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Summary

Oneway data transfers are used in cases where it is imperative to protect computer systems

against certain threats. Depending on use case, data can either only be sent from the system or only

be sent to the system, but not both ways. Such oneway data transfers are called unidirectional

transfers. Malware analysis is osten performed on isolated system or systems, to prevent malware

from infecting external machines. But inbound data transfers to isolated system or systems are

sometimes required. Controlling the isolated systems from the outside is also sometimes useful.

So it would be useful to have a way to transfer data and commands to the infected systems in a

unidirectional manner, to prevent malware from spreading. The goal of this work was to create

a sostware implemented method to send data via an effectively unidirectional link. The chosen

solution was to create a unidirectional control and file transfer protocol, UCFTP. The protocol

allows sending files and executing commands on the receiver system. This is a network protocol,

so it could be used in untrusted networks. For this reason, protocol uses encryption. Asymmetric

cryptography is used to create symmetric session keys. Sender and receiver programs are identified

by their public keys and the sender cryptographically authenticates to the receiver for every data

transfer session. The protocol provides confidentiality, integrity, authenticity and replay attack

protection. The protocol is resilient to packet loss. RaptorQ forward error correction (FEC) is used

to compensate lost packets. Some constraints have to placed on the environment for the protocol

to be usable: the attacker does not flood the link leading to the receiver, the link to the receiver

is up and has known speed and packet loss characteristics. Protocol implementation uses user

datagram protocol (UDP) because it is connectionless. This allows the implementation to be uses

on any systems that support UDP. Data throughput from the sender using the protocol is similar

to throughput of HTTP/3. The receiver implementation is unable to keep up with such speeds.

The space overhead of the protocol is similar to SSH and HTTP/3. The protocol is suitable for

the malware analysis use case in certain environments, but the implementation is not optimized

and may crash. The supported commands are also basic and might be inconvenient to use due to

their limitations.

Keywords: information security, protocol, isolated system, cryptography, unidirec

tional transfer, virtual machine, file transfer
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Santrauka

Vienpusis duomenų perdavimas naudojamas tais atvejais, kai būtina apsaugoti kompiuterių

sistemas nuo tam tikrų grėsmių. Priklausomai nuo konteksto, duomenys gali būti siunčiami

tik iš sistemos arba tik į sistemą, bet ne abiem būdais. Kenkėjiškų programų analizė dažnai

atliekama izoliuotoje sistemoje ar sistemose, kad kenkėjiškos programos neužkrėstų išorinių

kompiuterių. Tačiau kartais reikia perduotid duomenis į izoliuotą sistemą ar sistemas. Kartais taip

pat naudinga izoliuotas sistemas valdyti iš išorės. Taigi būtų naudinga turėti būdą perduoti duomenis

ir komandas į užkrėstas sistemas vienkrypčiu būdu, kad būtų užkirstas kelias kenkėjiškų programų

plitimui. Šio darbo tikslas buvo sukurti programine įranga įgyvendintą metodą, skirtą duomenims

siųsti efektyviai vienkrypčiu ryšiu. Pasirinktas sprendimas  sukurti vienkryptį valdymo ir failų

perdavimo protokolą UCFTP. Protokolas leidžia siųsti failus ir vykdyti komandas gavėjo sistemoje.

Tai tinklo protokolas, todėl jis galimai bus naudojamas nepatikimuose tinkluose. Dėl šios priežasties

protokole naudojamas šifravimas. Simetriniams sesijos raktams sukurti naudojama asimetrinė

kriptografija. Siuntėjo ir gavėjo programas identifikuoja jų viešieji raktai, o siuntėjas kriptografiškai

autentifikuoja gavėją kiekvienai duomenų perdavimo sesijai. Protokolas užtikrina konfidencialumą,

vientisumą, autentiškumą ir apsaugą nuo pakartotinių atakų. Protokolas atsparus paketų praradimui.

Prarastiems paketams kompensuoti naudojamas „RaptorQ“ klaidų taisymas (FEC). Kad protokolas

būtų naudingas, reikia nustatyti tam tikrus aplinkos apribojimus: užpuolikas neužtvindo ryšio,

vedančio į imtuvą, ryšys su imtuvu veikia, jo greitis ir paketų praradimo charakteristikos žinomos.

Protokolas įgyvendinamas naudojant UDP, nes jis yra be ryšio. Tai leidžia šį protokolą naudoti

visose sistemose, kurios palaiko UDP. Protokolą naudojančio siuntėjo duomenų pralaidumas yra

panašus į HTTP/3 pralaidumą. Imtuvo įgyvendinimas nepajėgus pasivyti tokios spartos. Protokolo

erdvės sąnaudos yra panašios į SSH ir HTTP/3. Protokolas tinka kenkėjiškų programų analizės

naudojimo atvejui tam tikrose aplinkose, tačiau įgyvendinimas nėra optimizuotas ir gali sutrikti.

Palaikomos komandos taip pat yra paprastos ir gali būti nepatogios naudoti dėl jų apribojimų.

Raktiniai žodžiai: informacijos saugumas, protokolas, izoliuota sistema, kriptografija,

vienkryptis duomenų siuntimas, virtuali mašina, failų siuntimas

3



Contents

INTRODUCTION .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1. RELATED WORK .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.1. Unidirectional transfers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.1.1. Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.1.2. Hardwarebased data diodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.1.3. Hybrid solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.1.4. Return channel considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.1.5. Sostwarebased solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2. Communication in virtualization environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2.1. Hypervisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2.2. InterVM data transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3. Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3.1. Bidirectional protocols via a unidirectional link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3.2. Protocol identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.3.3. Packet sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.3.4. WireGuard. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.3.5. OpenPGP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3.6. Protocol features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3.7. Protocollevel security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.3.8. Symmetric key establishment protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2. CHOOSING A SOLUTION .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1. Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1.1. Usage scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1.2. Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.1.3. Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2. Considered solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3. UNIDIRECTIONAL DATA TRANSFER AND CONTROL PROTOCOL . . . . . . . . . . . . . . 29

3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2. Intended use cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3. Protocol message identifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4. Data types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4.1. Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4.2. Compact number encoding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4.3. Byte array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4.4. Text string . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4.5. Compactness versus simplicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5. File system paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.6. Commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.6.1. Control commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.6.1.1. Execute command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.6.1.2. Execute command in default shell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.6.1.3. Set environment variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.6.1.4. Remove environment variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.6.1.5. Execute file from a specified session . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.6.2. File system management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.6.2.1. Renaming existing file system items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4



3.6.2.2. Metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.6.2.3. Create directory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.6.2.4. Create file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.6.2.5. Append to file. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.6.2.6. Append to file from a specified file transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.6.2.7. Rename file system item . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.6.2.8. Move file system item . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.6.2.9. Create file system link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.6.2.10.Delete file system item . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.7. Conditional command execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.8. Command sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.9. Partial execution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.10.Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.11.Protocol message binary encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4. PLAINTEXT PROTOCOL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1. Protocol versioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2. Session initiation and termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3. Session identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3.1. Retained information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3.2. Collisions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3.3. Rejecting duplicates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4. Packet sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.5. Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.6. Timeouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.7. Packet loss detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.8. Protocol message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.9. Packet binary encoding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.9.1. Session init packet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.9.2. Session data packets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.10.Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.11.RaptorQ forward error correction extension. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.11.1.Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.11.2.Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.11.3.Dealing with unneeded packets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.11.4.Usage considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.11.5.Extension identifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.11.6.Session init packet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.11.7.Regular packets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.11.8.Small data sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.11.9.Alternatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5. SECURE PROTOCOL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1. Threat model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2. Environment assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.3. Chosen encryption mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.4. Provided protections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.5. Timeouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.6. Key renegotiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.7. Replay attack prevention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.8. Encryption procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5



5.9. Decryption procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.10.Tamper and forgery prevention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.11.Session ID collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.12.Error detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.13.Forward secrecy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.14.Packet format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.14.1.Session init packet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.14.2.Subsequent packets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.15.Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.15.1.Denial of service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.15.2.NTP manipulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.15.3.Postquantum security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.16.RaptorQ extension additions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.16.1.Packet numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.16.2.Encryption and decryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.16.3.Packet number encryption. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.16.4.Packets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6. ENCAPSULATION IN IP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.1. Packet corruption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.2. Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7. IMPLEMENTATION CONSIDERATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.1. Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.1.1. Logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.1.2. Packet receive rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.1.3. Executed program output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.1.4. Child processes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.2. Sender . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

8. PROTOTYPE IMPLEMENTATION .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

9. PROTOCOL AND PROTOTYPE EVALUATION .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

9.1. Protocol security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

9.2. Prototype security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

9.2.1. General notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

9.2.2. Libraries used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

9.2.3. Sender and receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

9.3. Testing the implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

9.3.1. Unidirectional transfer verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

9.3.2. Overhead comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

9.3.3. Speed comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

9.4. Conformance to requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

RESULTS AND CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Limitations and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6



Introduction

Securitysensitive computer systems need to be isolated as much as possible from other

systems to minimize the possibility of compromise or information leakage. Systems dealing with

sensitive information can osten be isolated from the input/output (I/O) perspective from other

systems. They can either receive the information from other systems (but not send anything to

others) or send information to other systems (but not receive anything from them). Oneway

communication links are also called unidirectional links. Such securitysensitive systems are

osten used in industrial control systems (ICSs) and critical infrastructure [CB12; STN10], and

unidirectional connections are recommended by US Department of Homeland Security for these

use cases [US 16]. ICSs report the data about their operation, but do not receive data, and are

therefore impossible to compromise from the outside. Unidirectional link usage has also been

investigated for electronic voting infrastructure by Jones and Bowersox [JB06]. Maximum security

for systems can be achieved by making them airgapped [SCS+20], i.e. physically disconnected

from any other computer systems. Airgapped systems cannot either send or receive information,

which makes them unsuitable for situations where information has to be sent out or received. This

work will focus on systems connected via physical or virtual unidirectional links. We will call

the system that only receives data a receiver, and the system that only sends data will be called a

sender. Note that in literature these are sometimes called Low and High (security) systems [KM93].

Terms High and Low come from a specific context, so terms sender and receiver are used here to

be independent of any specific use case.

Multiple solutions to achieve systems’ partial I/O isolation exist. Most existing solutions

involve what is commonly called a data diode [OS10]. A data diode is usually a separate physical

network device that can only send data in one direction. It is connected to both sender and

receiver systems. Unidirectional links can be implemented using fiber optics with the sending

side having only the hardware for transmission and the receiving side having only the receiving

sensor. These links are then used to connect the data diode to both sender and receiver systems to

create a unidirectional link.

Another way the same or similar functionality is achieved is with devices simulating data

diodes in sostware [DRC+19]. These devices commonly use simple operating systems customized

to allow only transmitting or only receiving data on specific interfaces. These devices are cheaper

than physical data diodes, because they do not require custom hardware to implement. Network

devices simulating data diodes are sometimes called sostwaredefined networking (SDN) data

diodes. For less stringent security requirements, one can make any network link effectively

unidirectional by discarding all packets coming from one side of the connection. This approach

is useful because of its simplicity, as it requires only the operating system (OS)’s firewall for

implementation.

Some implementations of simulated data diodes are not true oneway communication

devices – they can transmit acknowledgments (or sometimes other metainformation) to the

sender to inform it of the data received by the receiver [KMC05; YCK+17]. This creates a potential

communication sidechannel if both sender and receiver systems are compromised – receiver
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can arbitrarily delay the acknowledgment of receipt. This can be used to convey information

back to sender via timing. The capability to convey information in such a covert way can be

greatly reduced by the intermediary device, which can relay acknowledgments with random

delays [KM93].

Unidirectional link devices are typically implemented in hardware to achieve maximum

and simply provable security – sostware running on the device cannot be compromised to allow

twoway communication if the hardware is incapable of doing it. Sostwarebased unidirectional

transfer implementations are cheaper, but they are not as safe, because most sostware has bugs and

can be compromised. To mitigate these risks, sostwarebased data diodes use very simple sostware

and operating systems, thus minimizing the attack surface.

Unidirectional data transfers are also useful in the context of operating system virtualiza

tion [NGM+15; SMA16; ZGL18]. For example, one virtual machine (VM) must not be able

to send any data out, but data still needs to be sent to it. This can be useful in malware analy

sis [YLA+21] and secure data gathering [SMA16]. Secure data gathering requires that no data is

able to leave the secure systems, but data can be sent from other networks to the secure systems.

For malware analysis, a system, or a set of systems, are used to run and experiment with malware.

These systems are osten VMs. For security reasons, they are partially isolated by blocking any

network traffic from them to outside networks. If the isolated systems are VMs, they may even

run on the same physical system as those VMs connected to outside networks. It can be useful to

transfer files and run commands on the isolated systems from the outside. Any such mechanism

must be unidirectional, as any outbound network packets from the isolated machines are blocked.

For such mediumsecurity use cases as malware analysis, using specialized unidirectional network

devices is undesirable due to their cost and inability to use them for communication between VMs

running on the same physical machine. Thus the need for sostwareonly method of performing

unidirectional data transfers. To the best of author’s knowledge, up until now, there is no openly

available sostwareonly solution for such use cases.

Research Object. This work will focus on creating a preferably sostwareonly solution to

enable unidirectional data transfer between virtual machines (VMs).

Research Goal. Create a sostwarebased method of unidirectional data transfer between

VMs and implement a prototype for evaluation.

Tasks to achieve the goal:

1. Investigate current implementations of oneway links;

2. Define requirements for the solution for unidirectional transfer between two VMs;

3. Design the solution;

4. Implement a prototype of the solution;

5. Evaluate the solution’s security and performance.
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Research Methods:

• Scientific literature and stateoftheart analysis of oneway communication, compart

mentalization, and directional data transfer protocols;

• An analysis of internationally recognized standards or patents;

• Evaluation of current ways of unidirectional data transfer;

• Designing a secure solution for oneway data and command transfer;

• Implementation and evaluation of the solution.
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1. Related work

Related literature analysis is split up into the following parts:

• Unidirectional transfers:

– Layers – discusses the different layers involved in unidirectional transfers and what

their roles are.

– Hardwarebased solutions – discusses the ways unidirectional networks have been

implemented at the hardware layer.

– Hybrid solutions – discusses hybrid solutions, that is, those that use both hardware

and sostware to achieve the required functionality.

– Return channel considerations – tradeoffs between security and usability of unidi

rectional links.

– Sostwarebased solutions – discusses the sostwarebased implementations of unidi

rectional data transfer.

• Communication in virtualization environments – discusses the ways to transfer data

between virtual machines (VMs).

• Protocols – explores protocols that can be relevant for unidirectional transfer implemen

tations and the characteristics of those protocol.

1.1. Unidirectional transfers

1.1.1. Layers

In computer context, the term “layer” (or “abstraction layer”) is a way to hide the details of

how the system works. In computer networking, upper – more abstract – layers are not concerned

with how the data is represented at lower layers.

Unidirectional data transfer implies that information is somehow sent between the sender

and recipient. Therefore, networking terminology is used to talk about unidirectional transfers.

internet protocol (IP) layers, as defined by Kurose and Ross [KR21], will be used.1 Enumerated

from highest to lowest:

1. Application – application data manipulation. Examples: hypertext transfer protocol

(HTTP), internet message access protocol (IMAP).

2. Transport – endtoend connected data transfer. Example: transmission control protocol

(TCP) [Edd22].

3. Network – delivery to a specified recipient. Besteffort, may be unreliable.

4. Data link – delivery of data frames between connected devices.

5. Physical – bit reading and writing to the physical medium.

Unidirectional data transfer is usually implemented at Data link or Physical layer. Unidirec

1There are many competing definitions of layers in networking, and they sometimes include different numbers of

layers.
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Figure 1. Conceptual working of a data diode. Network traffic can only be sent in one direction

tional transfers implemented at a certain layer protects against compromises in the higher layers,

as noted by Stouffer et al. [SPT+23].

1.1.2. Hardwarebased data diodes

Unidirectional network devices can be implemented entirely in hardware. Hardware im

plementations are usually called data diodes. Conceptual working of a data diode is shown in

Figure 1. The term “diode” originates from electronics. In electronics, a diode is a device that

only lets the electricity to pass in one direction. Data diode is a general term for a unidirectional

data transfer device, it does not imply the use of an actual diode. Hardware data diodes can be

implemented in several different ways. We will briefly discuss various types of them.

Usually, data diode acts like a network switch, except that some of its ports are designated

as receiveonly, and others as sendonly. Data received on the receiveonly ports is sent to the

sendonly ports. Internally, the data between these ports is sent via some kind of unidirectional

link.

Conceptually the simplest way to implement a data diode is via optical fiber. One end of the

connection is equipped with only the transmit lightemitting diode (LED), and the other side is

equipped with only the receiver sensor. Therefore, this connection type is only physically capable

of transferring the data one way (from the side equipped with the sending LED to the side with

receiver sensor). Such devices are described by Stevens [Ste99].

A variant of an optical data diode can be made using an optocoupler – essentially a the same

as a fiberoptic link, but without the optical fiber, i.e. the sending LED and receiving sensor are

located next to each other. The working logic is the same as for optical fiber data diode. A device

using this principle is described by Krause and Essig [KE22].

There are also some inductionbased data diodes. Siemens manufactures one such de

vice [Sie20].

Some data diodes are implemented using serial cables, such as RS232 or RS485 standard

cables. Wires for sending data in a certain direction are cut or removed [HBD+22; Men13]. These

devices can still pose a risk if the roles of different wires in the cable can be programatically

controlled on both ends. This would allow to reverse the direction of the data flow, thus com
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promising the premise of the data diode, as discussed by Krause and Essig [KE22] and also by

Arneson and Şahin [AS17].

Barcodes, QR codes [ISO15] and similar machinereadable technologies involving one party

only capable of displaying the information and another party only capable of reading it are widely

used to convey information to the machine reading these codes. Because the sender only needs

to show such a code and receiver can only scan it (without any interactivity), these codes are

effectively data diodes. These codes usually also feature error detection and (usually) correction

capabilities. Depending on the error correction level of the QR code, erroneous readings of 7 %

to 30 % of the code, including erroneously read codes and erasures, can be corrected. The main

drawback – they are only able to convey a fixed and relatively small amount of data, up to 2953

8bit bytes.

To overcome this limitation, animated versions of these codes have also been suggested by

Geiger [Gei18]. Using this approach, the codes are generated and shown in a sequence, and the

reading device continuously scans them. This enables to have a data stream.

1.1.3. Hybrid solutions

Unidirectional network devices are sometimes implemented via a combination of hardware

and sostware. These are still separate hardware devices, but their unidirectionality is ensured by a

combination of hardware and sostware.

Network Pump. One such device has been discussed by Kang et al. [KMC05]. That

device, named “Network Pump”, is a custom network switch. The device is implemented using

two separate processors, one responsible for communication via receiveonly interface of the switch

(the network on that side is called “low” in the paper) and another – for sendonly interface of the

switch (network on that side is called “high” in the paper). These two processors communicate in

very limited capacity – data is transferred from low to high side, acknowledgments in the opposite

direction. Some control data is also exchanged. Custom protocols are used to communicate via the

device. Both low and high sides need special sostware to handle these protocols. This is needed,

because some protocols, e.g. TCP need acknowledgments of received packets.

Starlight Interactive Link. Starlight Interactive Link, described by Anderson et

al. [AGM+96], is another hybrid device. It works similarly to a keyboard, video and mouse

switch (usually abbreviated to KVM switch) [KD00], but lacks the ability to switch “video”, i.e.

video output is provided by one system only. Two computers (here called systems) are involved.

Interactive Link is connected to the low side (i.e. unclassified) network (again, “low” / “high”

terminology is used for consistency with the paper), keyboard and mouse.

The user uses the high side system, as it is connected to a monitor. Low side system is

accessible via the low side network (which is connected to the Link), and the high side system is

connected directly to the Interactive Link. The setup requires two different systems because both

of them are considered untrusted and the Interactive Link manages the data flow between them to

only allow the data to go from low to high system. Connection to the low side network is needed
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to connect to the low side system, which controls the windows that access the untrusted networks,

e.g. internet.

The role of the Interactive Link device is to manage where the mouse and keyboard inputs

go: to the high or the low system. This is controlled by a physical switch on the device. Regular

data (not keyboard/mouse input) can only flow from low to high side via a data diode.

For Interactive Link to work properly, it needs some extra sostware to be running on both

high and low systems. The sostware does not influence security security, but is needed to ensure

system usability. This is because the Interactive Link works by displaying the application windows

from both the low side and high side system on the high side system display. For this to work,

application windows need to be imitated on the low side system (because they are actually shown

on the high side system) and the display server of the low system needs to be imitated on the high

side system (because the application windows are controlled from the low side system).

Another similar system, called COSPO Switched Workstation, has also been used for the

same purpose – to allow the user to use both low and high systems at the same time. It utilizes a

regular keyboard, video and mouse (KVM) switch and a separate data diode for data transfer from

low to high system [LF97].

1.1.4. Return channel considerations

The main feature of truly unidirectional network devices, such as data diodes, is also their

biggest flaw. They don’t have a way to check/ensure that the receiver has received the data sent

by the sender. Thus, data loss can occur in some scenarios [KMC05], some of which are:

• receiver system is or goes offline for some reason, e.g. crash, power loss, system is turned

off, etc.,

• receiver system cannot process incoming data fast enough,

• the unidirectional device malfunctions,

• network links are damaged/disconnected/overloaded,

• data corruption occurs during the transfer.

Usually the fireandforget nature of these devices is promoted as a feature. For example, the

Siemens device discussed previously is promoted as having no impact on the sending network –

even if the the device itself crashes or malfunctions [Sie20]. This is an important feature when the

unidirectional data being sent is used primarily for system monitoring – one would not want an

ICS operation to be tied in any way to the performance of some other, noncritical devices used

only for monitoring and data archival.

Network Pump return channel. But in some other scenarios, where data integrity

and availability is more important, this is a problem. The way to largely mitigate this issue at

the expense of true unidirectionality, are return channels. Network Pump uses such a return

channel to send acknowledgments that the data is received. But one needs to be very careful when

designing return channels, because otherwise they can be exploited to achieve bidirectional data

transfer and undermine the entire premise of a unidirectional device [KM93]. Even if only data
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receipt acknowledgments are sent from receiver to sender, the timing of them can transfer data

back to sender, thus achieving a covert return channel. For this to work, both the sender and

receiver have to agree on how such data transfer would work exactly, but achieving it is possible

if both of them are somehow compromised. Thus, the Network Pump tries to limit this covert

channel as much as possible, because it cannot be eliminated entirely if one wants to send any

acknowledgments. Since covert channel is based on timing, control of acknowledgment timing

by the receiver has to be limited. The unidirectional device gets these acknowledgments from

the recipient, but then arbitrarily delays their transmission back to sender. The delay is based

on the mean (average) of the times between data sending and acknowledgment to the Pump and

some random addition. This way, the receiver can only control the mean time of sending the

acknowledgments to influence how osten the Pump sends them to sender. This greatly limits the

covert channel capacity to transmit information, while still having receipt acknowledgments, and

depending on the required risk tolerance, this can be acceptable.

Starlight Interactive Link. Starlight Interactive Link has a possible covert channel to

transfer information from high to low side. This could be done by a malicious high side display

server, which would alter the application windows of the low side (this is possible because every

window is displayed on the high side machine). By manipulating the low side windows (e.g.

changing the order of menu items, of which only one is enabled), the high side display server

could force the user to e.g. move the mouse in a predictable way. Because, when using low side

applications, mouse and keyboard input is forwarded to low side machine, this creates a covert

channel, which is able to send some information via the mouse movements. In order to create and

use this covert channel, both high and low side machines would have to be compromised. Also,

the user would most likely notice such strange behaviour. For these reasons, this possibility of a

covert channel is deemed an acceptable risk by the authors [AGM+96].

1.1.5. Softwarebased solutions

Hardware or hybrid data diodes are the most secure, but they are not always chosen because

of several disadvantages:

• cost of purchase

• cost of maintenance

• added complexity

This makes not perfectly, but probably secure sostware solutions an attractive option, especially in

cases where there aren’t any mandated security requirements.

Software defined networking. An alternative to data diodes proposed by Katsikas et

al. [DRC+19] utilizes SDN routers or switches. These devices support OpenFlow (SDN standard

interface to control network devices) and are configured to only allow packets to pass in one

direction. This also allows the SDN controller to act as a protocol breaker – it can, for example,
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send TCP SYN/ACK packets to the sender. Controller can also decide what to do with each

packet individually. This allows these important decisions to be taken centrally.

Application software. Trusted Services Engine (TSE) controls data flow inside the storage

of a single system. Data can only flow from low security to high security disk locations [MHH06].

This enables having a database that can be only written to from low security machines. It has been

to get historical data out of critical infrastructure systems: data can only be written by devices

inside the control network. Devices outside the network can only read it, with no way to send any

data in to the control network [ME11].

Firewalls. To prevent data exfiltration form the secure network, firewall monitors all

incoming and outgoing connections. It controls in which direction the data can flow, based on

the protocol used, allowing data to enter the protected systems, but note leave them [SMA16].

A kind of unidirectional data transfer (only to production server, not from it) has been

achieved with very strict access controls: developers are not allowed to access the production

system unless specifically granted a temporary permission by a human to perform a specific task.

And even then they are not given the most dangerous permissions, such as using SSH (Secure

Shell). Such a system can built using public cloud provider infrastructure [ZGL18].

1.2. Communication in virtualization environments

1.2.1. Hypervisors

Hypervisor (sometimes called virtual machine monitor, VMM) is a piece of sostware that

creates the environment to run operating systems (OSs) inside it. The operating systems running

inside a virtualization environment are called VMs or guests, and the OS hosting the hypervisor

is called a host. Hypervisors are broadly classified in two categories [PZH13]:

• Type 1 hypervisor runs on bare metal, with no underlying OS. Its task is to manage all

the hardware and resource allocation to each VM.

• Type 2 hypervisor runs inside an operating system. Each virtual machine is a regular

process in the host OS. The host system manages the hardware and the hypervisor is

responsible for managing the VMs.

Only open source hypervisors are considered. Two most popular open source hypervisors for

GNU/Linux systems are Xen [BDF+03] and KVM (Kernel Virtual Machine) [KVM].

Xen is a type 1 hypervisor, and KVM is a type 2 hypervisor. KVM runs on GNU/Linux OS.

KVM is just a Linux kernel module that manages certain VM operations (because it is a kernel

module and thus a part of the OS, it could also be classified as a type 1 hypervisor, but type 2

classification is more common for KVM). In order to reuse as many drivers as possible for the

Xen hypervisor, Xen has one VM that provides hardware device drivers for the whole hypervisor

to use. That VM is called Domain0 or dom0 (in the hypervisor context VMs are sometimes called

domains), and it is usually, although not necessarily, Linuxbased [Lin].
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KVM directly benefits from Linux kernel improvements, such as better process scheduling

and power management [Sha16], whereas Xen itself has to implement most pieces of VM process

scheduling and power management [ZS18].

A type 1 hypervisor usually has less code than a (type 2 hypervisor + underlying OS). So

type 1 hypervisors are considered more secure than type 2 due to type 1s’ lower attack surface

(less code – less bugs and vulnerabilities).

This can be somewhat mitigated with formal verification, which has been used to prove

some correctness properties of a slightly modified KVM hypervisor [LLG+21].

1.2.2. InterVM data transfer

Virtual machines can communicate using regular network connections. If these VMs are

on different host machines, this is a good approach. But osten the communicating VMs are

hosted on the same physical machine. For this use case, regular network communication has

one major downside – low performance (low data transfer speeds, high latency). Data transfer

speed between VMs on the same machine is barely faster than communication between VMs on

different physical machines [WWG08], sometimes even much slower [ZL16]. For this reason,

faster interVM communication continuously attracts attention of researchers. Multiple schemes

of interVM communication for both KVM [Kis19] and Xen [SJ15] have been devised [RLZ+16].

Communication mechanisms are pairwise, i.e. only two VMs can communicate via one channel.

One way of achieving this it to use shared memory for faster data transfer.

Some designs share memory inside the communicating VMs [BSR+09]. The goal is to

achieve zerocopy transfer, that is, the data being transferred can be directly read by the recipient

OS from the memory space belonging to the sender’s OS as if it was its own memory. The

channels provided by the hypervisor are used by the sender to announce to the recipient the
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address of the memory shared by the sender. To achieve this, all the memory of the participating

VMs is using a single virtual address space. This allows sender and recipient OS exchange these

global addresses.

A similar approach is taken by XenLoop [WWG08]. There, one of the communicating VMs

shares a portion of its memory with the peer. A peer is the communication partner. In both

communication directions a FIFO (first in, first out) queue data structure, implemented via the

ring buffer, is used. XenVMC takes uses shared memory belonging to the host OS, but otherwise

is very similar to XenLoop [RLZ+19].

Many designs use shared memory organized as a ring buffer. A ring buffer is a data structure

that allows the sender to continuously send data as fast as the receiver is reading it. A ring buffer

is one contiguous chunk of memory that has two indices/pointers: one (here called write index)

pointing to the last place that is currently filled, the other (here called read index) pointing to the

first place that is currently filled. As the buffer fills up, the write index moves towards the end

until it reaches the end of the buffer. Meanwhile, the read index moves forward as the receiver

reads the data from the buffer. Once the write index reaches the end, it wraps around and begins

moving from the start of the buffer. The read index works the same way. And this keeps repeating,

with the read index always “chasing” the write index. Neither write, nor read indices can overtake

each other. That’s because if the write index overtook the read index, then some data would be

overwritten before being read by the receiver. Similarly, it is a logical error for the read index to

“overtake” the write index (there is no data there to be read).

Oneway channels. Most research into interVM communication is focused on bidirec

tional communication, but there is some interest in unidirectional transfers [Kis19]. The way

unidirectional transfers are achieved is by making the shared memory readonly for the recipient

and writeonly for the sender.

Another possibility is to utilize regular networking facilities. The hypervisor firewall can be

configured such that it only permits only inbound traffic to one VM and only outbound traffic

from another VM. This creates an effectively unidirectional network link between the sending and

receiving VMs.

Peer discovery and connection establishment. VMs hosted on the same physical

machine need the ability to discover other VMs capable (and willing) to use the custom data

channel for data transfer. This can be done by manually configuring each participating VM of

the presence of other VMs with the required capabilities. This approach has the upside of being

simpler – no peer discovery logic is needed. The main downside is the manual configuration

required.

Another approach is to use automatic discovery. Examples of peer discovery methods:

• XenLoop uses the XenStore feature of Xen hypervisor to signal to the hypervisor that the

VM supports XenLoop. Hypervisor then notifies all the local VMs of the new peer via

custom network packets. Then the shared memory setup is established between the VMs

using custom network packets.
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• XenVMC uses a simpler approach: it broadcasts any changes of local VMs (creation,

destruction, migration) to all the local VMs using special Xen event channel messages,

which are understood only by the VMs, which have XenVMC capabilities.

Required components. Implementations of interVM shared memory data transfer

require a few components:

• Guest kernel support for the desired mechanism [RLZ+19]. Depending on the mechanism,

this can be a custom network device driver, a custom block device (e.g. disk) driver or

both [BSR+09].

• Host/dom0 support for the desired mechanism. Host support is needed for peer discov

ery. Otherwise, the guests have no reliable way to tell if they are running on the same

physical host. Custom memory mapping support is required for both hostowned shared

memory [RLZ+19] and guestowned shared memory. By default, guests cannot access

other guests’ memory, so they need to tell the hypervisor to allow access from other VMs.

Some mechanisms use communication channels provided by the hypervisor or host to

signal data presence [Kis19; WWG08].

Qubes OS. Qubes OS [Qub] is a Linuxbased operating system, designed with the goal of

compartmentalization. It uses Xen hypervisor. Each driver and application runs in its own VM.

This design makes the system much more secure, since to gain access to the main VM (dom0), the

attacker has to compromise the application running in a VM and then compromise the hypervisor

by breaking out of the VM. To make it even harder to compromise VMs which provide the device

drivers, usage of unikernel (the kernel and the application is the same binary) driver OSs has been

investigated [MNR22].

Data can be transferred between VMs in Qubes OS utilizing Xen vchan – a sostware library
implementing a mechanism for Xen to transfer data between guest VMs and dom0. This mechanism

is used by Qubes’ tool for command sending and data transfer, named qrexec [BSR+09].

1.3. Protocols

The previous sections dealt with mechanisms for information delivery. This section deals

with the layout of that information. In order to be able to transfer any kind of information, both

sender and receiver have to agree on the exact format of that information.

To distinguish between the chunks of data actually sent over the transport medium and the

full message to be sent, this terminology will be used:

• a message is all the data that logically forms one unit,

• a record is a single protocol data unit (i. e. one protocol packet).

1.3.1. Bidirectional protocols via a unidirectional link

One of the major problems of unidirectional data transfer is that most of the standard

protocols require bidirectional communication. For example, TCP requires acknowledgments
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that the network packets have been received (it is also frequently used to transfer data both ways,

but the acknowledgments are required even the transfers happen in one direction only). Most

protocols operate in the form of requestresponse: system 1 asks system 2 to get send something,

then system 2 sends the requested data. This does not work if a unidirectional link is used between

the systems. One of the solutions to this problem uses additional systems, sometimes called

proxies, that provide the illusion of a bidirectional link [CB12; Fen21]. These extra systems are

only able to work with unidirectional protocols or protocols that require only acknowledgments

of the received data. The unidirectional link makes supporting truly bidirectional protocols,

where meaningful data is sent both ways, impossible. But to provide an illusion of, e.g. TCP for

the sending system, these intermediate systems have to assume the sent data has been received.

Another option is to use a reverse channel strictly for acknowledgments of the received data.

1.3.2. Protocol identification

Many protocols identify the protocol and usually the protocol’s version in the first record

sent to the peer, e.g. WireGuard [Don17], SSH [LY06]. This is a very good idea, because servers

of a specific protocol can listen on any network port. Clear protocol identification in the very first

record helps avoid any misunderstandings.

1.3.3. Packet sizes

Whether each record of the protocol should know its own length depends on the protocols

below and/or above the current protocol in the stack. For example, WireGuard packets don’t know

their lengths, because both the layer below (UDP) and the encapsulated IP packet know their

own data lengths. On the other hand, message formats independent of the underlying transport

must encode their own length, otherwise it may not be clear whether the whole message has been

received.

In some cases the application is responsible for dividing the message into records: when using

datagram transport layer security (DTLS) [RTM22], messages must be divided into records by the

application and then reassembled by the application at the other end, also somehow dealing with

lost and out of order packets. To be able to correctly reassemble the original message, records must

be be numbered and/or have offsets from the start. Using some other transport layer protocols, it

is done automatically: when TCP is used as the transport, it divides the message into records and

then reassembles them at the other end in full and in correct order [Edd22].

1.3.4. WireGuard

WireGuard [Don17] is a network tunnelling protocol. It enables two computers to send

encrypted messages to each other. It is osten used for virtual private network (VPN) due to its

speed and simplicity. It is connectionless (but not stateless) because it does not provide message

acknowledgments or resending messages in case of packet loss. There is a good reason for being

connectionless: WireGuard encapsulates regular network communications, which are themselves

responsible for dealing with packet loss and/or reordering. It uses publickey cryptography to
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1 byte 3 bytes 4 bytes 8 bytes rest of the packet

message type reserved zero receiver index counter encrypted data

Figure 3. WireGuard data packet structure. Symmetric session key is used to encrypt the data

establish a symmetric session key. Public keys are periodically reexchanged, and the session key

is then changed to achieve forward secrecy – if the sender’s and/or receiver’s private keys are

compromised, the attacker can read only a limited amount of messages because the next time

keys are exchanged, the attacker will once again be unable to decrypt the messages sent later.

Aster the session key is established, every packet sent in any direction between the two parties

is encrypted with that session key (until it is changed). The format of each packet is shown in

Figure 3. Packets don’t carry their versions. Packets are encrypted using authenticated encryption

with additional authenticated data (AEAD) [McG08], which ensures that they have not been

tampered with (message decryption fails if it detects tampering).

1.3.5. OpenPGP

OpenPGP [WHW+24] is a message format osten used for email encryption and/or signing.

OpenPGP is also sometimes used to sign the sostware packages in package repositories. OpenPGP

only defines the message formats. Message transport issues are not considered, except that the

message transfer channel is untrusted. Because each email message is sent from sender to recipient,

it can be considered a form of oneway data transfer. OpenPGP packets can be of many different

types: literal, authenticated symmetrically encrypted data, cryptographic signature, encrypted

session key, etc. All these message have a few things in common: they contain own type, version

and length. This design decision is understandable considering the intended use case: email

messages which can be archived for a long time, sostware signatures, which can also be stored for

quite some time. Being selfcontained and explicit about versions helps maintain compatibility

with evolving tools.

1.3.6. Protocol features

Forward error correction. Data transmission is not perfectly reliable and errorfree.

And because data diodes or similar technologies transfer data one way only, there is no way for

the receiver to tell the sender that some packets have been lost or arrived corrupted, so that

sender could resend them. This means that implementing some kind of forward error correction

and/or redundancy (message resending) [Maa15] when transferring data unidirectionally is a good

idea. Forward error correction can be done using ReedSolomon codes, which can be combined

with convolutional codes [AKT+18]. Alternatively, there is RaptorQ [MSW+11] forward error

correction algorithm. It has good recovery properties for reconstruction. It is intended to be

used in packet transmission environments. It also has much faster encoding and decoding than

ReedSolomon codes. RaptorQ tolerates only loss, but not corruption of data. Data loss occurs in

whole packets. If corrupt data is supplied to the decoder, incorrect data will be reconstructed.
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Data (file) transfer. SSH file transfer protocol [GS06] specifies a simple protocol for file

and directory manipulation using an established SSH connection [LY06].

Running commands. SSH (Secure Shell) is a commonly used protocol for secure con

nections to remote machines [LY06]. SSH, as its name suggests, establishes a secure channel to

send commands to the shell on the remote machine and receive the output form that shell.

Protocol versioning. Protocol changes can introduce problems, when the protocol was

not designed for it. It might be very difficult to make the new implementations (still supporting

old protocol versions) work with the old ones. A few examples. Git protocol was not designed

with changes in mind. When version 2 of the protocol was developed, various “side channels” had

to be found to not break old clients and servers, which assumed version 1 of the protocol [Wil18].

A similar thing happened with Git’s change to a more secure hash function: from SHA1, no

longer considered secure [Mer17], to SHA256. Because things in Git are generally identified

by their hash values, and these hash values can osten be abbreviated (if their prefixes are not

the same), abbreviated hash values by default mean the older hash version, because there is no

way to distinguish what was intended and not all protocols used by Git support signalling the

version [Cog20].

To avoid such problems, protocols signal their versions at least when establishing the

connections [Don17; Res18; RTM22]. If the protocol is not connectionoriented, that is, protocol

sends messages which can be treated more or less independently, and also messages can be combined

to form larger messages, versioning for each part of the message may be required [WHW+24].

1.3.7. Protocollevel security

Protocol messages are osten sent through untrusted channels. Depending on the protocol’s

requirements and the characteristics of the channel being used, some information security prop

erties must be ensured by the protocol. ISO/IEC 27000:2018 defines information security as

“preservation of confidentiality, integrity and availability of information [...] In addition, other

properties, such as authenticity (3.6), accountability, nonrepudiation, and reliability can also be

involved.” [ISO18]. For communication protocols, the following properties may be relevant, with

definitions taken from the same standard:

• Confidentiality – “property that information is not made available or disclosed to unau

thorized individuals, entities, or processes”.

• Integrity – “property of accuracy and completeness”.

• Authenticity – “property that an entity is what it claims to be”.

• Nonrepudiation – “ability to prove the occurrence of a claimed event (3.21) or action

and its originating entities”.

ISO/IEC 27000:2018 is focused on security of whole organizations, so it defines these terms in the

context of organizations. The terms will be discussed here in terms of communication protocols,
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as the core meaning of the term stays the same. Plaintext is the data before being encrypted.

Ciphertext is the encrypted data.

Confidentiality. Plaintext messages cannot be read by a third party, even if it captures

the whole communication session.

Encryption is used to ensure confidentiality. Symmetric encryption is used for message

content. Examples of currently widely used and trusted symmetric encryption schemes include:

• AES [Dwo23] is one of the options for TLS [Res18], DTLS [RTM22], SSH [LY06] and

many others. AES is so widely used that it has dedicated processor instructions in many

currently used processor designs to speed up encryption and decryption [LY10].

• ChaCha20 [Ber08], used by WireGuard [Don17], also one of the options for TLS, DTLS,

SSH and many others. ChaCha20 is much faster than AES when AES does not have/use

dedicated processor instructions [KCT+20].

Context: key exchange. Symmetric encryption needs symmetric keys. One option

is to use preshared symmetric keys between the communicating parties. This has the upside

of simplicity, but also a significant downside: if the key is discovered by the attacker, all the

communication can be decrypted and new key needs to be created and shared between the

communicating parties. For this reason, symmetric cryptographic keys are usually exchanged using

asymmetric cryptographybased key exchange methods. Widely used key exchange algorithms are

ECDH (Elliptic curve DiffieHellman) [SG09], especially one of its variants X25519 [LHT16]. To

derive the symmetric key to be used for message encryption, hashbased key derivation function

(HKDF) [Kra10] is osten used [BBL+22; Don17].

Integrity. Integrity – the message has not been altered while in transit. This can be

achieved using digital signatures or authenticated encryption [Bla05]. For efficiency and ease

of use, AEAD [McG08] is used when both authenticity (meaning number 2) and integrity are

required. AESGCM [SMC08] and ChaCha20Poly1305 [NL18] are commonly used [Don17;

LY06; Res18].

Context: identity of the remote side. In computer networks, there are no inherently

trusted identifiers. To prevent maninthemiddle attacks2, communicating sides have to establish

trust in the identity of the peer. There are various ways to achieve this. Three common ways are:

• Public key infrastructure (PKI). Using this method, peers use a trusted third party, called

a certificate authority (CA) to establish trust in each other’s identity. This approach is

used by TLS and DTLS.

• Trustonfirstuse. The first time a connection is established, the user is asked whether

2Maninthemiddle attack is when an attacker establishes secure connections to both communicating peers by

tricking them into believing the attacker is really the intended peer.
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the public key of the other side is the expected one and should be trusted. This approach

is usually used by SSH on the client side.

• Preconfigured keys. Public keys of the communicating peers are known to both sides

prior to starting the communication. This approach is used by WireGuard and by SSH

on the server side, because on the server side, there is no user to ask about whether the

peer’s key is the correct one.

Authenticity. Depending on the context, the term authenticity means one of two things:

1. Identity of the sender of the message can be verified [BR94]: when symmetric encryption

is used, all the communicating parties know the key, so any of them could have created

any of the encrypted messages. This is essentially equivalent to nonrepudiation.

2. Only the entity knowing the secret key could have produced this message [Bla05]. This

means that the message is not forged by, for example, generating random noise. Aster

all, the purpose of encryption algorithms is to make the ciphertext look like random

noise, so the ability to distinguish random noise from a valid encrypted message has to be

ensured. This is the interpretation most commonly used in the context of communication

protocols.

Nonrepudiation. Sender cannot deny sending the message. Cryptographic digital

signatures are used to identify the message creator. Because digital signatures require the use of

asymmetric cryptography, which is slow, osten only the hash of the (possibly encrypted) message

is signed [BDL+12; WHW+24]. It is important what exactly is being signed, as it may allow

undesirable misuse of signatures [Dav01]. In the context of preventing message forgeries, either

message authentication codes (MACs) [KBC97], or authenticated encryption [Bla05] can be used.

Forward secrecy. Forward secrecy protects the communication in case the attacker

discovers one or more secret keys. Periodic new public key reexchange and consequently

changing the symmetric key is the usual method used to provide forward secrecy. This strategy is

used by WireGuard [Don17], TLS [Res18], DTLS [RTM22], SSH [LY06] and the Double Ratchet

algorithm used by the Signal protocol protocol [PM16]. Key reexchange method does not work for

unidirectional links. Presharing many public keys in advance and using them one aster another,

has been proposed for OpenPGP [Win18]. The author is unaware of any other methods to achieve

forward secrecy in unidirectional communication.

Replay protection. Replay protection deals with ways to recognize duplicate records

being received. One way to achieve this is to number the records [RTM22]. Oneway protocols,

especially the ones utilizing untrusted networks, face another problem – whole session replay,

where the attacker records all the messages sent in one session, and the resends them later. This

can be a security vulnerability if the protocol allows to modify system state and is not idempotent.

Idempotence – in protocol context, a property that repeated identical requests will not result in
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any additional state changes. To mitigate this threat, communicating parties should keep some

state to identify session replay attempts [NBF+06].

1.3.8. Symmetric key establishment protocols

Establishing shared symmetric keys when both parties have a public/private key pair and

know each other’s public keys, is a common problem for network protocols. For this reason, a

few schemes have been documented to help when designing new encrypted protocols. Examples

of such schemes are the Noise protocol framework [Per18] and hybrid public key encryption

(HPKE) [BBL+22]. HPKE is relevant for unidirectional transfers, since it provides functionality to

encrypt any amount of data from sender to receiver, given that the sender knows the receiver’s

public keys. HPKE also allows cryptographically authenticating sender to the receiver, using the

sender’s public key as sender’s identity.
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2. Choosing a solution

In order to choose the most suitable solution for unidirectional data transfer, we consider

the requirements and available solution alternatives.

2.1. Requirements

The solution must satisfy a few requirements to be considered suitable. Some features would

be nice to have, but are not critical. The solution should be sostwareonly, but it can be created to

utilize a specific data transfer mechanism. So the data transfer mechanism has to be determined

first before choosing the how sostware will utilize the transfer mechanism.

2.1.1. Usage scenarios

The solution should primarily address malware analysis use case. For malware analysis, a

system, or a set of systems, are isolated from public networks. Those isolated systems are then

used to run and experiment with malware. The isolated machines may be physical computers

or VMs. Cloud computing providers may be used to run the VMs. Machines are blocked from

sending traffic to outside networks. We will call the machine being infected the victim, and the

machine used to control and send the data to the victim the controller. For simplicity, we only

consider setups with one machine being victim and another – controller. If multiple machines

are used as victims or controllers, the requirements for data sending do not change, aside from

requiring higher transfer speeds. Potential malware analysis setups:

• VM victim, another VM controller;

• VM victim, hypervisor host controller;

• Physical machine victim, another physical machine controller;

The controller machine may be located very far from the victim machine. Data can be transferred

to the isolated machines in a few ways. The considered solution evaluation criteria:

• Cost of implementation.

• Is physical access needed to set up or use the transfer method?

• What is the transfer latency?

• What is the transfer speed?

• Can it be used to transfer data between VMs running on the same physical computer?

• Security risks.

Methods to transfer data, along with their advantages (+) and disadvantages (−) according to the
criteria:

• Unidirectional inbound network traffic:

+ no physical access needed for setup or operation,

+ low latency,

+ potentially high speed,

+ only a network connection needed,
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− unidirectional transfer has to be constantly enforced.

• Data diode:

+ no physical access needed for operation,

+ only unidirectional transfer possible,

+ low latency,

+ potentially high speed,

− physical access needed for setup,

− costly,

− cannot use for transfers between VMs running on the same physical machine.

• A portable storage device, such as a USB stick:

+ no setup needed,

+ potentially high speed,

− physical access needed for operation,

− the portable storage device may be infected or used to transfer data out,

− cannot use for transfers between VMs running on the same physical machine,

− high latency from sender to receiver.

Malware analysis does not require perfect security, but the exact requirements may vary.

Here we assume that compromise of the unidirectional link if the gatekeeper machine itself is

compromised from the outside is an acceptable risk. Keeping this in mind, from these options,

unidirectional network transfer is the one with the least severe downsides. Unidirectional link

can be enforced either by the sender machine or the hypervisor, if the victim is a VM. If the

sender enforces the oneway transfer and the sender is compromised, the connection may become

bidirectional. Same applies for the hypervisor case. On the other hand, the oneway property is

easy to enforce – the enforcing system can just drop any incoming packets from the victim system

on the connected network interface. If the isolated machines are VMs and they run on a cloud

provider, unidirectional network transfer is the only practical option. Therefore IP networks are

the preferred way for unidirectional data transfer. Data diodes are usually network devices, so if

the solution works on a unidirectional network link, that link can also be a data diode.

2.1.2. Security

If the solution utilizes a network, it may be used in various circumstances, including those

where data is sent through untrusted networks, such as public internet. Therefore, data must be

encrypted in transit – confidentiality. It also must have integrity protection to prevent tampering

and detect corruption – integrity. It must be possible for the receiver to securely identify the

sender – authenticity. Due to the unidirectional nature of the protocol and the possibility that

packets may get duplicated in transit, either maliciously or accidentally, receiver must be able to

prevent the same command from running twice.
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2.1.3. Features

Malware analysis use case dictates the required features. Being used on a network places

additional requirements. Security features are not included here. The required features are:

• File transfer.

• Receiver file system management.

• Running commands on receiver system.

• Ability to enforce correct order of execution. This is needed because IP networks do no

provide inorder delivery guarantees, but some commands may need to be executed in a

certain sequence.

• Error detection and correction. This is needed due to possible network errors or lost

packets. The mechanism should be customizable for different sending link characteristics.

• Support for multiple simultaneous transfers.

• Resource efficiency of receiver. Receiver application may run on VMs which has 2 GB or

4 GB of RAM and thus should not use much more memory than required to hold parts of

the received data that cannot be written to storage immediately.

• High transfer speed. Large files or many files may need to be transferred regularly. The

implementation should support at least 1 Gbps send or receive speed on a single CPU

core.

2.2. Considered solutions

A few sostware solutions were considered to provide unidirectional transfers via IP networks.

One is to terminate the commonly used protocols, such as SSH, HTTP or FTP on both sides of

the connection. The extracted data is then sent via the unidirectional link. The received data is

supplied to the receiver program as if it was coming via the terminated protocol. This approach is

used by some hardware data diodes [Fen21]. Here we are only interested in the sostware part of this

solution. The main advantage – the sender and receiver sides only need the protocol terminator

sostware to deal with the unidirectional link, as the usual data transfer protocols work through the

link. But there are several disadvantages:

• Protocol terminators are inherently very limited due to oneway link. They cannot

meaningfully imitate any interactive behavior, such as listing files in the receiver directory

from the sender. So the uses of the protocols are constrained to purely unidirectional

transfers.

• Protocol terminator sostware has to support multiple protocols and be updated to deal

with their new versions.

• Protocol terminator sostware uses resources to translate between protocols and the trans

ferred data.

• The unidirectional transfer may happen via untrusted networks. For this reason, data

transferred between the protocol terminators should be secured.

Another approach to solve to provide unidirectional transfers is via a custom protocol. The main
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advantages compared to protocol terminators are the reduced complexity, potentially lower resource

usage and not needing to create another protocol for secure data transfer. The security measures

of the protocol can also be better adapted for the unidirectional link. The main disadvantage is

that any applications on sender and receiver systems need to implement this specific protocol to

send and receive data. The chosen solution is the custom network protocol, as it is simpler and

potentially uses less resources in operation.
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3. Unidirectional data transfer and control protocol

3.1. Introduction

The unidirectional data transfer and control protocol’s intended purpose is in its name — to

send commands and files from the sender to the receiver via a unidirectional link. The protocol

defined in this chapter is independent of message transport and lower layers. Plaintext transport

protocol, secure transport protocol and sending the protocol messages over IP networks will be

discussed in later chapters.

Protocol messages in this and the following chapters mean specifically encoded data sufficient

for the receiver to execute the specified command.

This chapter will define the protocol. More specifically, the following aspects are in scope:

• available commands and their semantics,

• command arguments,

• extension possibilities,

• binary encoding,

• different subsets of the protocol.

3.2. Intended use cases

The intended use case for this protocol is remote control of a system behind a unidirectional

network link. This is useful, for example, for malware analysis: a virtual machine (VM) is started,

and then this protocol can be used to upload malware and possibly other files to the system

and execute arbitrary commands. The unidirectional nature of the protocol does not allow the

malware to exfiltrate any data from the infected system. The protocol could also be used to control

industrial equipment.

3.3. Protocol message identifiers

For various purposes, it is useful to be able to identify a specific protocol message. They are:

• reference to a previously transferred file,

• conditional execution based on execution of a specific previous protocol message,

• dependence on previous commands,

• identifying packets belonging to the same session.

All of these uses will be discussed in the coming chapters. By default, a sender may only reference

its own commands. Implementations may optionally allow a sender to reference any command; if

this mechanism is present, it should be usercontrollable on the receiver side. Implementation

decides how long to keep the command information for reference aster it has been executed.

3.4. Data types

Description of the data types that will be used in the command binary encoding.
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3.4.1. Integers

All integer data types are littleendian, which means that in the binary encoding, the least

significant byte comes first, and the most significant byte comes last. Byte order in network

protocols specified by internet engineering task force (IETF) is commonly big endian [RP92],

but this is a custom protocol for a specialized use case, so following conventions is not of high

importance. Also, the majority of CPU architectures in use today by default use littleendian data

and instruction encoding: x86_64, Aarch32, Aarch64, RISC-V. Therefore, it makes sense to use
littleendian for simplicity and (small) performance gains during (de)serialization.

The following integer types are used in the protocol:

• uint8  unsigned 8bit (one byte) integer
• uint16  unsigned 16 bit littleendian integer
• uint32  unsigned 32 bit littleendian integer
• uint64  unsigned 64 bit littleendian integer

3.4.2. Compact number encoding

Various places in the protocol require specifying the number or length of something. For

example, the length of a text string, the number of program arguments, the number of environment

variables or the number of bytes in an array.

In some cases, this needs to be done multiple times in one protocol message, f.x., to execute

a program with multiple arguments. It is thus desirable to use as little space as possible to encode

these integers. One important characteristic of string lengths, numbers of arguments and, to a

lesser extent, file sizes, is their tendency to concentrate on the short end of the spectrum. There

are usually none or a few program arguments, and these arguments tend to be short (their length

fits in one byte). For this reason, a compact integer format is used in the protocol. The encoding

is taken from [Mag24] and defined as follows, where n is the unsigned integer being encoded:

• if n ≤ 248, it is stored as one byte;

• if 248 < n < 216, first byte = 249 and next 2 bytes specify the number;

• if 216 − 1 < n < 224, first byte = 250 and next 3 bytes specify the number;

• if 224 − 1 < n < 232, first byte = 251 and next 4 bytes specify the number;

• if 232 − 1 < n < 240, first byte = 252 and next 5 bytes specify the number;

• if 240 − 1 < n < 248, first byte = 253 and next 6 bytes specify the number;

• if 248 − 1 < n < 256, first byte = 254 and next 7 bytes specify the number;

• if 256 − 1 < n < 264, first byte = 255 and next 8 bytes specify the number.

Note that in this scheme, number 255 is encoded as (in hex notation): 0xF9 0xFF 0x00, that is,
it is encoded the same as uint16.

All compact integers are unsigned. This encoding scheme allows encoding numbers from 0

to 264 − 1 inclusive. Type name is cu8_64, as it encodes input values from 1 byte to 8 bytes in

size.
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3.4.3. Byte array

Byte array, here referred to as array, is a composite type of 2 fields:

• length in bytes: type cu8_64,
• data: byte array of the length specified in the length field.

With this length specification scheme, any length up to 264 − 1 is possible, which is enough for

any reasonable amount of data. Data can contain any bytes, including the NULL byte (zero byte),

and in any order.

3.4.4. Text string

Strings are used to encode program arguments, paths and environment variables, which may

be very long and their maximum length depends on the receiver operating system.

Text string, here referred to as string, is encoded the same way as array, and there are
additional requirements for encoding. All text is encoded as UTF8. Protocol extensions may

specify other encodings to use, such as e.g. WTF8 [Sap22] for unusual Windows file paths,

UTF16, or any other implementationdependent byte sequence.

As a result of UTF8 being the default encoding, text may include the NULL byte. Message

creation or parsing does not in any way depend on the values of the text bytes. Text does not

include any terminator since its length is already known.

3.4.5. Compactness versus simplicity

The command encoding specified here is chosen for compactness and simplicity of imple

mentation. Some alternative array length encodings that were considered:

• Bencode [Coh17] string encoding:

+ can encode arrays or strings of arbitrary length

− more complex encoding and decoding because lengths need to be transformed into

ASCII numbers when encoding

• Split the strings into parts: use 1 or 2 bytes for length, and designate some specific value,

for example, 0, to mean that the string has more parts aster this one. The current part

(with length of 0) is the max representable length, 255 or 65535 bytes. Subsequent string

parts work the same way. They either specify their length or value 0 to mean that there

are still more parts aster this one. The string ends aster the part which has a non0 length

value. Pros and cons:

+ compact encoding for short strings

− a bit more complex encoding and decoding

− comparatively large overhead for long strings: additional byte for every 256 bytes

of string length

• Use 4 bytes for array length field:

+ simple encoding
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− inefficient use of space with common strings, which are short, unable to represent

really long strings.

3.5. File system paths

Many of the commands deal with file system paths. Path format depends on the receiver

operating system:

• On Unixlike systems, such as Linux, it is of the form /path/to/the/file.
• On Windows, it is of the form C:\path\to\the\file. Forward slashes can also be used
and, in almost all cases, are equivalent to backward slashes.

Each command specifies whether paths have to be absolute or just specify names of file system

items.

3.6. Commands

The protocol defines many commands. Implementations must recognize but not necessarily

support execution of all commands defined here. Considering that the protocol is essentially

remote code execution, implementations should allow the user of the receiver system to limit

what commands are allowed to be executed.

A list of command names. Command type is encoded as a uint8 value. They will be
discussed in the listed order:

• execute command = 0,

• execute command in default shell environment = 1,

• set environment variables = 2,

• remove environment variables = 3,

• execute file from a specified command = 4,

• create directory = 5,

• create file = 6,

• append to file = 7,

• append to file from a specified command = 8,

• rename file system item = 9,

• move file system item = 10,

• add filesystem link = 11,

• delete file system item = 12.

Other command type values are unused. They may be utilized for implementationspecific

commands. In that case, the extensions used must be indicated in the extension headers.

Each command includes the types used for its binary encoding. Fields are laid out in memory

in the listed order without any gaps or padding.

Command sequencing and conditional execution depends on the success of executing the

commands. For this reason, every command includes conditions for it to be considered successfully
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executed. Command execution is only attempted if the command is fully received, as indicated

by the message length field. If the command is not fully received, it is considered not received.

3.6.1. Control commands

Control commands are those commands that deal with file execution and environment

variables.

3.6.1.1. Execute command

Execute the file at the provided file system path. Optionally, it can provide program

arguments and/or environment variables. The provided environment variables are set only for

this program’s execution.

The command provided information:

• Absolute file path: string;
• Environment variables:

– number of environment variables, 0 or more: cu8_32,
– for each environment variable:

∗ name: string,
∗ value: string;

• Program arguments:

– number of arguments, 0 or more: cu8_32,
– for each argument:

∗ value: string.

Execution is considered successful if referenced file is found and executed. Notably, the

execution result does not matter.

3.6.1.2. Execute command in default shell

Execute the command in the default shell environment of the receiver system. The provided

command is passed to the shell asis without any splitting or variable resolution.

The command provided information:

• Command to execute in shell: string.

Execution is considered successful if the command is executed. Notably, the execution

result does not matter.

3.6.1.3. Set environment variables

Set one or more environment variables. These environment variables will be explicitly set

for all programs executed aster this command. This does not alter operating system state. This

means that:
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• Set variables are only given to programs executed by the receiver program. Environment

of programs executed using other mechanisms, such as autostart, are not affected.

• The changes do not persist beyond the lifetime of the receiver process.

The command provided information:

• Environment variables:

– number of environment variables, 1 or more: cu8_64,
– for each environment variable:

∗ name: string,
∗ value: string.

Any characters are permitted by the protocol in variable names and values. Different

operating systems have their own rules about allowed symbols, so valid values depend on the

receiver OS.

Note that this command sets the environment variables, and overwrites them if they already

exist. Appending to a variable is also not implemented, because the variable appending rules

are entirely defined by the applications that use these variables. For example, on Linux, PATH
environment variable separates its values with “:”, whereas on Windows it is “,”. Both of these
limitations can be worked around by using “execute in shell” command.

Execution is always considered successful.

3.6.1.4. Remove environment variables

Remove one or more environment variables from current environment. They will not be

set for any program executed aster this command. Same caveats apply as for setting environment

variables.

Command provided information:

• Environment variables:

– number of environment variables, 1 or more: cu8_64,
– for each environment variable:

∗ name: string,

Execution is always considered successful.

3.6.1.5. Execute file from a specified session

Execute a file modified via a specified session ID. Only these types of commands can be

referred to in this context and it refers to these specific paths:

• create file  the created file,

• append to file  the file appended to,

• create file system link  the link source.

34



This command can be useful if the path to the file is long. Note that the length of time

that command history is kept depends on the implementation and configuration of the receiver

program and is unspecified. If the receiver does not have information about the referenced session,

this command does nothing. This command may optionally provide program arguments and/or

environment variables. Provided environment variables are set only for this program execution.

Command provided information:

• ID of the file transfer: uint64;
• Environment variables:

– number of environment variables, 0 or more: cu8_32,
– for each environment variable:

∗ name: string,
∗ value: string;

• Program arguments:

– number of arguments, 0 or more: cu8_32,
– for each argument:

∗ value: string.

Execution is considered successfully executed if the referenced file is found and executed.

Notably, the execution result does not matter.

3.6.2. File system management

Protocol commands for file management and transfer are defined similarly to those in SFTP

version 3 [GS06]. Commands requiring bidirectional communication, such as listing files, are not

included, because they commands do not make sense in a unidirectional transfer context.

3.6.2.1. Renaming existing file system items

Some of the commands allow renaming a file system item (file, directory or link) of the

same name if it already exists. In that case, implementation is free to choose any scheme to

use for the renaming. The scheme should be simple and predictable, something similar to

<name>-1.<extension> for files or <name>-1 for directories.

3.6.2.2. Metadata

Each file system item has some metadata associated with it, such as:

• name,

• size (for files only),

• owner user,

• owner group (only some file systems support this),

• permissions for owner user and owner group (read, write, sometimes others such as

execute),
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• creation time,

• modification time,

• last access time.

It would be useful to allow the protocol to encode (some) of this metadata. But different file

systems and different operating systems support different metadata fields and the metadata values

are different. For example on Linux user and group have numeric IDs, but on Windows these IDs

are alphanumeric. This makes it hard to define metadata fields in a way that is interoperable.

SFTP supports setting metadata, but SFTP metadata fields are designed to accommodate

Unixlike, e.g. Linux, operating systems, as the metadata types and fields match those commonly

found on Unixlike systems and thus are unsuitable to e.g. Windows.

For this reason, this protocol does not support setting metadata via file system operations.

One possible workaround is to do metadata modifications by sending commands to execute

programs that do those modifications. Execute permission is also not set by the protocol. The

regular workaround of using “execute in shell” command applies.

3.6.2.3. Create directory

Create a new directory. Parent directories are not created.

Command provided information:

• Absolute path: string;
• Mode: uint8. Values:

– create or do nothing if exists = 0,

– create or, if item exists, rename existing and create = 1.

Execution is considered successful if any of the following conditions are satisfied:

• Mode is “create or do nothing” and item already exists;

• Mode is “create or do nothing” and directory is created;

• Mode is “create or rename and create”, already existing item is renamed and a new one is

created;

• Mode is “create or rename and create” and directory is created.

3.6.2.4. Create file

Send a file from sender to receiver. File transfer can be split up into multiple parts by

combining file creation command and file append command aster it. Parent directories are not

created.

Command provided information:

• Absolute path: string;
• Mode: uint8. Values:

– create or overwrite if item exists = 0,

– create or do nothing if item exists = 1,
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– create or rename and create if item exists = 2;

• File data: array.

Execution is considered successful if any of the following conditions are satisfied:

• Mode is “create or overwrite” and item is overwritten with all the sent data;

• Mode is “create or do nothing” and item already exists;

• Mode is “create or do nothing” and file is created with all the sent data;

• Mode is “create or rename and create”, already existing item is renamed and new file is

created with all the sent data;

• Mode is “create or rename and create” and file is created with all the sent data.

3.6.2.5. Append to file

Append contents to a file. Can optionally create the destination file, but not its parent

directories.

Command provided information:

• Absolute path: string;
• Mode: uint8. Values:

– append to existing, do nothing if does not exist = 0,

– append to existing, create if does not exist = 1;

• File data: array.

Execution is considered successful if any of the following conditions are satisfied:

• Mode is “append or do nothing”, file exists and is extended with all the sent data;

• Mode is “append or do nothing” and file does not exist;

• Mode is “append or create”, file exists and is extended with all the sent data;

• Mode is “append or create” and file is created with all the sent data.

Notably, if the item exists, but is not a file, command is considered failed.

3.6.2.6. Append to file from a specified file transfer

Append contents to a file. The same session reference rules apply as for “execute file from

specified session”. If the receiver does not have the information of the transfer specified by ID,

this command does nothing.

Command provided information:

• ID of the file transfer: uint64;
• File data to append: array.

Execution is considered successful if the file from referenced transfer is found and data is

appended to it. Notably, if the item exists, but is not a file, command is considered failed.
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3.6.2.7. Rename file system item

Rename an operating system item: file, directory or link. If new name item already exists

and is not a nonempty directory, it is overwritten. To avoid overwriting the destination, it has to

be renamed or moved before doing this.

Command provided information:

• Current absolute path: string;
• New name: string. This is not a path and cannot be used to move the item to a different

directory.

Execution is considered successful if the item exists and renaming is successful.

3.6.2.8. Move file system item

Move file or directory to another location. Move overwrites the destination if it exists and is

not a nonempty directory.

The command provided information:

• Current absolute path: string;
• New absolute path: string.

Execution is considered successful if the item exists and moving is successful.

3.6.2.9. Create file system link

Create a file system link to a file or directory. Commonly used file systems support hard and

symbolic links, so they are the only ones specified. Some file systems support other link types, in

those cases either regular shell commands or protocol extensions can be used to manipulate these

links.

Command provided information:

• Absolute path of the link target: string;
• Absolute path of the link source ( one that is to be created): string;
• Mode: 4 most significant bits of uint8 (shared with link type). Values:

– create or overwrite  create if source does not exist, otherwise overwrite source = 0,

– create only  create if source does not exist, do nothing otherwise = 1,

– create or rename and create  create source if does not exist, otherwise create under

a different name = 2;

• Link type: 4 least significant bits of uint8 (shared with mode). Values:

– hard link = 0,

– symbolic link = 1.

Execution is considered successful if any of the following conditions are satisfied:

• Mode is “create or overwrite”, source item exists and is overwritten with the link;

• Mode is “create or overwrite” and link is created;
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• Mode is “create only” and item exists;

• Mode is “create only” and link is created;

• Mode is “create or rename and create”, item exists, is renamed and link is created;

• Mode is “create or rename and create” and link is created.

3.6.2.10. Delete file system item

Delete the specified file, directory or symbolic link. Hard link is indistinguishable from a

file, so it is treated as a file.

Command provided information:

• Absolute path: string;
• Mode: uint8. Values:

– file  delete only if path is a file = 0,

– empty directory  delete only if path is an empty directory = 1,

– file or directory  delete if path is a file or empty directory = 2,

– directory  if path is a directory, recursively delete its contents and the directory

itself = 3,

– symbolic link  delete link source if path is a symbolic link = 4,

– any  remove the path whatever it is: file, directory, link, etc. = 5.

Execution is considered successful if any of the following conditions are satisfied:

• Item does not exist;

• Mode is “file”, file exists and is deleted;

• Mode is “empty directory”, empty directory exists and is deleted;

• Mode is “file or directory”, file or empty directory exists and is deleted;

• Mode is “directory”, possibly nonempty directory exists and is recursively deleted;

• Mode is “symbolic link”, symlink exists and link source is removed;

• Mode is “any”, item exists and is (possibly recursively) deleted.

3.7. Conditional command execution

Various factors can cause the protocol message to not be received or executed, or their

execution is considered failed, among them unrecoverable transmission errors or losses, receiver

process crashes, operating system permission issues, etc. Due to this, it is useful to be able to

repeat the protocol messages without duplicating their effects on the receiver system. To enable

such a mechanism to work, protocol messages must be identifiable to be able to refer to a specific

previous message.

Session ID mechanism, defined previously, can be used. Any protocol message can include

a reference to a specific previous session by including that session’s ID. If such a session ID is

known by the receiver as having failed execution or the receiver does not know the session ID,

the receiver executes the new command specified by current protocol message. Otherwise, if the
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receiver has received the specified session and successfully executed its command, the current

command is ignored and considered successfully executed.

If the protocol message header indicates presence of a previous command ID, the ID field

is present. A time to wait before executing the command is also present, for the cases where

the referenced command may not yet be received/executed due to possibly out of order message

delivery.

Wait time only starts when the command is fully received. Time must not be 0, as it would

not in fact require the receiver to do anything and the given session ID would not matter.

3.8. Command sequencing

If some protocol messages are received out of order at the receiver system, their interaction

can produce undesirable effects, e.g. if file move and creation commands are reordered, newly

created file may be moved instead of the old one. For this reason, it may be useful to be able to

specify which commands must precede the current one.

If indicated in the protocol message header, the protocol message provides a list of messages

that must be executed before this one. The receiver enforces this to the best of its current

knowledge: it checks if all the specified messages have been executed and if not, waits a specified

number of milliseconds to receive any remaining commands. Same wait time considerations as

for conditional execution apply here.

3.9. Partial execution

Some message types can be really long, such as those for transferring a file. In such cases,

the receiver may start executing the command before fully receiving the message. In such cases,

the receiver must keep track of any actions performed, such as renaming or emptying a file. If

the transfer ultimately is not completed, the receiver must undo any actions. In case the actions

performed consist of overwriting a file, the old file contents must be kept somewhere, e.g. a

renamed file, until the command finishes execution, and only then can the old file be discarded.

The same procedure applies if the command execution fails to complete for some reason.

3.10. Extensions

Protocol messages can contain extensions. Extensions are allowed to arbitrarily modify any

parts of the message aster the extensions themselves. If a receiver finds an unknown extension, it

must abort the parsing and declare the command as failed. This is required to protect receiver

from misinterpreting the protocol message contents and performing unintended actions.

Extensions must have known size based on extension type or, alternatively, indicate the size

of the extension data at the beginning of it. Length field can be of any size and depends on the

extension type.
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3.11. Protocol message binary encoding

How the protocol message is transformed into a byte sequence. Message fields laid out

sequentially and without any spaces or padding in memory. For each entry, name and size in

bytes or a data type defined previously are specified. When bitfield values are specified, they are

always specified in order from most significant bit to least significant bit. Unspecified bits are

reserved and must always be set to zero. Every message includes the header, which is everything

before the actual command number.

It is assumed that the receiver of the message knows the version of the protocol via some

other means, for example, via a transport mechanism this message is encapsulated in. The same

applies to message ID/session ID. Encapsulation protocols will be discussed in later chapters.

Total message length field is useful when trying to deserialize the message, as it makes it

easy to determine if a message is complete by checking whether total length field value matches

the actual message length. Message length is chosen to be an uncompressed integer, because it is

nontrivial to calculate the total message length in advance. By using an uncompressed integer,

first 8 bytes of the command buffer can be reserved and only populated when the command is

already serialized and total length is known. Length includes the message length field’s length.

Protocol message format:

1. Message length, uint64;
2. Flags, 1 byte. Bits:

• 7: extensions are present,

• 62: reserved

• 1: execute if other command not executed,

• 0: depends on other commands;

3. If “extensions are present” bit is set:

• number of extensions, at least 1, uint8,
• for each extension:

– extension name, 1 byte,

– (optional) extension data size,

– extension data;

4. If “execute if other command not executed” bit is set:

• time to wait before executing in milliseconds, cu8_32,
• uint64 command ID;

5. If “depends on other commands” bit is set:

• time to wait before executing in milliseconds, cu8_32,
• number of preceding command IDs, at least 1, cu8_64,
• sequence of uint64 command IDs;

6. Command type, uint8;
7. Command contents, consisting of commandprovided fields laid out in order in memory.
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4. Plaintext protocol

Protocol message encoding described in the previous chapter specifies the encoding of the

full protocol message. The encoded message can be of arbitrary length. It may be useful to be

able to split it up into parts that can be sent independently and later reassembled by the receiver,

similar to how TCP does data segmentation and reassembly. This chapter describes how to split

up the protocol message into smaller parts that can later be reassembled.

Note that this scheme is not specific to protocol described in the preceding chapter. Any

protocol’s messages can be split up as described in this chapter. This protocol is also not specific

to IP networks and it does not rely on their specific mechanisms to function.

This chapter deals with the following aspects:

• identifying parts belonging to one protocol message,

• transmission error detection and correction,

• ordering of the parts, so that they can be reassembled when received in arbitrary order.

Splitting into packets and reassembly described in this chapter does not deal with any kind

of security. Next chapter specifies message encryption and authentication.

This unsecured protocol version is not meant to be used directly. It is specified separately

here to separate protocol semantics and security considerations.

The potential length of each packet is limited only by the underlying transport mechanism.

4.1. Protocol versioning

In network protocols, it is customary to indicate the protocol name and version at the

beginning of transmission. Always explicitly including the version makes future protocol changes

much easier, as the version can just be incremented and the receiver of the message does not have

to guess which version of the protocol the message belongs to.

The version is indicated in the first packet of the transmission. Protocol identifier for the

first version is comprised of two fields, laid out in order and without gaps:

• name: fixed ASCII (also valid UTF8) value “UCFTP”, which is short for “Unidirectional

Control and File Transfer Protocol”,

• version: uint8, value = 1.

Any subsequent protocol versions increase the version field value.

4.2. Session initiation and termination

Transmission of one whole protocol message is called a session. First session packet, later

referred to as session init packet, starts with the protocol identifier.

Protocol packets have a few different types. Each packet has a type, a uint8 value. Packet
types and corresponding type values are as follows:

• regular session data packet = 1,
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• last session data packet = 2.

Session init packet must be large enough to include at least the first field of the protocol

message – its total length. Last session packet must be the last data packet of the session. It serves

as a hint for the receiver that there will not be packets with higher sequence numbers. Receiver

must drop any packets with sequence numbers higher than that of the last data packet.

Session may consist of only the session init packet, if it fits the whole message. In that case,

the session is considered finished and no more packets are accepted.

4.3. Session identification

Session identification is needed to be able to identify packets belonging to the same session.

Lower packet layers, such as UDP and IP, can identify a single sender via a socket – source IP and

port number. This identification can fail in various ways, such as:

• A sender may move and change their IP address during session transmission.

• A single sender may send multiple sessions in quick succession. Packets in IP networks

can arrive out of order. If packets from different sessions interleave, the receiver may be

unable to separate the different sessions.

• Network address translation (NAT) assigns the same Internetfacing IP address and port

for two unrelated sessions, happening in quick succession. The sessions may come from

the same sender or different senders. The receiver will be unable to distinguish between

packets belonging to different sessions and senders.

Thus a better session identification mechanism is needed. A simple solution is chosen here: use

the session ID of the protocol message to identify packets belonging to the same protocol message.

When choosing the size of the session ID, it is important to consider that session ID is

included in every packet and thus adds space overhead that scales linearly with the number of

packets and thus protocol message length.

Protocol message session IDs are chosen to be 64 bits long. If they are generated randomly,

this means that there is about 2−32 likelihood of two session IDs being the same, according to the

birthday paradox. For this use case, it is deemed low enough, as it is unlikely that many sessions

would be ongoing simultaneously or in quick enough succession to be likely to experience session

ID collisions.

Session ID mechanism allows multiple senders to send multiple sessions simultaneously. It

is the responsibility of the sender to ensure that its own session IDs do not collide with each other.

Session IDs must be randomly generated by the senders.

4.3.1. Retained information

Some protocol commands require information about previously executed commands, in

particular their session IDs and certain affected file system items. Receiver should keep a record of

all sessions received within an implementationdefined time in the past, for example, 5 minutes.

They should also store the paths of the items that can be referenced by later commands. This allows
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checking the future commands’ execution conditions, if any, and also allow them to reference the

previously used file system items.

4.3.2. Collisions

Session ID collisions can be detected if the receiver sees two session init packets with the

same session IDs, but different contents of the protocol messages. Much more powerful duplicate

detection can be performed for encrypted sessions, discussed in the next chapter.

In case session ID collisions do happen and are detected, subsequent packets are assigned to

the separate sessions based on the lower layer identifiers, most commonly, source IP address and

port number of the respective sessions.

Most session information is discarded immediately aster full protocol message has been

received and/or recovered via an error correction mechanism. If the session is incomplete and

cannot be reconstructed via error correction, session information is discarded aster 40 seconds

since the last received session packet have elapsed. Aster the session information is discarded, the

session with the same ID can be received and will not cause any issues for the receiver. So the

time window to experience a session ID collision is relatively short, thus making the collision

extremely unlikely.

4.3.3. Rejecting duplicates

If a session consists of a few or even a single packet, it can get (un)intentionally duplicated

during the transfer. If the receiver simply accepts every valid session, this can result in some

actions being performed two or more times. To prevent this, the receiver must reject duplicate

sessions arriving within a short time frame, e.g. 30 seconds. Two sessions are considered duplicate

if they have the same first session packet, including the session ID.

To be able to recognise potentially duplicate sessions, session IDs of previous sessions must

be stored along with the time that they are received. If the session has been received more than

40 seconds ago, it is not considered when checking for duplicates.

When the session has been fully received, any packets arriving for the same session within

30 seconds, for example, duplicate packets, must be silently discarded. This is to prevent the

receiver from creating a new session for these irrelevant packets and waiting for more to arrive.

4.4. Packet sequencing

Sequence number is a six byte littleendian integer. It is included in every packet. Similarly

as in TCP [Edd22], packet sequence numbers may start from an arbitrary value, but it is not

required, they may start at 0. First packet sequence number indicates the starting point of sequence

numbers. Sequence number must not overflow within a single session.
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4.5. Extensions

Extensions are allowed to alter any part of any packet aster the extension header, including

the order and size of standard fields. They can also indicate the presence or absence of additional

packets of specific packet types in the session, used for example for error correction information.

Extensions cannot alter the packet type and session ID fields, but they can add their own packet

types. This is to prevent confusion by the receiver upon receiving unrecognized noninit packet

with possibly different fields and semantics. Packets of unknown type are treated as regular packets

until their session init packet arrives. This includes applying the same session timeouts. Extensions

are also not allowed to alter the protocol message, as it has its own extension mechanism.

Extension count is always present in the session init packet. This ensures that extensions are

easily detectable by the receiver. In case the receiver finds an unknown extension, the whole session

must be discarded and considered not received, as it may have different semantics depending on

that extension.

It is important to keep in mind that if extensions define new packet types, the packet type

field must not have ASCII value for “U” (85), as in this case the receiver might be unable to

distinguish the init packet, which has the identifier string beginning with “U”, from subsequent

packets.

Extension sizes follow the same rules as protocol message extensions, that is, their size must

either be fixed and known or specified at the beginning of the extension.

4.6. Timeouts

In order to prevent the receiver from keeping the session state indefinitely in case of

unsuccessful command receive, there has to be a mechanism to discard obsolete sessions. Session

timeout is used for this purpose. Timeout is defined in terms of the session “making progress”.

Progress means receiving a packet with the lowest sequence number that is still not received.

This allows continuing the reassembly of protocol message. Default session progress timeout is

40 seconds. If a session does not make progress for the duration of the timeout, it is discarded

and considered not received. Progress timeout is calculated from the last time the session made

progress.

4.7. Packet loss detection

Due to the nature of being a unidirectional protocol, all sources of transmission issues have

to be anticipated and mitigated to a reasonable extent when sending the data. Here we concentrate

on packet loss detection.

All packets have a sequence number. Also, there is a timeout on a session. If the timeout is

reached and not all packets have been received yet, their numbers are known. If the last packet of

the session has been lost, it will be known because the last packet is indicated as a packet type.

Also, protocol message length, as indicated in the first packet, will not match the actual length of
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parts received. This plaintext protocol does not have any error detection mechanisms. The secure

protocol, described later, can detect packet corruption.

In case of lost packets, the protocol does not provide a way to determine the size of the lost

packets and therefore the size of lost protocol message chunks. The protocol informs the receiver

of the total length of the plaintext application data a stream is carrying. The receiver can use

this information in combination with total received and reconstructed packets to calculate how

much data is missing. This data can be combined with received packet numbers to find out which

packets have been lost. But all this information does not allow to precisely determine the size of

lost segments. That size can be estimated, though, by assuming that:

• every packet, including the missing ones, is of the same size,

• no additional overhead is present in the missing packets.

In this case, the size of application data in each missing packet can be calculated by subtracting

from packet size the outer encapsulation overhead and regular packet overhead.

4.8. Protocol message

In order to send the protocol message via packets, it is split up. Each packet has a header

and aster that, a chunk of the protocol message. Splitting the message has no requirements, except

that the init packet must include the first 8 bytes of it, the length field. Each packet must include

at least 1 byte of the protocol message. Message chunks have no size constraints and do not have

to be of equal size. The last packet is the one which includes the last part of the message. No

additional packets are sent aster that.

4.9. Packet binary encoding

Defines packet binary format. Any packet not conforming to the required encoding is

immediately discarded by the receiver.

4.9.1. Session init packet

Session init packet has almost identical structure as the subsequent data packets. The single

difference is that first packet includes the protocol identifier and does not include a packet type.

4.9.2. Session data packets

This describes the regular and last data packets of the session. Fields are laid out in memory

in the listed order. There are no gaps between fields. Fields of each packet:

• Packet type: uint8 (for regular or last data packet);
• Session ID: uint64;
• Packet sequence number: uint48;
• Number of extensions: uint8;
• For each extension:
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– type: uint8,
– extension data;

• Protocol message.

4.10. Limitations

The protocol does not tolerate any lost packets. If any packet is lost, the whole protocol

message has to be discarded.

The protocol has no way to indicate aborted sessions. If the sender has to stop the session,

there is no indication that the session is cancelled. The abandoned session times out on its own.

4.11. RaptorQ forward error correction extension

This is an extension for the protocol for using forward error correction (FEC). This allows

recovering the whole message even if some of the packets have been lost, by sending more packets

that contain error correction information. The error correction mechanism used is adapted to

packet loss networks. This scheme does not correct packet corruption, if given some corrupt

packets, it is likely that the reconstructed data will also be corrupt. If this protocol is used on top

of a different packet sending layer than IP, it might be useful to define other FEC mechanisms,

which are better suited for the underlying protocol characteristics.

No feedback from receiver to sender is possible. This means that adaptive overhead sizes are

not possible. So the receiver has to choose how much additional data to send based on expected

transmission channel conditions. For nearperfect channel conditions, very little overhead is

required. RaptorQ correct reconstruction probability is independent of the total transfer size, it

only depends on the additional packets received compared to number of data packets. Packets

from anywhere in the stream can be lost. If N is the number of data packets, then N received

packets give a recovery probability of 99%, N+1 packets increases it to 99.99%, N+2 to 99.9999%

and so on.

4.11.1. Encoding

Encoding from the application perspective works the following way. The application decides

the encoding block size, or, if the total size of the transmitted data is known in advance, it can

be determined automatically. Application must also choose the maximum allowed packet size.

RaptorQ works by generating fixed size packets. Due to algorithmic details, packets must be have

size that is a multiple of 8. The encoder then calculates the maximum possible packet size from

these two constraints. The packet size will not be larger than allowed. The size is for the packet

data, disregarding any headers. The application has to take additional overhead into account when

deciding the maximum allowed packet size.

Aster the parameters are decided on and the total transfer size is known, the header of 12

bytes can be produced. It contains all the necessary information to initialize the decoder. This is

the data that is sent in the session init packet’s RaptorQ extension header. The amount of error
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correction packets generated, aside from having to contain enough data for message reconstruction,

is not affected by the encoding or decoding settings.

When all the parameters have been decided on, the data is supplied to the encoder in blocks

or all at once. The blocks are independent of each other both from the encoding and decoding

perspective. Each block is encoded in these steps from the source data:

1. Source data is padded to be a multiple of the packet size. Padding is transparent to the

application, it is added by the encoder and removed by the decoder automatically;

2. Data packets are produced. Data packets are blocks of the source data;

3. Error correction packets are generated based on the source data.

Each packet contains a 4 byte sequence identifier, defined in RFC 6330 chapter 3.2. These packets

can then be sent to the receiver in any order.

4.11.2. Decoding

Decoder is initialized from the 12 bytes of extension data received in the session init packet.

Subsequent packets can be received in any order and are then supplied to the decoder. Decoder

strips the padding if needed and recreates the source data from the packets in blocks.

4.11.3. Dealing with unneeded packets

Since FEC works by sending more packets than is needed to reconstruct the protocol message,

it is highly likely that aster receiving enough packets to reconstruct all the data, more packets will

still be received. They should be treated as duplicate packets discussed previously in “Rejecting

duplicates” and be silently discarded.

4.11.4. Usage considerations

FEC usage has advantages and disadvantages when compared to not using it. Advantages

are:

• Packet loss tolerance. In IP networks, some packet loss is expected, especially for longer

streams, so this is a vary useful property.

Meanwhile disadvantages:

• Additional computation needed for both sender and receiver to compute error correction

data and reconstruct the message from that data, respectively. This is especially felt for

long messages.

• Somewhat higher memory requirements. Message has to be encoded in blocks, which can

be very large, multiple GiB in size. To have good encode speed, sender has to keep all that

data in memory. This is in contrast to nonFEC sessions, which can, in cases where files

are being sent (which should be the vast majority of sessions containing large amounts of

data), immediately write the data to storage as it is being received. On the other hand,
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error correction data can be decoded in subblocks, which are much smaller, so receiver

is less affected by this.

4.11.5. Extension identifier

RaptorQ has an extension type of 0. Extension data is the same as defined in RFC 6330

chapters 3.3.2 and 3.3.3. Data always takes up exactly 12 bytes. This data is required to initialize

the decoder.

4.11.6. Session init packet

Session init packet is the same as in nonFEC sessions, except for the following changes:

• Sequence number is not included. Error correction packets has their own sequence

numbers, which always start from zero. Therefore, including a sequence number in the

init packet serves no benefit. In regular session, init packet sequence number gives the

initial sequence number, which might not be 0.

• RaptorQ extension is added.

Init packet is critical. If it is not received, session cannot be decoded. For this reason, senders

may choose to send this packet multiple times near the beginning of transmission, to increase the

likelihood of its delivery. Receiver must ignore duplicate session init packets. Init packet is not

included in the data encoded with RaptorQ, as then there would be a circular dependency: in

order to initialize the decoder, we need the init packet, but the init packet has to first be decoded

by that same decoder.

4.11.7. Regular packets

This extension defines one additional packet type:

• error correction packet = 3,

All packets aster session init packet are of this type. Last packet is not indicated. Receiver

stops processing incoming packets from the session aster session data has been reconstructed, so

indicating the last packet would serve no benefit and in any case the packet may be lost and/or

arrive before some other packets due to outoforder delivery.

Structure of error correction packets:

• Packet type (always error correction): uint8;
• Session ID: uint64;
• FEC packet sequence number: 4 bytes;

• Data.

4.11.8. Small data sizes

If the protocol message being transferred is small enough to fit into the init packet, FEC

effectively cannot be used. This is because the first packet does not use FEC. If init packet contains
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the whole protocol message, there is nothing more to transfer. In that case, the RaptorQ extension

must not be used.

4.11.9. Alternatives

A simple alternative to using error correction is to use packet duplication. Sender can send

the same packets multiple times. If the sender sends repeated packets, they should be interleaved

between other packets to mitigate chances of a short stream of lost packets losing all copies of a

single packet. Receiver does not need any special provisions to support repeated packets, as it

ignores duplicate packets.
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5. Secure protocol

This chapter defines a secure protocol that can be transmitted over untrusted networks. It

uses the plaintext protocol as a base. The plaintext and secure protocols are described separately

to separate protocol encoding from security concerns.

5.1. Threat model

A threat model is described here to set the design constraints of protocol security mechanisms.

Active attacker with some limitations is assumed, that is, attacker can observe and arbitrarily delay

or alter network traffic. Attacker is assumed to know the public keys of sender and receiver.

5.2. Environment assumptions

The unidirectional nature of the protocol requires us to place some constraints on the

environment to ensure the data is delivered. First, we assume that the network links between

sender and receiver are available and are not congested. Second, the slowest link speed of the path

to the receiver is known to the sender. Sender relies on a certain link speed to send the data at the

correct rate. Due to absence of acknowledgments, the send rate is cannot be adapted to dynamic

link conditions. Third, network error and packet loss rate is known to the sender. This is needed

to choose the right amount of error correction for the link.

We must make certain assumptions about the attacker to maintain protocol usefulness, as

certain attacks are undetectable by the sender. We assume that the attacker does not perform

denial of service (DoS) attacks by flooding the receiver with data. If the attacker can perform

such attacks, the inbound link to the receiver can be saturated and no legitimate data can reach

the receiver. This is undetectable to the sender, as the legitimate packets may get lost due to the

saturated network link.

5.3. Chosen encryption mechanism

Overview of the encryption mechanisms used by the protocol. The protocol is based on

Hybrid Public Key Encryption (IETF RFC 9180), which is perfectly suited to encrypt messages

for unidirectional transfers [BBL+22]. Very similar mechanism is also used for TLS 1.3 session

resumption [Woo22].

Specifically, the following algorithms to be used are chosen from the ones specified in RFC

9180:

• Key Encapsulation Method (KEM): X25519, HKDFSHA256;

• Authenticated Encryption with Additional Data (AEAD): AES128GCM;

• Key Derivation Function: HKDFSHA256.

These were chosen because of their efficiency. X25519 key exchange is resourceefficient. SHA256

and AES cipher hardware acceleration is widely available in most current systems, giving good

performance. AES128 is also chosen as the algorithm to encrypt packet sequence numbers.

51



Authentication using an asymmetric key is used. This mechanism is also part of RFC

9180. It allows the receiver to securely verify the sender of the message, as the sender presents a

cryptographic proof that they have the private key corresponding to the public key.

Sender and receiver have their own asymmetric X25519 key pairs. Sender and receiver have

to know each other’s public keys to be able to communicate.

5.4. Provided protections

Protections provided by this protocol for the data being sent in each encrypted packet:

• confidentiality  all data that is not essential to correctly decrypt the packets is encrypted,

• integrity  all the data of this protocol and above has integrity protection and any changes

are detected when trying to decrypt the packets,

• authenticity  sender authenticates to the receiver via public key cryptography,

• packet loss detection,

• partial forward secrecy,

• replay protection.

Probabilistic encryption is encryption which with high likelihood produces a different

ciphertext each time some piece of data is encrypted. HPKE as used here provides probabilistic

encryption for each packet. It does so by using an initialization vector (IV) for each encryption,

with each IV being partially derived from the packet number.

5.5. Timeouts

Plaintext protocol timeouts are used where applicable also in the encrypted protocol. There

are a few encrypted protocol specific timeouts:

• Packet send timeout. Value is 400 seconds. It is not large enough to accommodate sudden

changes in time such as the daylight savings time change, which may occur during the

transfer. It is because this is irrelevant – the time is based on UTC, which is not affected

by DST.

• Progress timeout. This is the maximum time that can pass between successful decryption

of packets. Value is 40 seconds.

• Session initialization timeout. This is the maximum time that can pass aster any session

packet is received before that session receives its init packet. Value is 15 seconds.

5.6. Key renegotiation

Key renegotiation is implemented by modern security protocols such as WireGuard and TLS

1.3. It means that symmetric encryption keys are periodically changed by using a new ephemeral

asymmetric key exchange. Key renegotiation, or more accurately just key rotation, as UCFTP has

no key negotiation, is not very relevant to our use case, as our sessions are generally shortlived.

For this reason, it is not implemented.
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5.7. Replay attack prevention

For any encrypted protocol, attacker can capture all the packets being sent and later send

them to the same receivers. If there are no protections against this, the receiver is unable to tell that

the session is being replayed and will perform the requested action. This is a common problem

and is included in Common Weakness Enumeration [MITn].

Replay detection and prevention requires the receiver to keep some state that allows identi

fying session replay attempts. Time is very conveniently suited for this purpose, as it does not

require the receiving program to keep any explicit state – the underlying operating system already

keeps track of time.

Timebased replay detection works as follows:

1. Sender includes current time in session init packet before it is sent. Time format is

portable operating system interface (POSIX) [OI24] time (more commonly known as

Unix time). Unix time counts seconds since 19700101 00:00:00 UTC. It is desirable to

use as little space as possible for the time in the packet. POSIX time stored in a signed

32bit number will overflow in year 2038. For this reason, to fit into 32 bit numbers,

time included in each packet is the number of seconds since 20250101 00:00:00 UTC.

The number is an unsigned 32bit integer. It can represent time up to and including

21610207 06:28:16 UTC. This is called protocol time.

2. Receiver, upon receiving the packet decrypts the time. Receiver then calculates the

time since 20250101 00:00:00 UTC and compares with the time included in packet.

If abs_diff((receiver time)  (packet time)) > (packet send timeout) seconds, packet is

dropped. Otherwise, the packet is deemed valid and can be processed further. Absolute

time difference is used to disallow sender time to be ahead of receiver time by too much,

as it widens the time window for the replay attack.

A few points should be noted.

• This packet invalidation mechanism relies on both the sender and receiver operating

systems agreeing on the current time (or at least their times being relatively close) for

correct operation.

• If receiver time is behind the sender time, the time window for the attacker to perform a

session replay is increased.

• Due to slight time differences between sender and receiver systems and POSIX time

nonmonotonicity due to leap seconds, the receiver time may be behind the packet send

time (receiver time value is less than indicated in the received packet).

Protocol time should only be used to verify session init packet validity. Other timeouts are

calculated using standard operating system timing facilities.

Packet send time is encrypted together with the data being sent. If it was not encrypted,

receiver could not trust it without decrypting the packet, because receiver has to verify its

correctness. Thus transmitting time in plaintext brings no benefits.

Protocol time is only included in session init packet. Subsequent packets cannot be decrypted
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without the init packet, so even if they would include the time, receiver could not decrypt or

verify the time without the init packet. If the replay attack happens, the init packet is discarded

aster decryption. Subsequent packets from the same session are also dropped. If the first packet is

not received, session will time out the regular way.

5.8. Encryption procedure

At the start of the session, the HPKE encryption context is created. We are using Auth mode,

which requires the sender’s private key and receiver’s public key to encapsulate the decryption

key. Info is ASCII string “UCFTP”. Using the encryption context, packets are encrypted with
HPKE’s seal() function. Data being encrypted and additional additional authenticated data
(AAD) depends on packet type.

In general, with encrypted protocols it is desirable to leave as little plaintext information as

possible in each packet, to limit observability into the internal protocol state. Some fields cannot

be encrypted due to being essential for packet decryption. These fields are:

• Protocol identifier (init packet): required to identify init packet;

• Session ID: required to know which session a packet belongs to and, consequently, which

key to use for decryption;

• Packet type (all noninit packets): required to know how to parse the packet.

Other fields can be encrypted. Protocol message and protocol time are encrypted as usual. But

packet sequence number cannot be encrypted in the usual way, because it is required for decryption.

HPKE decryption requires knowing the sequence number, as it is used to create the cipher nonce.

So the sequence number cannot be encrypted together with other contents. RFC 9147 (DTLS 1.3)

chapter 4.2.3, describes a way to encrypt the packet number. As a prerequisite for this, we need to

create an encryption key. Encryption key is created using the secret export functionality of HPKE

from the packet encryption context. Specifically, the key seq_key is 16 bytes from secret export

function of the context, with the info set to ASCII string “seq”. Steps for packet encryption:

1. Encrypt the packet contents;

2. Append authentication tag to the ciphertext;

3. Take the first 16 bytes (1 AES block) of the resulting ciphertext. The ciphertext is always

at least 16 bytes long, as the authentication tag by itself is 16 bytes;

4. Encrypt the block with AES128ECB using seq_key. Note that this does not use the
encryption context;

5. Encrypted packet number = plaintext packet number XOR encrypted block’s first 6 bytes.
This is because packet number is 6 bytes long.

The encrypted packet number is the one sent in the packet. Receiver decrypts the sequence

number very similarly:

1. Take the first 16 bytes (1 AES block) of the ciphertext + authentication tag;

2. Encrypt the block with AES128ECB using seq_key;
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3. Plaintext packet number = encrypted packet number XOR encrypted block’s first 6 bytes.

This works because (a XOR b) XOR b = a. The plaintext packet number can then be used to

decrypt the packet.

5.9. Decryption procedure

HPKE does not specify functionality to decrypt packets with arbitrary numbers. All packets

have to be encrypted sequentially and have to be decrypted in the same sequence. There is no

technical or security reason why this cannot be done, just RFC 9180 intentionally specifies only

the minimal essential functionality to keep the interface as simple as possible3 HPKE uses the

sequence number at least 8 bytes long. Thus our 6 byte sequence numbers fit. HPKE uses the

sequence number to derive a perdecryption IV. We can expose the arbitrary sequence number

decryption functionality by letting the receiver program specify the sequence number to use for

decryption, without changing the underlying IV derivation or decryption logic.

5.10. Tamper and forgery prevention

Since the main encryption algorithm used is AEAD, encrypted packets cannot be forged by

the attacker without receiver detection. Packets encrypted by the sender also cannot be altered

without receiver detection. All the protocol data that is not encrypted is integrity protected, so

the same applies to it.

AEAD also allows detecting unrelated packets accidentally being destined for the same port

the receiver is listening on. Such stray packets can originate from, for example, port scanners.

The receiver will fail to decrypt them, even if they can by accident be parsed as valid packets.

5.11. Session ID collisions

Compared to plaintext protocol, encrypted protocol has one more way to detect and combat

session ID collisions. Each session has its own key. Suppose the receiver has established a few

simultaneous sessions with the same session ID. Then, when a packet with the same session ID is

received, all sessions with the same session ID try to decrypt the packet. If the packet successfully

decrypts for any session, then it belongs to that session. Otherwise, it is discarded. This mechanism

has a limitation, though – it requires that all those sessions be already established, have received

their init packets. Packets arriving before the session init packet are thus likely to be dropped,

as its ID matches existing sessions, but none of them are able to decrypt it. If the packet with

duplicate ID is the session init packet, receiver treats it as a new session.

3This only has security relevance if the number of decryptions could overflow the internal counter, which in our

case is impossible, as HPKE’s internal counter is larger than our packet sequence number. Nonces cannot be reused

while using the same encryption key, so overflowing the HPKE counter would lead to security problems. Of course,

this depends on the sender not overflowing the counter or otherwise reusing sequence numbers, which is not allowed

in this protocol.
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5.12. Error detection

Transmission errors can be detected by the same mechanism used to detect intentional

manipulation. All the protocol data is encrypted and/or authenticated. So corruption that happens

during transfer is detected when the packets are being decrypted, as that process first checks if the

ciphertext and additional data are valid according to the authentication tag.

5.13. Forward secrecy

As noted in RFC 9180 chapter 9.7.4, forward secrecy is provided with respect to sender

private key compromise. Forward secrecy is not provided with respect to receiver key compromise,

as the session key is encrypted using the receiver’s public key and can be decrypted with receiver’s

private key. One way protocols cannot provide perfect forward secrecy, because no matter how

the session key is supplied the receiver, receiver must be able to retrieve this session key with the

private key. This is because no key negotiation can take place, in which both parties use ephemeral

keys to derive a session key.

5.14. Packet format

Packet structure is very similar to that of the plaintext protocol.

5.14.1. Session init packet

Init packet is similar to regular packets, with a few important differences. Init packet includes

data for key exchange. Specifically, the encapsulated key, as defined in RFC9180. Init packet also

includes the protocol identifier. Packet layout:

• Protocol identifier. Same as in plaintext protocol;

• Extensions. Same as in plaintext protocol;

• Encapsulated key: 32 bytes;

• Session ID: uint64;
• Encrypted packet sequence number: uint48;
• Encrypted data:

– Protocol time at time of sending: uint32,
– Protocol message chunk;

• AEAD authentication tag: 16 bytes.

Init packet is required to be able to decrypt any subsequent packets from the same session.

The encapsulated key lets the receiver compute the shared secret, which is then used to decrypt

encrypted contents. Due to this limitation, session cannot make progress. Progress timeout applies

for session progress.

Encrypted data is protocol time and protocol message chunk. All the unencrypted data

taken as a byte string is authenticated as AAD of the packet data encryption operation. Integrity
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of the AAD and the ciphertext is always verified by AEAD when decrypting before using any of

the plaintext data. If the verification fails, packet is discarded. For init packet, AAD is:

• Protocol identifier;

• Extensions;

• Encapsulated key;

• Session ID;

• Plaintext packet sequence number.

5.14.2. Subsequent packets

Structure of regular data packets is identical to plaintext protocol, but the message data and

sequence number is encrypted. Also, AEAD authentication tag is added at the end:

• Packet type: uint8 (for regular or last data packet);
• Session ID: uint64;
• Encrypted packet sequence number: uint48;
• Encrypted protocol message chunk;

• Authentication tag: 16 bytes.

Encrypted data is the protocol message chunk. AAD is:

• Packet type;

• Session ID;

• Plaintext packet sequence number.

5.15. Limitations

Limitations of the protocol. Limitations from plaintext protocol apply here.

5.15.1. Denial of service

Due to the way session timeouts and session IDs work, an attacker can generate random

packets and send them to the receiver. The receiver will accept them as long as they have known

packet types. Receiver will only drop them aster the session init timeout passes, unless they belong

to initialized sessions or are session init packets, in which case they will be immediately dropped

because of failure to decrypt.

5.15.2. NTP manipulation

Replay protection mechanism relies on system times of sender and receiver. This presents

problems:

• Both systems need to have time that is close enough.

• If either system uses unsecured network time protocol (NTP) to set their system time, the

attacker could manipulate they system time and thus the validity of packets.
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These are noted here as a potential weak points, but they are out of scope of this protocol. Similar

issues were discussed for WireGuard [Don21].

5.15.3. Postquantum security

In recent years there has been considerable interest in postquantum cryptography from

standards bodies and wider cryptographic community. Some postquantum key exchange algo

rithms have been gaining traction, for example, they are now used by default in OpenSSH [Ope].

NSA recommends use of postquantum key exchange algorithms [NSA22]. Postquantum key

encapsulation methods are not used for this protocol, because none are provided by RFC 9180.

5.16. RaptorQ extension additions

Additions to the RaptorQ extension as described in the previous section. Extension number

and the FEC algorithm used stay the same. Here we only discuss security considerations. FEC

packets are encrypted, sent, then decrypted and supplied to the FEC decoder. The decoder deals

with missing and out of order packets. Corrupt packets will be detected when decrypting, so

incorrect data reassembly is not an issue.

5.16.1. Packet numbers

Session init packet does not belong to FEC. Its sequence number is always 0 for HPKE

encryption and as such is not included in the packet. FEC packet numbers start from 0, so

they need to be offset, to not reuse the 0 sequence number. FEC real packet numbers are

1 << 32 + FEC packet sequence number interpreted as uint32. This number is used to encrypt
the data. Only 4 byte FEC sequence number is actually sent in the packet, as the number offset is

fixed.

5.16.2. Encryption and decryption

Error correction data and packet number is encrypted the same way as protocol message

chunks. Decryption also works the same way.

5.16.3. Packet number encryption

Packet number encryption works the same way as for regular packets. The info string for

encryption key derivation is “fec”.

5.16.4. Packets

Session init packet has similar structure to regular session init packet:

• Protocol identifier;

• Extensions, includes RaptorQ extension;

• Encapsulated key: 32 bytes;
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• Session ID: uint64;
• Encrypted data:

– Protocol time at time of sending: uint32,
– Protocol message chunk;

• AEAD authentication tag: 16 bytes.

Subsequent packets have the following structure:

• Packet type (always error correction): uint8;
• Session ID: uint64;
• Encrypted FEC packet sequence number: 4 bytes;

• Encrypted data;

• Authentication tag: 16 bytes.
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6. Encapsulation in IP

Secure protocol packets can be sent via IP networks. Unidirectionality can be achieved by

using UDP and permitting only incoming packets to receiver. Protocol does not send any data

from receiver to sender, the links in between them can be unidirectional.

The sender can send from any UDP port. The receiver listens on UDP port 4321 by default.

UDP does not require setting source port number. This protocol recommends setting source port.

Similarly, UDP does not require checksum to be present, but this protocol recommends it.

Transfers are unidirectional with no feedback, so the sender should deliberately limit packet

send rate to avoid overwhelming network links.

It is recommended to use total IP packet sizes no larger than 1280 bytes, including the IP and

UDP headers, when sending over public IP networks. Support for 1280 byte packets is mandated

by IPv6 [DH17]. Even though many networks still use IPv4, usage of IPv6 is wide enough that it

is reasonably safe to assume that packet sizes of 1280 bytes are supported. If packet size of 1280

bytes is unsupported, the packet will either be dropped or fragmented. Fragmented packets are

problematic, so it’s best to avoid relying on them [Hus16]. IPv4 packet size that every device must

support is 576 bytes [Pos81]. Such small packets are not recommended due to headers taking up a

fixed space in each packet, thus the smaller the packet, the more of it is overhead.

Session ID mechanism allows sender to freely change IP addresses at any time. The protocol

does not rely on IP addresses for session identification. This is also supported by WireGuard and

QUIC.

For FEC, to determine the required overhead for reliable transmission, packet loss patterns

and likelihood should be known. Various packet loss measurements suggest that on public internet,

packet loss is generally 0.1% to 1% of packets [Ara19; Seg14].

6.1. Packet corruption

IP is generally a packet erasure channel. Packet erasure channel does not corrupt packets, but

sometimes drops them. Lower layers of the IP stack have various ways to detect packet corruption:

• Ethernet frame check sequence (FCS);

• IP header checksum;

• UDP header checksum.

If errors are detected by any of these mechanisms, the packet is dropped and does not reach the

receiver program. These mechanisms are not perfect and in very rare cases packet corruption is

not detected [Dav17].

6.2. Limitations

The protocol assumes unidirectional transfer only and does not provide a way to give

acknowledgments that the data has been received. Acknowledgments could be implemented with

cooperation from some intermediate network devices in a way similar to the Pump [KMC05].
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7. Implementation considerations

Some implementation considerations and choices.

7.1. Receiver

Receiver should be maximally strict to discourage noncompliant sender implementations

from appearing [TS23].

7.1.1. Logging

Receiver implementations should log various events to aid in diagnosing issues in transmis

sion and in the sender:

• session start and end,

• session discard reason: timed out, unrecognized extensions, etc.,

• command execution result: success or fail,

• packet discard reason: failed to parse, failed to decrypt, etc.

7.1.2. Packet receive rate

It may be a good idea to set larger kernel packet buffer size for the receiver. This is configurable

on a socket for common operating systems. Bigger buffer may improve reliability, especially in

case where packets are being received faster than the receiver processes them. Alternatively, the

receiver may dedicate a thread just to receive the packets to always keep up with the receive pace.

The system user under which the commands are executed is for the implementations to

decide. Senders may have operating system users associated with their keys. This can be used to

give different privileges to commands sent by different senders.

7.1.3. Executed program output

If some program is directly executed, capture its standard output (stdout) and standard error

(stderr) and put them into files. These files should be named descriptively, e.g. with command

name and execution time. These files should be placed in one place.

7.1.4. Child processes

In some operating systems, when a child process finishes its execution, it enters a socalled

“zombie” state. This is relevant for the receiver command execution. To finalise the processes of

executed commands, the receiver program should wait() for the child processes it creates.

7.2. Sender

Sender should have a way to throttle send speed. Speed limit should be enforced in time

intervals inversely proportional to maximum allowed speed. For example, if the speed limit is

1 MB/s, the enforcement time interval could be 50 ms. This would mean that each 50 ms, the
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sender is allowed to send no more than 50 KB. This variable time step ensures that at high speeds

the network is not overwhelmed with long packet bursts and then long pauses.

As network transfers are inherently unreliable, it is almost certain that large nonFEC sessions

will have missing and/or corrupt packets. The only likely streams of such length are file transfers.

To mitigate this issue, it is recommended to transfer large files in parts by using the file append

mechanism.
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8. Prototype implementation

Prototype sender and receiver implementations were created using Rust programming

language. Code libraries were used for complex and important functionality: raptorq4 for RaptorQ
FEC and hpke5 for HPKE. Project code publicly available at https://github.com/yjhn/ucftp.
Project is open source and licensed under AGPL 3.0 or later license.

A UDPbased implementation was chosen because of its simplicity and adaptability to

different environments. If a solution for a specific hypervisor was chosen instead, it would mean

that:

• protocol usage is limited to VMs,

• only one specific hypervisor is supported and it requires patching that hypervisor,

• the VM’s kernel would also likely need to be patched to use the protocol.

Implementing the protocol revealed multiple places to improve the protocol. These improve

ments have been applied to the protocol and it now includes them. Most of these improvements

were the clarified wording to specify expected behavior more precisely. Some larger improvements

include, but are not limited to:

• Prepending length to protocol message. Previously there was no good way to detect if all

data has been received. Prepending the length allows to easily detect if the correct amount

of data has been received in total.

• Packet length field serves no purpose. It was previously included in every packet. This is

related to IP networks, as IP packets already know their lengths, so another length field is

redundant.

• Command is only executed if it is fully received

• Commands are only allowed to refer to other commands where it could make sense, so

only some command types can be referred to.

• Hard links cannot be distinguished from regular files, so no such distinction is made for

delete command.

• Rename command can rename any file system item.

• Commands have specific success conditions. These are important for command sequencing

and conditional execution.

• Receiver has to keep track of previously executed commands and the paths that certain

commands referred to.

• Preventing duplicate executions of unintentionally duplicated very short sessions.

• When the session has been received, packets destined for the same session should be

discarded for a certain time to prevent new sessions for duplicate or error correction

packets.

Implementation architecture is modeled similarly to SSH, where client program is ephemeral

4https://github.com/cberner/raptorq
5https://github.com/rozbb/rust-hpke
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and server program runs all the time. The sender process is ephemeral: when the sender program

is run, it encodes the command, sends it and immediately exits. Receiver program is designed

to run all the time. It listens for incoming packets and executes received commands. Sender

and receiver have their asymmetric X25519 key pairs. Use supplies the keys to the programs

when they are started. Sender program requires sender’s private key and receiver’s public key.

Receiver program requires receiver’s private key and public keys of all trusted senders. Any session

encrypted using any of the trusted sender keys is executed. Packets from sessions encrypted using

unknown keys are discarded. It is user’s responsibility to create and manage the asymmetric keys.
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9. Protocol and prototype evaluation

Here we evaluate the protocol security as specified and as implemented. To identify potential

weaknesses, Common Weakness Enumeration (CWE) [MITk] is used. All CWE sostware weak

nesses listed on the website were evaluated for relevance to this protocol and its implementation.

Relevant ones are noted in places where they are prevented or are likely to occur. Asymmetric

key creation and management is out of scope for both the protocol and implementation. It is the

responsibility of the user to select suitable keys and manage them properly. Data that is verified as

coming from a trusted sender is trusted. The functionality dealing with such trusted data is not

treated as a potential attack surface.

9.1. Protocol security

Here we look at the security of the protocol as it is specified. The protocol derives most of

its security characteristics and guarantees from HPKE. HPKE is used for almost all cryptographic

operations. It is used unmodified in the protocol for key exchange, session key derivation and

management and nonce management (nonce – number used once). HPKE exposes a minimal

interface that is easy to use and hard to misuse. The single place where encryption is used

outside of HPKE is to encrypt the sequence number. The mechanism for sequence number

encryption is taken from DTLS. It is assumed that HPKE and DTLS use secure cryptographic

constructions. We use AES128GCM for symmetric encryption, X25519 for key exchange

and SHA256 for key derivation. This prevents CWE1240 “Use of a Cryptographic Primitive

with a Risky Implementation” [MITb]. The sequence number is encrypted using AES128ECB

algorithm. The key is created using HPKE secret export functionality. Sequence number is

encrypted aster all the data in the packet is encrypted. Similarly, it is decrypted first, because

sequence number is required to decrypt the rest of the data. This means that the encrypted

sequence number is not authenticated. But the plaintext sequence number is authenticated. This

authentication is checked when the packet is being decrypted. All the data in every packet is

authenticated and most of it is encrypted. It detects transmission errors and tampering upon

decryption. If the data is successfully decrypted, then its integrity checks passed. This helps

prevent CWE807 “Reliance on Untrusted Inputs in a Security Decision” [MITl], CWE502

“Deserialization of Untrusted Data” and CWE924 “Improper Enforcement of Message Integrity

During Transmission in a Communication Channel”. All the cryptographic algorithms used

are fixed and cannot be influenced by the packets. This relates to CWE807, but it also makes

implementation simpler and substantially reduces the attack surface. The receiver does FEC

decoding with decrypted data, so the FEC decoder does not receive untrusted data and is thus not

an external attack surface. Similarly protocol message parsing and command execution can only

be done once the data is successfully decrypted, so command execution functionality is also not

an external attack surface. This avoids CWE502 “Deserialization of Untrusted Data” [MITj].

Sender cryptographically authenticates to the receiver. This authentication proof is created

and checked by HPKE. Thus CWE940 “Improper Verification of Source of a Communication
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Channel” [MITm] is very unlikely. Closely related topic is the key exchange and creation of a

symmetric session key. This is the responsibility of HPKE, so CWE322 “Key Exchange without

Entity Authentication” will not occur, since to decapsulate the key, the receiver checks the sender

authentication using the sender’s public key.

An important topic in regard to symmetric encryption is nonce management. Nonces are

necessary when the sender is encrypting multiple different plaintexts with the same symmetric key.

Nonces are managed by HPKE and are the initial random nonce mixed with encryption sequence

number. Nonces must not repeat for the same key. When the sender is using FEC, encryption

sequence numbers are set to be 1 << 32 + FEC packet sequence number interpreted as uint32.
This means that nonce uniqueness depends on RaptorQ sequence number uniqueness. RaptorQ

sequence numbers do not repeat, so nonces are unique. This prevents CWE323 “Reusing a

Nonce, Key Pair in Encryption” [MITe]. The only risk is the counter overflowing and wrapping

around as it is effectively a 32 bit number. On the other hand, sending 232 packets in one session

is extremely unlikely and the overflow can be easily detected.

Some untrusted inputs are taken asis and used to determine the correct decryption key

or nonce. This is done only in places where verifying the integrity before using the values is

impossible. But the integrity of the values is always verified asterwards. Encapsulated key from the

session init packet is decapsulated before its integrity can be verified. If the decapsulation succeeds,

the retrieved symmetric key is used to decrypt the packet and verify its integrity, including the

encapsulated key. If the integrity checks do not pass, the packet is discarded. Another place where

unverified values are used is to determine which session the packet belongs to and the packet

sequence number. These are both necessary to determine the correct packet number decryption

key, session key and compute the nonce for packet decryption. As with the encapsulated key, the

decryption verifies the integrity of both session ID and plaintext packet sequence number. If the

checks do not pass, packet is discarded. These integrity checks make CWE807 not applicable in

these two cases.

To prevent replays and detect duplicate short sessions (CWE294 “Authentication Bypass

by Capturereplay” [MITc]), a custom timing mechanism is used. The mechanism used is very

similar to the one WireGuard uses for the same purpose. It is a very simple mechanism and is not

visible to the attacker, as the time is encrypted. It does not create any direct security problems, but

if the attacker can influence the system clock of sender or receiver, the mechanism’s protections

can be undermined or create a DoS if the clocks are set too far apart.

The received packets are assigned to sessions. If the packet’s session has not yet received it

init packet, the packet is placed into a buffer, as it cannot currently be decrypted. The session is

discarded if the session init packet is not received within 10 seconds of the first packet received for

that session. This can be exploited to create a DoS attack which wastes the receiver’s memory.
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9.2. Prototype security

9.2.1. General notes

Here we look at the security of the protocol implementation. The implementation is done in

Rust programming language. The language and its standard library provides some securityrelevant

guarantees. The language prevents interaction with arbitrary memory locations without using

unsafe keyword and it ensures that all references to variables are always valid. The sender does
not use unsafe code and the receiver uses it in one place to call a function from C standard library.
The function is called only with successfully decrypted data, so it does not affect security of the

implementation. Rust standard library does bounds checking for all provided data structures. If

out of bounds read/write occurs, the program deliberately crashes instead of allowing access to

invalid memory locations. Note that we treat crashes of the receiver program that can be triggered

by malicious packets as low severity security problems. The implementation is of prototype

quality, so crashes upon receiving unexpected input are reasonably likely to happen. Only standard

library provided data structures (mostly dynamic arrays) dealing with memory allocations are used.

This, combined with bounds checking, means that we avoid many memoryrelated issues, such as

CWE787 “Outofbounds Write”, CWE125 “Outofbounds Read” and CWE416 “Use Aster

Free”.

9.2.2. Libraries used

Almost all cryptographic functionality is delegated to hpke code library. This includes session
key encapsulation, packet encryption, session key decapsulation, packet number encryption key

derivation and integrity verification combined with packet decryption. Notably, packet number

encryption is done by utilizing AES128ECB single block encryption, but the key is obtained

using HPKE secret export functionality. The hpke library has not been audited, so no definitive
claims can be made about its implementation security. We depend on the library for the sender and

receiver not being affected by CWE354 “Improper Validation of Integrity Check Value” [MITi]

and CWE303 “Incorrect Implementation of Authentication Algorithm” [MITd].

Random number generation for key derivation and other uses is provided by rand Rust
library. The library specifically exposes interfaces to use cryptographically secure pseudorandom

number generators (CSPRNGs), and these interfaces are directly used by the hpke library. Again,
the implementation of the CSPRNG very likely satisfies CSPRNG requirements for use in cryptog

raphy, but no definitive claims can be made. We depend on the library not being affected by CWE

331 “Insufficient Entropy” [MITf], CWE338 “Use of Cryptographically Weak PRNG” [MITh]

and CWE335 “Incorrect Usage of Seeds in PseudoRandom Number Generator” [MITg], as the

library decides which exact CSPRNG to use and how to initialize it.

FEC functionality is provided by raptorq library. FEC encoding and decoding is done
on trusted plaintext data. The only aspect relevant for security is that RaptorQ packet sequence

numbers must be unique. The packet sequence number is a counter that is incremented for
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each packet, so the numbers do not repeat. The number can overflow and wrap around. This is

currently not checked by the library.

9.2.3. Sender and receiver

The security properties that the sender has to uphold are mostly ensured by hpke library.
There are two places where other security mechanisms are used: for packet sequence number

encryption and for replay attack protection based on timing. These have been discussed in the

protocol analysis and their implementation is very simple, so it poses no additional security risks,

aside from sequence number encryption relying on secure key export functionality of hpke library.
Receiver program is much more complex than the sender program. Receiver program has

to keep track of multiple simultaneous ongoing sessions and assign incoming packets to sessions

before decrypting them. It also exposes an attack surface, unlike the sender program. Receiver

deals with encrypted packets and their decryption as discussed previously. It relies on hpke library
for all cryptographic functionality aside from sequence number decryption. Command execution

functionality is much more brittle compared to packet handling. If the command is successfully

parsed, it is executed with no checks performed before execution. It generally crashes on any

errors during command execution. The implementation currently also uses a lot of memory for

every session which is partially received, as it stores all the notyetdecrypted packets and the

decrypted partial protocol message. For large file transfers, this adds up quickly, because the files

are not written to disk as they are being received, but only once all the data has been received.

The receiver does not deal with crashes in any way and does not automatically restart. This can

be exploited to create a DoS attack if the attacker knows what to send to the receiver to crash

the program. The protocol deals with number endianness and different integer sizes. In these

places, functionality dealing with explicit integer size or endianness is used to prevent CWE1102

“Reliance on MachineDependent Data Representation” [MITa].

9.3. Testing the implementation

UCFTP prototype implementation was tested in a few ways. First test was done to verify that

unidirectional transfers from sender to receiver are working and that no data has to be sent from

receiver to sender in order for the transfer to work. The second test compared useful throughput

achieved by UCFTP, HTTP/3 and SSH on the same network link. The third test looked at the

transfer speeds achievable by the implementation. The useful data throughput should be at least 1

Gbps to enable large file transfer reasonably quickly.

9.3.1. Unidirectional transfer verification

A network forwardcapture device, also known as a network tap, was used to verify that the

protocol works across a truly unidirectional link. The device has three Ethernet ports: ports 1

and 2 between which all traffic is forwarded, and monitor port 3 which receives a copy of all the

traffic between ports 1 and 2. The monitor port cannot send anything to other ports. The device

was placed between two computers and connected via Ethernet to both of them: the monitoring
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port was connected to receiver machine and the regular port to sender machine. This is shown in

Figure 4.

Sender ReceiverNetwork tap

Figure 4. Setup for unidirectional transfer testing. Network tap device forwards traffic from sender

to receiver.

The test confirmed that the protocol sends data in one way only, as the device has no way

to send data from monitor Ethernet port to regular Ethernet ports.

9.3.2. Overhead comparison

Protocol file transfer speed was compared to SSH (scp) and HTTP/3. HTTP/3 is imple

mented over UDP. This allows comparing UCFTP to another protocol implemented over UDP,

but bidirectional. SSH file transfer was tested using scp program, which uses SSH for the actual
transfer.

Test data were 2 randomly generated files. They were exactly 10 MiB and 100 MiB in size.

This is a comparison of network protocol overhead, so they were tested over a network, which for

simplicity was chosen to be a single Ethernet cable connecting the machines of client and server.

Network speed tested was 100 Mbps, chosen because it exposes protocol overhead, as all three

protocols easily saturate the link. These speeds were enforced by choosing Ethernet devices which

max out at 100 Mbps. Setup is provided in Figure 5. Two configurations of UCFTP were tested:

one not using FEC and another with 10 % FEC packets. Each test was repeated three times. There

was very little variance across test runs for the same protocol.

Sender Receiver

100 Mbps

Figure 5. Setup for protocol speed comparison.

The link speed 100 Mbps is slow enough that all three protocols easily saturate them. The

test shows the difference in overhead of the protocols. It should be noted that for UCFTP transfers

with FEC, end of transfer is the time of receiving the last useful packet, that is, the packet that

allows to complete data reconstruction. All subsequent packets are not taken into account. The

results for 100 Mbps transfers are in Figure 6. UCFTP speed, irrespective of FEC, is almost

identical to HTTP/3 for 10 MiB file. SSH was a bit slower here. For 100 MiB file, FEC overhead

starts to make a difference, which is approximately equal to FEC overhead percentage of 10 %.
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Figure 6. Results for 100 Mbps link.

9.3.3. Speed comparison

To test the send speed of HTTP/3, SSH and UCFTP, 1 GiB file was sent between two locally

running programs. Only the send speed was tested for UCFTP. UCFTP receiver implementation

is not optimized and is unable to keep up with such speeds. Also, FEC encoding takes a few

seconds for such a large file. This time was not included. So the test effectively compares protocol

encoding and encryption speeds. Results are shown in Figure 7. UCFTP with FEC is faster than

UCFTP without FEC probably due to encoding all the packets before sending any (mostly, some

encoding is still performed before sending each packet, as is encryption), whereas UCFTP without

FEC encodes each packet just before it is sent.
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Figure 7. Send times for 1 GiB file.
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9.4. Conformance to requirements

This is the evaluation of how well the solution satisfies the requirements. Information

security requirements included confidentiality, integrity and authenticity. Confidentiality is

provided by the encryption used. Integrity is provided, because all the data being sent has integrity

protection and receiver always verifies the integrity of the data. Authenticity is provided, because

sender cryptographically proves the identity to the receiver. Additionally, it was required that the

receiver be able to prevent duplicate execution of the same command. This is also provided by

the solution in the form replay attack protection.

In terms of features, the solution needs to support file transfer, receiver file system man

agement, running commands on receiver system, enforce correct order of command execution,

transfer error detection and correction, multiple simultaneous transfers. File transfer, receiver file

system management and running command on receiver system are all supported by the protocol,

although the functionality is basic, e.g. it does not support file metadata transfer. Correct com

mand ordering is achieved by using command sequencing, where preceding commands can be

specified. Lost packets are detected based on their sequence numbers. Error detection is achieved

by authenticating all data in every packet. Error correction is provided by using RaptorQ forward

error correction. Multiple simultaneous transfers are supported by including a session ID in every

packet.

In terms of quality requirements, the receiver part of the solution must not use excessive

amounts of memory and both sender and receiver must support transfer speeds of at least 1 Gbps.

These are the requirements for implementation, although the design plays a role in what transfer

speeds are achievable. The receiver implementation is not optimized and uses several times more

memory than is needed to store the necessary data. The receiver maximum data receive speed is

around 150 MB/s which is a bit more than 1 Gbps. Sender can send data at much higher speeds,

around 500 MB/s. So the speed requirement is satisfied.
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Results and conclusions

Results

This work was aimed at providing a sostware solution for unidirectional data and command

transfers, primarily focused toward malware analysis uses. The work specifies and implements the

chosen solution, unidirectional control and data transfer protocol, called UCFTP. This includes

protocol commands, binary encoding, security and reliability aspects. Open source protocol

implementation for IP networks using UDP was created. It was confirmed by testing that the

protocol works with a unidirectional link between sender and receiver, as intended. Protocol can

perform error correction and tolerate almost arbitrary network conditions, provided that those

conditions are known and suitable FEC encoding overhead is chosen to compensate packet loss.

All the data being sent is encrypted using modern cryptographic constructions, mostly taken from

HPKE. A lot of thought has been put into making the receiver side resilient to various attacks.

The implementation was created with Rust programming language, which makes it much easier to

avoid creating securityrelevant bugs, such as buffer overflows, use aster free and others.

UCFTP file transfer space overhead is very similar to established protocols SSH (via scp)

and HTTP/3. This makes sense, as all three protocols use similar encryption algorithms and have

relatively little overhead.

Implementing the protocol guided many improvements to the protocol specification. This

was especially useful in improving wording where it was unclear or not specific enough. These

improvements improve chances of another independent implementation of UCFTP from the

specification being interoperable with the one created here.

The implementation is suboptimal in several aspects. Both sender and receiver currently

require a lot of memory to send and receive large files. Implementation is also not very optimized,

particularly the receiver program. Being written in Rust and using fast cryptographic primitives

helps maintain good throughput – the sender still reaches speeds of around than 500 MB/s.

The protocol and its prototype implementation security has been evaluated. No significant

weaknesses in the protocol or the implementation have been found. One relatively weak spot of

the implementation is its intolerance for corrupt input, particularly corrupt protocol commands:

the implementation of the receiver handles most parsing errors gracefully, but the command

execution part assumes that all executed commands succeed and the receiver may crash otherwise.

The receiver implementation is singlethreaded, so crashing loses all state session state.

Implementation works using standard IP networks. This makes it easy to install and use.

The protocol is not generally suitable for use in environments where the protocol usage itself

should be hidden (obfuscated). This can be relevant in censorship environments or where it is

desirable to hide that the protocol is used for any reason. The protocol provides no obfuscation

and is quite easily recognizable.

Limitations and future work

The created solution has some limitations and possible enhancements:
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• Better support for the current use case of remote control and file system management. For

example, current commands for file transfer do not allow setting executable permission

and also cannot transfer any file metadata or permissions.

• More protocol commands could be added to support other use cases. The encrypted

protocol supports any inner protocol messages, so support for different messages can

be added without changing any security functionality. Different protocol profiles could

support use cases such as:

– log and telemetry transfer from isolated equipment,

– system time synchronization,

– database replication from secure network to a less secure one.

• Replay attack protection depends on both systems having similar system time. It is

desirable to remove this dependency by using some other mechanism for replay attack

prevention. The current replay protection can be inefficient when large number of sessions

is happens within the packet send timeout window, as every new session has to be checked

against all the recent sessions and also against the time to determine the session’s validity.

• Implementation is of prototype quality. It needs improvements in error handling and ad

hering to the protocol specification to increase its usefulness. The receiver implementation

is unable to keep up with sender speeds.

• Sender does not indicate abrupt session termination. The receiver will drop the partially

received session aster a timeout, but it would be nice if the sender, when possible, indicated

abrupt terminations to allow the receiver to more gracefully handle them and provide

better diagnostics to the user.

• Better methods and heuristics to protect against denial of service attacks are desirable.

Current method is very primitive and still permits attacks taking advantage of uninitialized

session timeouts.

• For some use cases of unidirectional data transfer protocol, obfuscation is desirable. It

can be useful to avoid detection by censors and to hide the origin and purpose of the

communication from outside observers. Currently protocol is easily identifiable from the

first packet and also the destination port. Source IP address is not necessary for correct

operation, so the sender can set it to any value.

Conclusions

All in all, the results satisfy the original goal of the work: to create a sostware solution for

unidirectional transfer of data between two systems, which may be VMs. The created protocol can

be used for interVM data transfers, but due to use of standard networking stack, it can also be

used in any device and any operating system that has a network connection. It is not limited to

virtual machines or specific hypervisors. Unidirectional transfers can be enforced either at the

hardware level or by firewall rules that allow only incoming traffic into the receiver system. If the

protocol is being used on a VM, the hypervisor can enforce unidirectional data flows. The security

mechanisms used in the protocol were mostly taken from HPKE and as a result, secure and easy
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to use cryptographic constructions are used, reducing the chance of a vulnerable implementation.

Conclusions:

• Large parts of existing standardized security protocols can be reused when creating new

custom ones. This allows to get similar or identical security guarantees.

• The created solution satisfies the research goal, with some caveats and limitations, in

particular limited command support and having to make certain restrictive assumptions

about the environment.

• The created protocol achieves similar maximum useful throughput as HTTP/3 on the

sender side, but the receiver implementation is too slow to deal with such throughput due

to implementation inefficiencies.
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AAD additional additional authenticated data

AEAD authenticated encryption with additional authenticated data

DoS denial of service

DTLS datagram transport layer security

FEC forward error correction

HKDF hashbased key derivation function

HPKE hybrid public key encryption

HTTP hypertext transfer protocol

I/O input/output

ICS industrial control system

IETF internet engineering task force

IMAP internet message access protocol

IP internet protocol

IV initialization vector

LED lightemitting diode

MAC message authentication code

NTP network time protocol

OS operating system

POSIX portable operating system interface

SDN sostwaredefined networking

TCP transmission control protocol

UDP user datagram protocol

VM virtual machine

VPN virtual private network
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