agents. 

VNE combines LGE-equivalent images from cine CMR and native T1 mapping sequences using a 

generative adversarial network (GAN) (5). This contrast-free approach offers numerous practical 

advantages, including reduced scan time, lower cost, and avoidance of contrast-associated risks.  

     VNE showed a high correlation with traditional LGE-CMR for scar quantification. In the 

independent test set of 66 patients with prior myocardial infarction (MI), VNE achieved a Pearson 

correlation coefficient (R) of 0.89 and an intraclass correlation coefficient (ICC) of 0.94 for 

myocardial scar size, when compared to LGE-CMR analysis (5). These findings indicate a strong 

correlation, which is further illustrated in Figure 10, where VNE and LGE images of scar distribution 

are practically identical. This is further shown by the bullseye transmurality plots. 
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Figure 10: Side-by-side comparison of VNE-generated scar maps and traditional LGE-CMR 

images, including bullseye plots for scar transmurality analysis. (Reproduced with permission 

from Zhang Q, Burrage MK, Shanmuganathan M, et al. Artificial Intelligence for Contrast-Free MRI: 

Scar Assessment in Myocardial Infarction Using Deep Learning–Based Virtual Native Enhancement. 

Circulation. 2022;146(20):1492–1503. (CC BY 4.0.) (5) 

     The bullseye plots presented in Figure 10 illustrate that the VNE system was able to very strongly 

match localization of scar tissue when compared to the manual method.  

     Additionally, transmurality measurements, critical for viability assessments, also demonstrated 

strong agreement, with R = 0.84 and ICC = 0.90 (5). This performance suggests that VNE could 

potentially replace LGE imaging in specific clinical scenarios, offering a rapid and contrast-free 

solution. 
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     Both analyzed studies emphasize the advantages of AI in enhancing image quality and achieving 

more consistent segmentation. For example, Popescu et al. demonstrated that ACSNet performed 

better than interexpert segmentation, maintaining reliable accuracy even in anatomically ambiguous 

regions of the left ventricle (6). Similarly, Zhang et al. noted that VNE images received higher image 

quality ratings than standard LGE, with all five blinded expert reviewers scoring VNE significantly 

better than LGE in a multiobserver analysis. 

     Beyond image quality and accuracy, AI methods demonstrated meaningful clinical implications. 

ACSNet’s scar quantification was integrated with established diagnostic criteria, facilitating direct 

extraction of clinical features such as scar burden, which plays a key role in sudden cardiac death 

(SCD) risk stratification and therapeutic planning (6). Similarly, VNE’s scar quantification closely 

matched LGE-derived results on bullseye plots, which depict scar transmurality and guide viability-

based revascularization decisions. 

     Although there where positive outcomes, both studies identified important limitations. ACSNet 

produced lower Dice scores (0.57) when segmenting dense scar tissue when compared to myocardium 

(6). This suggests that further refinement is necessary. Whilst not showing any false-positive 

identifications, it sensitivity of 77% for scar detection and produced several false-negatives. These 

false-negatives seemed to mainly occur in patients who previously had subendocardial infarctions 

(5). This emphasizes the need for expert oversight with complementary clinical data. 

     In conclusion, both ACSNet and VNE represent significant strides toward improving myocardial 

scar detection and quantification. The reviewed AI systems have been proven to enhance 

reproducibility whilst also tackling the issue of interobserver variability. Furthermore, approaches 

like VNE’s contrast-free capabilities could make advanced CMR diagnostics more accessible, 

especially in settings where contrast use is contraindicated. 

 

Discussion: 

 

     This systematic review compared the performance of artificial intelligence (AI) and human experts 

in cardiovascular magnetic resonance (CMR) imaging with a focus on three key areas: myocardial 

wall thickness measurements, volumetric and mass assessment, and myocardial scar detection and 

quantification. Across all domains, AI produced results that were in strong agreement with those of 

trained experts. This approach also offered advantages in speed, reproducibility and overall 

scalability, which could have great implications, discussed later on.  

     A sector in which AI had great success in reducing inter-observer variabilities was maximum wall 

thickness (MWT) measurements, with the tested systems perform particularly good in left ventricular 

maximum wall thickness (MWT). The clinical significance of accurate MWT measurements cannot 
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be denied, especially when diagnosing hypertrophic cardiomyopathy (HCM) and or risk stratifying 

patients for sudden cardiac death (SCD). The review was able to show that through AI integration, 

the variance between measurements in human anlysis, which was sometimes as high as 10 mm within 

one scan, could be significantly reduced (8).  

     An important finding was that AI systems achieved narrower limits of agreement and generally 

more consistent classification of patients who are around a critical clinical threshold lie the 15 mm 

MWT cut-off for HCM diagnosis and the >30 mm cut-off for SCD risk stratification (8).  

 Notably, AI managed to avoid diagnostic reclassification errors which are often seen among human 

observers. These results suggest that AI could help reduce uncertainty in clinical decisions, such as 

the recommendation for implantable cardioverter-defibrillators (ICD). However, even though AI was 

able to achieve excellent reproducibility, occasionally it created biologically implausible contours in 

less than 1% of cases, supporting the need for human control, especially when scan quality is 

suboptimal (8). 

     AI also demonstrated significant advancements in volumetry and myocardial mass assessment, 

outperforming traditional manual workflows in both reproducibility and speed. Multiple studies 

reported that AI models, particularly those leveraging fully convolutional networks (FCNs), achieved 

Dice coefficients exceeding 0.90 for left and right ventricular segmentation. This is well within the 

range of human inter-observer agreement (2,3). Intraclass correlation coefficients (ICCs) were also 

high for left ventricular (LV) end-diastolic volume index (EDVi) and ejection fraction (EF), 

suggesting that AI segmentation can reliably contour in clinical and research settings (3) With the 

issue of observer variabilities continously reemerging, a key strength of AI assisted volumetric 

assessment  is the ability to achieve consistent results acorss scans and thus reduce these variabilites. 

One of the variables often used to assess AI accuracy is the coefficient of variation (CoV). This value 

indicates the variance between results, and in the quantification of the left ventricle, AI achieved 

overall lower CoV values when compared to manual anaylsis. Reductions in variation like this could 

help improve diagnostic accuracy and the reliability of produced results. This could become 

particularly relevant when applied to clinical trials and research. In the following figure, the metrics 

along which the AI-systems where assessed are summarized. 
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CMR Task AI CoV 

(%) 

AI Dice AI ICC Human 

CoV 

(%) 

Human 

Dice 

Human 

ICC 

Overall AI vs 

Human 

Performance 

Wall 

Thickness 

(MWT) 

4.3 (8) — — 5.7–12.1 

(8)  

— — AI superior in 

reproducibility 

Volumetry 

(LV EDVi) 

— 0.94 (2) 0.959 (1) — 0.92–

0.94(2)  

0.92–0.95 

(1)  

Comparable, AI 

slightly faster 

Volumetry 

(RV EF) 

— 0.90 (2) 0.784 (1) — 0.87-0.89 

(2) 

0.643 (1) AI performs well; 

RV remains 

challenging  

Myocardial 

Scar Burden 

— 0.57 (6) 0.94 (5) — 0.50–0.55 

(6) 

0.90 (5) AI matches or 

exceeds human 

variability 

Table 2: Comparison of AI and human expert performance in CMR analysis. Metrics include Dice 

coefficient, intraclass correlation coefficient (ICC), and coefficient of variation (CoV), where higher 

Dice and ICC or lower CoV indicate better performance. Data adapted from references (1–9).  

 

     Table 2 summarizes that in all metrics assessed, AI empowered anaylsis was able to achieve high 

level of agreement with expert analysis. Intraclass correlation coefficients (ICC) where equally 

strong, specifically for scar burden and LV volume, with Ai reaching a level of 0.94 (2). An area in 

which AI was able to achieve more reproducible results when compared to experts was maximunm 

wall thickness assessment. This is reflected by the lower coefficient of variation (CoV) compared to 

human analysis: 4.3% vs. 5.7-12.1 (8). The results visualized in this table highlights the ever growing 

role of AI in CMR imaging.  

     Moving on from variability, efficiency is another very important factor in the assessment of 

volumetry and mass. Traditionally, the manual contouring process could take anywhere from 10-15 

minutes (4). Some of the reviewed AI solutions where able to routinely process large set of data in 

under 30 seconds (1,4). This gain in efficiency holds not only the potential to reduce the workload of 

radiologists, but also to improve turnaround times and allows for the saved time to be spent on more 

cases in which human expertise is necessary. Despite these benefits, some issues remain. Mainly 

when looking at the segmentation of the right ventricle, it seems to be more error prone due to its 

complex anatomy and the presence of trabeculated myocardial borders which can sometimes skew 
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the results. Other issues that emerged where the selection of incorrect phases during cardiac cycle 

analysis as well as the under segmentation of the endocardial border. These issues further support the 

need for the incorporation of safeguards and other validation mechanisms to enable the best possible 

outcomes. 

      In addition to segmenting cardiac structures, AI has also been applied to functional analysis, most 

notably in the assessment of myocardial strain using feature tracking (FT). FT is a post-processing 

technique that measures how the heart muscle deforms during the cardiac cycle, using routine cine-

CMR images without the need for additional sequences (11). This enables evaluation of strain 

parameters such as global longitudinal strain (GLS), radial strain (GRS), and circumferential strain 

(GCS), offering insight into myocardial function. 

     Several recent studies have evaluated the performance of AI-assisted FT-CMR for strain analysis 

across different cardiac conditions. Gröschel et al. showed that AI-generated strain values closely 

matched expert manual measurements in healthy individuals, but accuracy was reduced in patients 

with left ventricular hypertrophy, particularly in basal and lateral segments (12). Pryds et al. found 

that FT-CMR correlated well with speckle tracking echocardiography for GLS, although systematic 

differences in strain values were observed, suggesting the two methods are not interchangeable (13). 

While global strain values were generally reliable, localized tracking errors, especially near the 

papillary muscles, remained a challenge. Despite these limitations, AI-enhanced FT-CMR appears to 

offer reproducible and efficient functional assessment, particularly useful in cases where strain 

abnormalities have diagnostic or prognostic value like HCM and Heart-failure with preserved ejection 

fraction (HfpEF). 

     When applied to myocardial scar detection and quantification, AI solutions showed equally 

promising results. Popescu et al.'s ACSNet model and Zhang et al.'s Virtual Native Enhancement 

(VNE) technique both demonstrated high concordance with expert manual assessments of scar burden 

and transmurality, key metrics used in the management of ischemic heart disease and viability-based 

decision-making for revascularization. VNE works by combining data from cine CMR images and 

from native T1 maps to create a LGE-equivalent image (5). This, if consistently accurate would 

introduce a novel, contrast-free approach to cardiac imaging. This technique could benefit patient 

populations where gadolinium administration is contraindicated, for example those with chronic 

kidney disease. VNE was able to achieve a Pearson correlation coefficient of 0.89 and an ICC of 0.94 

for scar size compared to traditional LGE-CMR (2).  The levels of agreement for transmurality 

metrics where also similar (5). Meanwhile, ACSNet was able to provide highly accurate segmentation 

and reduced variability across the apical and basal regions of the myocardium. These specific regions 

are known to be prone to observer discrepancies. 
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     From a clinical perspective, AI´s ability to streamline scar quantification processes while also 

maintaining diagnostic accuracy could prove transformative. AI based scar quantification could 

directly inform clinical risk stratification tools such as SCD risk scores and viability assessment 

frameworks. Despite many positive advancements, several limitations remain. Popescu et al.’s 

ACSNet model for example reported lower Dice scores when segmenting dense scar tissue when 

compared to myocardium. Similarly in Zhang et al.’s assessment, their VNE model also 

demonstrated decreased sensitivity when detecting small subendocardial infarctions. Faults like 

these both underline the need for proepr validation of results.  

     Overall the broader implication for AI integration remain complicated, however what has been 

showed is that being able to employ AI tools to standardize CMR interpretation could help enhance 

diagnostic consistency and so reduce variability. Both those factors could greatly influence multi-

center studies, an area in which the afore mentioned benefits of AI could  hlelp researchers reach 

adequate statistical power with smaller samplem sizes. Such gains in turn could contribute to 

substantially lowering costs that arer associated with studies that aim to detect only small changes in 

cardiac structure or function.  

     Nevertheless, the adoption of AI in clinical CMR practice introduces a range of ethical and 

regulatory challenges. One major concern of the implementatiomn of AI-systems is the "black box" 

phenomenon, which limits interpretability and may erode clinician trust due to a lack of understanding 

of the implemented systems. This lack of transparency can complicate the communication between 

physician and patient, especially when AI-derived insights inform high-stakes decisions. An 

additional risk is that AI models trained on homogenous datasets could introduce biase and thereby 

affect the diagnostic performance in certain patient groups. Addressing concerns like these will 

require both improved and more diverse datasets for training and the implementation of fairness 

metrics during development. 

     Due to these many factors that influence the successful integration of AI systems, regulatory 

agencies like the FDA and EMA are emphasizing the need for external validation as well as close 

surveillance to ensure proper patient safety and diagnostic relaibility. Due to the nature of this being 

an emerging field these frameworks are still evolving and will hopefully play an important role in 

balancing benefits with ethical considerations.  

     In parallel with developments in segmentation and classification-focused AI models, a promising 

new direction is emerging in CMR imaging: radiomics. Although the primary focus of this thesis has 

been on AI approaches for segmentation and quantification, radiomics represents an emerging 

complementary field. It involves the high-throughput extraction of numerous imaging features, such 

as shape, texture, and intensity, that can be correlated with clinical outcomes, disease phenotypes, or 

histopathological findings using statistical or machine learning techniques. Unlike conventional AI 
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segmentation algorithms, which primarily focus on delineating anatomical structures, radiomics 

attempts to reveal underlying tissue heterogeneity that may not be visually representable. Within the 

CMR domain, radiomics has shown promise in areas such as fibrosis detection, myocardial tissue 

characterization, and outcome prediction. For instance, Nakamori et al. demonstrated that radiomic 

texture features derived from late gadolinium enhancement (LGE) images were not only capable of 

distinguishing between ischemic and non-ischemic cardiomyopathy but also showed superior 

performance compared to traditional assessment (14). More importantly, in a cohort of patients with 

recent-onset dilated cardiomyopathy, these features provided enhanced discrimination between 

noncollagenous extracellular matrix expansion which is often associated with myocardial 

inflammation, and mild to moderate collagenous fibrosis. Differentiations like this are clinically 

significant, as they may guide early therapeutic strategies aimed at targeting inflammation before 

irreversible fibrotic remodeling occurs. Building on these findings, Neisius et al. demonstrated that 

radiomic analysis of native T1 mapping can enhance diagnostic precision by detecting subtle textural 

differences in myocardial tissue (15). Notably, their model successfully distinguished hypertensive 

heart disease from hypertrophic cardiomyopathy, even when conventional T1 values appeared within 

normal ranges. This suggests that radiomics may uncover microstructural fibrosis patterns missed by 

traditional analysis, offering promise for earlier and more accurate disease differentiation. This 

manual limitation is clearly visualized in Figure 11, where native T1 and ECV values significantly 

overlap between non-collagenous and collagenous myocardial expansion groups, highlighting the 

challenge of differentiating early fibrotic changes using conventional methods. 

 

Figure 11: Comparisons of native T1 and ECV among 4 different histopathological phenotypes 
(Adapted with permission from Nakamori S, Amyar A, Fahmy AS, et al. Cardiovascular magnetic 
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resonance radiomics to identify components of the extracellular matrix in dilated cardiomyopathy. 

Radiology. 2024;310(1):96–107. © Radiological Society of North America (License Nr.: 

6014750007676) (14) 

 

     Figure 11 illustrates the limitations of conventional tissue markers, native T1 and extracellular 

volume (ECV), in distinguishing between histopathological subtypes of myocardial extracellular 

expansion. While both metrics increase with the severity of fibrosis, there is substantial overlap 

between non-collagenous and early collagenous expansion, making precise differentiation difficult. 

This overlap highlights a key challenge in conventional CMR tissue characterization and underscores 

the potential value of radiomics. By extracting higher-order image features beyond average signal 

intensity, radiomic analysis may improve discrimination between inflammation-related and fibrotic 

myocardial changes. This could be especially valuable in conditions like early dilated 

cardiomyopathy, where clinical management hinges on accurate tissue phenotyping. 

     From a methodological perspective, radiomics often involves handcrafted feature extraction 

followed by machine learning classifiers. This contrasts with the deep learning models discussed 

earlier in this thesis, which typically learn features directly from the image data. As outlined by 

Mayerhoefer et al., radiomics features can be grouped into various classes (16).  

     Features like these are inherently sensitive to image acquisition and reconstruction parameters, 

and without standardization this could limit reproducibility across sites and institutions. Raisi-

Estabragh et al. also underlined the need for robust feature selection in order to avoid overfitting and 

to ensure appropriate interpretation (17). This distinction suggests that radiomics offers 

complimentary value, especially if further stratified with genomic data in multimodal approaches. 

Similarly to simple segmentation tasks, some issues currently remain in radiomics that limit the 

current clinical utility. Many studies are retrospective, rely on small datasets and lack any external 

validation. Furthermore, the absence of standardized protocols for image acquisition, feature 

extraction, and statistical modeling negatively impact reproducibility. Mayerhoefer et al. underscore 

the sensitivity of radiomic features to technical factors such as reconstruction algorithms, and 

segmentation methods, which can distort feature values and limit comparison of data across different 

studies (16). Raisi-Estabragh et al. also share these concerns in the context of CMR, noting that 

radiomics models often suffer from lack of generalizability due to the high variance in imaging 

protocols (17). They emphasize that without rigorous validation and standardization, clinical adoption 

will remain limited. These issues are critical to address if radiomics is to progress beyond academic 

research into routine clinical care. 

     As these field evolve, combining technological development with clinical guidance is going to be 

essential for successful implementation. A recent multisociety position paper by Mastrodicasa et al. 
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created a structured framework for assessing the clinical maturity of AI technologies in cardiovascular 

imaging using the Technology Readiness Level (TRL) model. The created scale ranges from early 

experimental concepts (TRL1) to full clinical deployment (TRL9) (18). This scale provides a valuable 

perspective on the advancement of specific AI-based systems in cardiac imaging. Additionally their 

anaylsis showed that some tasks like automated biventricular segmentation are already nearing or 

have reached full implementation, while the majority of others remain in earlier stages of clincal 

readiness. These findings point to the value of a cautious, yet deliberate approach to integrating AI 

tools, tailored to the current maturity of the technology. Figure 12 provides a concise visual summary 

of AI readiness across cardiac MRI and CT domains, helping contextualize which tools are closest to 

clinical translation and which still require substantial validation.  

 

 

Figure 12: Technology readiness levels (TRLs) from 1 (early-stage research) to 9 (clinical 

implementation) across AI applications in cardiac MRI and CT. (Reproduced with permission from 

Mastrodicasa D, van Assen M, Huisman M, et al. Use of AI in Cardiac CT and MRI: A Scientific 

Multisociety Statement. Radiology. 2025;314(1):e240516. © RSNA, used under CC BY 4.0.) (18) 

 

     Looking to the future, further research should prioritize the development of AI models with 

improved generalizability across different scanners, imaging protocols, and patient populations. 

Although current evidence shows that AI systems perform best when fine-tuned to local datasets, the 

push for externally validated, multi-institutional models is essential for wider clinical adoption. 

Additionally, as regulatory bodies increasingly scrutinize AI-driven diagnostics, ensuring model 

transparency and explainability will be crucial to building clinician trust and securing formal approval 

pathways. 
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     Finally, the most plausible way of integrating AI in CMR imaging is the adoption of a system 

where AI handles routine, high-volume tasks such as volumetry, scar quantification and wall 

thickness measurements, while human experts focus on oversight, the interpretation of complex cases 

and clinical decision-making. By effectively combining AI systems with human oversight, cardiac 

imaging could benefit greatly, as well as improving patient outcomes and optimizing overall 

healthcare delivery and research productivity.  

 

Conclusion: 

     This thesis systematically examined the role of artificial intelligence (AI) in cardiovascular 

magnetic resonance (CMR) imaging, focusing on myocardial wall thickness, volumetric and mass 

assessments, and myocardial scar detection. Across these areas, AI consistently demonstrated 

improvements in reproducibility, efficiency, and diagnostic consistency when compared to traditional 

methods. In the context of hypertrophic cardiomyopathy, AI significantly reduced inter-observer 

variability in wall thickness measurements, supporting more reliable classification of patients around 

key clinical thresholds, such as sudden cardiac death risk. Volumetric and mass quantification also 

benefited from AI-driven segmentation, achieving strong concordance with expert values while 

markedly improving processing times. Although right ventricular analysis remains more technically 

complex, AI models continue to evolve and show promise in narrowing this performance gap. 

     In myocardial scar detection, contrast-free techniques such as Virtual Native Enhancement have 

shown high agreement with conventional late gadolinium enhancement, potentially offering safer 

alternatives for patients with contraindications to contrast agents. In addition to these segmentation-

based applications, radiomics has emerged as a complementary AI method, enabling the extraction 

of high-dimensional imaging features linked to fibrosis, functional impairment, and clinical 

outcomes. Early evidence suggests radiomics may improve risk stratification and disease 

phenotyping, particularly when integrated with conventional imaging or clinical data. However, its 

clinical utility remains limited by methodological variability and the need for prospective, 

standardized validation. Overall, while AI and radiomics hold substantial potential to enhance CMR 

interpretation, their successful integration into clinical workflows will depend on further validation, 

cross-center generalizability, and sustained expert supervision. 

 

Practical recommendations:  

     This review highlights several practical considerations for the successful integration of AI into 

clinical CMR workflows. With the technology continuing to demonstrate great potential, its 

implementation in clinical settings must still be approached with care, precision, and with the patient 

as the most important factor. A hybrid model in which AI supports but does not replace human 
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expertise may offer the most clinically effective approach. This aligns with current expert consensus, 

like the European Society of Cardiology, which emphasizes that AI’s role is to enhance clinical 

judgment rather than substituting it (21). This would ensure both improved precision and patient 

safety. This is especially critical in tasks such as left ventricular wall thickness measurement, cardiac 

volumetry, and myocardial scar detection, where even small discrepancies can impact diagnostic and 

therapeutic decisions. While AI models have consistently shown high levels of reproducibility and 

efficiency, oversight by trained cardiologists and radiologists remains essential to protect against 

errors. This is particularly true in borderline cases or anatomical anomalies. Human review also helps 

maintain clinical accountability and provides personalized patient care. 

     A second key recommendation concerns the standardization of AI use across healthcare 

institutions. Currently, differences in scanner hardware and imaging protocols can affect how AI 

models perform. To improve generalizability and reliability, hospitals should prioritize models that 

have been validated in multi-center studies. To move from research to routine care, AI algorithms 

must undergo rigorous clinical validation and demonstrate added value over existing workflows, 

particularly in terms of efficiency, reproducibility, and diagnostic accuracy 

     There are multicenter studies ongoing, which aim to assess exactly this. An example of this would 

be Winther et al.  ν-Net Study, in which a DL algorithm that is to assess biventricular mass and 

function, using multicenter CMR data. One issue faced by the researchers was that the openly 

accessible datasets were very limited, with one of the used sets only containing 61 cases with freely 

accessible contours (19). Although the amount of information to train the algorithm on was limited, 

the authors conclude that the assessed neural network is ready to be employed on a grander scale. 

Collaborative initiatives developing shared imaging datasets may help support continuous refinement 

of AI tools and improve their robustness across a wider range of clinical environments. 

     Interpretability is another pillar of trustworthy AI integration. Tools that fall under the umbrella 

of explainable AI (XAI), such as saliency maps and attention-based visualization, can enhance model 

transparency and build clinician confidence in AI-generated outputs. When a model can visually 

demonstrate which image features contributed to a particular diagnosis or segmentation, clinicians 

are better positioned to validate or challenge those results. One study demonstrated this by using 

radiomic features extracted from LGE-CMR to successfully distinguish cardiac sarcoidosis from 

post-COVID myocardial inflammation (23). These conditions often appear similar on visual 

inspection and by accurately being able to tell them apart demonstrates how new and adapted, AI-

supported systems could help generate insights that might not be immediately visible to clinicians 

(23). As regulatory bodies like the FDA and EMA move toward stricter guidelines for AI in 

healthcare, incorporating XAI features will also be essential for compliance. 
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     Alongside AI, radiomics is emerging as a complementary technology with the potential to add a 

new layer of diagnostic and prognostic value in CMR imaging. Unlike AI-based segmentation 

models, radiomics involves the extraction of quantitative imaging features such as texture, shape, and 

intensity from standard CMR sequences, which can then be correlated with histological or clinical 

outcomes. Radiomics has already demonstrated utility in predicting myocardial fibrosis, stratifying 

risk in chronic coronary syndromes, and identifying subtle myocardial abnormalities that might 

otherwise be overlooked. For example, radiomics analysis of non-contrast cine-CMR images has been 

shown to accurately differentiate infarcted from viable myocardium (22). An advancement like this 

could potentially serve as a non-invasive alternative to the traditional contrast-based methods. 

However, its clinical integration will require further standardization in acquisition protocols and 

feature extraction, as well as external validation in large, multi-center cohorts. As such, radiomics is 

best viewed as a complementary tool to conventional AI, particularly in scenarios demanding deeper 

tissue characterization or complex risk stratification. 

     Quality control protocols must also be established and/or improved. While AI reduces inter-

observer variability, it is not immune to segmentation errors or performance degradation in lower-

quality scans. Studies such as Hatipoglu et al. (1) have shown that even the most advanced models 

sometimes misidentify structures or underfit endocardial contours. Besides poor scan quality, another 

paper from Jathanna et al. found that whilst the assessed systems can reliably segment cardiac scar 

tissue, there remains the issue of significant heterogeneity in model performance and evaluation 

standards (25). Institutions should therefore create systematic checkpoints where AI outputs are 

reviewed and approved by human experts, particularly in high-risk scenarios. The integration of 

flagging systems for low-confidence predictions could further support safer and more reliable 

analysis. 

     Equally important is clinician education. For AI to be used safely and effectively, the physicians 

who rely on its outputs must understand its strengths and limitations. Radiologists, cardiologists, and 

imaging technologists should receive targeted training in the capabilities, interpretability, and 

common pitfalls of the AI tools they use. This is particularly crucial in areas where AI performance 

remains inconsistent, such as segmentation of the anatomically complex right ventricle, as noted in 

studies by Bai et al. (2) and Hatipoglu et al. (1). Fostering a culture of digital literacy among clinicians 

will be essential to ensure that AI tools are used critically rather than passively. Building familiarity 

and confidence with these technologies may help practitioners engage more thoughtfully with AI-

generated outputs. 

     Beyond any techincal oversight, the neccesary infrastructure needs to be put in place as well. This 

includes more than just providing adequate computational power and storage. One of the most 
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important factors is the seamless integration into existing clinical paltforms. A possible starting point 

woul be to employ AI first in areas where the gain in efficiency will have the biggest impact, for 

example emergency departments, high-throguhput imaging centers and surgical pre-assessment units. 

This is consistent with findings that AI systems can significantly streamline cardiovascular imaging 

workflows and reduce the number of manual tasks required in segmentation, reporting, and 

interpretation, leading to more efficient and standardized care (20). 

      A study that demonstrated this efficiency gain was the paper by Böttcher et al. in which the 

employed AI-system was able to reduce segmentation times from several minutes to seconds, 

allowing for quicker diagnosis treatment decisions. In settings like acute care, time savings like this 

directly influence patient outcomes. Another factor that could directly impact patient outcomes was 

demonstrated by Jam et al. who have shown that besides imaging, machine learning algorithms can 

be applied for predicting mortality after cardiac surgery and outperform the traditional scoring 

systems (26). 

     Another area that deserves attention is the clinical adoption of contrast-free imaging methods, like 

Virtual Native Enhancement (VNE) developed by Zhang et al. (5). Innovations like these not only 

reduce scan times and the costs associated with it, but also minimizes the amount of gadolinium-

baased contrast agents that patients are exposed to. This could play a particularly important role in 

patients with chronic kidney disease or of there are other contraindications for the use of contrast. 

Another paper that echoed these findings was Cau et al., who emphasize that emerging non-comtrast 

AI models have the potential to reduce the use of contrast agent whilst maintaining diagnostic 

accuracy (24). This has the potential to positively and directly impact patient safety and improve 

overall accesivility.  

     Besides just focussing on the technological advancements and the integration of new and imrpoved 

systems, it is essential for healthcare providers to stay up to date with ethical and regulatory 

considerations in order to provide the best outcomes.Whilst greater efficiency and objectivity are 

compelling factors, it is important to recognize and identify risks like algorithmic bias, lack of 

transparency (Black-Box phenomenon) and data privacy concerns. Developers and clinicians need to 

work together to create AI framewros that clearly prioritze fairness, accountability and most 

important of all, patient autonomy. Algorithms need to be trained and tested on diverse datasets to 

avoid biases in performance which could affect underrepresemnted groups. 

     Regulatory agencies are required to also evolve their oversight frameworks to be able to 

adequately accommodate new AI-driven tools. Just like with traditional medical devices, 
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requirements for external validation, post-market surveillance and mandatory reporting of adverse 

events needs to be rigorously implemented.  

     Finally, interdisciplinary collaboration will be essential. Creating a connection between clinicians, 

data scientists, engineers, and policymakers will help ensure that AI technologies are developed in 

ways that genuinely address clinical needs wihtout disregarding the regulatory and ethical aspects. 

Academic institutions and professional societies should support research initiatives and promote the 

co-design of AI systems. Another important factor is engaging healthcare professionals early in the 

development process in order create AI tools that are not only technologically advanced but also 

clinically intuitive and relevant. 

     In summary, while integrating AI into cardiovascular magnetic resonance (CMR) imaging holds 

significant promise for enhancing diagnostic consistency, reducing variability, and improving 

efficiency, being able to realize these benefits will require more than just technological readiness. A 

collaborative approach that prioritizes ethical responsibility and that respects clinical needs will be 

essential to ensure best possible patient care. 
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