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Summary

This work addresses the growing challenge of distinguishing between AI-generated images

and real photographs, a critical issue in maintaining authenticity and trust in digital environments.

With advancements in generative models such as GANs, VAEs, and diffusion models, AI-generated

images have become increasingly realistic, raising ethical, social, and security concerns.

The research investigates the feasibility of creating a universal neural network model to classi-

fy AI-generated and real images effectively. A diverse dataset of 2,060 images was created. Several

neural networks, using the Vision Transformer (ViT) architecture, were trained on this dataset and

evaluated for their ability to generalize to images from previously unseen generative models.

Key findings reveal that while the models achieved higher accuracy on known and diffusion-

based unseen generators, they struggled significantly with data from generators such as Recraft.

This emphasises the inherent difficulty of developing a universal model due to the absence of con-

sistent features across generative models and the rapid evolution of these technologies. The study

contributes valuable insights into the limitations of current detection methodologies.
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Santrauka

Šiame darbe sprendžiamas vis didėjantis iššūkis atskirti dirbtinio intelekto sukurtus vaizdus

nuo tikrų nuotraukų, ši tema yra labai svarbi siekiant išlaikyti autentiškumą ir pasitikėjimą skait-

meninėje aplinkoje. Tobulėjant generatyviniams modeliams, tokiems kaip GAN, VAE ir difuzijos

modeliams, dirbtinio intelekto generuojami vaizdai tampa vis tikroviškesni, o tai kelia etinių, so-

cialinių ir saugumo problemų.

Tyrime nagrinėjama galimybė sukurti universalų neuroninio tinklo modelį, kuris leistų efek-

tyviai klasifikuoti tarp dirbtinio intelekto generuojamų ir realių vaizdų. Buvo sukurtas įvairus 2 060

vaizdų duomenų rinkinys. Šiame duomenų rinkinyje buvo apmokyti keli neuroniniai tinklai, ku-

rie naudoja „Vision Transformer“ (ViT) architektūrą, ir įvertinti jų gebėjimai tinkamai klasifikuoti

vaizdus sukurtus anksčiau nematytais generatyviniais modeliais.

Pagrindinės išvados rodo, kad neuroninio tinklo modeliai pasiekė didelį tikslumą klasifikuo-

damas vaizdus iš žinomų ir difuzijos pagrindu sukurtų nematytų generatorių. Tačiau šiem mo-

deliam nepavyko tiksliai klasifikuoti duomenų sukurtų su „Recraft“ generatoriumi. Tai parodo

sunkumą susijusiį su universalaus modelio sukūrimu, nes nėra pastovių požymių tarp skirtingų ge-

neratyvinių modelių ir šios technologijos sparčiai tobulėja. Šis tyrimas suteikia vertingų įžvalgų

apie dabartinių aptikimo metodų trūkumus.

Raktiniai žodžiai: neuroniniai tinklai, GAN, VAE, difuzijos modeliai, sugeneruoti vaizdai
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Introduction

The rapid advancements in generative models and the ease of access to them have significant-

ly increased the proliferation of AI-generated images across social media platforms and other online

spaces. From creative arts to scientific applications, generative models such as GANs (Generative

Adversarial Networks), VAEs (Variational Autoencoders), and diffusion models have revolutioni-

zed content creation by producing high-resolution and realistic images. While these developments

have enabled creativity and innovation, they have also introduced numerous significant ethical, so-

cial, and security concerns about the misuse of this technology. AI-generated images, for instance,

have been weaponized to create deceptive content such as fake identities, manipulated news, and

deepfakes, which erode public trust in the authenticity of online content. Addressing the challenge

of reliably distinguishing between AI-generated and real images has thus become a critical area of

research.

Distinguishing between AI-generated and real photographs has become a critical task for

maintaining authenticity and trust in digital environments. Existing detection methods have pri-

marily focused on convolutional neural networks (CNNs) trained to detect artifacts specific to cer-

tain generative models. While these approaches have demonstrated reasonable success, they often

lack generalizability across diverse generative models. As new and more sophisticated generative

techniques emerge, the gap between the capabilities of image generators and detectors widens. This

highlights the need for universal detection models that can classify images from previously unseen

generators with high accuracy.

The goal of this work is to explore the feasibility of developing a universal neural network for

classifying AI-generated images and photographs. The specific objectives of this research are:

1. To identify universal image features that differentiate AI-generated images from real photo-

graphs, independent of the specific generative model used.

2. To create a diverse dataset comprising of high resolution generated images, which can be

used for robust model training and evaluation.

3. To train a neural network model to achieve robust classification and evaluate the generaliza-

tion capabilities of the model on images from unseen generators.

4. To analyse the limitations of universal detection models and make propositions for improving

performance in future research.

5



The foundation of this research lies in the hypothesis that AI-generated images possess in-

herent artifacts or patterns that differ from real images. And that these artifacts can be exploited

by advanced neural networks to distinguish between real and generated images. The methodology

employed in this work includes:

1. A dataset comprising real photographs and AI-generated images from multiple state-of-the-

art generative models will be created.

2. The applicability of techniques suggested in recent studies for universal model training will

be analysed.

3. A neural network model utilizing state-of-the-art techniques will be trained.

4. The model’s performance will be evaluated using images from unseen generative models to

assess its generalization ability.

Research in the domain of AI-generated image detection has primarily focused on using CNN-

based architectures. However, recent studies into Vision Transformers (ViTs) and hybrid architec-

tures have shown to be superior for this task, thanks to their ability to capture global relationships

within images. Despite these advances, there is a lack of consensus on whether a universal detec-

tion model is feasible, particularly given the diversity and rapid evolution of generative techniques.

This work builds on this body of knowledge by addressing the feasibility and challenges of universal

detection.

6



1. Literature Review

1.1. Image Generation

The field of image generation has seen significant advancements, leading to the development

of highly sophisticated generative models. These models, such as Generative Adversarial Networks

(GANs), Variational Autoencoders (VAEs), and diffusion models, have dramatically improved the

ability to create realistic digital images, such that it has become hard for people to distinguish

them from real images [LHB+23]. This section explores the various image generation models,

delving into their unique methodologies, strengths, and applications. Understanding these diverse

approaches is crucial not only for appreciating the technological progress in image generation but

also for addressing the challenges associated with detecting these generated images. As generative

models continue to produce increasingly realistic outputs, distinguishing between these synthetic

images and genuine photographs becomes a critical task, especially in the context of combating

disinformation, identity theft, and other malicious activities.

As mentioned in [OLL23], there are different categories of synthetic images. One category

includes images that have a portion of the original image altered with tools like Adobe photoshop1

or methods for creating deepfakes, which involve changing the face of a person in an image or video.

Another recent feature of Adobe’s photoshop and DALL-E2 allows users to alter a portion of a real

image by inserting objects or modifying parts of the scene based on the user’s prompt. The other

category contains images which have been fully generated by a generative model, and this is the

category of images that this literature review will focus on.

Generative Adversarial Networks

GANs consist of two neural networks that are trained simultaneously and compete to outper-

form one another. One of these networks, the generator, tries to create images that can fool the other

network, the discriminator, into classifying them as real, while the discriminator aims to accura-

tely classify between real images and those generated by the generator. Through this adversarial

process, both networks improve at their respective tasks—the generator produces more realistic

images and the discriminator becomes better at distinguishing between real and generated images.

Although GANs have been used for a while and have managed to achieve realistic-looking ima-

ge generation, they have a significant drawback compared to other models. GANs are notoriously

difficult to train, requiring careful tuning of hyperparameters and large amounts of computational
1https://www.adobe.com/products/photoshop.html
2https://openai.com/index/dall-e
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resources. Additionally, there are a variety of issues that can arise while training the models, which

can hinder their performance.

Variational Autoencoders

Variational Autoencoders (VAEs) are another class of generative models that have significant-

ly advanced image generation techniques. A VAE consists of two main components: the encoder

and the decoder. The encoder maps the input data, such as an image, into a latent space representa-

tion of the input data. This latent space is designed to represent the data in a way that retains its most

meaningful characteristics. The decoder then reconstructs the original input from this latent space

representation, aiming to minimize the reconstruction error. By doing so, VAEs can generate new,

similar images by sampling from the latent space, effectively learning the underlying distribution

of the input data and producing realistic variations of the original images.

Diffusion Models

GANs dominated the image generation space for a long time, until the emergence of diffusion

models, which enabled the creation of better-looking and highly realistic images while also being

easier to train. Diffusion models represent a different approach to image generation compared to

GANs. Diffusion models, in essence, try to remove noise from a noisy image in order to restore it

to the original image while following the prompt that the user provided.

The training process involves taking an input image and progressively applying multiple steps

of noise to it. The model’s objective is to predict and subtract the added noise at each step until

the original image is restored, while being guided by a prompt describing what the original image

should look like. Over time, the model learns to reproduce an image that is described in the prompt

from a very noisy input image. When used for image generation, the model can be given an image

to guide the generation process, or no image can be used for the input, and instead the model uses

random noise to produce an image following a prompt.

Currently, the most popular diffusion models belong to the Stable Diffusion3, DALL-E, and

Midjourney4 families. While DALL-E and Midjourney models are accessible only through APIs,

the older Stable Diffusion models are open-source and have been extensively customized and enhan-

ced by the community. This has created a rich ecosystem of tools and extensions, further advancing

the capabilities and applications of diffusion-based image generation.
3https://stability.ai/stable-image
4https://www.midjourney.com
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Training Techniques

Diffusion models offer several advantages that make them highly versatile and effective for

image generation tasks. One significant advantage is their ability to be easily modified and fine-

tuned using techniques like Low-Rank Adaptation DreamBooth [RLJ+22] or (LoRA) [HSW+21]. 

DreamBooth is a model training technique designed for fine-tuning pre-trained diffusion mo-

dels by updating the entire model based on just a few images of a specific subject or style. This

technique works by associating a unique word or identifier in the prompt with the input images used

during training, enabling the model to learn and replicate the distinctive features of the subject or

style, such as a specific person or a particular art style of an artist. This approach is a signifi-

cant advancement over previous methods, which typically required large datasets and substantial

computational resources to achieve comparable levels of ”personalization.” DreamBooth makes it

possible to customize diffusion models to produce highly specific and personalized outputs without

requiring a lot of computational resources.

Model merging is another technique utilized by stable diffusion models. This technique in-

volves combining multiple pre-trained models to create a single, more versatile model that inherits

the strengths and unique features of both models. Because of the open-source models like Stable

Diffusion, the community has been able to experiment with and refine this approach, leading to

models that can generate a wider variety of styles and subjects with enhanced fidelity.

Another big advancement made in image generation is LoRA. LoRA enables efficient adap-

tation of pre-trained diffusion models to new tasks by updating only a small subset of parameters,

reducing the amount of resources required to adapt or retrain the model. This allows users to custo-

mize models for specific applications without the need for extensive retraining. LoRA made a big

impact in the image generation space because many people did not have the computational resour-

ces needed to retrain the whole Stable Diffusion model, making image generation more accessible

to a wider population. Furthermore, it is also possible to merge LoRa models with other models,

making the whole process of model training so much more customizable and easier overall.

With so many improvements in image generation, the output image quality has become much

better and consequently much harder for humans to identify as fake. This enhanced realism, combi-

ned with the reduced computational resource requirements, has made it much easier for malicious

people to utilize image generation for unlawful activities.
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1.2. Detection Methods

Most of the existing methods for generated image detection initially utilized convolutional

neural networks (CNNs) for image identification. However, recent advancements have demonstra-

ted that Vision Transformer (ViT) models outperform CNNs in this task. ViT-based models excel

in capturing relationships across the entire image and have shown better accuracy and robustness

compared to CNN models, making them the current state-of-the-art approach for this task.

As image generators evolve, it becomes harder to identify their generated images as fake.

This is to be expected because the quality of the generated images increases. The increase in quali-

ty means that errors previously made by image generators, such as blurring, inconsistent shadows,

incorrect rendering of human hands, and other high detail areas, become less common. Meaning

that generated image detection methods that heavily rely on the errors made by the generators beco-

me less accurate. And this will be more the case with image generators in the future. While many

detectors have achieved high accuracy with using the errors in the spatial domain of the image for

generator detection, these methods do not perform well with newer diffusion generators such as

Stable Diffusion or Midjourney. This is because the newer models have almost eliminated the er-

rors that the detectors exploit to detect generated images. Although one recent research [QSX+24]

managed to exploit inconsistencies in human eye reflections to differentiate between real and fake

images. However, just like how different eye colors have been fixed, so too will this defect disappear

from new models. In addition, these detectors do not work with landscape images, which have a lot

of undefined features unlike human faces, hands, or other objects. So in the near future, these met-

hods will become obsolete because image generators have already eliminated most of their mistakes

and will only continue to improve. That is why a lot of research articles are focused on detecting

generated images based on other features that are more likely to persist as models improve.

One of the more popular detection methods involves analysing the frequency domain of ima-

ges. Multiple studies [YDF19; WBZ+23; ZKC19; ZXL+24] have observed that, unlike traditional

photography, image generation follows a specific process that leaves distinct artifacts in the frequen-

cy domain. Although this is not entirely correct, as there are studies [AGV18; KFK+18; Pen20] that

use noise left by camera lenses and sensors to differentiate between different camera models, but

many researchers do not consider the noise that exists in photographs. By using the frequency

domain features, researchers have trained various neural network models to recognize the patterns

left by generative networks and differentiate between real and generated images with high accura-

cy. However, a drawback of this method is that each generative network creates its own distinct

pattern. So if a detector is trained with images generated by only one model, it will not be able to
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detect images generated by other models. Many articles [YHC+22; OLL23; WBZ+23; WWZ+20;

ZHL+23; ZWC+22; ZWH+22; ZXL+24] observe this as an issue, and some suggest new methods

that are able to detect images generated by unseen models to some extent.

Although many research articles consider multiple model accuracy, they state their results as

the highest accuracy achieved on generative models that the detector is trained on. This means that

the detectors have to have prior knowledge about which model the image was created by, which is

not representative of real-world scenarios. However, some research [OLL23; QSX+24; WWZ+20]

has observed that detectors trained on GAN models are able to detect images from some of the

other GAN models with quite a high accuracy. This is also true for models trained on diffusion

model generated images when detecting images generated by other diffusion models [WBZ+23;

XWM+23]. These results suggest that generative models, which have similar image generation

techniques and produce similar patterns within the images, and a detector trained on only a handful

of generators should be able to detect images generated by unseen generators, as long as their ar-

chitectures are similar to the ones in the training batch. This is further analysed by several studies

[YDF19; YHC+22], which have observed that training a GAN model on a different dataset or even

fine-tuning it changes the ”fingerprint” that the GAN leaves on the images. Meaning that images

generated by models that have been re-trained on a different dataset would be able to evade detec-

tion by detectors that do not account for this. To overcome this, the authors introduce a new method

called DNA-Det, which identifies globally consistent fingerprints left by GAN type models. DNA-

Det is made of two techniques: pre-training on image transformation classification and patchwise

contrastive learning. The architectural fingerprints identified by this method remain recognizable

even if the models are fine-tuned or retrained, unlike traces left by model weights that vary regio-

nally. Experiments demonstrated by the authors show that their method greatly outperforms other

methods when tested on different model configurations and training datasets.

[OLL23] suggests that the inability to detect images from unseen generators is because the

models are trained to only detect images that show patterns of being ”fake.” As described in

[OLL23] ”the classifier doesn’t seem to look for features of the real distribution when classifying

an image as real; instead, the real class becomes a ‘sink class’ which hosts anything that is not

GAN’s version of fake image.” To solve this problem, the authors of [OLL23] ”propose to per-

form real-vs-fake image classification using features that are not trained to separate fake from real

images.”, meaning to use a network trained for a similar task of differentiating between images

based on low-level details without the specific task of fake image detection. In their research, a

CLIP:ViT-L/145 model is used, modified with an additional linear layer, and only this layer is trai-
5https://huggingface.co/openai/clip-vit-large-patch14
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ned for binary classification between real and fake. Another study [HCM+24] has also used CLIP6

in their research and suggests removing textual embeddings from CLIP by ”integrating a “forget-

to-spell” model: an orthogonal linear projection designed to minimize textual content in CLIP’s

latent space.” This is because CLIP may unintentionally insert textual information into the output,

as observed in [MTB22].

One study [ZXL+24] proposes a universal method for generated image detection that works

for images generated by all types of generative networks. Based on the observation that ”Generative

models leave different artifacts between the poor and rich texture regions” [ZXL+24], this method

compares the inter-pixel correlation between rich and poor texture areas within the image. Because

cameras work differently from generative networks, in the way that for images created with came-

ras, the rich and poor texture area inter-pixel correlation is very similar. Their method consists of

cropping the image into multiple patches, which are then separated into low and rich texture areas,

and two images are reconstructed. One of the reconstructed images consists only of patches of

rich texture and another of only low texture areas. The resulting images are fed into a classifier to

determine if the image is fake or real, achieving very high accuracy over a lot of different models.

To address the challenge of detecting fake images from unseen models, the authors of

[ZHL+23] introduce a generalized fake image detection framework based on gated hierarchical

multi-task learning (GHML). The framework integrates a global artifact learning task and a block-

wise spatial correlation learning task, employing techniques like region masking augmentation and

jigsaw puzzles with color jitter operations to enhance generalization and prevent overfitting. Experi-

ments on the ForenSynths dataset demonstrate that the method performs quite well in distinguishing

fake images generated by various GANs and diffusion models when compared to other methods.

The research article [WBZ+23] addresses the challenge of identifying images generated by

diffusion models, which have shown to be difficult for traditional detectors to detect, even when

trained on data including specific diffusion models, as also observed in [CCZ+23]. The authors int-

roduce a new image representation called Diffusion Reconstruction Error (DIRE). DIRE measures

the error between an input image and its reconstruction by a pre-trained diffusion model [SME20],

based on the observation that diffusion-generated images can be more accurately reconstructed

compared to real images.

[XWM+23] proposes an image detection method for images generated by diffusion networks.

And their method performs much better than other proposed methods used for GAN generated

image detection when trained on the same dataset. They also noticed that networks trained on

diffusion models could not detect images generated by GAN models and vice versa.
6https://openai.com/index/clip
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”under the assumption that it is difficult to synthesize high-quality, high-frequency compo-

nents in local regions.”[ZWC+22] have proposed a universal generated image detection method that

works by analysing high-frequency component rich areas. They trained their model on a dataset

made from images generated by ProGAN and tested it on images generated from multiple GAN

models.

To increase accuracy over unseen generators, some recent research has suggested that trai-

ning models specifically for the task of distinguishing generated images from real ones may not

be the most effective approach. Studies, such as those presented in [MGP24; OLL23; QSX+24;

ZWH+22], propose that utilizing a feature space not explicitly designed for differentiating between

real and generated images can yield better results. The authors of [MGP24; OLL23] argue that

models pre-trained within a more generalized feature space can enhance their ability to learn dis-

tinguishing features between real and generated images more effectively. Further re-training these

models specifically for the task of generated image detection would enable them to outperform

models that were explicitly trained for the purpose of fake image detection from the start. The em-

pirical results from their research support this hypothesis, demonstrating superior performance in

detecting generated images across different generative models.

When training generated image detection models on large amounts of images, there is a pro-

bability that some of the data might be labeled incorrectly. Therefore, the authors of [QSX+24;

ZWH+22] proposed an unsupervised training technique where the data is assigned noisy labels.

The biggest advantage of this technique is that it allows the image detection network to be trained

on a dataset that has a high amount of incorrectly labeled data. This is important because when

using big datasets for training a neural network, there is always a chance of data being mislabeled,

which would heavily affect the model’s performance. Instead of using labeled data, these studies

use a backbone network for feature extraction and separate the data by distance in the feature space.

But like many other methods, this method suffers from low accuracy when detecting images from

unseen generators.

Current methods for detecting generated images are focused on detecting images of existing

generators and are posing challenges when applied to new, unseen models. So, instead of focusing

on generated images, the authors of [BLY+23] propose a new approach that relies only on real ima-

ges for training, thereby eliminating the dependency on generated images. The authors observed

that the noise between real images is very similar, and generated image noise is very different. By

mapping real images to a dense subspace within the feature space, the model is designed to detect

generated images as outliers that fall outside this subspace. This strategy offers several advanta-

ges, including significantly reduced training data requirements and improved generalization to new
13



generative models. Moreover, it maintains robustness against various post-processing techniques

applied to images, making it highly applicable in real-world scenarios.

Table 1: The detection accuracy comparison between different approaches. DIRE-D denotes DIRE
[WBZ+23] detector trained over fake images from ADM. DIRE-G denotes DIRE detector trained
over the same training set (ProGAN) as others. Among all detectors, the best result and the second-
best result are denoted in boldface and underlined, respectively. Data is from [ZXL+24].

Generator CNNSpot FreDect Fusing GramNet LNP LGrad DIRE-G DIRE-D UnivFD PatchCraft

ProGAN 100.00 99.36 100.00 99.99 99.95 99.83 95.19 52.75 99.81 100.00

StyleGan 90.17 78.02 85.20 87.05 92.64 91.08 83.03 51.31 84.93 92.77

BigGAN 71.17 81.97 77.40 67.33 88.43 85.62 70.12 49.70 95.08 95.80

CycleGAN 87.62 78.77 87.00 86.07 79.07 86.94 74.19 49.58 98.33 70.17

StarGAN 94.60 94.62 97.00 95.05 100.00 99.27 95.47 46.72 95.75 99.97

GauGAN 81.42 80.57 77.00 69.35 79.17 78.46 67.79 51.23 99.47 71.58

Stylegan2 86.91 66.19 83.30 87.28 93.82 85.32 75.31 51.72 74.96 89.55

whichfaceisreal 91.65 50.75 66.80 86.80 50.00 55.70 58.05 53.30 86.90 85.80

ADM 60.39 63.42 49.00 58.61 83.91 67.15 75.78 98.25 66.87 82.17

Glide 58.07 54.13 57.20 54.50 83.50 66.11 71.75 92.42 62.46 83.79

Midjourney 51.39 45.87 52.20 50.02 69.55 65.35 58.01 89.45 56.13 90.12

SDv1.4 50.57 38.79 51.00 51.70 89.33 63.02 49.74 91.24 63.66 95.38

SDv1.5 50.53 39.21 51.40 52.16 88.81 63.67 49.83 91.63 63.49 95.30

VQDM 56.46 77.80 55.10 52.86 85.03 72.99 53.68 91.90 85.31 88.91

wukong 51.03 40.30 51.70 50.76 86.39 59.55 54.46 90.90 70.93 91.07

DALLE2 50.45 34.70 52.80 49.25 92.45 65.45 66.48 92.45 50.75 96.60

SDXL 53.03 51.23 55.60 64.53 87.75 71.30 55.35 91.28 50.73 98.43

Average 69.73 63.28 67.63 68.43 85.28 75.11 67.90 72.70 76.80 89.85

The results of different methods can be observed in Table 1. The methods tested are

CNNSpot[WWZ+20], FreDect [FES+20], Fusing [JJK+22], GramNet [LQT20], LNP [BLY+23],

LGrad [TZW+23], DIRE [WBZ+23], UnivFD [OLL23], and PatchCraft [ZXL+24]. All of the mo-

dels are trained on a dataset made up of 360k real images from LSUN [YSZ+16] and 360k fake

images generated with ProGAN. When evaluating the performance of these detection methods, it

can be seen that PatchCraft performs the best overall, having the best average accuracy and having

the highest or second highest accuracy on most generators. While the LNP method did not achieve

the highest accuracy on most generators, it has a consistent high accuracy with the second highest

average accuracy. DIRE-D method, while not performing well on GAN type models, performed

better than PatchCraft on diffusion networks. Although DIRE-D was trained on a different dataset,

so those results are to be expected.
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1.3. Image Datasets

In the realm of synthetic image detection, the choice of dataset plays a crucial role in shaping

the performance and reliability of the detection models. Various studies have utilized a range of

publicly available datasets, while other studies have created their own.

CelebA [LLW+15] and FFHQ [T K19] are two of the most commonly used datasets, espe-

cially in facial recognition and manipulation detection research. CelebA contains a large number of

celebrity images with detailed attribute annotations, and FFHQ offers high-resolution images with

a wide range of facial attributes.

ImageNet [DDS+09] serves as a foundational dataset for many deep learning applications,

including synthetic image detection. Due to its vast array of labeled images covering numerous

categories, it is often used to pre-train models that are subsequently fine-tuned for the specific task

of detecting fake images.

Specialized datasets like ForenSynths and FaceForensics++ [RCV+19] cater specifically to

the needs of forensic analysis and deepfake detection. ForenSynths includes images generated by a

variety of GAN models, while FaceForensics++ offers a diverse collection of altered videos created

using various face-swapping methods.

Broader datasets like COCO (Common Objects in Context) [LMB+15] and LSUN (Large-

scale Scene Understanding) [YSZ+16] expand the scope of synthetic image detection beyond facial

images to include common objects and scene types. COCO has a rich variety of objects in eve-

ryday contexts. LSUN focuses on large-scale scene understanding, providing images of different

environments such as bedrooms and churches, which help with testing the model’s generalization

to other types of content.

Some studies develop their own datasets to more accurately assess the performance of their

methods. The authors of [WBZ+23] have created a diffusion generated image dataset, Diffusion-

Forensics. This dataset includes images generated by eight different diffusion models, trained on

the ImageNet and LSUN datasets.

There are, however, several limitations with these and other popular datasets that need to be

accounted for during detector training. Firstly, some datasets, having been created several years

ago, contain images that may not match the quality produced by current state-of-the-art generative

models. This discrepancy can lead to detection methods that are less effective when applied to ne-

wer, more sophisticated AI-generated images. Moreover, the primary goal of developing detection

methods for AI-generated images is to identify those that are challenging for humans to differen-

tiate from real images. If a dataset has a lot of images that are easily identifiable as generated,
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the high accuracy achieved on these datasets will not accurately reflect the detector’s performance

in real-world scenarios. Additionally, many datasets are limited in their variety, often containing

images of a single type of object or environment. This lack of diversity can result in detectors that

are not robust to changes in image content, reducing their effectiveness when applied to a broader

range of images. 

Another significant issue is the potential for overfitting. When detectors are trained exten-

sively on a specific dataset, as observed in [YDF19; YHC+22], they may learn to recognize the

peculiarities and artifacts of that dataset rather than general characteristics of AI-generated images.

This overfitting makes the detectors less effective when exposed to images from different sources

or newer models that generate images with different characteristics or that were trained on different

data. Furthermore, the rapid advancement in generative models means that datasets quickly become

outdated. What was once a challenging dataset can become obsolete as generative models improve,

requiring continuous updates and the creation of new datasets that better represent the capabilities

of current models.

Due to these limitations and other reasons, some studies [HFC+24; WBZ+23], have created

their own datasets to achieve better performance in AI-generated image detection. For instance, the

”WildFake” dataset [HFC+24] is designed to address the growing need for reliable AI-generated

image detection by offering a diverse collection of images sourced from various open-source com-

munities. This dataset includes a wide array of object categories and styles, ensuring a compre-

hensive representation of real-world images. Moreover, unlike many existing datasets, WildFake

includes images generated by a variety of models, including GANs and diffusion models, whi-

ch is crucial for evaluating the generalization capabilities of detection algorithms across different

generative techniques. Table 2. shows the superiority of detectors trained on the WildFake data-

set compared to the ArtiFact [RPS+23] dataset. Detectors were evaluated using generated images

from DiffusionForensics, GenImage [ZCY+23], DiffusionDB [WMM+22], ArtiFact, and WildFa-

ke, using metrics such as accuracy (ACC), average precision (AP), and Area Under the ROC Curve

(AUC).
Image Augmentation Techniques

Most studies referred to in this work apply some form of augmentation to their data during

training, including common techniques such as translation, scaling, and flipping. These augmen-

tations enhance the variability of the training data, which in turn helps improve the generalization

capabilities of the models. Some articles specifically examine the impact of different strengths of

Gaussian blur and JPEG compression on model accuracy. For instance, the authors of [WWZ+20]
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Table 2: Evaluation of ResNet50 and ViT architecture detectors, trained on the ArtiFact and Wild-
Fake datasets. ACC(%), AP(%), and AUC (%) are reported. Data is from [HFC+24].

Training Detectors
and Datasets

Testing Dataset
Avg

DiffusionForensics GenImage DiffusionDB ArtiFact WildFake

ResNet50-ArtiFact 85.4/94.9/76.7 76.5/84.8/82.9 64.1/69.9/68.1 97.2/99.5/99.3 85.4/94.9/76.7 81.7/88.8/80.74
ResNet50-WildFake 87.2/96.6/83.4 80.9/89.9/89.3 96.3/99.2/99.2 68.0/84.7/75.3 99.6/99.9/99.9 86.4/94.1/89.42

ViT-ArtiFact 84.2/96.1/82.5 78.5/88.1/85.0 68.4/75.3/73.2 96.8/99.6/99.5 84.2/96.1/82.5 82.4/91.0/84.4
ViT-WildFake 95.8/99.1/97.2 88.6/83.6/89.7 99.3/99.8/99.9 62.2/81.9/68.8 99.1/99.9/99.9 89.0/92.84/91.1

conducted extensive testing with various augmentations on different detectors and concluded that

augmentations generally improve model performance. However, they noted exceptions in data-

sets involving super-resolution and deepfakes, where certain augmentations did not yield the same

benefits.

A rational observation is made in [OLL23], that using a strong Gaussian blur with a sigma

value of 2 or higher degrades image quality to the extent that it compromises the usefulness of the

image, which would not be worth it to merely evade detection. This suggests that training a model

to detect images with such degraded quality is not worth it because these kinds of images would

not appear in real world scenarios.

1.4. Gaps in Research

Many studies that analyse the features left in the frequency domain by image generators do not

account for the fact that different camera models also leave a different fingerprint on the image, as

analysed in [AGV18; BLY+23; KFK+18; Pen20]. Camera noise originates from the post-processing

algorithms applied during the conversion of raw sensor data into displayable image data. It is not

clear if the noise left by cameras is ”weaker” or more easily identifiable than noise left by image

generators, and there seems to be no studies done on that specific topic. However, it can be theorized

that classifiers can detect camera noise, as images from unseen classifiers are often classified as

real, as observed in [OLL23]. This could be because fake data in datasets is typically generated

by a limited number of image generators, resulting in only a few distinct noise patterns. On the

other hand, real images are captured by a variety of camera models, each introducing different

noise patterns. Thus, when an image from an unseen generator with an unknown noise pattern is

introduced, it may be misclassified as real due to the diverse noise patterns present in real images.

Although it is also possible that an image from an unseen generator is misclassified because the

classifier simply cannot detect their noise pattern due to only learning the patterns that it knows are

fake.
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1.5. Further research methodology

In this section, I will outline the most proficient methodologies and datasets that will be

further researched in the master’s thesis. Potential improvements based on gaps identified in the

current literature will also be proposed here.

Methodology

Based on the current research, it is seen that models trained on very large amounts of data

perform better than other models on images from unseen generators. For this reason, CLIP will be

used as the classifier network for the task of generated image detection. Furthermore, using forensic

methods, such as described in [ZXL+24] will be considered, as they have shown to increase accuracy

on unseen image generators.

Dataset

Although studies have shown that models trained on larger datasets perform better, many exis-

ting datasets contain outdated images that do not match the quality achievable by current generative

models. Using such data can reduce the accuracy of models in real-world scenarios, as they may

not generalize well to higher-quality images produced by state-of-the-art generators. Consequently,

methods that achieve high accuracy on those datasets might not work well when trained on higher-

quality data. Therefore, for the research in the master’s thesis, it would be best to use datasets that

have recent, high-quality images. If no suitable datasets are available, either a new dataset will be

created to meet these requirements, or a large dataset like WildFake [HFC+24] will be used, as it is

composed of a lot of popular datasets.

Image augmentation

A lot of studies agree that image augmentation increases the robustness and generalizability

of detection models. Therefore, common augmentations like rotations, translations, scaling, and

flipping, as well as Gaussian noise or JPEG compression artifacts, will be used to increase data

variety. Furthermore, every augmentation will be applied with reasonable intensity, where it does

not degrade model performance, but will still allow the model to work on a wider array of data.
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2. Research solution

The solution of this study is designed to rigorously investigate the feasibility of training a

universal neural network model to distinguish AI-generated images from real photographs. The

approach encompasses three primary stages: data collection, model selection and training, and

evaluation. Each stage is meticulously detailed below to ensure reproducibility and clarity, addres-

sing the challenges of dataset diversity, model generalization, and robust evaluation.

2.1. Problem Analysis

2.1.1. The Problem of AI-Generated Image Detection

In recent years, the emergence of highly sophisticated generative models such as diffusion-

based networks, generative adversarial networks (GANs), and transformer-based image generators

has significantly diminished the line between real and synthetic images. These models are capab-

le of producing high-fidelity visuals that are often indistinguishable from real photographs to the

human eye. As these systems become more accessible, they also become more attractive tools

for misinformation, content manipulation, and deepfake creation. This presents a pressing need to

develop reliable methods for detecting AI-generated content.

However, unlike earlier iterations of generative models that introduced artifacts or failed to

replicate realistic textures, current generation models such as MidJourney, Ideogram, and Recraft

are optimized to mimic the imperfections of natural images, such as image blur and lens distortions.

Therefore, previous artifact-based detection techniques have become increasingly obsolete. This

creates a moving target for detection methodologies: models trained on one type of generator may

fail when presented with outputs from newer models or models of a different architecture.

Another aspect of this challenge is the variability in image sources. AI-generated images

might be saved in different formats, undergo additional compression, or be edited after generation.

Each of these factors further obfuscates any patterns that could be used for classification. As a

result, the detection task must not only account for the source model but also for all post-processing

steps applied to the images. This introduces a domain adaptation problem, where the distribution

of real-world inputs does not perfectly match the training data.

2.1.2. Existing Detection Methods and Their Limitations

Various detection methods have been proposed in the literature. Early approaches focused on

pixel-level noise analysis, frequency domain analysis, or identifying GAN-specific artifacts such
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as checkerboard patterns from deconvolution operations. These were later extended by more sop-

histicated deep learning methods that use convolutional neural networks (CNNs) to automatically

learn discriminative features.

One such notable approach is proposed in the work [ZXL+24], which utilized texture incon-

sistency across high-detail and low-detail regions of an image to detect GAN-based fakes. The

intuition was that real cameras tend to introduce uniform noise patterns regardless of image comp-

lexity, whereas generative models introduce noise depending on the amount of detail in areas of the

image. While this method was effective for older generation models, it has shown to be less reliable

for current diffusion models. This can be observed in the noise patterns shown in Fig. 1. The image

reveals no clear differences in the noise distributions between low and high-texture areas in modern

AI-generated images, which are present in the image generated with an older model. Therefore, the

models will not be trained on this proposed method.

Fig. 1: Images and their noise patterns. From left to right: FLUX generated image, real image,
Recraft generated image

Another class of methods involves training large-scale binary classifiers that distinguish be-

tween real and fake images. While these models, particularly when fine-tuned on specific data,

have achieved high accuracy on seen data, their generalizability remains poor. Models trained on

StyleGAN images, for example, fail to detect diffusion-generated content due to the architectu-

ral differences of these models. This highlights the inherent overfitting risks and the challenge of
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creating universal detectors.

The most promising solutions proposed in recent years involve using large-scale vision trans-

formers like CLIP (Contrastive Language-Image Pre-Training), which can take advantage of exten-

sive pretraining and generalize better across tasks. These models, originally trained for text-image

alignment, have demonstrated a strong ability to adapt to downstream classification tasks, including

synthetic image detection, especially when fine-tuned appropriately. However, they still exhibit

performance degradation when the test data diverge significantly from the training distribution, as

seen in this study.

2.1.3. Characteristics of AI-Generated Images

A core component of the detection task lies in understanding what makes an AI-generated

image distinguishable. Common characteristics often include:

• Texture uniformity: Early AI-generated images had texture inconsistencies that made them

detectable, especially in hair, skin, or background regions. Current models minimize this

artifact through advanced denoising steps.

• Object boundaries: Imperfect segmentation and unnatural blending between foreground and

background remain a subtle cue in some generated images.

• Semantic inconsistencies: Generated images may feature structural anomalies (e.g., distor-

ted hands or nonsensical reflections), but recent models trained on large datasets and with

improved prompt tuning capabilities often eliminate these issues.

• Color distribution: Some generators exhibit a unique color palette or oversaturation. While

this trait can be model-specific, it provides limited generalization potential.

It is worth noting that many of these indicators are either too subtle for consistent model

training or are eliminated through post-processing or prompt refinement. This necessitates a robust

feature extraction mechanism, capable of abstracting and comparing global visual patterns across

domains.

2.1.4. Model Generalization Challenge

From an analytical standpoint, the challenge of generalizing across different generative mo-

dels shares similarities with domain generalization and transfer learning tasks. When training on
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a narrow domain (e.g., images from a single generator), models tend to overfit to superficial featu-

res specific to that domain. Without domain-invariant feature learning, the model cannot maintain

performance on out-of-distribution samples, such as those from new generators or those modified

through JPEG compression and resizing.

This work takes a domain-aware approach by using separate validation datasets, including

images generated from unseen diffusion models (Ideogram and MidJourney) and a more challen-

ging generator (Recraft), whose architecture likely deviates slightly from the training data. The

performance gap across these generators serves as an empirical indicator of generalization strength.

Moreover, increasing robustness often comes at the cost of accuracy on seen data. This study

also explores a trade-off between classification precision and generalization ability. By modifying

input resolution and applying augmentation strategies that emulate real-world post-processing, the

study aims to simulate a broader distribution of possible image scenarios.

2.2. Design of the Solution

The primary goal of this work is to investigate whether a single neural network-based model

can reliably distinguish between AI-generated and real photographic images, even when the AI-

generated content originates from previously unseen generators. As highlighted in the analytical

section, a major challenge in this task is ensuring the model’s ability to generalize. Therefore, the

design of the solution prioritizes robustness over in-distribution performance.

2.2.1. Data Collection

To enable robust training and evaluation of neural network models, a comprehensive dataset

was curated, comprising 2,060 images: 1,180 AI-generated and 880 real photographs. The dataset

was designed to balance diversity and reliability, capturing a wide range of image styles, resolutions,

and generative techniques to reflect real-world scenarios.

2.2.1.1. Real Photographs

Real images were sourced from reputable image-hosting platforms: PxHere, Pixabay, Pexels,

and Unsplash. These platforms were selected due to their stringent content moderation policies,

which minimize the risk of including AI-generated images mislabeled as real. Images were chosen

to represent diverse categories, including landscapes, portraits, urban scenes, and objects, ensuring

broad coverage of visual content. A manual verification process was employed, where each image

was inspected for authenticity markers (e.g., natural lighting, camera noise) to further reduce mi-
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slabeling risks. Approximately 220 images were collected from each platform, resulting in 880 real

photographs.

2.2.1.2. AI-Generated Images

AI-generated images were collected from platforms hosting generative model outputs: Civi-

tai7, Leonardo8, Ideogram9, MidJourney, and Recraft10. Civitai was the primary source due to its

extensive repository of images generated by various models, including customized Stable Diffusion

variants. Images from Leonardo, Ideogram, MidJourney, and Recraft were included to capture out-

puts from state-of-the-art diffusion models and other proprietary architectures. The training dataset

included 880 AI-generated images from Civitai and Leonardo, while 300 images from Ideogram,

MidJourney, and Recraft were reserved for the unseen dataset to evaluate generalization. Images

were selected to match the diversity of real photographs, covering similar categories and resolu-

tions.

2.2.1.3. Dataset Composition

The dataset was balanced to ensure equal representation of real and AI-generated images

in the training set, with 880 images per class. The unseen dataset comprised 300 AI-generated

images (100 from each of Ideogram, MidJourney, and Recraft) to test model performance on novel

generators. Table 3 summarizes the dataset composition, and examples of each image group can

be seen in Fig. 2.

Table 3: Dataset composition for training and evaluation.

Category Source Training
Set

Testing
Set

Total

Real Photographs PxHere, Pixabay, Pexels, Unsplash 720 160 880

AI-Generated (Training) Civitai, Leonardo 720 160 880

AI-Generated (Unseen) Ideogram, Midjourney, Recraft 0 300 300

Total 1,440 620 2,060

7https://civitai.com
8https://leonardo.ai
9https://ideogram.ai

10https://www.recraft.ai
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Fig. 2: First row shows fake images from the training dataset. Second row shows fake images from
unseen dataset. Third row shows real images from the dataset

2.2.1.4. Challenges and Mitigation

A key challenge was ensuring the authenticity of real images, given the proliferation of AI-

generated content on online platforms. To mitigate this, only images with verifiable metadata (e.g.,

EXIF data indicating camera models) were included when available. For AI-generated images,

diversity across generative models was prioritized to prevent overfitting to specific architectures.

2.2.2. Data Preprocessing and Augmentation

To prepare the dataset for training and enhance model robustness, images underwent prepro-

cessing and augmentation. These steps were critical to normalize inputs, preserve relevant features,

and prevent overfitting.

2.2.2.1. Preprocessing

Images were preprocessed to ensure compatibility with model input requirements while re-

taining discriminative features. The preprocessing pipeline included:

• Resizing: Images were resized to 512x512 pixels for Configurations 2 and 4, and 1024x1024

pixels for Configuration 3, using bilinear interpolation to minimize feature loss. Resizing

ensured uniformity while balancing computational efficiency and detail preservation.
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• Normalization: Pixel values were normalized to the range [0, 1] and standardized using mean

and standard deviation values from the ImageNet dataset, aligning with the pre-training data

of CLIP and DINOv2 models.

• Cropping: For Configurations 1, multiple 224x224 crops were extracted from each image

during training to increase data variability and capture local features. Crops were randomly

selected to simulate real-world variations.

2.2.2.2. Augmentation

Data augmentation was applied to enhance model generalization and robustness to real-world

image variations (e.g., compression artifacts, scaling). The following techniques were used, with

parameters randomly sampled within specified ranges:

• Scaling: Images were randomly scaled between 0.5x and 2.0x their original size to simulate

resolution variations.

• JPEG Compression: Random JPEG compression with quality levels between 75 and 95 was

applied to mimic real-world image degradation.

• Gaussian Blur: A Gaussian blur with a kernel size of 1 to 3 was applied to test model resi-

lience to noise reduction.

• Flipping and Rotation: Images were randomly flipped horizontally and rotated by a multiple

of 90 degrees.

These augmentations were chosen based on prior research [WWZ+20], which demonstra-

ted their effectiveness in improving detection model performance. However, strong Gaussian blur

(sigma > 2) was avoided, as noted in [OLL23], to prevent degrading image quality beyond realistic

scenarios.

2.2.3. Model Selection

Three neural network models were selected for this study: CLIP-ViT-B-3211, CLIP-ViT-L-14,

and DINOv212. These models were chosen for their state-of-the-art performance in image classifi-

cation and their ability to capture global image features, as demonstrated in [OLL23].
11https://github.com/openai/CLIP
12https://dinov2.metademolab.com/
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2.2.3.1. CLIP-CiT Models

CLIP (Contrastive Language-Image Pre-training) models, developed by OpenAI, leverage

Vision Transformer (ViT) architectures pre-trained on a large-scale dataset of image-text pairs.

CLIP-ViT-B-32 and CLIP-ViT-L-14 differ in size and complexity:

• CLIP-ViT-B-32: A smaller model with 32x32 patch sizes, suitable for faster training and

lower computational requirements.

• CLIP-ViT-L-14: A larger model with 14x14 patch sizes, offering higher capacity to capture

fine-grained features.

Both models were chosen due to their ability to generalize across diverse image domains, as

shown in [OLL23], and their pre-trained weights, which reduce training time. The input size was

modified to 1024x1024 in Configuration 3, with positional embedding interpolation to preserve

pre-trained knowledge.

2.2.3.2. DINOv2

DINOv2, developed by Meta AI, is a self-supervised Vision Transformer model trained on

large-scale image datasets. It was selected for its robustness to varying input resolutions and its

ability to capture global and local image features. DINOv2 was tested with a 1024x1024 input size

to assess its performance compared to CLIP models.

2.2.3.3. Rationale

Vision Transformers were prioritized over convolutional neural networks (CNNs) due to their

superior performance in capturing global image relationships, as noted in [OLL23]. Pre-trained

models were used to leverage learned features, reducing the need for extensive training data and

computational resources.

CLIP is not inherently a binary classifier; rather, it embeds visual and textual inputs into a

shared latent space for similarity comparison. However, its deep visual encoder has proven to be

highly generalizable when repurposed for image classification tasks. The design uses this property

by appending a lightweight classification head—a single linear layer with a sigmoid activation—to

the CLIP image encoder.
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2.3. Training Procedure

The training process was conducted using Google Colab with an L4 GPU, leveraging PyTorch

for model implementation and the Pillow library for image processing. The procedure involved

hyperparameter tuning, layer freezing, and iterative training to optimize model performance.

2.3.1. Hyperparameter Configuration

The AdamW optimizer was used with the following hyperparameters:

• Learning Rate: 1e-6 for CLIP models, reduced to 5e-8 when performance plateaued; 1e-5

for DINOv2, reduced to 5e-7.

• Weight Decay: Varied between 0.01 and 0.1 to control overfitting, with higher values used

in Configuration 3.

• Batch Size: 16 to 32 images, depending on the configuration, with in one configuration mul-

tiple crops per image to increase effective batch size.

• Epochs: Models were trained for 4–15 epochs, depending on the configuration, with early

stopping if validation loss did not improve for three epochs.

Loss was computed using the cross-entropy function, averaged across multiple crops per ima-

ge in Configurations 1 and 2.

2.3.2. Layer Freezing

With some configurations to preserve pre-trained weights, initial training froze all but the

final layers of CLIP models. Layers were progressively unfrozen as training progressed, with the

learning rate reduced to fine-tune deeper layers. DINOv2 used a similar strategy, with fewer layers

frozen due to its self-supervised pre-training.

2.3.3. Training Workflow

The training workflow is summarized in the following pseudocode:

2.3.4. Configuration 1

Both CLIP-B-32 and CLIP-L-14 models were trained on multiple 224x224 crops taken from

augmented images at their original resolution. This approach preserved noise patterns from cameras
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Algorithm 1 Pseudocode of model training
Input: Dataset D (real and AI-generated images), Model M (CLIP or DINOv2)
Output: Trained model M’

1. Initialize M with pre-trained weights

2. Freeze all layers except the final classification layer

3. Set hyperparameters: learning_rate = 1e-6, weight_decay = 0.01, batch_size = 32

4. For each epoch (1 to 15):

(a) Apply augmentations (scaling, JPEG compression, Gaussian blur, flipping)
(b) For each batch in D:

i. Extract multiple 224x224 crops (Configuration 1)
ii. Compute forward pass and cross-entropy loss
iii. Update model weights using AdamW optimizer

(c) Evaluate validation loss on seen and unseen datasets
(d) If validation loss plateaus:

i. Reduce learning_rate by factor of 0.5
ii. Unfreeze additional layers

5. Save model M’ with best validation accuracy

and generators, which are critical for detection. The models trained for only 4 epochs and achieved

almost identical results, with CLIP-L-14 achieving 95% accuracy on seen generators and images

generated with Ideogram and MidJourney, but achieved only 45% accuracy on Recraft images.

However, the models trained this way are not very robust and would not be applicable in many real-

life scenarios, because they incorrectly classify images that have undergone stronger scaling than

the one used during training. This was attributed to the reliance on resolution-specific features,

which varied between real and generated images.

The training curve of the CLIP-B-32 model can be seen in Fig. 3.

2.3.5. Configuration 2

To improve robustness, images were scaled down to the same size of 512x512 before applying

augmentations and then preprocessed to a size of 224x224. Both CLIP-B-32 and CLIP-L-14 models

were trained with pre-trained weights, and layer freezing was applied to preserve the pre-trained

weights, with progressive unfreezing and lowering of the learning rate as training progressed. The

models trained for around 15 epochs. The CLIP-L-14 model achieved around 93% accuracy on

seen generators, around 75% accuracy on images generated with Ideogram and Midjourney, and
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Fig. 3: The training curve of CLIP-ViT-B-32

around 35% accuracy on images generated with Recraft. The CLIP-B-32 model performed worse,

by around 4% on average, which is to be expected, as it is a smaller model. While these results

are worse than the ones achieved in the previous configuration, the models trained this way are

more robust to images of any size. However, because the images are scaled down so much, all

the noise left by the post-processing algorithms of cameras and image generation procedures is

no longer present in the images, so the model is likely not classifying the image by noise, but by

other features, such as color or texture features. Furthermore, without layer freezing, the models do

not train and achieve accuracy close to 50%, showing that pre-training, even if for a different task,

improves the models’ ability to fit to new data.

The training curves of the models can be seen in Fig. 4 and Fig. 5.

2.3.6. Configuration 3

To mitigate information loss from scaling down images to 224 by 224 resolution, the input size

was modified to 1024x1024 for CLIP models. And positional embedding interpolation was used

to maintain some of the information from pre-training. However, the models did not outperform

the results achieved in previous configurations. The models achieved only 85% accuracy on seen

generators despite 99% training accuracy, indicating overfitting. Increasing weight decay reduced

overfitting but also lowered validation accuracy, suggesting that either more data or more aggressive

augmentations were needed.

Because CLIP models are not well suited for input size modification, a DINOv2 model, whi-
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Fig. 4: The training curve of CLIP-ViT-B-32

Fig. 5: The training curve of CLIP-ViT-L-14

ch is better suited for different image sizes, was also trained and tested with an input size of 1024.

However, the model did not achieve higher than 60% accuracy and performed worse than CLIP mo-

dels with modified input sizes, likely due to its sensitivity to fine-tuning parameters not optimized

for this task.
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2.3.7. Configuration 4

To address the poor classification accuracy on images generated by Recraft, the training da-

taset was expanded to include images generated by Ideogram and MidJourney. The CLIP-L-14

model was fine-tuned with layer freezing, achieving 91% accuracy on seen generator images and

63% on images generated with Recraft.

The training curve (Fig. 6) shows improved generalization, but performance on Recraft re-

mains lower than desired, likely due to its unique architectural features. Accuracy achieved on

images generated by Recraft is represented by ”Unseen Test Accuracy” curve.

Summary of the different configurations can be seen in Table 4.

Fig. 6: The training curve of CLIP-ViT-L-14

2.3.8. Model Performance Testing

Model performance was evaluated using accuracy and loss metrics on both seen and unseen

datasets. Loss was calculated using cross-entropy loss, averaged across crops or single predictions.

The seen dataset included images from Civitai and Leonardo, while the unseen dataset comprised

images from Ideogram, MidJourney, and Recraft. Additional metrics were not calculated because

the classes are balanced.

The testing dataset was split from the training set (320 out of 1,760 images) to monitor trai-

ning progress. The unseen dataset was tested separately to assess generalization. Each image was

evaluated using the average prediction across multiple crops (Configuration 1) or a single forward

pass (Configurations 2, 3, and 4). Models were tested on 100 images per generator (Ideogram,
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Table 4: Different model training configurations

Configuration Input Size Augmentation Layer
Freezing

Epochs Models
Tested

1 Original (cropped to
224x224)

Scaling, JPEG,
blur, flip, rotate

None 5 CLIP-B-32,
CLIP-L-14

2 512x512 (preprocessed
to 224x224)

Scaling, JPEG,
blur, flip, rotate

Progressive 15 CLIP-B-32,
CLIP-L-14

3 1024x1024 Scaling, JPEG,
blur, flip, rotate

Progressive 10 CLIP-B-32,
CLIP-L-14,
DINOv2

4 512x512 (preprocessed
to 224x224)

Scaling, JPEG,
blur, flip, rotate

Progressive 15 CLIP-L-14

MidJourney, Recraft) to evaluate model generalization and analyze architectural differences of the

generators.

32



Results

The study’s findings provide valuable insights into the challenges and possibilities of cre-

ating a universal model to distinguish AI-generated images from real ones. The key results are

summarized as follows:

1. Curated a dataset comprising a total of 2,060 images: 880 real photographs, 880 AI-generated

images for training, and 300 AI-generated images from generators not used during training.

2. The CLIP-ViT-L-14 model, fine-tuned with augmentation and layer freezing, was implemen-

ted as a binary classifier, achieving 93% accuracy on seen generators (Civitai, Leonardo) and

75% on unseen diffusion-based generators (Ideogram, MidJourney) in Configuration 2.

3. The model struggled with Recraft images (35% accuracy in Configuration 2, 63% in Confi-

guration 4), indicating limitations in universal detection due to architectural differences.

4. The model trained for 15 epochs, each epoch taking approximately 10 minutes on a Google

Colab L4 GPU.

Performance Metrics

The table below summarizes performance across configurations:

Table 5: Model training results

Configuration Model Seen
Accuracy (%)

Ideogram/
MidJourney
Accuracy (%)

Recraft
Accuracy (%)

Training
Time (min)

1 CLIP-B-32 95 94 44 40

1 CLIP-L-14 95 95 45 50

2 CLIP-B-32 89 72 31 120

2 CLIP-L-14 93 75 35 150

3 CLIP-B-32 79 61 30 80

3 CLIP-L-14 85 65 30 100

3 DINOv2 60 55 25 150

4 CLIP-L-14 91 N/A 63 150

33



Analysis of Results

The high accuracy on seen generators (up to 95%) demonstrates the models’ ability to learn

distinctive features of known generative models. The 75-95% accuracy on Ideogram and Mid-

Journey images suggests partial generalization to diffusion-based unseen generators, likely due to

shared architectural similarities with training data. However, the low accuracy on Recraft images

(35–63%) highlights significant challenges in generalizing to models with unique or proprietary

architectures.

Configuration 1 achieved high accuracy but lacked robustness to scaling, making it impracti-

cal for real-world scenarios. Configuration 2 balanced performance and robustness, though scaling

eliminated noise-based features completely. Configuration 3’s overfitting indicates that larger input

sizes require more data and more computational power. Configuration 4 improved Recraft perfor-

mance by including similar unseen generators in training, but the gap persisted, suggesting Recraft’s

artifacts differ significantly from diffusion models.

Comparative Analysis

Comparing the models, CLIP-ViT-L-14 consistently outperformed CLIP-ViT-B-32 by 3–5%

across configurations, likely due to its larger capacity and finer patch size. DINOv2 performed po-

orly (maximum 60% accuracy), possibly due to its self-supervised pre-training being less aligned

with the binary classification task. Configuration 2 offered the best balance of accuracy and robust-

ness, making it the most practical for real-world deployment. The low Recraft accuracy across all

configurations highlights the need for broader training data diversity, as discussed in [WBZ+23].

These results emphasize the feasibility of high accuracy on known and similar unseen ge-

nerators (e.g., diffusion-based) but expose significant challenges in generalizing to architecturally

distinct generators like Recraft. The inclusion of additional generators in training (Configuration 4)

improved performance, suggesting that dataset diversity is critical for universal detection models.
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Discussion

The findings of this study provide critical insights into the challenges of developing a universal

neural network model for distinguishing AI-generated images from real photographs. The results

highlight both the potential and limitations of Vision Transformer (ViT)-based models, particularly

in generalizing to unseen generative architectures. This section interprets the findings, discusses

their implications, addresses limitations, and proposes directions for future research.

Interpretation of Findings

The CLIP-ViT-L-14 model, particularly in Configuration 2, achieved high accuracy (93%)

on images from known generators (Civitai, Leonardo) and moderate accuracy (75%) on unseen

diffusion-based generators (Ideogram, MidJourney). This performance aligns with prior research

[WBZ+23; XWM+23], which noted that diffusion models produce similar artifacts, enabling detec-

tors trained on one diffusion model to generalize to others. The shared architectural characteristics

of diffusion models, such as iterative noise reduction, likely result in consistent frequency domain

patterns that ViT models can exploit.

However, the model’s low accuracy (35% in Configuration 2, 63% in Configuration 4) on

Recraft-generated images underscores a significant challenge: generalizing to generators with dis-

tinct architectures. Recraft’s proprietary model, which may not rely on diffusion techniques, pro-

duces images with fewer detectable artifacts, as evidenced by the noise pattern analysis in Figure

2. This finding supports [ZXL+24], which observed that newer generators minimize texture diffe-

rences between rich and poor regions, rendering traditional detection methods less effective. The

improved Recraft accuracy in Configuration 4, after including Ideogram and MidJourney in trai-

ning, suggests that dataset diversity can partially mitigate this issue, but not fully resolve it. 7 The

superior performance of CLIP-ViT-L-14 over CLIP-ViT-B-32 and DINOv2 can be attributed to its

larger capacity and finer patch size, which enable better capture of global and local image feat-

ures. DINOv2’s poor performance (60% maximum accuracy) may stem from its self-supervised

pre-training, which prioritizes general feature extraction over task-specific discrimination. This

highlights the importance of aligning pre-training tasks with the target application, as noted in

[OLL23].

Limitations

Several limitations impact the study’s findings and their generalizability:
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• Dataset Diversity: The dataset, while diverse, was limited to 2,060 images. This constrai-

ned the model’s exposure to the full spectrum of generative architectures, particularly newer

models like Recraft. Larger datasets should be considered to improve generalization.

• Computational Constraints: Training on Google Colab with an L4 GPU limited the model

complexity and batch size. More powerful hardware could enable exploration of deeper ar-

chitectures or larger input sizes without overfitting.

• Rapid Evolution of Generative Models: The fast pace of advancements in generative tech-

nologies, as discussed in [LHB+23], means that detection models risk becoming obsolete.

Recraft’s superior image quality exemplifies this challenge.

• Feature Identification: The study could not identify universal features distinguishing all AI-

generated images, as hypothesized. The absence of consistent artifacts across generators, as

noted in [OLL23], complicates universal detection.

Implications

The study’s findings have significant implications for combating misinformation and ensu-

ring digital authenticity. High accuracy on known and diffusion-based generators suggests that

ViT-based models can be deployed in platforms like social media to flag AI-generated content, re-

ducing the spread of deepfakes and manipulated images. However, the poor performance on Recraft

indicates that current models are not yet reliable for universal deployment, particularly against emer-

ging generators. Organizations implementing detection systems must continuously update training

datasets to include new models, as demonstrated by Configuration 4’s improvement.

The research contributes to the growing body of knowledge on AI-generated image detection

by validating the efficacy of ViT architectures, consistent with [OLL23]. It also highlights the

limitations of frequency domain-based detection, as newer generators reduce detectable artifacts.
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Conclusions

This study investigated the feasibility of developing a universal neural network model to dis-

tinguish AI-generated images from real photographs, addressing a critical challenge in maintaining

digital authenticity. The findings provide valuable insights into the potential and limitations of

universal detection models, with implications for both practical applications and theoretical advan-

cements. The key conclusions are as follows:

1. It is harder to detect images generated with Recraft because they have distinct features that

greatly differ from images generated by other generative models.

2. There are no common features that are consistent throughout images generated by different

generators.

3. It is not possible to create a universal classification model because features produced by

different generative models are unique in how they differ from photographs.

While a truly universal model remains elusive, the study demonstrates that high accuracy

is achievable for known and similar generators when trained on diverse datasets. This has prac-

tical implications for deploying detection systems in digital platforms to combat misinformation,

provided training data is continuously updated to reflect new generative technologies.

Recommendations for Future Research

To advance the development of universal detection models, researchers should focus on the

following:

• Larger and More Diverse Datasets: Incorporate datasets which include images from a broader

range of generators. This would enhance model exposure to diverse artifacts and improve

generalization.

• Hybrid Architectures: Explore hybrid CNN-ViT models or ensemble approaches to com-

bine local feature extraction (CNNs) with global relationship modeling (ViTs), potentially

improving detection of subtle artifacts.

• Unsupervised Learning: Adopt unsupervised techniques, as proposed in [QSX+24;

ZWH+22], to handle noisy labels and reduce dependency on curated datasets. This could

improve robustness to mislabeled or novel data.
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• Real-Time Detection: Develop lightweight models optimized for real-time deployment on

resource-constrained devices, ensuring practical applicability in online platforms.

• Continuous Learning Systems: Implement continual learning frameworks to adapt models

to new generative models without retraining from scratch, addressing the rapid evolution of

generative technologies.

These directions aim to bridge the gap between current detection capabilities and the evolving

landscape of generative models, fostering more robust and universal detection systems.

In conclusion, while universal detection of AI-generated images is challenging due to the

rapid evolution and diversity of generative models, this study demonstrates that robust detection

is feasible for known and similar architectures with appropriate dataset design and model training.

By addressing the identified limitations and pursuing the proposed research directions, future work

can move closer to reliable solutions for maintaining authenticity in digital environments.

38



References

[AGV18] E. Athanasiadou, Z. Geradts and E. Van Eijk. Camera Recognition with Deep Le-

arning. Forensic Sciences Research, 3(3):210–218, 2018-10. ISSN: 2096-1790. DOI:

10.1080/20961790.2018.1485198. eprint: https://academic.oup.com/

fsr/article-pdf/3/3/210/46756930/fsr\_3\_3\_210.pdf. URL: https:

//doi.org/10.1080/20961790.2018.1485198.

[BLY+23] Xiuli Bi, Bo Liu, Fan Yang, Bin Xiao, Weisheng Li, Gao Huang, and Pamela C.

Cosman. Detecting generated images by real images only. https://arxiv.org/

abs/2311.00962, 2023.

[CCZ+23] R. Corvi, D. Cozzolino, G. Zingarini, G. Poggi, K. Nagano and L. Verdoliva. On

The Detection of Synthetic Images Generated by Diffusion Models. ICASSP 2023

- 2023 IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), p. 1–5, 2023. DOI: 10.1109/ICASSP49357.2023.10095167.

[DDS+09] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li and L. Fei-Fei. ImageNet: A large-scale

hierarchical image database. 2009 IEEE Conference on Computer Vision and Pattern

Recognition, p. 248–255, 2009. DOI: 10.1109/CVPR.2009.5206848.

[FES+20] J. Frank, T. Eisenhofer, L. Schönherr, A. Fischer, D. Kolossa, and T. Holz. Leveraging

frequency analysis for deep fake image recognition. https://arxiv.org/abs/

2003.08685, 2020.

[HCM+24] J. Huang, C. Chen, A. Mishra, B. C. Kwon, Z. Liu, and C. Bryan. Asap: inter-

pretable analysis and summarization of ai-generated image patterns at scale. https:

//arxiv.org/abs/2404.02990, 2024.

[HFC+24] Y. Hong, J. Feng, H. Chen, J. Lan, H. Zhu, W. Wang, and J. Zhang. Wildfake: a

large-scale challenging dataset for ai-generated images detection. https://arxiv.

org/abs/2402.11843v1, 2024.

[HSW+21] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen.

Lora: low-rank adaptation of large language models. https://arxiv.org/abs/

2106.09685, 2021.

[YDF19] N. Yu, L. Davis and M. Fritz. Attributing Fake Images to GANs: Learning and Ana-

lyzing GAN Fingerprints. 2019 IEEE/CVF International Conference on Computer

Vision (ICCV), p. 7555–7565, 2019. DOI: 10.1109/ICCV.2019.00765.

39



[YHC+22] T. Yang, Z. Huang, J. Cao, L. Li, and X. Li. Deepfake network architecture attribu-

tion. https://arxiv.org/abs/2202.13843, 2022.

[YSZ+16] F. Yu, A. Seff, Y. Zhang, S. Song, T. Funkhouser, and J. Xiao. Lsun: construction

of a large-scale image dataset using deep learning with humans in the loop. https:

//arxiv.org/abs/1506.03365, 2016.

[JJK+22] Y. Ju, S. Jia, L. Ke, H. Xue, K. Nagano and S. Lyu. Fusing Global and Local Features

for Generalized AI-Synthesized Image Detection. 2022 IEEE International Confe-

rence on Image Processing (ICIP), p. 3465–3469, 2022. DOI: 10.1109/ICIP46576.

2022.9897820.

[KFK+18] A. Kuzin, A. Fattakhov, I. Kibardin, V. Iglovikov, and R. Dautov. Camera model

identification using convolutional neural networks. https://arxiv.org/abs/

1810.02981, 2018.

[LHB+23] Z. Lu, D. Huang, L. Bai, J. Qu, C. Wu, X. Liu, and W. Ouyang. Seeing is not al-

ways believing: benchmarking human and model perception of ai-generated images.

https://arxiv.org/abs/2304.13023, 2023.

[LLW+15] Z. Liu, P. Luo, X. Wang, and X. Tang. Deep learning face attributes in the wild.

https://arxiv.org/abs/1411.7766, 2015.

[LMB+15] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, et al. Microsoft coco: common objects

in context. https://arxiv.org/abs/1405.0312, 2015.

[LQT20] Zhengzhe Liu, Xiaojuan Qi and Philip H.S. Torr. Global Texture Enhancement for

Fake Face Detection in the Wild. 2020 IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR), p. 8057–8066, 2020. DOI: 10.1109/CVPR42600.

2020.00808.

[MGP24] A.G. Moskowitz, T. Gaona, and J. Peterson. Detecting ai-generated images via clip.

https://arxiv.org/abs/2404.08788, 2024.

[MTB22] J. Materzynska, A. Torralba, and D. Bau. Disentangling visual and written concepts

in clip. https://arxiv.org/abs/2206.07835, 2022.

[OLL23] U. Ojha, Y. Li and Y. J. Lee. Towards Universal Fake Image Detectors that Generalize

Across Generative Models. 2023 IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), p. 24480–24489, 2023. DOI: 10.1109/CVPR52729.

2023.02345.

40



[Pen20] C. J. D. Penedo. Predict the model of a camera. https://arxiv.org/abs/2004.

03336, 2020.

[QSX+24] T. Qiao, H. Shao, S. Xie and R. Shi. Unsupervised Generative Fake Image Detector.

IEEE Transactions on Circuits and Systems for Video Technology:1–1, 2024. DOI:

10.1109/TCSVT.2024.3383833.

[RCV+19] A. Rössler, D. Cozzolino, L. Verdoliva, C. Riess, J. Thies and M. Niessner. FaceFo-

rensics++: Learning to Detect Manipulated Facial Images. 2019 IEEE/CVF Interna-

tional Conference on Computer Vision (ICCV), p. 1–11, 2019. DOI: 10.1109/ICCV.

2019.00009.

[RLJ+22] N. Ruiz, Y. Li, V. Jampani, Y. Pritch, M. Rubinstein, and K. Aberman. Dreambooth:

fine tuning text-to-image diffusion models for subject-driven generation. https :

//arxiv.org/abs/2208.12242, 2022.

[RPS+23] M. A. Rahman, B. Paul, N. H. Sarker, Z. I. A. Hakim, and S. A. Fattah. Artifact:

a large-scale dataset with artificial and factual images for generalizable and robust

synthetic image detection. https://arxiv.org/abs/2302.11970, 2023.

[SME20] J. Song, C. Meng, and S. Ermon. Denoising diffusion implicit models. https://

arxiv.org/abs/2010.02502, 2020.

[T K19] T. Aila T. Karras S. Laine. A style-based generator architecture for generative adver-

sarial networks. https://arxiv.org/abs/1812.04948, 2019.

[TZW+23] Chuangchuang Tan, Yao Zhao, Shikui Wei, Guanghua Gu and Yunchao Wei. Lear-

ning on Gradients: Generalized Artifacts Representation for GAN-Generated Images

Detection. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recogni-

tion (CVPR), p. 12105–12114, 2023. DOI: 10.1109/CVPR52729.2023.01165.

[WBZ+23] Z. Wang, J. Bao, W. Zhou, W. Wang, H. Hu, H. Chen and H. Li. DIRE for Diffusion-

Generated Image Detection. 2023 IEEE/CVF International Conference on Computer

Vision (ICCV), p. 22388–22398, 2023. DOI: 10.1109/ICCV51070.2023.02051.

[WMM+22] Z. J. Wang, E. Montoya, D. Munechika, H. Yang, B. Hoover, and D. H. Chau. Dif-

fusiondb: a large-scale prompt gallery dataset for text-to-image generative models.

https://arxiv.org/abs/2210.14896, 2022.

41



[WWZ+20] S.-Y. Wang, O. Wang, R. Zhang, A. Owens and A. A. Efros. CNN-Generated Images

Are Surprisingly Easy to Spot… for Now. 2020 IEEE/CVF Conference on Compu-

ter Vision and Pattern Recognition (CVPR), p. 8692–8701, 2020. DOI: 10.1109/

CVPR42600.2020.00872.

[XWM+23] Q. Xu, H. Wang, L. Meng, Z. Mi, J. Yuan and H. Yan. Exposing fake images ge-

nerated by text-to-image diffusion models. Pattern Recognition Letters, 176:76–82,

2023. ISSN: 0167-8655. DOI: https://doi.org/10.1016/j.patrec.2023.

10.021. URL: https://www.sciencedirect.com/science/article/pii/

S0167865523002933.

[ZCY+23] M. Zhu, H. Chen, Q. Yan, X. Huang, et al. Genimage: a million-scale benchmark for

detecting ai-generated image. https://arxiv.org/abs/2306.08571, 2023.

[ZHL+23] Y. Zhou, P. He, W. Li, Y. Cao and X. Jiang. Generalized Fake Image Detection

Method Based on Gated Hierarchical Multi-Task Learning. IEEE Signal Processing

Letters, 30:1767–1771, 2023. DOI: 10.1109/LSP.2023.3336570.

[ZKC19] X. Zhang, S. Karaman and S.-F. Chang. Detecting and Simulating Artifacts in GAN

Fake Images. 2019 IEEE International Workshop on Information Forensics and Se-

curity (WIFS), p. 1–6, 2019. DOI: 10.1109/WIFS47025.2019.9035107.

[ZWC+22] Y. Zhu, X. Wang, H.-S. Chen, R. Salloum and C.-C. Jay Kuo. A-PixelHop: A Green,

Robust and Explainable Fake-Image Detector. ICASSP 2022 - 2022 IEEE Interna-

tional Conference on Acoustics, Speech and Signal Processing (ICASSP), p. 8947–

8951, 2022. DOI: 10.1109/ICASSP43922.2022.9747901.

[ZWH+22] M. Zhang, H. Wang, P. He, A. Malik and H. Liu. Exposing unseen GAN-

generated image using unsupervised domain adaptation. Knowledge-Based Systems,

257:109905, 2022. ISSN: 0950-7051. DOI: https : / / doi . org / 10 . 1016 / j .

knosys.2022.109905. URL: https://www.sciencedirect.com/science/

article/pii/S0950705122009984.

[ZXL+24] N. Zhong, Y. Xu, S. Li, Z. Qian, and X. Zhang. Patchcraft: exploring texture patch for

efficient ai-generated image detection. https://arxiv.org/abs/2311.12397v3,

2024.

42


