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Summary 

In chemo-informatics several popular libraries exist: OpenBabel [GCC*20], written in    C++, and 

CDK [CYS*03], OpenChemLib [Joe18], Jumbo [Bob97], all written in Java. There is a need to process 

data from files with crystallographic information in these libraries. Crystallographic Information 

File/Framework (CIF) [HWS*06, BBB*16] specifies a standardized file format for the archiving and 

distribution of crystallographic information. It is promoted by the International Union for 

Crystallography (IUCr) [FWB*06]. To read information into programs from CIF files a COD CIF parser 

is needed. Unfortunately, there does not exist a high-quality parser for CIF files for Java language. 

Therefore, it is desirable to port existing CIF parsers written in C to a pure Java environment without 

using Java Native Interface (JNI). This thesis will investigate how to create a C to Java bytecode 

compiler. 

The thesis investigates possible ways to translate C into Java bytecode. The main challenge is to 

simulate the C memory inside JVM, for that, we propose a single class which will simulate behavior of 

malloc() and free() functions. Those functions are custom and implemented only in this work. The 

developed compiler cannot compile entire COD CIF parser into Java bytecode, but it solves the gap 

between C and Java. The supported features of developed compiler are enough to cover pointers, 

functions, structures, method calls and successfully translate them into bytecode. 

 

Keywords: C to Java compiler, cheminformatics, Crystallographic Information File (CIF), ANTLR, 

Java bytecode, ASM (Java library), CIF parser, simulated memory model. 
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Santrauka 

Cheminėje informatikoje egzistuoja kelios populiarios bibliotekos: OpenBabel [GCC20], parašyta 

C++ kalba, bei CDK [CYS03], OpenChemLib [Joe18], Jumbo [Bob97], kurios visos parašytos Java 

kalba. Šiose bibliotekose reikia apdoroti failus, kuriuose yra kristalografinių duomenų. Kristalografinės 

informacijos failas (CIF) [HWS06, BBB16] apibrėžia standartizuotą failo formatą, skirtą kristalografinių 

duomenų archyvavimui ir sklaidai. Jį palaiko Tarptautinė Kristalografijos Sąjunga (IUCr) [FWB*06]. 

Norint iš CIF failų įkelti informaciją į programas, reikalingas COD CIF analizatorius. Deja, šiuo metu 

nėra aukštos kokybės CIF failų analizatoriaus, sukurto Java kalbai. Todėl pageidautina perkelti esamus 

CIF analizatorius, parašytus C kalba, į gryną Java aplinką, nenaudojant Java Native Interface (JNI). 

Šiame darbe bus nagrinėjama, kaip sukurti C į Java baitkodo kompiliatorių. 

Šiame darbe nagrinėjami galimi C kalbos vertimo į Java baito kodą būdai. Pagrindinis iššūkis – 

imituoti C kalbos atmintį JVM aplinkoje. Tam siūlome vieną klasę, kuri simuliuoja malloc() ir free() 

funkcijų veikimą. Šios funkcijos yra individualios ir įgyvendintos tik šiame darbe. Sukurtas 

kompiliatorius negali išversti viso COD CIF parserio į Java baito kodą, tačiau jis sprendžia esamą 

atotrūkį tarp C ir Java kalbų. Palaikomos funkcijos leidžia dirbti su rodyklėmis, funkcijomis, 

struktūromis, metodų kvietimais ir sėkmingai jas versti į baito kodą. 

 

Raktiniai žodžiai: C į Java kompiliatorius, cheminė informatika, Kristalografinės informacijos 

failas (CIF), ANTLR, Java baitinis kodas, ASM (Java biblioteka), CIF analizatorius, simuliuotas 

atminties modelis. 
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Introduction 

The Crystallographic Information File (CIF) format is the most widespread standard for representing 

data in crystallography. It was introduced in the 1990s by Hall, Allen, and Brown [HAB91], from then 

CIF is used as the standard way of documenting and transferring crystallographic data. It is used by the 

International Union of Crystallography (IUCr). The structure of CIF files is well defined but needs 

special parser to interpret and manipulate it. Over the years, several parsers have been developed, 

including pycifrw [Hes06], vcif2 [Her08], and most notably the COD CIF parser, which is part of the 

Crystallography Open Database (COD) Tools. The COD CIF parser is known for its speed and flexibility, 

it does not only parse valid CIFs, but also corrects the formatting [MVB*16]. 

Despite the fact that this compiler is mature, it has a limitation. COD CIF parser was written in C 

programming language and therefore it cannot be used by modern Java based chemo-informatics 

libraries. This is because many prominent chemo-informatics tools—such as the Chemistry Development 

Kit (CDK), OpenChemLib, and JUMBO—are developed entirely in Java. Unfortunately, direct use of 

native C libraries from Java requires the Java Native Interface (JNI), which introduces significant 

complications. JNI code must be compiled and maintained separately for each target platform, 

undermining the portability and maintainability that Java normally offers. Moreover, improper use of 

JNI can lead to runtime crashes, memory safety violations, and debugging complexities, all of which are 

generally avoided in “pure Java” development. 

The one way to enable chemo-informatics to use COD CIF parser is to implement it in Java language. 

However, it is not a reliable approach. The parser is under continuous development and change in one 

language implies reimplementation of the same change in other languages. Moreover, small changes 

which will be implemented in C will stack and in future the implemented compiler will lack most 

functionality. Also, if reimplementation will require the integration with other libraries, there is no 

guarantee that the same library will exist in both languages. Maintaining parallel implementations across 

different languages is not sustainable. 

A better solution is to translate the implementation to another language automatically. It will 

guarantee that the original logic is preserved, and both implementations are up to date. This approach 

would require the development of a C-to-Java bytecode compiler. Compiler should understand and 

translate all C features used in COD CIF parser. The development of such compiler would not only solve 

the CIF parser integration issue but also open the possibility to translate and use other C-based scientific 

libraries within Java environments. 

This thesis will investigate the possible ways to implement such compiler. The main purpose of this 
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work is to understand is this approach is possible to implement. The idea is to create a system that takes 

C source code and generates Java bytecode which is then run on JVM. The approach should not rely on 

JNI or other possible caller, which can execute C code and then feed the result into JVM.  

The C Programming Language was created in the early 1970s in the name of the Unix operating 

system project. It was designed for efficiency, expressiveness, and low-level access to system services. 

The definitive reference, for over 10 years before being officially standardized by ANSI, was Dennis 

Ritchie and Brian Kernighan’s book The C Programming Language [KRi88]. In the 1980s, C became 

one of the most widely used and fastest programming languages because of its portability. It is still used 

as a base of many contemporary systems, with particular use in scientific and embedded computing. But 

C does put a lot on the programmer, especially in matters like memory control and type security. 

However, Java emphasizes modifiability and safety. JVM executes Java programs by first converting 

them into a bytecode format. Though, one of the most fundamental innovations of Java is its automatic 

memory management - the “garbage collector” mechanism relieves programmer from being responsible 

for tracking every last allocation of memory. Java developers get to think high level the logic of things 

and should be concerned less with managing low level resources. As a result, they have less chance for 

memory leaks or errors caused by wrong pointer manipulation. 

Memory management in Java is automatically done by the garbage collector, which detects unused 

memory and frees it up. It runs in the background and periodically walks through the object reference 

graph to identify memory that is no longer reachable (i.e. referenced) so it can be released. This creates 

a reliability pattern with a performance tradeoff between the two. Contrast this with C, where the 

programmer must allocate and deallocate memory explicitly using malloc() and free(). This is often the 

root of subtle bugs and memory safety issues, particularly in large, long-running applications. 

With a successful transformation of the COD CIF parser to Java bytecode, Java-based chemo-

informatics tools can provide full support to CIF as well as its extensions (e.g., CIF2). A particularly 

useful application of this would be accessing crystallographic data in the Crystallography Open 

Database (COD). The COD is a publicly writable repository for thousands of crystal structures of small- 

and medium-size molecules [GDM*12]. Such data is crucial for numerous fields, such as drug design, 

material science, and structural chemistry. Incorporation of these data into the Java library would 

provide the researchers with tools of choice for their automated data analysis, visualization and 

simulation. 

For example, the Chemistry Development Kit (CDK) contains classes, such as CIFReader, which 

allow CIF files to be read. Nonetheless, this support is partial and does not implement everything in the 

CIF specification or its successors, CIF2. These libraries could be improved with general support for 
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crystallographic data with a fully functional parser integrated like the COD CIF parser. This advance 

would enable new applications within cheminformatics, such structure-based screening, descriptor 

generation and machine learning. 

The same can be said for other popular Java based projects like JUMBO, OpenChemLib, and Jmol 

that would highly profit from improved CIF parsing. Some libraries may provide a minimal CIF parser 

as a convenience tool, but without significant independent CIF expertise these functionalities tend to be 

built around (and thereby limited by) the overall functionality of the library, reducing the utility for a 

considerable fraction of crystallographic datasets. Automating C-to-Java compilation would overcome 

this limitation, enabling such support with little to no major rewrites of existing code bases. 

Abstract In this talk, we describe our experience designing and building a C-to-Java compiler that 

generates Java bytecode, and we specifically focus on the issues and challenges of translating the COD 

CIF parser. Not only does this solution fulfill the pressing need for better CIF support in Java-based 

chemo-informatics but it also provides the basis for more generic interoperability between C libraries 

and the JVM ecosystem.  
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1. The goal and tasks of the research 

The goal of this thesis is to investigate the feasibility of translating C code into Java bytecode in 

order to integrate legacy C libraries into Java-based environments. This work focuses on developing a 

prototype compiler capable of translating a selected subset of C language features into JVM-compatible 

bytecode. The motivation stems from the need to support integration of C-based scientific tools, such as 

the COD CIF parser, into Java-based cheminformatics libraries, while maintaining portability and safety. 

Although full support for the COD CIF parser has not yet been achieved, this thesis sets the foundation 

for such integration by implementing and evaluating the required infrastructure for a partial translation 

pipeline. 

To achieve the goal the following tasks are planned: 

1) Explore the subset of C language features needed for translation of COD CIF library. 

2) Design compilation strategy for incomplete feature list used in COD CIF library. 

3) Implement the small set of C features features in compiler. 

1.1. Background 

 

 

Figure 1 C compilation process (image was adapted from [Ter10]) 

The compilation process consists of several stages. Figure 1 shows the stages through which the 

pipeline goes. Before compilation, preprocessor should handle includes and macros. The preprocessor 

spits out pure C code with some line number directives understood by the compiler gives object code as 

an output [Ter10]. The final stage is performed after the linker resulting in an executable file. 

The Java programming language presents the possibility of compiling output that can run on any 

computer for which a Java virtual machine is provided. Using a virtual machine, the output can be 

recompiled at the execution platform by a compiler [Nal18]. The bytecode is not dependent on any 

platform and is not native code. JVM has a compiler which is known as JIT (Just In Time) [MDP*01]. 

JVM takes bytecode and gives it to the JIT and JIT compiler outputs machine-dependent native code 

[Nal18]. 

There exist three methods to translate Java language to C language. The first way is to take .c files 

and to generate a human-readable program written in the .java format. This method is called source-to-

source translation [Pou89]. It often does translation well, but the difficulty of this method lies in the 

difference in semantics of the languages. Despite that, existing systems employ this technique. These 
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translators can be divided into two categories: partial translation which is completed by a human and 

total translation which gives an error on a large class of input files. The translator can not convert every 

possible C construct. An example system of the first category is Jazillian. It takes C source codes and 

produces readable Java code. However, it can translate only a small subset of the C language. Tools of 

the second category are c2j [Daw19], Ephedra [Mar02]. They provide great translation but none of them 

covers a large set of C language standards. 

Another possible transition method is to generate machine code from .c files and then convert that 

machine code to a Java bytecode [Ora20]. This method is called binary-to-binary translation. One such 

translator is NestedVM [BAd09]. It does not deal with source code as input. This gives several 

advantages. It is independent of the source language. It can support any language for which MIPS 

[Moh20] targeted compiler exists. It uses compiled output files as its input. Therefore it skips semantic 

analysis. It does not deal with preprocessor usage and library locations. NestedVM supports all non-

privileged instructions, floating point processor, add/multiply unit found on MIPS R2000 CPU. 

Third option is to generate .class files compiling .c files. This method is called source-to-binary 

translation. In this translation compiler emits bytecode from the C source file. One of such translators is 

“JVM Back end” for GCC compiler known as egcs-jvm. But this compiler does not allow pointer math. 

Thus compiler fails for a huge class of programs. Another available way is the Java back end for the LCC 

[Dav14] compiler. The system is known as lcc-java. The main disadvantage of this tool is the lack of libc 

[Mic16] library support. The standard library responsible for the main system calls such as malloc, open, 

printf. After such a translation, very few programs can run without customization. 
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2. Review of existing tools 

Language C was widely used before modern programming languages such as Java was introduced. 

Modern languages can use existing libraries written on C. Solution can be done through a Java Native 

Interface (JNI) that calls native code within a virtual machine. However, JNI cannot be used everywhere 

because of security and portability concerns. Methods called through JNI have a risk of heap corruption. 

Native code requires it to be compiled ahead of time on each architecture where it will be run. That 

restricts the use of JNI if architecture is not known beforehand. Another solution is to translate one 

programming language to another. When compiling source code, it is useful to represent it in machine 

independent way instead of direct compilation to machine code. Machine independent representation is 

called IR (Intermediate Representation). Common optimizations such as elimination of unused code, 

value to constant transformation is done on IR level. IR is used by compilers such as GCC (GIMPLE), 

Roslyn (CIL), LLVM (LLVM IR).  

A way of representing C code is to use LLVM IR. This representation can be obtained using LLVM 

compiler. LLVM IR is an intermediate representation used by LLVM framework. LLVM front end clang 

translates a source program to an LLVM IR. Then the LLVM framework makes optimizations and later 

LLVM back end generates machine code. (Figure 2) 

 

 

Figure 2 LLVM pipeline 

 

It is possible to use LLVM IR to call methods written in C language from Java code. The project 

which allows this is called Sulong. Sulong is yet another LLVM IR interpreter. The goal of Sulong 

[RGW16] is to execute C language on GraalVM. GraalVM is a universal virtual machine that tries to 

execute different languages on a single runtime. With a Truffle framework implemented on the top of 

GraalVM, it is possible to run LLVM IR targeted languages. Truffle framework allows running Truffle 

AST generated by the Sulong project on GraalVM. Figure 3 represents the pipeline of the Sulong project. 
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Figure 3 Sulong pipeline (image was adapted from [SEi19]) 

 

The main part of the GraalVM stack is the Graal compiler that compiles Java bytecode to machine 

code. The Truffle framework produces Graal IR that is directly interpreted by JVM. However, GraalVM 

together with the Sulong project can only run small single-threaded C programs. The part of the Sulong 

project that is responsible for producing Truffle AST from LLVM IR is TruffleC. TruffleC [GRM*2014] 

is a combination of a self-optimizing AST interpreter and a Just In Time (JIT) compiler. TruffleC can 

make optimizations on AST, such as function inlining, changing variables to constants. The problem 

with Truffle is that languages implemented on top of the Truffle framework use Truffle frames. Truffle 

frames are arrays that hold values of local variables used in functions. These variables are never allocated 

on the Java heap. It means that arrays can never be referenced by pointers because they do not have a 

memory location. This is not a case for C code. TruffleC can not use Truffle frames for variables that are 

referenced via pointers in the C program. To fulfill C specification TruffleC stores all global or static 

variables in a memory block of the native heap. It guarantees that variables will not be garbage collected 

during execution and pointers can be used to reference this data. This heap is accessed using Java Unsafe 
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API [MPM*15] which is available in OpenJDK. Any kind of pointer arithmetic is available in TruffleC 

because all addresses, used to access data in the native heap are long (64 bit) values. Another difference 

between Java and C lies in a stack frame. C can keep arrays, unions and structures in a stack instead of 

the heap. TruffleC solves this problem by allocating a second memory block in a native heap like a stack. 

The second block holds all arrays, unions and structures allocated by the C program on the stack. This 

native heap memory model allows referencing values using pointers. However the Graal compiler makes 

all optimizations on the Truffle frame. Therefore TruffleC stores local variables that are never referenced 

by pointers in a Truffle frame array. Another intermediate representation that can bring C library into the 

Java environment is MIPS [CPS19] binary. The code is compiled into MIPS binary and then translated 

into Java bytecode. The advantage in such an approach is that it takes the binary representation of the 

code and does not deal with language. The system that uses described technique is called NestedVM. 

NestedVM allows taking the binary representation of code as an input. That means NestedVM does not 

care about parsing and code generation. Also it is freed from language specifications. NestedVM can 

support any language for which MIPS targeted compiler exists. Avoiding compilation process NestedVM 

guarantee that code was checked against conditions introduced by the compiler. NestedVM supports all 

instructions found on MIPS 2000 CPU. There exist many similarities between MIPS ISA and Java 

Virtual Machine. All MIPS instructions are 32 bits long and well supported by GNU Compiler. 

NestedVM does not support threading. 

 

 

Figure 4 C source to Java source (image was adapted from [BAd09]) 

 

NestedVM has two modes to operate on code. The first mode is binary to source code (Figure 4). In 

binary to source, the C code is compiled into a binary, including any libraries, then the binary is taken 

by NestedVM that produces Java source code as a result. The result then can be given to the javac 

compiler which generates Java bytecode. 
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Figure 5 C source to Java bytecode (image was adapted from [BAd09]) 

 

The second mode is binary to binary translation (Figure 5). This case translate MIPS binary directly 

into Java bytecode. Second mode has several advantages over the first one. In this mode we can eliminate 

use of javac compiler to get bytecode. Another advantage is that MIPS binary can contain sequence of 

instructions that can not be presented as a source code. Another way to represent C code is to use the 

clang front end for LLVM but instead of LLVM use clang AST. Clang AST [Kli13] was designed to 

help in the development of tools for C/C++ languages. For instance clang-check tool is a simple syntax 

checker which traverses clang AST and checks the syntax of the source code. Clang AST is fully type 

resolved [Appendix 1]. Clang AST is being used in the Clank [KVo17] project which performs source 

to source translation of code from C/C++ to Java.  

Despite known approaches which use LLVM IR, this project takes clang AST as an intermediate 

representation. The project takes C/C++ source code and transfers it to clang AST. After that Clank 

traverses clang AST and generates Java source code. This method gives pure Java code which is as close 

to the original as possible. This results in the portability of code on all platforms available where JVM 

can run. As an alternative for clang AST the parse tree of ANTLR4 [Ter13b] can be used.  

ANTLR4 is a tool that a developer can use to create a parser/interpreter for a language. It accepts 

an input grammar that resembles the structure of a language, and emits a parser that can consume that 

language. ANTLR4 is a compiler tool that takes grammar and generates a parser for it. ANTLR4 is 

implemented in Java, and you can generate parsers with this tool for various languages: Java, C#, Python, 

JavaScript, etc. It supports most grammars, and implements advanced features like tree building, error 

recovery, and support for left-recursive rules. ANTLR4 is widely utilized in such tools/libraries as 

Eclipse IDE, Hadoop, and Groovy - just to name a few. If you want to parse or interpret language, an 

option is ANTLR4. 

In order to directly generate Java bytecode from C code clang AST and ANTLR4 can be utilized 

with Java bytecode manipulating libraries. Some of them are: BCEL [DAH99], SERP [WHI07], ASM 

[BLC02]. BCEL is a Java class which manipulates class files in three steps. The first step is 

deserialization of the byte array. During that process, all bytecode instructions are converted to objects. 

The second step is the implementation of modifications. And the last step is to serialize modified objects 
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into the new byte array. This approach solves slow serialization and deserialization problems. It does not 

change anything in the byte array but modify deserialized objects. 

SERP uses a similar approach as BCEL based on object representation of classes. The SERP also 

contains classes to manage symbol tables. It keeps the references to the symbol table up to date. The 

indexes in symbol table are automatically changed if a new constant is added in or removed. However, 

SERP, like BCEL, does not remove unused constants from the symbol table. 

Another option is ASM. ASM is a highly scalable and fast Java library for generating, transforming 

and analyzing Java bytecode. It includes an API to create and modify Java byte code and an API for 

analyzing and reading the byte code of Java classes. ASM is small, fast, and simple to operate with; thus, 

it has become a high-quality representative of class file framework broadly used in the fields of custom 

class loaders, code generation, and Java program modification. 

ASM is used by many popular Java tools and libraries, such as the Spring Framework, Hibernate, 

and Apache Commons BCEL. The main idea of ASM is not to use object representation of classes. It 

takes a lot of time and memory to de-serialize the class. The solution made in ASM is to use the same 

approach as in SERP and BCEL but without explicitly representing tree with objects. The design pattern 

used in ASM is called visitor. The visitor design pattern can manipulate the code of methods without 

creating one object per instruction. The approach based on the visitor design pattern is, therefore, more 

efficient than the approach used in BCEL or SERP. Along with manipulation it allows to create class 

files. ASM has ClassWriter class which is used to construct classes directly. 
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3. Translating C into Java Bytecode 

This part of the document will outline the compilation strategies which are intended to translate code 

written in the C programming language into a bytecode format. 

3.1. Compilation strategies. 

The hierarchy of a library built using a C to Java compiler should not follow anything like that of a 

C library. In a Java .c and .h files can be treated like a class and interface. But this does not capture the 

full picture, since C has structures, which are essentially classes themselves, and the compilation strategy 

for C structures should then emit a separate .class file with a class for each structure. However, because 

we are going to store these objects in serialized .class files, every field in a structure should be marked 

as an instance field. 

The C programming language requires manual memory management, which entails the explicit 

allocation and release of memory. Conversely, Java does not mandate explicit memory allocation. JVM 

automatically calls garbage collector to identify and remove any references that are not being utilized 

within a project. As a consequence, functions that allocate memory in C can be replaced with object 

creation in Java bytecode, and functions that deallocate memory can be omitted from the bytecode 

generation process.  

Java does not have the ability to use pointers, so one way to simulate them is with arrays. We could 

replace each pointer (which is used in C) that is used in Java with an array. A single element array 

representing a pointer to a single element However, we never want to lose the ability to calculate the 

pointer arithmetic, so we will use an array to represent pointers. Pointer arithmetic to enumerators works 

differently. In C, you can enumerate through arrays by incrementing a pointer. But this cannot be done 

in Java, since we cannot compute references to an array this way. In order to point into a C array from 

Java, we need to first load an integer variable to the stack, then load reference, and then treat this 

combination of reference and index  as a pointer. 

C and Java approach their character data types in very different ways. For example, C needs only 

one byte for a character and Java uses two. Since C chars are promoted to the Java byte data type we 

need to fill this gap when generating the bytecode. Automatic variables in C need not be initialized before 

being used. On the contrary, according to Java standards, all the variables should be initialized before 

using them. To bridge this gap between the two languages, one solution is to push the null reference onto 

the stack together with the variable when declaring automatic variables in Java. This fixes the difference 

between C and Java in terms of automatic variables by ensuring all variables are initialized before they 

are used. 
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Java does not natively support C-style pointers, so our strategy is to represent pointers as 64-bit 

integer values (longs) that encode addresses within the simulated memory regions. In Java, pointers are 

replaced by indices or handles; for instance, a pointer to a single element can be represented as an index 

plus a block identifier for the memory segment (stack or heap). It is crucial to retain pointer arithmetic 

capabilities: in C, one can iterate through an array by incrementing a pointer. The compiler preserves this 

by interpreting pointer arithmetic as arithmetic on these 64-bit address values. If a pointer p points to an 

element in the simulated memory, incrementing p by 1 (for, say, an int*) will add the size of int (4 bytes) 

to the address value. Our bytecode generation uses arithmetic instructions (IADD, LADD, etc.) to 

accomplish pointer addition. The lack of actual machine addresses in Java means we cannot compute an 

address to an arbitrary location, but by confining addresses to our simulated memory arrays, pointer 

arithmetic is made feasible and safe (since it only affects indices within our arrays). 

In summary, our compilation strategy for mapping C to Java bytecode involves organizing output 

classes in a logical manner (e.g., one per struct, one main class for global context), implementing a 

simulated memory for manual memory management and pointers, and translating C control structures 

and operations into equivalent bytecode sequences. This strategy underpins both designs of the compiler 

described in the following sections. 
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4. Implementation of C Language Features in the Custom Compiler 

Using ASM library, our custom C compiler emits Java bytecode targeting the Java Virtual Machine 

(JVM). Since the JVM doesn't support things like pointer arithmetic and direct memory addressing 

(which are pretty fundamental to C), the compiler maintains a virtual C memory model, where all 

memory is allocated through Java byte arrays and 64 bit addresses. In this model, all C data (primitives, 

arrays, structures, etc.) lives in a managed byte-array heap, and pointer values are just 64-bit integers that 

encode a memory address (with segments and offsets). This layout is instrumental for the compiler to 

mimic C low-level memory semantics on the JVM with respect to pointer arithmetic and explicit memory 

management, and address manipulations that must behave in a way which is consistent with native C. 

Thesis will describe incomplete feature list (25) of C language for COD CIF parser in next subsections. 

Work  goes through every feature explaining its purpose in C and how the compiler supports it or would 

support it in terms of simulated memory model, symbol table management, and ASM-based bytecode 

generation. 

 

4.1. Primitive Types 

The compiler understands common primitive C types (char, int, long) and translates them to how 

these are represented in the JVM. Each base type is given a fixed size within the model so that it uses a 

consistent amount of space (e.g. char 1 byte, int 4 bytes, long 8 bytes), since those are the common C 

definitions. By representing the types used in the generated code by Java primitive type (e.g. 32 bits int 

for C int), the implementation can rely on the JVM arithmetic instructions while using the correct C 

representation width. Casting normally handled by appropriate conversion bytecode generation or if the 

data types differ in size by reinterpreting the values; converting from a larger type into a smaller (where 

the value would be too large to be stored in the smaller type) could truncate the value is semantics similar 

to that of standard C. 

 

4.2. Structs 

C struct types are implemented by creating a corresponding layout in the simulated memory and 

then, behind the scenes, generating helper constructs that operate over this layout. For example, when 

we hit the struct type, a Java class will be created to represent the schema of the struct. For every C struct 

definition, a class is generated with the same name as the struct and its fields defined in the same order 

as the C struct. The compiler can compute field offsets and struct size (eg, through Java reflection on 

the generated class) using this class. The size of a struct is the sum of the sizes of its fields and that size 
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is allocated contiguously from the byte-array heap whenever a struct variable is used.  

We compile field access into a sequence of bytecode that calculates the address of the field before 

reading or writing the value. As an example, if the compiler sees a line of code with a pointer to a struct, 

it knows that for a given instance of that struct, each field has a constant offset, so the compiler will 

generate an address calculation base_address + field_offset to read/write the field memory location. It 

then emits the suitable load or store instruction, either to load the field value from the byte array or to 

store the value of the field in the byte array. It preserves C's rules for memory layout by treating structs 

like contiguous memory blocks, using pre-calculated offsets for fields.  

The use of an internal Java class for each struct is primarily for bookkeeping purposes (ensuring that 

fields are ordered correctly and the struct size is calculated properly) and does not incur much runtime 

overhead. We still store all data in the simulated C heap. This gives us a clean separation between struct 

type metadata (the generated class) and struct instances (in the byte-array memory), allowing us to easily 

support sizeof on structs and generate correct code for struct assignments. 

 

4.3. Pointers 

Pointers are a central construct of C and the compiler directly maps pointer semantics onto the JVM. 

Pointer value is a number (long) that mimics an address in simulated memory (64-bit) In practice, the 

address is divided into a high-order "block" index and a low-order offset, which are packed within the 

64-bit value. The block index is used to identify a section of the "simulated heap" (for example, one 

block may represent the static stack area, while the others will be for heap allocations), and the offset 

will be the byte position in that block. With this scheme, you can nicely handle pointer arithmetic and 

access schemes for memory segments. As an example, the null pointer is represented as a special block 

index (block 0) pointing to an empty byte array at the start of the memory; if a pointer has a block 0, it 

is interpreted as NULL. 

When an expression consists of a pointer with an addition or subtraction with an integer number 

(such as p + 3), the compiler calculates the numbers by multiplying the integer with the size of the pointer 

type and add that value too pointer's offset. In a native C environment, pointer increments move the offset 

by the size of the pointed to elements (i.e. an int* advanced by 1 adds 4 to the offset) and this is preserved 

in our compiler as well. This arithmetic does not change the block index, so pointer still points to the 

same memory block, just with a new byte offset. Such calculations are emitted as normal arithmetic 

bytecode, plus constant multipliers based on type size. 

When compiling a pointer dereference (*p), the compiler emits an instruction sequence that uses the 

block and offset of the pointer to access simulated memory. With a byte-array heap the compiler creates 
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code to index into it: it loads the global heap array and the pointer's block index selects a byte sub-array, 

and the offset loads the value from that sub-array. As an example, pointer p might represent value L, a 

64-bit address, where the high 32 bits of L represent heap index and low 32 bits offset. Likewise, storing 

through a pointer (p = value) creates code that writes into the byte array at the address which was 

calculated. We use appropriate load/store instruction according to the pointee type (byte, int, etc.). 

The numeric address value for a char* and an int* is the same so to the specific pointer type that 

driver provides, notice that the casting between pointer types (from char* to an int*) only changes the 

interpretation of the pointer but does nothing in our model, it does not change the actual address value. 

Since our pointers are simply addresses, pointer casts become no-ops in the bytecode (with the exception 

of re-attaching a type in the semantic analysis). You still have the same long value stored in the pointer; 

it just determines how to handle subsequent pointer arithmetic, or how to dereference. This closely 

mimics the way C handles pointers. 

In particular, the compiler models pointers as 64-bit addresses and provides primitive operations for 

all arithmetic and dereference operations, thereby restoring the raw memory access of C on the JVM. 

This was important considering both the lack of native pointer support in the JVM, and the need to have 

complex pointer usages (involving multiple levels of indirection and pointer comparisons) act correctly. 

Pointer comparisons (for example, p == q) are implemented by comparing 64-bit address values, which 

compares in the same way C does (without attempting to interpret the content, but simply compare the 

numeric addresses). 

 

4.4. Arrays 

C arrays are implemented as a contiguous memory region in the simulated heap. Whenever we 

define an array (either globally or locally), the compiler allocates a block of memory corresponding to 

the array total size. So, for instance, a definition int arr[10]; would contain a 40 byte allocation (10 * 4 

bytes) in the Java stack, or, if array is treated as a pointer, in emulated C memory section. 

For example, accessing an array element (e.g. arr[i]) is done via pointer arithmetic under the hood: 

the base address of the array (which in C is the address of the first element) is added the index offset i 

sizeof(element) to get the address of the target element. The compiler will calculate the address and 

generate code that is either directly loads/stores from this address. In reality, if arr is a known local or 

global array, then the base address is a constant (in same block), and the code for arr[i] can compute 

base_offset + i * 4 and index into the byte array. If arr is accessed through a pointer, the base is a run-

time pointer value (first 32 bits), and the math is done on that offset value (last 32 bits). This makes array 

indexing exactly the same as pointer arithmetic according to C semantics. 
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This has several consequences, one of which is that in expressions arrays decay to pointers which 

point to their first element. The compiler takes this into consideration, when an array is passed into a 

function or assigned to a pointer, the compiler converts the array's base address into a pointer that has 

the type of the array. In reality, the array never gets copied; only the address gets passed around, as a 

regular C implementation would do with function arguments by pointer Multidimensional arrays are not 

used in COD CIF, hence our compiler does not generate bytecode for them. 

 

4.5. Function Pointers  

In a JVM-hosted implementation, function pointers in C are both a difficult and special case to 

handle: the JVM does not support jumping to arbitrary code addresses. This problem is solved by the 

compiler by abstracting function addresses as indices that can be used to indirect a call. To be precise, 

each C function definition is given an identifier, and a function pointer internally a long value that stores 

that identifier (implementations might encode it in the same scheme that stores the block-index/offset of 

the pointer, or might hold it in an entirely separate symbol table to ensure that it will not conflict with a 

value that points to data). 

Instead of a block index pointing at some memory, a function pointer may have a specially chosen 

block or encoding to indicate "code". The compiler, for example, could mark out a specific block index 

or range of addresses to be a type of function pointer, and then have the offset or lower bits encode the 

function ID. If code takes address of function itself (i.e. have something like int (*fp)(int,int) = add;), 

the compiler generates a constant long. This is simply saved like a normal pointer. Calling a function 

through a pointer (for example: (*fp)(a,b)) is an indirect call in the bytecode. Since Java bytecode is 

unable to invoke a method via a dynamic numeric address the compiler uses an indirect dispatch. 

That is certainly some overhead, since this is a linear or table lookup, but for a thesis-level 

implementation, this is an appropriate amount of overhead for explaining correctness. This means that 

indirect function pointer calls in the program are resolved to calls to known (by the compiler) function 

bodies, ensuring safety (the compiler will also ensure type safety of the signature). The context (like local 

variables, call stack, etc.) for the call is handled by the normal function call mechanism (see the function 

calls/recursion section below), so the only thing special about a function pointer call is this dispatching 

logic. This respects C semantics: the same pointer value is always operated on, meaning that if you pass 

the same pointer value around, it will always end up calling the same function; additionally, comparisons 

of function pointers (like whether two function pointers are equal) compare on their identifiers as well. 

In summary, function pointers are supported by mapping code addresses to identifiers and 

performing an explicit dispatch. While this differs from a native implementation (where a function 
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pointer might literally be a CPU address to jump to), it provides the equivalent behavior on the JVM.  

 

4.6. Global Variables 

Global (file-scope) variables must have static lifetime and must be accessible from any function. 

Our compiler elected to store its global variables in a special part of simulated memory, with compile-

time fixed addresses. The simplest approach is just to allocate a chunk of memory for global data at 

program startup, either from the heap[1] byte array (the “stack” segment) or from some other memory 

block for all globals. Each global variable is assigned a constant offset from that region. So, if the first 

global is an int, it may be at offset 0 of the global block, the next global (say a struct) at offset 4, etc., 

properly spaced according to the size of each variable. These global offsets are tracked by the symbol 

table maintained by the compiler. 

The compiler emits code to access the static address of that global when it generates code that uses 

it. This is usually done by loading the base pointer of the global segment (which may be the base pointer 

of some known block index or a stored base pointer) and the constant offset afterwards. To load a global 

int G, for example, the code might push the global block index and G's offset, and then do an array load 

from the simulated heap. With the address fixed, the compiler is able to hard-code those values into the 

bytecode, making access to globals efficient (with no dynamic calculation except for array indexing). 

Global variables may equally be initialized with unchanging values or memory locations. If an early 

value is provided (e.g., int x = 5; at global scope), the compiler will generate code in the program's 

initialization (for instance, the class initializer approach in bytecode) to store that value into the suitable 

memory location before any user code executes. For pointer initializers that refer to other globals (e.g., 

int *p = &x; globally), the compiler computes the address of x and stores it in p's memory slot during 

initialization. Deriving the address of a global (&globalVar) is straightforward since the global’s address 

is constant: the compiler will yield the corresponding long pointer value (comprising the global block ID 

and the offset of that variable) as a constant. This permits pointers to global variables to behave similarly 

to pointers to any memory location. 

By handling globals in this manner, the compiler ensures they behave as "static" storage with a single 

allocated location throughout the program's execution. All functions reads and writes reference exactly 

this slot, replicating C's design of global variables persisting at a fixed memory location during the 

program. The simulated memory technique also implies that globals can be treated similarly to other 

memory - specifically, identical byte-array access routines function for globals as well as locals or heap 

data, streamlining the runtime system. Additionally, the runtime must ensure thread-safety for globally 

shared memory, as concurrent reads or writes by multiple threads could potentially cause race conditions. 
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To address this, the compiler implicitly protects globals with locks to avoid unintended interference 

between threads. 

Memory segmentation note: We effectively maintain two logical segments in the simulated 

memory: one for global/static data, and one for the stack (automatic variables). In our 

CMemoryImplementation, for instance, heap[1] serves as a regular heap. We avoid interference from 

global data with the runtime call stack by having separate subregions for each, or by having separate 

offset management for each. For example, there is no reason why the compiler shouldn't simply place 

the stack at heap[1], and place globals above it. Thus as the stack grows (due to recursion or for local 

use) it won't clobber the global variables. Such details ensure the integrity of global data throughout 

program execution. 

 

4.7. If Statements 

If statements are implemented using conditional branch instructions in the bytecode. The compiler 

evaluates the condition expression and an integer result (in C, all non-zero integers are “true” and zero 

is “false”). This result is usually int left on the stack so 0 - false and 1 – true. 

The compiler must implement the if, so it creates a label for the else (or end section). Without an 

else, for a simple if (cond) {... } the pattern for generating bytecode is: evaluate cond, and then emit a 

conditional jump instruction that skips the true-block if the condition is false. After computing cond, for 

instance, the compiler would then emit IFEQ L_else (jump to label L_else if the condition equals 0), 

which would allow us NOT to execute the true branch at all if cond == 0. As the next step the compiler 

emits the true branch code which ends with the L_else label (jump target) IF-ElsE structure uses two 

labels: One at the beginning of the else-block and another one at the end of the whole if-else structure. 

When false, the compiler emits IFEQ L_else to jump to the else part, followed by an unconditional jump 

at the end of the true-part to go to the end label (skipping the else part). Finally, it emits the else-block 

and the end label. 

The above form ensures only one of the true/else blocks is executed, just like in the high-level 

semantics. By using ASM’s branch opcodes (IFEQ, IFNE, IF_ICMPEQ, etc.) the compiler can handle 

all forms of conditions, including relational expressions. For instance, a condition a < b would be 

evaluated by a relational operation that leaves a 0/1 on the stack (or alternatively, the compiler might 

directly use a comparison jump: e.g., IF_ICMPGE L_else to jump if a >= b which means the if (a<b) 

condition failed).  

Both are in fact approachable. The bytecode uses goto labels to fork the control flow when it needs 

to. The resulting pattern also maintains short-circuit logic. For instance, if inside the conditional 
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expression it sees && or ||, it treats those separately but still correctly does lazy evaluation. On a high 

level the if statement compilation boils down to a mapping to conditional jumps in the bytecode, where 

labels denote the beginnings of the then and else blocks. 

 

4.8. While Loops 

While loops are implemented by the compiler using a combination of labels and conditional jumps, 

forming a loop structure in the bytecode. A while (condition) { body } is translated as: 

• A label at the beginning of the loop (call it L_top), it marks the start of each iteration. 

• Bytecode to evaluate the loop condition. 

• A conditional jump out of the loop if the condition is false. For example, the compiler might 

emit IFEQ L_exit (jump to exit label if condition is 0/false), so the loop terminates. 

• The loop body code is emitted next. 

• An unconditional jump back to L_top is emitted at the end of the body, causing the program 

to loop back and re-evaluate the condition for the next iteration. 

• A label L_exit is placed marking the point where control lands when the loop finishes (i.e., 

the condition was false). 

With ASM this is done by creating Label objects to L_top and L_exit. The condition code is 

produced at L_top, and the jump by an ifeq or ifne instruction to L_exit, depending on how the condition 

is evaluated. When done, we GOTO L_top (unconditional jump) to jump to the top of the body of the 

loop. This is like how one would manually write a loop in assembly or pseudo-code. As a result, the 

body repeats as long as the condition is true. 

The compiled while structure supports break and continue (described below) naturally—L_exit and 

L_top are both targets for break and continue, respectively. If a break emerges within the loop body the 

compiler emits a jump to L_exit while in the event of a continue it emits a jump to L_top (actually the 

continue in while loop jumps to reevaluate the condition is true). A little context-keeping in the compiler 

during code emission for a loop body lets you perform these translations. One can check the while-loop 

translation correctness in that — if the condition is false the first time checked, the body is skipped 

altogether (as the jump goes directly to exit), and if true, the body executes and finally jumps back to 

check again — exactly as in the source logic. 
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4.9. For Loops 

For loops (for(init; cond; iter) { body }) are compiled in a manner similar to while loops, with some 

extra handling for the initialization and iteration expressions. The compiler breaks a for-loop into its 

components: 

• The initialization section (init) runs one time, before the loop begins. The compiler emits code 

for init just like it would for any other statement (a declaration or an assignment expression), and 

that code gets emitted immediately right before the loop start label. 

• The test cond is evaluated before every iteration, just like the condition of a while-loop. After 

the initialisation code, one has a label L_top, at the point where the condition will be checked on 

each iteration. It essentially compiles the condition to a boolean (0/false or non-zero/true) and 

emits a conditional jump (e.g. IFEQ L_exit) to quit the jump. 

• Next, again, just as in while loop, the body of the loop is generated. 

• The third step is executing the iteration expression (iter) after the body. If we take a look at the 

code emitted by the compiler, the iter step comes after the body. This generally increments a loop 

index or does some other forms of update. Important: After the iteration code has run, the 

compiler subsequently emits the GOTO L_top unconditional jump to re-test the condition for the 

next loop iteration. 

• Similarly as while, L_exit label to the end of the loop, where control jumps to when the loop is 

over. 

This ordering of the pieces (init, L_top, cond check/jump to exit, body, iter, goto L_top, L_exit) 

allows the generated bytecode to properly implement the for-loop semantics. The initialization phase 

runs once, the condition controls the entry to the body each time, and the step runs after every execution 

of the body. For instance, a for-loop like for(int i=0; i<10; i++){... } would compile something like: code 

to set i=0; label L_top; compare i < 10, if false jump to L_exit; loop body...; after body, increment i++; 

jump back to L_top; label L_exit The order of execution is exactly what we expect it to be. 

From jump labels perspective, we re-use the same jumping label pattern as in while (one for top and 

one for exit) However, the existence of the iteration step means there is some extra emitted code between 

the body and the jump-back. The continue statement in a for-loop will go to the iteration step code (not 

L_top directly). Continue will skip the rest of the body, but it will only skip the part before incrementing 

and checking the next condition. 

The compiler sees a continue in a for-loop context, it emits a jump to a label located right before the 

iteration code. What actually happens is that the compiler would internally generate some label for the 
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“continue target” (inside the iter code) which may differ from L_top, or L_top could be reused that 

requires the ordering of the code to be right. For instance: L_top for condition, L_continue for starting 

of iter code, L_exit for end. Then ends the body (or a continue) branches to L_continue, at L_continue 

the iter runs then a GOTO L_top. This will guarantee that the next iteration starts where it left. In 

summary, the for-loop compilation is the same correctness argument as while-loop compilation, but 

adding in reasoning about the initialization and increment parts in the correct locations. 

 

4.10. Break and Continue 

Break and Continue statements change the regular flow in loops; compiler implements them by 

using a direct jump to the desired loop label. When generating code, the compiler remembers the labels 

of the current loop: the label to go to for a break (the exit) and the label to go to for a continue. These 

labels are finalized upon entry to a loop: for a while-loop the continue target is the condition-check label 

(or loop top) and for a for-loop the continue target is the iteration-step label (as mentioned previously), 

while the exit-label is after the loop body in both cases. 

The compiler emits an unconditional jump (ASM opcode GOTO) to the exit label of the loop when 

it encounters a break statement. This will cause the execution to skip the rest of the loop body and go to 

the end of the loop, thus ending the loop prematurely. Since each loop in such nested structures will 

have its own exit label, a break without argument breaks out of the innermost loop in which the break 

occurs. 

In bytecode, jumping out with GOTO is straightforward since all loops in one function compile into 

a single method’s code – the only work is to have the correct label. In the case of a continue statement, 

the compiler generates a GOTO to the continue target label of the loop. In the case of a while-loop, this 

target will often be the top of the loop (the condition that gets run). So a continue in a while makes a 

jump to re-check the condition at the top, and it forgoes code underneath that continue in the body. As 

mentioned, the continue target in a for-loop is typically located just before the code for the iteration 

expression. This means a continue will jump to that label, performing the iteration step (which may for 

instance simply increment the loop index) and proceeding into the next iteration's condition check. This 

corresponds with the high-level behavior of continue in a for-loop. 

Correctness of break/continue handling is merely a function of the compiler emitting the correct 

target labels. The semantic phase validates that these statements only appear inside of loop constructs 

(the parser would error break/continue outside loop). As for verification, the JVM bytecode verifier has 

no issue with the forward jumps (it's fine because break/continue are forward in the sense that, in the 

instruction stream, they jump out of or to the end of the loop construct), as long as destinations of jumps 
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are the same method (that's the case here). The compiled code suppresses any unintended instructions 

from executing by enforcing structured, predictable control flow. This approach keeps the loop control 

flow logically separate from the normal sequential flow in the bytecode. 

 

4.11. Labels (Goto) 

C language allows arbitrary labeled locations in a function and goto statement to jump to them. We 

implement labels and goto using the low-level branch instruction within bytecode. Each label in the C 

source (myLabel:) gets transposed to a new ASM Label in the generated method. In C, a label is nothing 

more than a position in the instruction stream to which we can goto. The visitLabel method is called in 

the middle of the code generation process, when the definition of a label is encountered by the compiler, 

to put the corresponding label in the current bytecode position. It itself does not generate any code, it is 

just a marker. 

For every goto label; statement, the compiler generates an unconditional jump (GOTO), and it 

targets the ASM Label of the specific target label. Such gotos translate into intra-method jumps (we are 

in the same function/method context, C does not jump into a different function so those gotos have to 

translate into what the JVM supports). Forward or backward gotos in the source is the challenge that is 

being taken care by the compiler. Forward jumps are treated by ASM as placing a placeholder which is 

backpatched when the position of the target label is known, allowing the compiler to emit a GOTO even 

if the label is defined later in the source. By the end of code generation for a function, all gotos and 

labels have been resolved. 

The first thing to consider, is that the use of goto cannot break any JVM verification rules (e.g. stack 

height must be consistent). We treat gotos as just a control flow change, which does neither push nor pop 

from the dataspace stack, so the stack depth at a label is always the same, no matter how it is reached 

(the compiler outputs structures and semantic checks enable this). As a result, we never run into things 

like jumping to the middle of a construct in an unbalanced stack. 

In short, the label/goto structure is implemented almost directly: every C label is a bytecode label 

and every goto is a jump. This shows that even “unstructured” control in C can be expressed in Java 

bytecode. The resulting behavior is semantically identical to C: a goto statement jumps to the labeled 

statement, with no extra runtime cost except for the jump itself. ASM allowed labels, and the JVM 

branching mechanism itself can easily jump forward or backward to an arbitrary instruction within the 

same method. 
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4.12. Increment and Decrement 

For unary increment (++) and decrement (--) forms, with both prefix and postfix variations, we emit 

load, modify, and store instructions, but this time they are directed towards the variable or memory 

location of the variable. The compiler will first decide if the operation is on an lvalue (a variable, array 

element, or dereferenced pointer, for instance) or a rvalue (basically, a simple value) in the context of 

the expression. 

For an lvalue such as a variable x, a statement x++ or x-- is implemented like so: read the value of 

x, add or subtract one, and write to x’s location. If the operator is prefix (e.g. ++x), the new incremented 

value is used (the return value of the expression); if it is postfix (x++), the old value (before increment) 

is the result of the expression and the side effect of the increment takes place. 

For example, let's say we need to implement i++. The compiler will output a bytecode sequence: 

ILOAD i (push current value of local i), then the literal 1, then IADD to add one, then ISTORE i as a 

write back. But this sequence as written expresses prefix (because at the end of it, the incremented value 

is in memory and on the stack). For postfix, it needs to keep the original value for the result of the 

expression. In one way: ILOAD i (the original), ILOAD i (the original), ICONST_1, IADD (the 

incremented second copy), ISTORE i (store new value), and return the original (the first copy) on stack 

as the result. In practice the compiler uses an optimized sequence (DUP bytecode to duplicate the value 

on stack before incrementing) to avoid the need for multiple loads. For prefix (++i), it could either do 

the increment first and duplicate if necessary or just ensure that the value on stack is the new one. 

The Compiler takes care of pointer logic when increment/decrement done via pointer, For Example: 

(*p)++ or even p++ (where p is pointer variable). This means to increment the value of the address that 

p points to ((*p)++). This will cause the compiler to load the pointer p, calculate the address based on its 

segment and offset, load the value at that address, specified for read, increment it, and write it back to 

the same address, specified for write. However, the outcome of the expression (for postfix) is the original 

value which was at (*p). These steps are more complex, but it still traces the same load-modify-store 

pattern, with some address calculation. The way in which p itself will be compiled when it is also a 

pointer being incremented (p++) is that the compiler will add the stride (according to the pointee type) 

to the value of p as described in the pointers section. 

 

4.13. Assignment Operators 

Assignment is straightforward: the compiler emits code to evaluate the right-hand side expression, 

and then to write the result into the left-hand side location. Whatever is on the left-hand side(LHS), it 

can be a variable, an array element, a struct field, or a dereferenced pointer, in any case, the compiler 



32  

can find out the address of LHS. After addressing (or target variable index) is resolved, and the value on 

the RHS is on the stack, the store instruction is dispatched. In the case of something like a = b + c;, the 

compiler will compile the code that computes b+c (pushing the result on the stack) then the appropriate 

ISTORE for the slot corresponding to a (if a is a local int) or a putfield/putstatic/array store if a is a struct 

field, global, or another pointed location in memory. If the target is a pointer like *p = value; the pointer 

p is loaded, the address is calculated, the value is calculated, and then a BASTORE/IASTORE (for the 

type) is emitted to store into the byte array at that address. 

In addition to the simple = assignment, the compiler understands compound assignment operators 

such as +=, -=, *=, /=, &=, |=, <<=, and so forth. That is done by a read-modify-write sequence on them. 

This means that when you write an expression such as x += 5; it is essentially equivalent to x = x + 5; 

in terms of effect. The compiler will make loading of x, then constant 5, then add, then store sum back 

to x, it can do this directly or use combined operation if such exists in the java bytecode level — which 

for Java bytecode itself does not have a single instruction for compound assignments, thus it was 

generally the same explicit sequence. Likewise, ptr -= 1; where ptr is a pointer, will lay out as ptr = ptr 

- 1; (after scaling 1 by pointee size as explained for pointers). The important part is that the compiler will 

identify the compound operator and will expand it to the underlying arithmetic or bitwise operation 

followed by the assignment. 

One detail is evaluation order and side effects. For instance, in the case of a += f() the function f() 

has to obviously be called first (to produce the value), and only afterwards added to a. Our compiler 

proves to preserve the sequence by placing the RHS code generation before the LHS load + operation. 

We also must handle cases where the LHS might be an expression with side effects (though in standard 

C, the LHS of += is evaluated only once; we ensure to adhere to that by not double-loading it 

unnecessarily). For example, arr[i++] *= 2; will evaluate i++, get the old index, then fetch arr[old_index], 

double it, and store it back, and finally the side effect of i++ is completed. The compiler carefully 

orchestrates these to ensure compliance with C’s semantics.  

To summarize, assignment operators generate simple bytecode: evaluate RHS, get LHS address (if 

necessary), and write. Per addition, compound assignments simply add in an additional read of the 

original value alongside the operation. The result of an assignment expression (in C) is the assigned 

value (in the case of simple =, the RHS; in the case of compound (op)=, the new value after the 

operation). When an assignment is used as part of an expression, our generated code usually leaves that 

value on the stack as well (except for a statement context where it would not be used anyway). 
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4.14. Arithmetic Operators 

Compiler supports all the basic arithmetic operators (+, -, *, /, %) and maps them to the 

corresponding arithmetic bytecode instructions. For arithmetic expressions, the compiler will evaluate 

all the operands, and then emit the operation. As an example when considering the case of x + y (x and 

y being integers), it will output code which will push a value for x (ILOAD or the equivalent), push a 

value for y, and emit the IADD instruction that sums the two, and leaves the sum on the stack. If fallbacks 

were longs it would then call LLOAD and LADD, and so forth. For Multiplication USE IMUL/LMUL, 

For Subtraction USE ISUB/LSUB and so on. Division and modulus ( /, % ) are a little special because 

bytecode-wise in Java they map to IDIV/IREM (and format versions, too). 

The semantics of these are just like C's integer division for both positives and negatives (the 

exception being division by zero, where in Java this will throw an exception – which is effectively like 

the undefined behavior in C; our compiler doesn't check for divide-by-zero as it's believed the program 

is valid or giving it up to the JVM to throw an ArithmeticException, which would be like the equivalent 

of a C runtime error like crash). The compiler applies usual binary promotions and cast rules. As an 

example, C will elevate values of types char or short that are being used in arithmetic to type int prior to 

the operation. However, the generated code will load them as each as an int (we issue conversion 

instructions explicitly). So, the effect is that appropriate arithmetic occurs: 32-bit or 64-bit, depending 

on matching C rules (two int gives an int result, an int and a long gives a long result after promoting the 

int our compiler tracks this in the type symbol table, and emits the instruction combination like I2L to 

perform the conversion, if necessary). If the arithmetic expression is complex (e.g. a + b * c), then by 

the structured traversal of the abstract syntax tree the compiler will obey operator precedence and 

associativity. It will output the code for b and c first pushes that on the stack, it does the same for a then 

adds the top two stack entries, and you will get a + b * c, as expected in C. 

A note about this is that a compiler does not use any high-level optimizations of arithmetic; it 

produces relatively straight translations. In a normal argument, this would look like: x * 2 (the JIT could 

optimize this too, but at the bytecode level, it's okay to just multiply x by 2). We never use efficient 

loading of constants (for instance, we never use ICONST_M1 to ICONST_5 for small constants, 

BIPUSH/SIPUSH for others, we always use LDC for all constants). This means the arithmetic operations 

in the output are not done as normal Java — they are not efficient. 

In summary, each arithmetic operator in C corresponds to one or a small sequence of Java bytecode 

instructions that perform the equivalent calculation. The simulated memory model isn’t directly involved 

here (except if an operand is fetched from memory or a result stored to memory). 
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4.15. Bitwise Operators 

Bitwise bytecodes of the JVM are called for bitwise operation (&, |, ^, ~, and the shift operators). 

Bitwise operations in C are on integers (integral promotions apply as necessary), and so our compiler is 

going to do exactly the same bitwise operations, operating on 32 bit int or 64 bit long as appropriate. 

The compilation, for bitwise AND, OR, XOR (the binary operators &, |, ^), is simple: the two operands 

are evaluated, and the appropriate instruction is emitted (IAND, IOR, IXOR for int, or the L... versions 

for long). For example, IAND which stands for u & v where u and v are ints It leaves its result as an int 

on the stack. 

Such operations do not interact with the memory model besides loading the operands and ensuring 

to store the result (if necessary). Since Java byte code does not have a single instruction for bitwise 

NOT thus is a unary operator and implemented using a sequence. This causes the compiler to emit code 

to load the operand, and then to use an immediate value and XOR to flip the bits. If x is int (because x ^ 

-1 yields the bitwise complement x, x usually consists of ICONST_M1 (i.e. −1, all bits are 1 in two's 

complement) followed by IXOR. If x is long, then use LCONST_M1 and LXOR in a similar way. This 

is the same as doing a NOT. On the other hand, -1-x could be used by the compiler, but XOR with -1 is 

much more directly indicating that it is a bitwise operation. This is done respecting the priority of 

promotion (if needed — e.g., if x is a char to start with, it will be promoted to int first so that the operator 

~ applies to this int). C shift operators (<<, >>) map to Java shift bytecodes (ISHL, ISHR for int; LSHL, 

LSHR for long). The compiler just leaves the result on the stack like any other arithmetic result. For 

example, in a context like if ((x & mask) == 0) ..., it will produce an IAND, then compare the result to 0 

with an IFEQ jump. The compiler’s parsing/AST ensures the correct order of evaluation; the code 

generation follows that order. 

 

4.16. Logical Operators 

C’s logical AND (&&) and logical OR (||) are short-circuiting operators, which means the second 

operand is evaluated only if necessary. The compiler must emit code that respects this short-circuit 

behavior. We implement && and || using conditional jumps in a pattern similar to if-statements. For a 

logical AND expression expr1 && expr2: the compiler evaluates expr1 first. After computing the truth 

value of expr1, it emits a check: if expr1 is false (0), then the whole && is false and we can skip 

evaluating expr2. So the code: evaluate expr1, then IFEQ L_false (if zero, jump to false-case). If we 

reach this point, expr1 was non-zero, so then it proceeds to evaluate expr2. After that, it needs to combine 

the results.  

The C short-circuiting operators logical AND (&&) and logical OR (||) — the second operand is 
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evaluated only when needed. The emitted code by the compiler must still respect this short-circuit 

behavior. Thus, we implement && and || as conditional jumps in-if-like fashion. For a logical AND 

expr1 && expr2: compiler first check the expr1, this emits check that after computing the truth value of 

expr1() , if expr1 are false (0) then whole && is false and expr2 evaluation can be skipped. The code 

then evaluate the first expression, then IFEQ L_false (zero, jump to false-case) Since expr1 was non-

zero, if we got here then it evalutes expr2. From there it will need to aggregate those results. 

A simple approach is to return a boolean (0/1) for the entire && expression. This we can do by using 

labels for the result, in this case, label L_false for the false case, label L_end for the end. The compiler 

could set a register or stack value to 1 (true) and jump to L_end if both are true; else, set 0 instead. One 

more direct alternative is: evaluate expr1; if expr1 is false goto L_false; else evaluate expr2; if expr2 is 

false goto L_false; else. Both are true push 1 and goto L_end; At L_false, push 0. Combining at L_end, 

the result is on the stack. That is the normal loop translation. 

For logical OR expr1 || expr2, the compiler applies a similar pattern, but with polarity reversed: if 

expr1 is true (non-zero), then the entire OR is true, and we skip evaluating expr2. In other words: L_true : 

evaluate expr1, IFNE L_true (true if non-zero, short-circuit), evaluate expr2, IFNE L_true for the second, 

and if we fall through both being false that is false. The output is generated in the form of int value 0/1, 

which can be utilized in any subsequent arithmetic or logical operations (C also takes the result of && 

and || as an int value 0 or 1). The output is normalizing the result by the compiler below ICONST_0/1. 

But since anything other than 0 is considered true in C, we need to normalize (if expr2 returns 5 and 

expr1 returns 7, we need && to return 1 to indicate true, not 5 or 7). 

The logical NOT operator ! is a simpler case: !expr is true if expr is false, and vice versa. The 

compiler can implement ! by evaluating the expression and then comparing to zero, yielding 0 or 1. One 

common bytecode idiom is: evaluate expr, IFEQ L_true (if zero, then !expr is true so result 1), otherwise 

(expr was non-zero) result is false. 

This yields a 0/1 as needed. Alternatively, if expr is known to be 0/1 already, the compiler might do 

a simple XOR with 1 to flip it. In general, we ensure correctness applying branching logic. This results 

in bytecode are instructions that makes use of a set of conditional jumps and constants for logical ops, 

but otherwise, no actual logical instruction (because there is no explicit && or || instructions in Java, it 

expects such logic to go away at compile-time). This approach resembles how a C compiler would emit 

assemblies for these operators (jumping around for short-circuit). The logic for the rest of the expression 

integrates pretty much seamlessly: for example, in if (p && p > 0), the compiler will short circuit: if p is 

NULL (0) then it won't perform p > 0, and thus we never dereference a null – this is exactly why the 

semantics of C are defined that way, and our implementation is constructed to maintain this safety by 
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construction of the flow of the code. 

 

4.17. Relational Operators 

Relational operators (==, !=, <, <=, >, >=) get compiled into comparison instructions in the form of 

conditional checks that enable branching or create boolean values. In many cases, the if or logical context 

for a re lational check will cause the compiler to simply generate a conditional jump. For instance, an if 

a > b then jump to else; that means the > condition failed. Similarly, == and! = IF_ICMPEQ or 

IF_ICMPNE for integer comparisons This prevents a 0/1 result from being materialized in the first place 

if the next operation is a jump. 

However, if the relational expression’s value is needed (for instance, int c = (a<b); or as part of a 

more complex arithmetic expression), the compiler will generate code to compute a 0-or-1 result. In such 

cases, a common strategy is: evaluate the operands, perform the comparison with a branch, and use a 

label technique similar to logical ops to produce a constant 1 or 0. After this, there will be an int (0 or 1) 

on the stack representing the truth of a<b. The compiler uses the appropriate conditional bytecode: for 

signed less-than we have IF_ICMPLT (branch if a<b), for greater-than IF_ICMPGT, and their negations.  

For equality, IF_ICMPEQ and IF_ICMPNE are used. If the operands are 64-bit longs, Java bytecode 

doesn’t have direct long comparisons; the compiler must either invoke helper runtime or do the compare 

by subtracting and checking or using the LCMP instruction followed by checking its result. The typical 

bytecode pattern for long compare is: use LCMP (which pushes -1,0,1 depending on <,=,>), then follow 

it with conditional branches on the result. Our compiler handles longs by inserting an LCMP and then an 

IF condition on the result.  

Pointer comparisons are performed too, but since pointers are long values, we treat them the same 

as any numerical 64-bit compares. The equality of two pointers (p == q) is nothing but a numeric equality 

test on the 64-bit address. This can be achieved by doing a 'high vs low' parts comparison or a long 

compare (LCMP) in one invocation. Likewise, comparisons on pointers (e.g. p < q) are only technically 

defined for pointers to the same array/object in C (and even then, the result is meaningful only with 

respect to addresses). In this implementation, we'll just compare the 64-bit values, because we would 

interpret addresses as being in a flat address space. This is a fair approximation of C behaviour (as long 

as the pointers both fit into the same block). 

As for these comparisons — the compiler makes sure of type conversions (for instance: it promotes 

shorter type to int in advance as well). Also, for unsigned comparisons the compiler would need to 

emulate an unsigned compare because Java only has signed comparisons. Most of the time this is done 

by changing value. Unsigned is not supported in our project, but signed comparisons are. 
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To summarize, relational operators are either processed by branching logic that directly affects 

control flow (e.g. in statements, not-expressions) or they return a boolean value. The ability to implement 

high-level comparisons accurately in the bytecode is realized through the use of ASM labels and 

conditional jump instructions such as IF_ICMPxx. A comparison always return value 0 or 1 (in C it is 

defined to be 0 or 1, but it is not arbitrary non-zero) The requirement is satisfied by the way our compiler 

explicitly pushes 0/1 constants in the flow. 

 

4.18. Ternary Operator (?:) 

The ternary conditional operator cond ? expr1 : expr2 is essentially an if-else in an expression 

context, and the compiler implements it in that way. If compiler encountering a ternary, it will generate 

code to evaluate the condition cond. Then it will use two labels: one for the "else" part (expr2) and one 

for the end (after the whole expression). It emits a conditional jump based on cond – if the condition is 

false (zero), jump to the label for expr2, otherwise continue straight into the code for expr1. After 

producing the value of expr1, the compiler jumps unconditionally to the end label, skipping the expr2 

part. Then it generates the code for expr2 at the else label, and after that code, it places the end label.  

The main difference from an if/else statement is that ternary evaluates to a value in an expression 

context. L_end is the right place to have exactly one value on the stack, because our bytecode sequence 

naturally finishes with this stack behavior. We need to be sure that both branches each return exactly 

one output of the same type. At L_end it is verified by the ASM verifier that the stacks heights and types 

are consistent. By design, we satisfy this: both expr1 and expr2 code paths each push one int (or one ref 

or one long, etc but they’ll be same type due to C type rules applying to). In C, this means both alternative 

clauses are type-checked against each other—if one is a void, that's an error (ternary requires a non-void 

type unless both are void and used in void context). At runtime level, the ternary is no more than a small 

variant of the branching we already do for the if-else case, so it does not introduce new challenges. 

 

4.19. Return Statements 

In C, a return statement returns a value from a function or (for void functions) exits the function. 

The return statement indicates to the compiler that the code does not flow past this point, so the compiler 

simply emits the correct JVM return instruction at this point. If there is a return statement in the bytecode: 

if we consider the control-flow graph of the function, and arrive at a return, that path will be finished. 

For instance, in a function returning int, we would compile a return expr; as: calculate expr (so the return 

value ends up on the stack) and follow it by the IRETURN bytecode that returns that int from the method. 

If the function returns a long or a pointer (which we represent as a long), the compiler uses 
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LRETURN. For void functions, a return; with no value becomes a simple RETURN instruction (void 

return in bytecode). Because the compiler uses Java methods to represent C functions, a return in C maps 

cleanly to a return from the Java method. The JVM will handle popping the call stack and returning 

control to the caller.  

The one thing the compiler needs to deal with is some sort of cleanup that may need to happen 

before a return. In C, local variables usually only get popped as the stack frame is destructed; in our 

implementation, if we had allocated resources or needed to adjust the "machine" stack pointer, we would 

do it before the return. To take one example, if we were simulating locals with a stack pointer that we 

house in the simulated memory, then this represents a pointer that would need to be deallocated on return; 

that is, the stack pointer would need to be reset (or if the function gets called again, would need to be 

correctly set again in advance). But since our design is built on top of the Java call stack for function 

calls, and we might not reuse the same simulated stack segment for multiple activations at the same time, 

the main cleanup done may be just freeing local dynamic allocations, if those were performed 

automatically (and they are not — malloc/free are manual). So in the simple implementation, we don’t 

clean up anything explicitly; the return just leaves the method. Returning from a function was originally 

the top level function or one of the entry points would be returning which means return to the shell (in C 

return from main ends the programm, and in our case return from generated main would mean end of 

that (own) thread of execution). 

One detail is that for functions that have local variables in the simulated memory, those are not 

accessible (after return) anymore. In the case that we moved the local variable into the global byte array 

stack segment we don’t explicitly wipe it, but as they are now out of scope anything in C trying to access 

them would be undefined (e.g., dangling pointers) — in this case the code did not call free, since there 

was no allocation. But we can simply leave the bytes as they are, it does not really matter. In C, 

dereferencing it might be undefined if a pointer to a local escaped, and we may still point to back to that 

part of heap[1] which may be reallocated by future calls. We're not actively protecting against that, but 

well defined programs still work correctly. 

If the function has a struct or large object to return (like return someStruct; by value), the compiler 

would need to handle copying that struct into the caller’s space or as a hidden pointer. However, as an 

implementation detail, returning a compound type would involve allocating space and copying, 

something that could be done with our memory model if needed.  

To wrap up, every return in our C source eventually becomes a return instruction in bytecode, and 

the compiler makes sure that any possible return value is on the stack at that point. The use of the JVM’s 

return opcodes integrates seamlessly: when a return executes, the JVM pops the frame and continues 
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execution in the caller method (it corresponds to the C caller function). In this manner, the C behaviour 

of function call / return is precisely reproduced in the target bytecode. 

 

4.20. Function Definitions and Recursion 

The compiler supports function definitions (including main and all user defined functions) and 

resolves each C function to a static method in the output Java class. A function definition gives the name, 

return type and parameter list; this helps compiler to create a method with the given descriptor (ASM 

generates method signature in JVM format). An example might be a C function int add(int a, int b) would 

become a Java static method add(II)I where the add indicates the name of the method, and (II)I indicates 

the args and return type. 

Inside this method, the body of the function is compiled to byte code using the statements and 

expressions from earlier in this section. Function call activation records (stack frames) are partially taken 

care of by the Java call stack and partially by our memory abstraction as necessary. If one function calls 

another, then the compiler creates an INVOKESTATIC call to the callee’s method. This results in JVM 

giving a new frame for the callee that has local variables of its own. If we’re trying to slot C locals into 

Java locals in the most efficient way possible, recursion is something the JVM will take care of 

automatically – every new activation of a recursive method gets a completely new set of Java locals 

anyway. If we keep locals on the stack of the simulated memory, then we'll need to keep track of a stack 

pointer. For our implementation, instead, we used a mixed approach: small scalar locals could be stored 

directly in Java locals, but, whatever time we needed to take an address to a local, we have to move the 

variable to the simulated segment of the stack. On the even more concrete stack-pointer model, as is the 

case for CBytecodeGeneratorWithHeap, the compiler does essentially the following: upon entrance it 

uses some global stack pointer from heap[1], allocating count as space for the local variables by 

decrementing it and giving offset as an lvalue. For recursion, this means that each call’s locals use their 

own slice of the heap[1] array, subject to the instruction pointer. Then the return sequence (or the caller 

when returning) can adjust the stack pointer back, and the freed local space can be reused. This is the 

same as a real CPU's stack when it comes to recursion. 

By implementing recursive calls in our compiler, we were able to test for functions calling 

themselves (directly or via some other function), to ensure they generate accurate values. If using the 

Java call stack, recursion is simple: the JVM just creates new frames. If we’re on a manual stack, we 

have to make sure to allocate a new frame on every call. In reality, we relied heavily on the Java call 

stack, which greatly simplifies recursion – a recursive call is simply another method call. The local 

variables at different recursion depths are handled separately by JVM, the JVM handles that frame once 
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a call returns. Provided we haven’t put recursive data into what was meant to be static memory. 

We also handle parameter passing according to C’s call-by-value semantics. When generating a call, 

the compiler evaluates each argument expression and pushes it on the stack (or if the argument is a struct, 

allocate and copy it appropriately). The INVOKESTATIC then consumes those values, and they appear 

as the callee’s parameters in that callee’s method stack (ASM sets up the method to receive them). If a 

parameter is of pointer type, it’s a 64-bit long value passed along.  

Our pointers and values are already in a format that is compatible with Java (i.e., int, long, etc.), so 

we don't have to do any special treatment beyond normal expression evaluation. It also compiles the 

definition of main as a main entry point method into a program. If necessary it could emit a public static 

void main(string[] args) as true main, which would just call translated main (which possibly have a call 

signature to look like C’s int main(int,char**)). 

Scopewise and in terms of lifetimes, when a function returns, particularly a recursive one, any local 

variables that were on the simulated stack are no longer in scope. If we're looking at the stack model for 

the pointer and need to clear the variables, we either drop them by the pointer being moved back and re-

used or just let them be written over by successive calls. However, we have to be careful with pointers 

to locals: if we had pointed to a local variable of a function that has since returned, what we would have 

there would be called a "dangling pointer". Our runtime doesn’t clear it out explicitly; it just has its 

pointer into the stack segment, which can be another data on this place. This is in tact with how unsafe 

C is — our compiler doesn't add a run-time checks here, but it simulates it. Given a recursive factorial 

function in C, our compiler will produce a Java method that invokes itself. The local n and other 

variables of each recursive call go into Java locals or into separate slots in the stack array. When n hits 1 

and returns, the stack will naturally unwind, and each return actually goes to the former stack frame with 

its own value of n, which is how the right result is calculated. 

Thesis tried these scenarios to ensure that they work with our approach, leveraging provable 

mechanisms (the call stack of the JVM and an explicit stack that is well managed). In other words, 

function definitions compile to JVM methods with JVM bytecode for their bodies, and function calls 

compile to method invocations. First, recursion is completely covered by the above; no special-casing 

need apply other than ensuring any shared resources (such as the stack-pointer) are properly 

diamagnetically handled to isolate call instances. What we have demonstrated is that, with Java’s method 

call semantics and sufficient discipline over the simulated C memory space, we can achieve the correct 

function call semantics as specified by the C language. 
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4.21. Dynamic Memory Allocation (malloc and free) 

Dynamic memory allocation is supported by a simple runtime memory manager included in the 

support code of the compiler. We offer standard-library-like malloc() and free() that interact with our 

simulated memory. In a compiled program, a malloc(size) call becomes a call to runtime helper method 

of ours (e.g., a method declared as static in CMemoryImplementation class) that would return a pointer 

(a 64-bit long) to a newly allocated memory block. The same for free(ptr), it invokes a runtime function 

to deallocate the block. We wrap these in library functions in Java and enclose the allocation logic in it. 

The bytes blocks in the heap are kept in an array of byte arrays in the malloc implementation. First an 

array heap containing a certain number of slots (e.g., byte[]s) is prepared, so that we have set of slots 

with which to work, and it also keeps a simple free list of available slots. When malloc(n) is called, the 

runtime locates an available slot (or grows the array, if necessary), creates a new byte[n] array, and 

stores the array in that slot. It constructs a pointer value that is the high 32 bits of a 64-bit pointer, where 

the slot index becomes the high 32 bits and the offset within the block (which is 0 in the case of a new 

allocation’s base address) becomes the low 32 bits. This pointer is passed back into the C code as a 

void* (or similar typed pointer). The allocation algorithm is simple; it's O(1) to pull a slot off the free 

list. If the heap array is full (no free space), the runtime will allocate a larger array. 

The free call accepts pointer as a parameter, extracts the block index and offset from it, and frees the 

memory block by adding that slot back to the free list. Freeing in our model consists on the action 

heap[index] = null (and so letting that byte array be available for Java’s garbage collector, i.e. its memory 

can be reclaimed) and adding that index to a list of available slots. We don’t try to join adjacent blocks 

or anything complicated like that, since an allocation is its own array; fragmentation in terms of being 

contiguous in memory is not a concern for this model, except for the management of slot arrays. Note, 

though, that fragmentation across lots of small arrays might happen, although Java's garbage collector 

is responsible for ensuring that the memory backing those byte[] objects is dealt with. So far as the C 

program is concerned, this malloc and free act just like any regular heap allocator. 

The allocator returned pointer can be combined with pointer arithmetic and dereferencing just as if 

these dynamically allocated blocks worked directly in our compiler’s pointer representation and internal 

memory access routines. For instance, when called int *p = malloc(4 * sizeof(int)); the runtime allocates 

(say it's at slot 5) byte[16] and returns a pointer with block index = 5, offset = 0. When the C code does 

p[2] = 42; the compiler will emit code to load the address (block 5, offset 8), and store 42 at that address, 

which happens to be the right place in that byte[16]. This is where the integration comes in: the dynamic 

allocation only provides a new memory space within the same integrated addressing system. 
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Our compiler also supporting malloc(0) (which in C can return NULL, but also a unique pointer that 

should not be dereferenced). In our case, we handle malloc(0) as if it did return NULL. We may decided 

to return a non-null pointer of size 0 (nothing prevents us from doing this, since we can always allocate 

a byte[0], return a pointer to it, and cast our array to a byte[] returning a pointer to it). As we are reserving 

heap[0] for NULL, we would also not use index 0 for an allocate, which would mean that a check for 

NULL becomes simple. 

Our memory manager is rudimentary and does not handle complex scenarios like realloc or calloc 

(unless specifically implemented similarly). It’s single-threaded and does not protect against double-free 

or use-after-free errors – those remain the responsibility of the C program (just as in a typical C runtime, 

misuse can cause corruption, and in our case misuse might corrupt our heap structures or lead to 

unexpected behavior). For example, freeing a pointer twice in a row might put the same slot into the free 

list twice, potentially causing a later allocation to be given the same slot twice – a problem. In a robust 

system, you’d prevent that, but in our project we assume well-behaved input or focus on core 

functionality. 

We need to stress: C does not define comparison of pointers between different allocations to be 

meaningful to compare in terms of ordering, but equality test will simply give you false in case the block 

index is different (which is ok). And we include malloc and free in the compiled program we link our 

CMemoryImplementation class. The calls to malloc/free in the C code are recognized by the compiler 

and turned into invocations of our Java static methods. For instance, a call malloc(expr) in C will be 

compiled to something like: evaluate expr (size) as an int, then invokestatic 

com/c2java/CMemoryImplementation.malloc(I)J. That returns a long (JVM long) which represents the 

pointer. The C code expects a void*, which we represent as a long, so that fits. Similarly, free(p) becomes 

invokestatic com/c2java/CMemoryImplementation.free(J)V, passing the long. The rest of the C program 

treats the returned pointer as usual. By implementing dynamic memory this way, our compiler enables 

data structures of dynamic size (e.g. using malloc to create buffers, linked list nodes) and manual memory 

management, which are important for many C programs.  

The end result is that we’ve basically implemented a small stack allocator on top of Java memory 

that now uses malloc/free in a style familiar to programmers while keeping an array of bytes and using 

GC to keep track of our real memory usage. This fulfills the need of dynamic allocation support in the 

generated code, and the flexibility of the emulated memory model goes beyond fixed-size or static 

allocations. 
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4.22. Enumeration Types 

An enum is a self-defined data type for the type with a finite number of unique values. In C, 

enumerations are way to give a meaningful name to the value but it also makes the code more readable 

and safer than being used directly. The first enumerator has a default initial value of 0, and each 

successive enumerator is incremented by 1, unless a specific value is specified. The C standard states 

that each enumeration creates a new type of integral, but in C, all enumeration constants are of int value. 

Consequently an enum introduces a new type of the type system of the language and its values behave 

as integer constants during compilation. 

From the perspective of a compiler designer, the definition (at compile time) of the enum itself and 

the associated representation (at runtime) needs to be treated. The compiler needs to book-keep every 

enum inscription as a fresh, new type in the symbol table, with each enumerant name to have attached 

an integer value. Enumerator constants are determined and assigned values during semantic analysis 

(computing auto-incremented values if not explicitly provided). Such values can be saved in a 32-bit 

integer (this is consistent with the simulated memory model in the project, where integers and pointers 

are 64-bit and represented as two integers encoded in 64 bits). Since enumerators are essentially 

constants, they do not take runtime space, and uses of the enums can be substituted with a constant with 

the value from the enum in the created bytecode. Generating code for enums is therefore easy: resolution 

of an enumerator boils down to loading its constant value (i.e. one of the ICONST instructions in JVM 

bytecode). The actual ASM-based code generation need not consider these special case values, as no 

special runtime value needs to be created (aside from having its value appear in the.constant pool or be 

inlined as an immediate). 

Despite enums being conceptually simple, the compiler must ensure correct scoping and type 

checking for them. Each enumeration type may be considered compatible with int, but maintaining the 

distinct type (e.g., enum Color vs enum State). This could be by the compiler translating each enum to 

have its own internal type descriptor and allowing implicit int casts when required, as per C’s casting 

rules. And there is also the problem of selecting the size of the integer used for the enum type. C 

compilers are permitted to select an integer type large enough to hold all of the enumerator values.; for 

this we can safely assume we can have 32-bits for all enums (because that is what is used by the Java 

JVM for int as a native type). This makes it easier to be integrated with JVM bytecode. Int the end 

parsing would need to be adjusted to recognize enum declarations and its constants, as would the 

semantic analyzer when it assigns constant values and types and minor mods to code generation to make 

sure enum values are loaded in as constants. 
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Given the project’s existing design, enumerations can be implemented with minimal impact on the 

runtime memory model. They are primarily affecting compile-time symbol handling and type semantics 

rather than introducing new runtime structures. 

 

4.23. Type Aliases 

Typedef simply creates an alternate identifier for a type. For instance, after typedef unsigned long 

size_t;, the identifier size_t can be used in place of unsigned long in declarations. The compiler, therefore, 

must record size_t as an alias of the underlying type rather than as a separate entity.  

Implementing typedef in the custom compiler is primarily a matter of parser and symbol table 

management. The parser needs to recognize typedef declarations and distinguish them from regular 

variable or function declarations. In practice, C compilers handle this by maintaining a separate 

namespace (or flag in the symbol table) for type names introduced via typedef. When the parser 

encounters the typedef keyword, it should parse the following declarator as usual but instead of 

generating a variable definition, it should install a new type alias in the symbol table. For example, upon 

reading typedef int Matrix[10];, the compiler would record Matrix as a synonym for “array of 10 ints”. 

Subsequent appearances of Matrix in the source should be treated as a type specifier. This requires the 

compiler to treat the set of typedef names as reserved identifiers in parsing expressions/declarations (to 

resolve the classic C ambiguity between identifiers that name types and those that name variables).  

The use of typedef thus influences the lexical analysis or parsing stage: the compiler might need to 

tag new type names so that the grammar can differentiate between <type-name> and other identifiers. 

Once the alias is defined, however, the semantic analysis and code generation can effectively ignore the 

distinction – uses of the alias are replaced by the underlying type. At the ASM bytecode generation stage, 

a typedef has no direct effect; it does not produce any bytecode, since it’s purely a compile-time 

convenience. The simulated memory model is unaffected by typedefs, because they introduce no new 

data representation — they simply allow referring to existing types under a different name.  

One challenge is ensuring that typedef names do not conflict with other identifiers in inappropriate 

ways. In C, a typedef name can co-exist with other identifiers as they live in a separate namespace for 

types. The compiler must maintain this separation.  

Additionally, the compiler must correctly handle storage class specifiers like static or extern in 

combination with typedef (e.g., typedef static int X; is not valid C, but static typedef int X; is also invalid 

since typedef is not a storage class; the compiler should emit appropriate diagnostics). Another challenge 

is properly supporting complex declarators: for example, given typedef int *ptr_int;, the alias ptr_int 

needs to carry the pointer type information such that a declaration ptr_int a, b; is correctly interpreted as 
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defining two integer pointers. This means the compiler’s symbol table entry for ptr_int must encapsulate 

“pointer to int” type information and the parser must apply it to each declarator.  

Overall, typedef integration is conceptually straightforward because it doesn’t change the generated 

code – it affects only how the source is interpreted. 

 

4.24. Switch Statements 

C switch statement The switch statement in C is a multi-way branch statement that allows control 

to jump to different blocks of code, depending on the value of an integer expression. Conceptually, it is 

equivalent to a series of if-else statements but is generally more efficient and clearer. A case label 

indicates a constant (integral or enumerated) value, and the control jumps to the matching case block if 

the switch expression equals the constant value of the case label. A default label can be specified to 

handle the cases where none of the explicit values apply. 

One important aspect of C’s switch semantics is fall-through: unless a break statement (or other 

control transfer like return) is encountered, execution will continue from one case into the next in 

sequence. This gives flexibility (allowing multiple case labels to execute the same code) but requires the 

compiler to carefully arrange control flow. In terms of scope, switch statements do not create a new scope 

by themselves, but variables can be declared within switch blocks or case blocks, which the compiler 

must handle in its analysis.  

Implementing a switch statement in the custom compiler involves generating efficient branching 

bytecode and managing jump targets for each case. At a high level, the compiler will transform the switch 

into a decision mechanism that compares the switch expression against the case constants and jumps to 

the corresponding code. Given the target is the JVM (via ASM), the compiler can take advantage of Java 

bytecode’s dedicated instructions for switch: namely, the tableswitch and lookupswitch instructions. A 

tableswitch is ideal when the case values are dense (forming a contiguous range), as it uses the value as 

an index into a jump table. A lookupswitch handles sparse case values by mapping each value to a jump 

target in a lookup table. The code generation strategy would be as follows: first, evaluate the switch 

expression and leave the integer result on the stack. Then, if the range of case constants is small and 

contiguous, emit a tableswitch instruction with a low and high bound covering the range of case values, 

and provide a list of target labels corresponding to each value in that range (filling gaps with a default 

label for values that aren’t explicitly handled).  

If the case values are non-contiguous or very sparse, the compiler would emit a lookupswitch with 

only the actually present case values mapped to their targets. In either case, one of the targets will be the 

default case (or a jump to exit if no default is provided). Using these specialized bytecode instructions is 
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efficient: it allows the JVM to perform the branch in O(1) time by indexing into a table, mirroring the 

typical jump-table optimization that native compilers perform for switch.  

This aligns with the project’s design goal of leveraging JVM features via ASM for performance. If 

the dedicated switch instructions are not used in the first place for simplicity of implementation then a 

sequence of conditionals can be generated (in byte code an if-then-else chain). However, given that ASM 

makes it straightforward to emit a tableswitch/lookupswitch, the preferred approach is to use those.  

Also, fall-through and break logic must be correctly done by the compiler. The label of each case in 

the input code must match with a bytecode label. When one case block ends without a break, the code 

should simply flow into the next case’s code – this happens naturally if the compiler doesn’t emit an 

unconditional jump at the end of a case. For break statements inside a switch, the compiler should emit 

a jump to the end-of-switch label (a label placed right after the switch’s entire code block) to ensure 

execution exits the switch. This requires the compiler’s code generation phase to maintain an active break 

target for the switch context so that any break inside the switch knows where to jump. A continue inside 

a switch (if it appears within a loop that encloses the switch) should be handled carefully, but that is a 

nested control-flow concern. The default label, if present, is simply another target in the switch’s jump 

table or lookup structure, and if no default is given, the switch should jump to the end-of-switch for any 

unmatched value.  

One thing is to ensure case values are handled somewhat properly for cases where you have 

duplicate values or for ranges. The compiler can then require that in one and the same switch no two case 

labels can be having same constant (that would be a compile time error). And it must deal with the 

coercion of the switch expression to the type of the case labels (C permits char or enum types in switch 

which are promoted to int). In the context of this compiler, the expression’s value will be an int-sized 

value on the simulated stack (since smaller types would be promoted during expression evaluation).  

Another challenge is the support for case ranges and large value spans. The tableswitch bytecode 

requires a contiguous range of indices; if the case constants have a large gap (e.g., case 1 and case 10000 

with nothing in between), using a tableswitch would entail a large table mostly filled with default entries, 

which is inefficient. The compiler should choose lookupswitch in such cases. Implementing that decision 

requires collecting all case constants during code generation and analyzing their density. The ordering of 

code in the output is also a consideration: the natural approach is to emit the code for each case in source 

order and have all the jump targets point into this code. The compiler’s intermediate representation can 

accumulate the case labels and their corresponding code blocks before output.  

Also, if you create variable declarations within the switch (like near the beginning of a case body) 

the compiler would have to add a scope (low stack requirement or not) or have to do some kind of stack 
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manipulation to handle the lifetimes for these further down the road. Implementation do not have to go 

that way as often as the attribution of code to blocks labels would suggest. The compiler must be careful 

that the jump correctly generate, since these should not bypass initialization of local variables. A solution 

might be to require braces around case blocks whenever variables are introduced, or perhaps to treat the 

beginning of a case as starting with a new implicit block in semantic analysis. 

 

4.25. Preprocessor Support 

A C compiler should have complete support for the preprocessor, which is essential since the 

preprocessor (which includes features such as macro expansion and conditional compilation) works on 

the code before it's ever compiled. C preprocessor is mostly a text transformation stage: it processes 

directives (lines beginning with #) to include header files (#include), define macros (#define and #undef), 

conditionally compile code (#if, #ifdef, #ifndef, #else, #endif), and do a couple of other transformations, 

including macro stringification and token concatenation.  

In the context of a custom compiler written in Java, adding preprocessor support means introducing 

an initial compilation phase that reads and transforms the source text according to these directives before 

the parsing phase. This is typically done by either integrating a preprocessing step into the compiler’s 

front-end or by invoking an external preprocessor and then feeding the result to the compiler. Given the 

project’s goals, an integrated approach is likely preferred to keep everything in pure Java. One approach 

is to build a preprocessing module that works on top of the input stream for the source code. This module 

would read the source file line by line and process preprocessor directives accordingly When for 

instance, we see #include "file. h", the preprocessor module would find the file, read its contents and 

push those contents into the compilation stream. 

For macro definitions, encountering a directive like #define MAX 100 should cause the preprocessor 

to record a macro named MAX with replacement text 100. Then, every subsequent occurrence of MAX 

in the source (outside of strings and comments) should be replaced with 100 during preprocessing. 

Macros with parameters (e.g., #define SQR(x) ((x)*(x))) require parameter substitution when they are 

expanded; the preprocessor must detect macro invocations in the code and substitute the arguments 

appropriately into the macro body. Conditional directives like #ifdef DEBUG or #if X > 5 are handled 

by evaluating the condition (which may depend on macros or constants) and then including or skipping 

sections of code accordingly. Implementing these features will likely involve writing a mini-scanner and 

parser for the preprocessor directives themselves, as well as maintaining data structures for macro 

definitions (a macro symbol table) and an input buffer mechanism to handle included files and macro 

expansions. A recursive or stack-based inclusion mechanism is needed so that included files can 
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themselves contain includes or macros, and once an included file is fully processed the preprocessor 

returns to the original file’s stream. Integration with the compiler: The output of the preprocessor phase 

is a stream of tokens or text that should then be fed into the existing C parser. This implies that the 

preprocessor either operates as a textual substitution system feeding a new combined source file to the 

main compilation, or it can be more tightly integrated by feeding tokens directly to the parser on the fly. 

A simpler design is to have the preprocessor produce a single expanded source string (or list of tokens) 

which is then given to the normal compilation pipeline. This keeps a clear separation of concerns: the 

preprocessor operates first, then the compiler’s parser/semantic analysis runs on the expanded code.  

However, care must be taken to maintain accurate line number information for error reporting; 

typically, preprocessors use line markers (like #line directives) or keep track of original file positions so 

that the compiler can report errors in terms of the original source files. Since the project uses ASM for 

code generation and simulates memory at the runtime level, the preprocessor mostly impacts the front-

end and does not directly touch the memory model or bytecode generation.  

Nonetheless, robust preprocessor support is vital for real-world C code, which often relies on macros 

and includes to function correctly. Writing a C preprocessor (even a subset of it) is non-trivial. One 

challenge is macro expansion complexity — macros can be recursive or self-referential (the preprocessor 

must detect and prevent infinite expansion loops), and macros can shadow other macros or be undefined 

later. The rules for expansion (when to expand, when not to, especially for macros used as arguments to 

other macros, or the use of the # and ## operators for stringizing and token concatenation) are intricate. 

The compiler implementer must carefully follow the standard’s specification for macro expansion order.  

Another challenge is implementing expression evaluation for #if directives. These expressions use a 

subset of C’s expression syntax (constant expressions with integer arithmetic, defined operators, etc.) 

and the preprocessor must evaluate them (e.g., #if MAX_SIZE > 256). This might require writing a small 

evaluator or reusing the compiler’s expression evaluator in a simplified form, operating on constant 

values and defined macro values. File inclusion also introduces the need for file path management 

(searching include directories) and preventing multiple inclusions (which is often handled by header 

guards or #pragma once — the preprocessor should support at least the conventional include guard idiom 

by processing multiple includes correctly).  

Then there is the issue of producing the correct spacing so that tokens aren't accidentally 

concatenated during macro expansion (the preprocessor works in tokens, not raw text, to avoid this 

problem). One can utilize existing libraries, or even call an external cpp for preprocessing to not reinvent 

the wheel, but If this is a college project, it is very informative to implement a simple preprocessor in 

Java to understand how compilers work. The interface between preprocessor and parser needs to be 
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clean: one way to do that is to combine preprocessing with lexical analysis so that as the lexer reads 

tokens it simultaneously checks for macros to expand. That can be quite efficient, but it makes the lexer 

more complicated. This would be slightly less performant (in the same way that some source-to-source 

preprocessing is) but should be simpler to implement and debug. 

In summary, adding preprocessor support will significantly enhance the compiler’s ability to handle 

real C code, and it requires careful attention to the lexical handling of the language. It is a distinct phase 

that doesn’t directly involve the ASM bytecode generator or the simulated memory model. 
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5. Design with Clang++ 

The first project consists of three parts. The design can be seen from the diagram below. 

 

 

Figure 6 Design of project with clang++. 

 

The design in Figure 6 shows the flow of translation of .c source code to a .class bytecode. To 

generate bytecode several steps are taken. Represent all .c files of a library as a single file. The way of 

doing it is to use clang++ front end. Clang++ can generate a clang AST that does not depend on source 

files. clang AST is an intermediate fully type-resolved representation of the whole C library structure. 

5.1. Implementation and design decisions 

There are three possibilities to generate and then traverse clang AST. One way is to write clang 

plugins. Clang plugins work during the compilation process. They give full control over clang AST. 

Another way is to use Lib Tooling. Lib Tooling can be used for writing stand-alone tools. Lib Tooling is 

a good way to manipulate clang AST as it Gives full control over it. Lib Tooling can also be used to call 

clang plugins. However, Lib Tooling is an unstable API that is being changed rapidly. 

The most efficient way of manipulation of clang AST is to use Lib clang API. Lib Clang is a stable 

and backward-compatible API. It is a small API that allows parsing source code into an AST, loading 

parsed AST, traversing the AST, associating physical source locations with the AST elements. It gives 

an abstraction from clang AST. The abstraction is implemented through a cursor which helps to iterate 

clang AST. The cursor allows the user to be abstracted from clang AST. 

The decision to use Lib Clang in a tree traversal was made. Lib Clang is relatively small, backward 

compatible and stable. In the process of traversal, the Java Native Interface (JNI) is called. JNI is called 

from C++ code. It acts as a one-way mediator between Lib Clang and JVM. JNI is responsible for passing 
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the data from the clang AST node to Java static methods. JNI is called before the cursor that traverses 

clang AST changes its location. JNI calls static methods on the Java side and passes the arguments array. 

The size of an array is dependent on the clang AST node. JNI is called according to cursor kind. If kind 

is a function declaration, the number of parameters and their types, return type of a function, and its 

signature is passed to a relevant static method. If kind is a declaration of a variable then its name and 

type are passed to a relevant static method. If kind is a structure or union then, their names are passed to 

a relevant static method. If kind is a field declaration then the parent name, field name, and field type are 

passed to a relevant static method. On the Java side, ASM API is used to generate files in bytecode 

format. 

Compiled Java class consists of several sections. Section for access modifiers, name, superclass, 

interfaces, and annotations of the class. One section for each field declared in the class: modifiers, name, 

type, and annotation. One section for each method includes constructor: modifiers, name, return type, 

parameter types, and annotation of the method. The section of the method also contains compiled code 

of a method as a sequence of bytecode instructions. All types' names are be fully qualified. The compiled 

class also contains a constant pool section that holds all constants that appear in the class. ASM takes 

care of the constant pool during the manipulation. Method and type descriptions in the class file are 

different from a source file. Descriptors of primitive types are single characters are in Table 1. 

Arrays are represented as a square bracket before the type descriptor: [I – int[]. Objects are described 

with L followed by full names that include package and Class name and semicolon: Ljava/lang/String; - 

String. Method descriptors start with left parenthesis: (Iljava/lang/String;)I - int method(int i, String s). 

ASM API is based on the ClassVisitor Abstract class. 

Each method of ClassVisitor Abstract class visits one section of the class. Methods of ClassVisitor 

class should be called in a specific order. First should be called visit(), after that visitSource() or 

visitOuterClass(), then any number in any order visitAnnotation() or visitAttribute(), visitInnerClass(), 

visitField() and visitMethod(), and terminated by a single call to visitEnd(). ASM API has two more core 

components to manipulate or generate class files: ClassReader – parses class and calls visit methods of 

ClassVisitor instance; ClassWriter – directly writes class in a byte form, the class can be obtained calling 

toByteArray() method. 

The decision to use event-based ASM API in bytecode generation was made. Tree-based 

representation is not needed as it will reconstruct a redundant syntax tree. The tree is already being 

constructed by Lib Clang. After receiving arguments from the JNI, static methods implement ASM API 

to generate bytecode. At the end toByteArray() method is called to get .class file. Currently, there is a 

possibility to translate method signature; structures; structure fields of type short, int, double; unions; 
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union fields of type short, int, double. 

Table 1 Qualified type names in JVM 

Z boolean 

C char 

B byte 

S short 

I int 

F float 

J long 

D double 

 

The problem is that the C library can contain several .c files that are dependent on each other. But 

the resulting .class files don't have to follow the same structure. It is also hard to decide how to translate 

functions to methods. Java can represent methods as static members. They will not be bound to instances. 

Also the problem is to decide how to represent unions in Java. Java does not allow direct memory 

manipulations. Each type in Java has a predefined size and can not be changed. Solutions to the described 

problems were made are described below. 

To represent the structure properly, the resulting code will be split into several parts. Structures and 

unions of C code will be translated to separate class files with the structure name. Class files representing 

structure or union will contain public instance fields and a default constructor. Instance fields were 

generated from fields of structure or union used in the C library. These class files are placed in a separate 

package. The methods of C code will be placed in separate folders. The folder name will be taken from 

the header file. All methods of header files will be presented as static members. To represent unions in 

Java – Javolution API [Jea20] can be used. Javolution API can manipulate memory on a bit level. 

All the decisions made for this compiler are ambiguous. The development was done from 2021 to 

2023. Project was dropped due to its unclearness and complexity. The code was moved from trunk to 

separate branch and abandoned. 
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6. Design with ANTLR4 

The second implementation consists of C2Java project that uses ANTLR4 and ASM libraries to 

generate Java bytecode from C source file (Figure 7). The design can be seen from the diagram below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 Design of project with ANTLR4. 

In order to generate bytecode using this method, we must utilize the ANTLR4 parser generator in 

conjunction with a grammar for the C language. The process begins by providing the C grammar [Ter13a] 

to ANTLR4, which generates Listener and Visitor classes. These classes are then utilized to traverse the 

ParseTree that is generated from the .c file. During this traversal, functions of the ASM library are called 

in order to produce bytecode for the specific rules outlined in the C grammar. This process allows us to 

effectively generate bytecode for a C language library by utilizing the ANTLR4 parser generator and the 

C grammar. 

6.1. Implementation 

The second implementation of a project differs from the first one by replacement that was found for 

clang++ compiler. The replacement is ANTLR4. ANTLR4 is a parser generator that is commonly used 

to develop language parsers and interpreters. It is the most recent version of ANTLR4 and has been 

designed to be more efficient, more flexible, and easier to use than its predecessor. To generate a parser 

using ANTLR4, a grammar describing the structure and syntax of a language must be provided as input. 

The generated parser can then be used to parse and process input in that language. The parser can be 

employed to construct compilers, interpreters, translators, and other language processing tools. 
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The grammar required for ANTLR4 to create a parser defines the syntax of the language and includes 

the rules for constructing valid sentences in the language. It is written using a specialized syntax called 

ANTLR4 grammar syntax, which consists of a series of rules that define the structure of the language. 

Each rule has a name and a definition specifying the elements that can be used to build valid sentences 

in the language. 

In ANTLR4, a listener is a class that implements a set of predefined callback methods. These 

methods are triggered by the parser as it processes input and allow the listener to be notified of events 

that occur during the parse. Listeners listen for events and take some action when they receive them. For 

example, a listener might be used to print the tokens encountered during the parse or to construct an 

abstract syntax tree (AST) from the parse. To use a listener, you must create a subclass of the 

BaseListener class and override the callback methods of interest. You can then instantiate your listener 

class and pass it to the parser. The parser will invoke the appropriate callback methods on the listener as 

it processes input. 

A visitor is a class that visits the nodes of an AST and performs some action on each node. It is 

similar to a listener, but it operates on the AST rather than the input stream. This visitor is generated by 

ANTL4. To use a visitor, you must create a subclass of the AbstractParseTreeVisitor class and override 

the methods of interest. You can then create an instance of your visitor class and call its visit method, 

passing in the root node of the AST. The visitor will traverse the AST, calling the appropriate methods 

on each node as it goes. Both listeners and visitors are useful for customizing the output of the parser. 

They enable you to write code tailored to the structure of the language being parsed, rather than having 

to write generic code that handles all possible input. 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 Structured representation of pointer (image was adapted from [GRC*15]) 
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The pivotal aspect of the C language resides in its utilization of pointers. To reconcile the absence of 

direct pointer manipulation in Java, the approach advocated by Grimmer[GRC*15] entails the utilization 

of structured objects for emulating pointer behavior. The structural object encompasses both content and 

layout components. The content denotes an entity that retains information pertaining to all values 

assigned to its constituent members, termed slots, within a given context. Each slot is capable of 

accommodating primitive values, another structural object, or an address value. The layout component, 

conversely, serves to record the offset, type, and slot designation of each member within the context. It 

facilitates the correlation of offsets with respective slots and specifies the type of the stored member. 

Figure 8 illustrates the depiction of a pointer in the form of a structured object. 

TDD is a disciplined approach to software development in which developers write tests for small 

pieces of functionality before writing the code to implement those features. This process helps to ensure 

that the code meets all requirements and functions as intended. It also makes it easier to maintain the 

code, as the tests act as a safeguard against unintended changes to existing functionality. To follow the 

TDD process, a developer first writes a test for a small unit of code, then writes the code to make the test 

pass, and finally refactors the code to meet desired standards of design and performance. By iterating 

through this cycle repeatedly, developers can create high-quality code that has been thoroughly tested 

and validated, leading to faster development times and reduced risk of defects. This approach can also 

accelerate development times by allowing for incremental testing and modularization of code. An 

example of a test class implemented can be seen below. 
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7. Design with ANTLR4 and emulated memory 

The third implementation consists of ANTLR4, ASM and the CMemoryImplementation class - 

memory simulator class to generate Java bytecode. This class was created for C memory simulation 

inside JVM. 

7.1. Implementation 

The compiler translates C source programs into executable Java bytecode adopting a modular design 

based on the ANTLR parsing framework and the ASM bytecode generation library. The process begins 

in the C2JavaWithHeap class, which orchestrates the entire compilation pipeline. A C source file is first 

read and tokenized using a custom ANTLR lexer (CLexer) and then parsed into an abstract syntax tree 

by CParser. Semantic processing is carried out through a set of custom listeners (CStructListener, 

CNameListener, and CFunctionListener) that walk the parse tree and extract relevant metadata while 

producing bytecode. Class generation is handled using ASM's ClassWriter and ClassVisitor constructs. 

A Java class is dynamically created with public access and a default constructor. Struct declarations from 

C are processed first and stored in a scoped symbol table (SymTabNested) via the CStructListener. 

Function signatures, return types, and parameters are identified and recorded by the CNameListener, 

which also constructs type descriptors. Finally, the CFunctionListener translates function bodies into 

JVM bytecode, referencing previously collected metadata. 

A core challenge in translating C to Java is reconciling their distinct memory models. Java does not 

allow direct manipulation of memory addresses, nor does it permit storing raw object references in 

primitive-type arrays such as byte[]. To address this, the compiler uses an emulated memory system 

implemented in the CMemoryImplementation class. This system includes a static array of object 

references (heap[]), which acts as a translation layer from C-style integer addresses to Java arrays and 

objects. Each element in the heap array serves as a memory block that can store raw data or act as a 

placeholder for C constructs such as arrays or structs. The heap[1] slot is reserved for emulating the C 

stack and supports functions that require addressable automatic storage. The design mandates that, 

wherever possible, C variables be implemented directly using the Java method stack for efficiency. This 

includes local scalars, arrays, and even automatic structs, provided their addresses are never taken (i.e., 

no pointer to them is used). However, if a C function requires the address of a local variable, the compiler 

switches to using heap[1] as an emulated C stack. In this case, a virtual register—referred to as the C 

Stack Pointer (CSP) or C Frame Pointer (CFP)—is introduced as a runtime variable. The CSP tracks the 

top of the emulated stack. Functions that utilize this memory model must increment the CSP upon entry 

and decrement it upon exit. Additionally, to preserve stack integrity, such functions must catch and 
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rethrow any exceptions while ensuring the CSP is correctly restored in the catch block. Memory 

allocation is achieved through the malloc function, which returns a 64-bit long pointer combining heap 

index and byte offset. If the heap is full, it is resized dynamically. Memory is released via the free 

function, which reclaims the corresponding slot and updates the free list. Struct sizes can be computed 

using the sizeof function, which uses Java reflection to examine the field layout of Java class equivalents 

of C structures. The sizeof function can be removed in next versions of compiler because CStructListener 

saves size in symbol table. 
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Results and conclusions 

Key Results 

1. C-to-Java Bytecode Compiler Prototype. A basic compiler was developed. Compiler translates C 

source code into Java bytecode using ANTLR4 for syntax parsing and the ASM library for 

bytecode generation. The prototype supports small set of core C features. Compiler generates 

executable .class files which can be run on JVM.1 

2. Simulated C Memory Model on JVM. A custom Java class, called CMemoryImplementation was 

created. Class simulates C memory allocation and deallocation. It supports both C stack memory 

and C heap memory behavior. This component provides an abstraction layer that mimics direct 

memory access in C using managed pointers as longs. 

3. Partial Feature Implementation. The compiler currently supports a limited subset of C constructs. 

They include: primitive types, arrays, pointers, functions, control flow structures (if, return, goto). 

Also compiler can generate bytecode for basic arithmetic and logical operations. 

Conclusions 

1. Feasibility Confirmed for Partial Translation. The work shows that translating a subset of C to 

Java bytecode is technically feasible. The essential C constructs can be simulated in Java 

environment. 

2. Practical Lessons on JVM-Based Compilation. The process of building the compiler. Deep 

understanding c too bytecode-level compilation. The complexities of simulating low-level C 

semantics such as pointer arithmetic. 

3. Prototype Limitations and Future Direction. Compiler serves as a steppingstone toward a more 

complete tool.  

Caution for Integration Claims. The thesis does not support full integration of the COD CIF parser and 

does not demonstrate improved parsing performance. These remain goals for future research once the 

compiler achieves a more complete feature set.  

 
 
1 svn://saulius.grazulis.lt/c2java 
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Appendix 1. Clang AST 

Clang AST is a part of the LLVM project. 

 

  

TranslationUnitDecl 0x67c318 <<invalid sloc>> <invalid sloc> 
|-TypedefDecl 0x67cbb0 <<invalid sloc>> <invalid sloc> implicit __int128_t '__int128' 
| `-BuiltinType 0x67c8b0 '__int128' 
|-TypedefDecl 0x67cc20 <<invalid sloc>> <invalid sloc> implicit __uint128_t 'unsigned __int128' 
| `-BuiltinType 0x67c8d0 'unsigned __int128' 
|-TypedefDecl 0x67cf28 <<invalid sloc>> <invalid sloc> implicit __NSConstantString 'struct __NSConstantString_tag' 
| `-RecordType 0x67cd00 'struct __NSConstantString_tag' 
|   `-Record 0x67cc78 '__NSConstantString_tag' 
|-TypedefDecl 0x67cfc0 <<invalid sloc>> <invalid sloc> implicit __builtin_ms_va_list 'char *' 
| `-PointerType 0x67cf80 'char *' 
|   `-BuiltinType 0x67c3b0 'char' 
|-TypedefDecl 0x67d2b8 <<invalid sloc>> <invalid sloc> implicit __builtin_va_list 'struct __va_list_tag [1]' 
| `-ConstantArrayType 0x67d260 'struct __va_list_tag [1]' 1 
|   `-RecordType 0x67d0a0 'struct __va_list_tag' 
|     `-Record 0x67d018 '__va_list_tag' 
`-FunctionDecl 0x6dbf90 <hello.c:1:1, line:8:1> line:1:5 main 'int (void)' 
  `-CompoundStmt 0x6dc338 <col:16, line:8:1> 
    |-DeclStmt 0x6dc140 <line:3:5, col:14> 
    | `-VarDecl 0x6dc0b8 <col:5, col:13> col:9 used x 'int' cinit 
    |   `-IntegerLiteral 0x6dc120 <col:13> 'int' 5 
    |-DeclStmt 0x6dc1f8 <line:4:5, col:14> 
    | `-VarDecl 0x6dc170 <col:5, col:13> col:9 used y 'int' cinit 
    |   `-IntegerLiteral 0x6dc1d8 <col:13> 'int' 6 
    `-DeclStmt 0x6dc320 <line:6:5, col:18> 
      `-VarDecl 0x6dc228 <col:5, col:17> col:9 c 'int' cinit 
        `-BinaryOperator 0x6dc300 <col:13, col:17> 'int' '+' 
          |-ImplicitCastExpr 0x6dc2d0 <col:13> 'int' <LValueToRValue> 
          | `-DeclRefExpr 0x6dc290 <col:13> 'int' lvalue Var 0x6dc0b8 'x' 'int' 
          `-ImplicitCastExpr 0x6dc2e8 <col:17> 'int' <LValueToRValue> 
            `-DeclRefExpr 0x6dc2b0 <col:17> 'int' lvalue Var 0x6dc170 'y' 'int' 
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Appendix 2. ClangAST generation and traversal using a cursor 

 

AST traversal starts in the visit function. 

 

This method always returns CXChildVisit_Recursive. It indicates that all nodes should be visited. 

The result of a function can also be CXChildVisit_Continue and CXChildVisit_Break. 

CXChildVisit_Continue will indicate that the cursor should not visit child nodes. CXChildVisit_Break 

will indicate that the cursor should stop traversal. Traversal is done by the use of visitor patterns [Cor09]. 

Visitors allow adding a new virtual function to the class without modifying it. The first parameter of the 

function is a cursor’s current position in a tree. The second parameter is a parent node in the tree. The 

third parameter allows passing additional data for each traversal. 

To generate struct as a class following data is needed: struct name. So the code that finds and sends 

struct name to JNI is pretty simple. 

As seen from the code, JNI calls a static method that exists on the JVM side. 
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Variables are currently hard coded. The method parameter is an array of String objects and it does 

not return any value. The generation of default constructors is a must. 

The next part is to populate the struct with fields. This is done by calling another method that visits 

generated class file and populates it. To populate struct following data needed: type of field, name of 

field, and parent of field. The code that finds and passes that data can be seen below. 

The method on the Java side accepts a String object array of three elements. 
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The first element is the name of a class, the second is an instance field type and the last is an instance 

field name. With the current version of a project, it is also possible to generate method signatures 

according to C functions. 

The cursor iterates through the function declaration and according to number of parameters calls the 

proper Java static method. 
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The implementation of Javolution API to the moment of thesis submition is not implemented. 

 


