Faculty of
Mathematics
and Informatics

VILNIUS UNIVERSITY
FACULTY OF MATHEMATICS AND INFORMATICS
SOFTWARE ENGINEERING

Metamorphic Relation Based Test Case Generation
Method

Metamorfiniais rysiais grjstas testy generavimo metodas

Master Thesis

Author: Lukas Michnevic¢
Supervisor: asist. dr. Tomas Plankis

Reviewer: asist. dr. Vytautas Valaitis

Vilnius — 2025

Contents

INTRODUCTION L.ttt e 5
L. PRELIMIN A RIE S o e 7
1.1. Test Oracle Problem 7
1.2. Metamorphic Testingiii i e 7
1.3. Metamorphic Relations........... ..o 7
2. LITERATURE REVIEW e 10
2.1. Applications of Metamorphic Testing............ooiouiiiiiiiiiiii i, 10
2.2. Existing Metamorphic Testing Methodologies ..., 11
2.2.1. Metamorphic Relation Detection Using Machine Learning 11
2.2.2. Test Case Based Metamorphic Relations................oooiiiiiiiiiiiii ... 15
2.2.3. Specification Based Metamorphic Relations ..., 17
2.2.4. search-based Software Engineering (SBSE) Solutions for Metamorphic Rela-

tion Detection. 18
2.3. Summary of methodso 22

3. FEASIBILITY STUDY FOR METAMORPHIC RELATION DETECTION TECH-
NIQUE S e 23
4. SUMMARY OF LITERATURE REVIEW e 25
5. PROPOSED MR GENERATION METHODccoiiiiiiiiiii i 27
5.1 AP deSIgn oot 29
5.1.1. Usage of Aya APT from CH# ... oo 29
5.1.2. Final structure of the provided API, 30
5.2. Metamorphic relations as a data Structurec.ooooiiiiiiiiiniiiniinniinean.. 32
5.2.1. Runtime function signature inference................cooiiiiiiiiiiiiiiiiina.. 33
5.2.2. Variable state capture and result equivalency checks, 34
6. UPDATED MR SEARCH ALGORITHM ... e 36
6.1. Basic MR generationouiiuiiinii it 36
7. MR GENERATION AND TESTS ... e 38
7.1. Metamorphic relation filtering and validation................... ... 38
7.2. Crash detectiono 38
7.3. Generating MRs for mathematical functions ..., 39
7.3.1. MR generation for reversible computations..................cooiiiiiiii. 40
7.4. Generating MRs for data Structures.............oviiiiinniiiin i, 41
7.5. Metamorphic testing of Post-Conditionsooviiiiiiiiiiiiniiiiiin ... 41
8. RESULT S 43
8.1. Effectiveness of MR Generatorc..oiuuiiiuiiiiiiiiniiie i, 43
8.2. Effect of Transform Chain Lengthso 43
8.3. Comparison With Analogous Solutionsooiiiiiiiiiiiiiiii ... 44
CON CLUSTON S e e e e e 46
REEFE R EN CE S L e e e e e et 47
APPENDICE S 52

Santrauka

Metamorfinio testavimo metodas leidzia testuoti programinj koda negeneruojant testy orakuly, t.y.
tikétiny testy rezultaty, su kuriais testo metu lyginami programos grazinti rezultatai. Praktikoje,
metamorfiniai rysiai — tai silpna programos specifikacija, kuri koduoja tam tikrus veiksmus, kurie
turi jvykti, jei tenkinamos biitinos salygos. Dazniausiai, MR ieskomi patyrusiy testavimo inzinieriy,
kurie iSmano dalykine sritj bei turi gilesniy ziniy apie testuojama projekta. Automatizuotos
metamorfiniy rysiy (MR) paieskos procedtiros yra sunkiai universalizuojamos dél jvairiy programos

igyvendinimo budy.

Siame straipsnyje sitiloma Aya — C++ biblioteka, galinti aptikti MR bet kurioje funkcijoje,
tikrindama ja pagal vartotojo pateiktus jvesties duomenis ir jvesties transformacijas. Jrodyta, kad
Aya sugeba aptikti tuos pacius metamorfinius rysius, kurie buvo rasti analogiskuose paieskos
metodais pagristuose tyrimuose, todél ji tinkama tolesniems eksperimentams ir tobulinimams,
pavyzdziui, testuojant apgreziamojo skai¢iavimo mechanizmus, tokius kaip kodavimo/dekodavimo
ciklai ir kai kurie matricy skaiCiavimai. Be to, Aya gali aptikti metamorfinius rysius programos
vykdymo metu, uzfiksuodama tiesioginius kiekvieno sukurto MR rezultatus, efektyviai veikdama
kaip savarankiskas testas. Norint universaliai uzfiksuoti MR bet kurioms funkcijoms, buvo
panaudotos metaprogramavimo technikos, tokios kaip C++ Sablonai, leidziantys islaikyti MR
generavimo paprastuma vartotojui, tuo paciu suteikiant galimybe generuoti metamorfinius rysius

zymiai platesniam naudojimo atvejy spektrui.

Irodyta, kad ilgos transformacijy grandinés, taikomos pradiniams jvesties ir iSvesties duomenims,
néra naudingesnés uz trumpesnes grandines — testuotoje programinéje jrangoje vidutinis mutacijos
balas tiek trumpoms (1-2 transformacijos grandinéje), tiek ilgoms (3 ir daugiau) buvo apytiksliai
vienodas: 50-70% sudétingesnéms funkcijoms, ir beveik 100 % paprastesnéms matematinéms

funkcijoms.

Raktiniai zodziai Testy generavimas, Metamorfinis rysys, Automatizuotas testavimas

Abstract

Metamorphic testing allows testing software that is typically hard to test extensively since it does not
rely on test oracles to verify the correctness of the Software Under Test. In practice, metamorphic
relations—the weak specification of a program that encodes certain actions that must occur if
required conditions are met — are detected mostly manually by experienced software testing
practitioners. Automated metamorphic relation (MR) search procedures are hard to universalize

due to the various ways a program can be implemented.

This paper proposes Aya — a C++ library capable of detecting MRs in an arbitrary function
by checking it against user-provided inputs and input transformations. It was shown that Aya
can detect the same metamorphic relations as they were discovered in analogous Search-Based
methods, positioning it for further experimentation and improvements, such as testing reversible
computation mechanisms like encoding/decoding cycles and matrix calculations. Moreover, Aya
can detect metamorphic relations during program runtime, capturing immediate results of each
MR produced, effectively functioning as a standalone test. To help universally capture MRs for
arbitrary functions, meta-programming techniques like C++ templates were deployed, allowing the
user to retain the simplicity of MR generation while providing an option to generate metamorphic

relations for a significantly larger number of use-cases.

It was shown that large chains of transformers applied to initial inputs and outputs are not more
helpful than shorter chains — in tested software, average mutation score for both short (1-2
transforms in a chain) to long (3+) was roughly the same: 50-70% for more complex functions,

and nearly 100% for simpler mathematical functions.

Keywords Test Case Generation, Metamorphic Relation, Automated Testing

Introduction

The most common approach in automated testing is running suites of unit, integration, system,
and other tests against the selected revision in a codebase. It could be a continuous integration
server running these suites or a developer running those tests on their device. However, with the
growing complexity of software, typical unit test coverage may not be enough, especially when
the same tests pass consistently on different change sets. Although existing test coverage might
constantly pass with new code added, it still serves as good security against regressions. But how
can we ensure our software works correctly in other unknown cases or on different platforms
we target? It’s impossible to cover every possible edge case exhaustively — this immediately
multiplies the number of tests we have to execute by the number of platforms, and sometimes
even more, especially in mobile platforms, where different phones from different vendors may
behave differently. This produces a test oracle problem, which is costly to test every case, and a

reliable test set problem, where existing test cases may not cover edge cases on specific platforms.

To alleviate these problems, a metamorphic testing (MT) approach was proposed. This approach
does not need a test oracle because it can produce meaningful relations between program inputs
and outputs to understand if a program contains defects. For example, such relations would be the
change in performance, the amount of data collected if a test is querying for it, or some different,
area-specific patterns in produced data that would indicate the presence of a metamorphic relation
(MR). A metamorphic relation can be used as a test oracle for test cases. Still, instead of capturing
a selection of hand-picked test cases, it captures a broader range of inputs and outputs that match
the given MR [CKL"18]. The benefit of metamorphic testing was proven when it found bugs in
GCC and LLVM compilers — systems that have been used and tested for decades [CKL"18].

Majority of existing examples of automated MR generation tend to search for metamorphic rela-
tions in a predictable context — either by looking for known patterns [HK18; KBB15], operate on
polynomial functions to produce MRs in mathematical software [ZCH"14], or apply some basic
operations on a small subset of data types to search [XTZ"24]. In practice, metamorphic relation
detection is mostly a manual exercise, during which engineers with domain expertise usually
determine metamorphic relations based on their knowledge and experience in a project. Such
metamorphic testing strategy adds bias to the testing, where some MRs are ignored [CKL*18],
additionally, such testing technique makes a pretty steep entry point, which may scare off prac-
titioners who might not be willing to take a risk and check if MT can help in their projects, as

immediate benefits are not necessarily obvious without experimentation.

Versatile automatic detection of MRs is one of the most crucial challenges in the field. Existing
works, for the most part, are proof of concepts of ideas, or are pretty significantly tied to the
programming language and domain — in majority of examples, the primary language is Java
[AT]24; HK18; XTZ"24], and the methods adopted are relying on code analysis to decide the
presence of MRs, thus becoming more reliant on the infrastructure of the system — compilers,
optimizers, code inspection tools. Moreover, there is little investigation on MR detection during

program runtime, restricting information to mostly static analysis. The primary purpose of this

5

work will be to propose a tool capable of searching for MRs within a specific user-defined scope in
a way that is system-agnostic and is capable of detecting MRs during runtime — meaning that,
for example, a project written in C# could use the proposed solution just like the client project
written in C++, and MRs for it are generated based on immediate results of a program under
test. In such a project, the client will be expected to provide a tested function, transformations
to work with when looking for MRs, and sample inputs to validate such MRs. It is believed that
creating such a tool will provide insight into the viability of a universal MR generator tool. In
case of success, there will be an example of reduction of initial complexity in the application of
metamorphic testing, inviting more engineers to try such methodology. Moreover, by testing the
said tool, new heuristics and MR patterns could be discovered, therefore broadening the field of

research related to metamorphic testing.

Main goal

To propose a method of generating metamorphic relations within a user-defined scope during

program run time.

Tasks

» Task 1: Perform an existing literature analysis to better understand state-of-the-art knowledge
in metamorphic testing.

» Task 2: Find a set of projects that could be further analyzed and tested. Define the criteria of
such a project.

* Task 3: Implement a tool to search for program-specific MRs based on user-defined transforma-
tions.

» Task 4: Generate new Test Cases based on discovered metamorphic relations for test projects.

1. Preliminaries

This section presents the theoretical basis for the upcoming work. It lists important concepts

related to software testing and metamorphic testing.

1.1. Test Oracle Problem

Test Oracle is a mechanism that allows the verification of the result of a test program by a specific
rule. Typically, test oracles cannot be readily determined from the test code because the expected
value might only be known to the programmer who wrote the test. At the simplest example, an

assertion in a unit test for function Sum(z,y) may look like this:
AssertEquals(Sum(2, 2), 4);

In this case, a new oracle must be constructed if the function inputs change. Ideally, a test oracle
would be derived from software specifications. Still, usually, the best oracle accessible is the
human engineer who knows the expected behavior of a program under test [JCH"16]. Another
aspect of a test oracle problem is the complexity of constructing an effective test oracle for a system
that performs unknown actions on a given input, like machine learning models [Nak17]. Defining

a good test oracle might also be too expensive when testing cyber-physical systems [ATA21].

1.2. Metamorphic Testing

Metamorphic Testing relies on creating follow-up test cases from existing test cases based on a
certain rule, also known as a metamorphic relation. Instead of comparing test case output to
some expected correct result, as would happen in the case of unit tests, Metamorphic Testing
checks the adherence to the MR by the input-output pairs generated from multiple executions
of the software-under-test (SUT). This allows for a constant test oracle that will apply to new
test cases generated using the MR, thus alleviating the test oracle problem. [CKL"18]. Another
benefit of MT is the possibility of automatically generating huge, easily verifiable test sets, thus
addressing the reliable test set problem, which states that a reliable test must always reveal a defect
in a program. Still, assuming that a potential set of program inputs can be infinite, such a property

becomes infeasible [How76].

1.3. Metamorphic Relations

The formal definition of a metamorphic relation was defined as follows: For a given function f, a
metamorphic relation is constructed over a sequence of inputs 1, ..., Z,, and their corresponding
outputs f(x1), ..., f(x,), where n >= 2. New inputs in the sequence are called follow-up inputs
and are determined from the source inputs by applying certain transformations or generator
functions [SDT*17].

It was discovered that in practical cases, the MR can be interpreted as a logical implication that

shows that a sequence of source inputs, related outputs, and follow-up inputs implies a general

relation over all inputs and outputs [SDT*17]:

< xR > <z > < flxg) >
k=1.m’ j=(m+1).n" k=1.m

<axp > < f(zy) >

Ri y .
(t1=1.n" 1=1..n

) = Ro() (M

This definition typically gets reduced to a much simpler form:

Rz’(]h-'-aln) - Ro(f(fl)vaf(ln)) (2)

R; is an input relation that defines a transformation between source and follow-up inputs, and R,
is an output relation describing how source and follow-up outputs are transformed. However, in
most literature, a metamorphic relation is usually considered between the source and follow-up
values of a single input. This means that each separate input can be transformed differently,
allowing for more verbose and broader MRs. One of the examples in the literature has proposed
such a notation for one of the MRs [AT]*24]:

pow (X, Ey)

(Xy=X)&(Ef=E;—1)) = (pow(Xy, Ef) = 5

) (3)
MR 3 shows that the follow-up value of X is left unchanged, and £ gets modified. This conjunction
implies that the equality defined in the consequent will be true. Since the function being tested
here is the power function, it is easy to make a conclusion that this MR exhibits the following
equation [AT]*24]:

XP=XP1xX (4)

Metamorphic relations are the necessary properties of a program; that is, they must be logically
deduced from the evaluated algorithm. This means that by analyzing the code of an algorithm, an
experienced tester may be able to derive such MRs by parsing the code logic, or, in the case of
mathematical or scientific software, MRs are usually directly related or identical to formulas and
rules. For example, if we aim to test a library that computes trigonometry functions like sin(x),

we can refer to this formula to use it as a test [ZCH" 14].

sin(m + x) = —sin(x) (5)

A less formal but more readable approach to defining MRs was proposed by Segura et al. [SDT"17].
Inspired by the Goals-Question-Metric template used for software measurement, a template for
metamorphic relation description was proposed. GQM addresses fields like application domain,
definition context, constraints, MR name, and relations on inputs and outputs. Here’s an example

of such an MR definition for the distance between nodes in an undirected graph:

In the domain of Graph Theory
Where Graph G is weighted and undirected
The following metamorphic relation(s) should hold
MRy -
if (z,y) — nodes in graph G
then (min(dist(z,y,G)) == min(dist(y,z,G)))

The following pattern can be used as a valid formalization of MRs as requirements, therefore being
a source of knowledge when creating tests. Using metamorphic relations as the specifications or as

a tool for testing existing software documentation is a promising field [CT21].

Program invariants and metamorphic relations. While metamorphic relations may be
considered program invariants, there is an essential difference between the two terms: metamorphic
relations are applicable only in the context of program inputs and outputs that match specific
relation descriptions. In contrast, a program invariant is considered to be a specific constraint that

must be respected for all inputs [LSN18].

2. Literature Review

For the literature review, the primary sources were Google Scholar and ACM Library. Primarily,
the search was done for publications that are at most five years old; however, in some cases, valuable
insights were found in older papers, usually referenced by the newer work. Searching for specific
terms like 'LLVM’ in combination with metamorphic testing-related terms, for example, yielded
very few relevant results. Therefore, it was decided to conduct a broader search on metamorphic
testing applications across various domains. The main goal of the literature search is to uncover
existing methods of automatic metamorphic relation detection. Typically, authors of such works
provided the evaluation procedures of their MT methodologies and their insights on the possibility
of automation and the suitability of their methods for specific software categories. This knowledge

will be beneficial for further work aiming to create or improve an existing method of MR detection.

The following Research Questions were raised to ensure that the literature researched will be

relevant to the defined tasks:

RQ1: What are the existing methods in metamorphic testing?

RQ2: What degree of automation can be achieved when searching for metamorphic relations?

RQ3: How is the efficiency of metamorphic relations tested?

RQ4: Software projects of which type benefited the most from metamorphic testing?

2.1. Applications of Metamorphic Testing

Since the inception of metamorphic testing as a concept over 20 years ago, much research has been
done in this area, producing valuable results in computer graphics, compiler, and machine learning
testing [CT21]. In most cases, metamorphic testing is evaluated in terms of scientific or purely
mathematical software [AEC22]. This coincides with the main applications of metamorphic testing,
where systems rely on correct and efficient mathematical libraries, which still exhibit critical bugs
[DGR17]. One of the most notable applications of metamorphic testing is GraphicsFuzz — a
tool for testing Android GPU drivers by applying fuzzing, random noise to existing shaders as a
form of unused or redundant code, and checking if they compile and don’t produce unexpected
artifacts. This method has been adopted by Google in 2018 [Don19]. Like in a case with testing
of GCC [LAS14|, GraphicsFuzz tested how shaders are compiled and executed, meaning that
the input and its follow-up was the shader code itself, and the relation between outputs was the
correctness of the program compiled. In such cases, simple code mutation is enough to produce
new follow-up inputs. Another example of MT applications in the industry is the Metamorphic
Interaction Automation (MIA), developed at Facebook [FB], where MT was used to test a system
that simulates Facebook’s platforms within an enclosed network — a highly non-deterministic
system, with a considerable degree of test flakiness — unstable test which, over series of runs on
the same code changeset, exhibits both successful and failing test runs. The metamorphic testing
approach helped engineers at Facebook uncover certain relations between simulated users in offline

simulations, where flakiness was absent, and online simulations that suffered from instabilities.

10

Although the usage of metamorphic testing was not automated, and MRs were defined manually

[FB], it’s still a curious case of the application of MR in the industry.

Metamorphic Testing relation with fuzzy testing. The term “fuzzy testing” is often confused
with Metamorphic Testing. However, these testing approaches are different. Fuzzy tests involve
making random changes to static data, such as program code or an image, and then checking
how the program reacts to the increased chaos in the input. The core aspect of fuzzy tests is
that chaos gets introduced without any patterns or logic in such transformations, thus preventing
the making of assumptions about potential changes in the output. The practical use of fuzzy
testing involves checking for typically binary conditions: does a program compile? Or does it
crash when compiled and executed? Does the image get correctly classified with the added noise?
Metamorphic relations are capable of answering more in-depth questions about the program state,

though they require more effort to be produced.

2.2. Existing Metamorphic Testing Methodologies

The effectiveness of metamorphic testing relies heavily on the quality of metamorphic relations
detected. Therefore, the main focus of the research is usually on the detection, definition, and
location of metamorphic relations. Improvements in the detection or generation of MRs are
crucial because this component in a metamorphic testing pipeline cannot be fully automated
using existing techniques. Automating this process is vital for several reasons: First, in most
practical cases, metamorphic relations are detected manually by experienced engineers who know
the domain under test [CKL"18]. This increases the cost of such testing methods significantly.
Secondly, and most importantly, it creates a more significant possibility of human-error-related

problems, where sure MRs might be ignored due to subjective reasons [XTZ*24].

The following is an analysis of existing methods for detecting or generating metamorphic relations.
Even completely different approaches are expected to have some common fundamental obstacles
that need to be resolved, such as testing data preparation and final method efficiency evaluation.

Hopefully, the analysis of several different approaches will help answer these questions.

2.2.1. Metamorphic Relation Detection Using Machine Learning

The most straightforward approach — defining several patterns resembling a metamorphic relation
and using them in the machine learning-based classifier, was proposed by Kanewala et al. This
approach revolves around producing a Control Flow Graph (CFG) from the given source code
and looking for metamorphic relation patterns in the nodes of the directed graph [KB13]. The
patterns used for this method were initially defined by Murphy et al. [MKH*08], and mostly are

valuable for mathematical functions or functions that handle data structures like arrays (Table 1).

CFG was created with nodes that contained only atomic operations. Such nodes have simple
semantics, allowing them to label them as small operations like assignment, addition, goto. These

labels were later used for further supervised learning of an MR prediction model. Sequences of such

11

Metamorphic Relation H Transformation of the Input

Additive Add or subtract a constant
Multiplicative Multiply by a constant
Permutative Randomly permute the elements
Invertive Take the inverse of each element
Inclusive Add a new element

Exclusive Remove an element
Compositional Combining two or more inputs

Table 1. Base metamorphic relations

labels may suggest the presence of a metamorphic relation, which then gets used to produce new
test cases. The method’s validity was tested on 48 functions, ranging from purely mathematical to
operations with arrays. The solution’s effectiveness was evaluated using mutation analysis, and the
faults were only injected into the tested method. Initial test cases for each function under test were
created randomly, and then follow-up test cases were produced based on detected metamorphic
relations. At its best, the proposed method was able to capture 66% of the mutants. However,
it was noticed that some mutations could not be killed because the final output of a program

remained the same.

Control Flow Graph Post Processing. The original work [KB13] extracted two types of
features from the generated CFGs — Node and Path features. Node features are depicted as
label — input Degree — output Degree, while path features are constructed as a short sequence
of operation labels from start to exit. Such differentiation is significant because, in some cases,
permutative metamorphic relations could have been detected only when the sequence of operations
was known. The next iteration of this method proposed an improvement to the handling of CFGs,
where features are extracted using graph kernels [KBB15]. A graph kernel is a method of comparing
two graphs. Two different graph kernels were analyzed — the random walk kernel and the graphlet
kernel. Random walk kernel combines the values of the transitions between nodes in each path of
a graph and then compares the results of both graphs, while graphlet kernel constructs smaller

subgraphs with sizes 3, 4, and 5 and compares the count of matching subgraphs in these graphlets.

Model accuracy was measured for every vector produced. The evaluation procedure relied on
getting two values — balanced success rate (BSR) and the AUC, the area under the receiver

operating characteristic (ROC) curve.

BSR is calculated using the following formula:

BSR = %(P(successH) + P(succeess|—)) (6)

P(success|+) is the probability of correct positive classification and P(success|—) is the proba-

bility of correct negative classification.

However, the primary evaluation method was AUC, which was more effective in measuring

12

learning algorithms [KBB15]. AUC is a way of determining the probability of a model correctly
predicting true positive and true negative classes, which is computed as the area under the curve

produced by plotting values for true positive and false positive rates (TPR; FPR).

TP
TPR = ——++ 7
h TP+ FN @)
FP
FPR= ——F——
R FP+TN ®)

It was concluded that the support vector machine (SVM) model is a significantly more effective
algorithm than the decision trees, with AUC being mostly above 0.8 in the case of SVMs [KB13].
After testing both graph kernels and previous approaches of extracting node and path features,
it was concluded that the random walk kernel combined with the SVM algorithm is the most
effective method of searching for metamorphic relations. For most metamorphic relation types,
the BSR and AUC values were the highest for the random walk kernel method. In contrast, the
graphlet kernel was significantly worse than the original approach of extracting node and path
features. Excluding invertive metamorphic relations, for which AUC scored 0.74, other MR

classifiers had AUC' >= 0.8 — a value that suggests that the created classifier is good.

The metamorphic relation detection method, proposed by Kanewala et al. [KB13; KBB15],
has shown that the strategy of analyzing underlying source code using machine learning-based
classifiers can be an effective method of detecting applicable metamorphic relations. However,
such a method can only be used if the MRs being searched are adequate for the area under test.
In this work, testing was done on code projects specializing in machine learning and scientific
solutions. Moreover, detected MRs won’t be automatically tested, so a follow-up process of test
generation and validation is needed to use detected MRs. However, the main limitation of this
method is that it can detect only one MR per label, even though, practically, a single label may
exhibit multiple MRs. This problem was addressed in another method that utilized multi-label
neural networks for MR detection in the same projects, and it was proven that using more labels
can detect more MRs [ZZP*17].

Training Data Generation. Machine learning models typically require a lot of data samples
for training, which adds a significant level of complexity when using such techniques. One of
the alternatives to searching for relevant open-source software projects for samples, a synthetic
data generation method, may be helpful. Such an approach was tried by generating mutated code
from the original samples and using them for training while keeping the SVM and graph kernel
algorithms. Unfortunately, such a strategy was not helpful in all cases — most mutants decreased the
final ROC values. Only mutants that changed the atomic operations and preserved the code’s final
logic helped increase the ROC value [NME19]. The explanation for this behavior was provided in
the follow-up work, which stated that if a program contains the MR, its semantically equivalent

variants will also exhibit the same MR. As for the non-equivalent mutants, the syntax might

13

be nearly identical, but a single logic-changing mutation will completely change the output of a

program, thus destroying the MR [G6t23].

Natural Language Processing. Another method of acquiring metamorphic relations from
the source code is code comments and documentation analysis. For example, JavaDoc — a
typical source of auto-generated Java source code documentation, can contain essential properties
of the code, such as invariants and constraints, or an abstract description of the logic, which
provides valuable insights for MR inference, like the statement that the developed function in
some instances should behave like a function from the standard library [BGE*21]. Such MRs are
natural to obtain and easy to formulate further by a tester, but processing them automatically poses
a natural language processing problem. "MeMo”, a project that analyses Javadoc’s comments
written in natural language, has proven the effectiveness of such an approach. After analyzing
over 7000 sentences across several core Java projects specializing in scientific software, authors
of "MeMo” have constructed a model capable of detecting MRs not observed by search-based
methods [BGE*21]. A more straightforward strategy was adopted in the "MRpredt” project, where
specific keywords in the Javadoc were focused, like @param and @return [RKK20]. However,
compared with the base "MRpred” tool proposed by Kanewala et al., which analyzed the source
code directly, [HK 18], its variation for Javadoc analysis only improved results for a fraction of
MRs detected.

The strategy of selecting the best metamorphic relation in an automated way was implemented with
a reinforcement learning technique known as context bandit. This method was called Adaptive
metamorphic testing (AMT) [SG20]. It accepts the target program or algorithm, a test suite, and a
set of applicable MRs. The contextual bandit evaluates each MR by constructing new follow-up
test cases based on a test suite. If, for a given MR, it was proven that follow-up test cases are
not adhering to the MR, then the algorithm is considered faulty, and the detected MR is then
used as input data for the subsequent search iterations, thus removing contradicting MRs. Such
a strategy allows the selection of the best metamorphic relations while remaining independent
of the application domain. This is especially useful because not every typical MR benefits test
generation. In most cases, the only way to tell if MR is helpful is to evaluate it manually. Adaptive
metamorphic testing allows for automation of this step. Experiments on image recognition have
shown that such a strategy tends to be more time-efficient and effective than selecting MRs

randomly or exhaustively going through each possible MR [SG20].

All in all, metamorphic relation detection using machine learning is a promising area. However,
very little testing outside of purely scientific software, as well as a lack of high-quality datasets,
raises questions about the validity of this method for a broader scope. Since the technique relies
heavily on having examples of good MRs, experiments with Machine Learning have produced
a significant amount of well-defined standard metamorphic relations or input transformations,
which are used in other works, unrelated to ML-based techniques [AT]"24; ZCH"14].

14

2.2.2. Test Case Based Metamorphic Relations

Another approach to metamorphic relation detection is based on the idea that initial test cases,
such as unit or integration tests, implicitly contain information about possible MRs. One such
method was proposed in an application called MR-Scout [XTZ"24] — a tool capable of detecting

metamorphic relations in tests for object-oriented programs written in Java.

MTCs, or MR-encoded test cases, rely on the idea that metamorphic relations are formed between
at least two inputs and corresponding follow-up outputs directly related to the initial inputs.

Consider the following pseudo-code resembling the test of a stack data type:

PushPopTest ()
{
let a = stack();
a.push(42);
let b = stack(a);
let firstStackResult = a.popQ);
let result = b.popQ);

assert(result = firstStackResult);

Listing 1: Example of a test for a "Stack” class

In this case, an instance of a stack data type a and an initial value of 42 forms two source inputs
to stack b. The result of b.pop() is a follow-up output based on the initial input, and it must be 42.

Therefore, this code contains the following metamorphic relation[XTZ*24]:

x = stack.push(x).pop()

Listing 2: metamorphic relation in code

The importance of uncovering this MR is shown by the possibility of using the following rule in

creating a new Metamorphic Test, which can be parameterized:

PushPopTest_MT(x: int)

{
let a = stackQ);
stack.push(x);
assert(x = stack.pop());
}

Listing 3: MT based test case

To automatically produce new test cases, the MR-Scout tool consists of three phases:

15

MTC Discovery. Since encoded MRs cannot be deduced syntactically, the discovery of MR-
encoded test cases relies on detecting two properties that would suggest the existence of an MR.
The first property is called Method Invocations. It verifies that at least two method invocations
of the same object have two separate inputs. Another property is called Relation Assertion, and
it checks if a test case contains at least one assertion, checking the relation between inputs and

outputs of the method invocation [XTZ*24].

MR Synthesis. Synthesizing metamorphic relations involves dedicating components of an
encoded MR and codifying these components into an executable method, creating a parameterized
unit test (PUT). However, the information collected at the MTC discovery phase only covers
follow-up outputs and no information about initial inputs. MR Scout searches for a collection of
MR components, such as the target method, source and follow-up input, input transformation,

source and follow-up outputs, and the final output relation assertion.

According to the MR synthesis logic, in case of PushPopTest mentioned above, target methods
would be stack.push() and stack.pop(), source inputs would be stack a and constant 42, follow-up
input is stack b. Source output is firstStack Result and follow-up output is result. The only
transformation is the initial transformation a.push(42), which modifies the source input a. Final

relation assertion happens on source and follow-up outputs [XTZ*24].

MR Filtering. Newly created test cases might not be valid metamorphic tests because of possible
crashes or exceptions caused by the input. Therefore, the input that triggers such an outcome must
be filtered out, as it is considered invalid. However, only having such validation is not enough to
remove invalid inputs altogether, as developers might have checks and validation for invalid data,
thus not causing fatal errors or exceptions. In such cases, false alarms might start appearing in the
form of errors within the assert call. Authors of MR Scout consider the MR that produces such

input faulty and filter it away [XTZ"24].

Method Evaluation. The MR Scout tool was tested across 701 open-source Java projects,
and over 11000 MR-encoded test cases were detected, each containing around 1.9 metamorphic
relations on average. The most significant MRs (64%) were based on leveraging two method
invocations, while 72% of all MRs had no input transformations. The validity of the detected
MRs was checked manually. 164 MR samples were selected randomly, and the detected MR was
checked to see if it was true. Authors of MR Scout uncovered a fault in their tool, which caused
false positives when validating the Assertion Relation parameter. This condition was incorrectly
triggered on re-assigned variables. However, only 4 cases exhibited such behavior. Unfortunately,
automated ways of detecting such faults were not proposed. Inputs for codified MR testing were
produced using EvoSuite, an automated test case generation tool in Java. Later, the effectiveness

of newly created test cases was checked using mutation testing techniques [XTZ*24].

The benefit of deriving MRs from automated tests is twofold — first of all, MRs allow the con-

struction of parameterized tests, thus reducing maintenance costs of tests and improving potential

16

coverage. Secondly, MRs can serve as a specification of how inputs to the code get transformed,
providing a more formal way of understanding the behavior of a system, which could help evaluate
the overall validity of a test. Additionally, deriving MRs from unit tests may be a good start for
domain-specific MR search when base metamorphic relations defined by Murphy [MKH*08]
may not be enough to uncover defects in a code. The examples provided by the authors of MR
Scout are done for object-oriented programming, where methods of a single instance of a class are
tested, thus allowing the inclusion of the effect of the changed state of an object. The efficiency of
applying a similar MR detection strategy in non-object-oriented programming projects was not

evaluated, and similar projects that would tackle this were not found.

2.2.3. Specification Based Metamorphic Relations

As discussed previously, important observations about MRs encoded in the program code can be
obtained from analyzing JavaDoc comments or by parsing automated tests, which typically check
for behavior defined in such specifications, thus encoding MRs in themselves. These observations
suggest an intuitive conclusion that a metamorphic relation represents an adherence to a particular
specification of the software if the written code is valid in terms of software requirements. This,
in turn, means that a specification document is a good source for metamorphic relations that are

either explicitly or implicitly encoded in the program [SFP*21].

A widely used method of extracting test cases from software specifications is the category-partition
method (CPM) [CR99]. CPM defines a process of splitting the given functional specification of
a program into specific system state descriptors known as categories, then further dividing each
category into a collection of choices or a frame — a set of values possible in a category, and defining
the constraints between different categories, thus formulating a basis for a test specification. A test

specification can then create test cases by applying the possible values for a given choice [SDL*23].

Based on this knowledge, a methodology to extract MRs from encoded specification was proposed
in a tool called METRIC [SFP*21]. Authors of these tools have shown that a frame can be used
to define the MR, as it corresponds to a collection of test cases with a common constraint or a
property. Since the frame already contains the description of relations between inputs, the MR
detection problem turns into an issue of validation that outputs generated for given inputs also

have a relation encoded between them. The system proposed by METRIC is following:

* Select two full frames B; and Bs, that is, frames that define values for all choices.

* By definition of CPM, B; and By must contain different choices.

* The difference between choices will specify the expected difference between them according
to test case outputs. Combined, relations between input and output pairs form a metamorphic
relation. If, after execution of given test cases, the difference between outputs is not as expected,

the program is considered faulty.

It is important to note that this method is designed to systematize but not automate the detection

of metamorphic relations. Instead of searching for MRs in an ad-hoc manner, where an engineer

17

would manually search for possible relations between inputs and corresponding outputs, METRIC
allows to narrow down the search by utilizing existing specifications that describe how a change in
one or several constituents of a test case will affect the final output of a program. The effectiveness
of this methodology was tested practically by asking engineers with basic knowledge of testing to
formulate MRs for given software projects. It was shown that this methodology made MRs far

more accessible to detect than doing the same work by trying to deduce the MR [SFP*21].

Data mutation techniques. An approach similar to MT was proposed for testing software that
operates on structurally complex inputs, like XML parsers and compilers. Instead of modifying
the program under test to capture mutants, a test itself was suggested to be modified based on
some rule derived from existing tests or software specification, thus producing new test cases
based on such mutants [SZ09]. Such rules are called data mutation operators (DMO). The data
mutation approach naturally comes in comparison with metamorphic testing performed on similar
principles. The main difference between data mutation testing and metamorphic testing is that MT
allows us to automatically verify the validity of new test cases by checking metamorphic relations.
At the same time, DM requires manual validation [Zhul5]. Similarities between DM and MT have
inspired the creation of y-MT. This metamorphic relation detector applies data mutation rules
to construct related test inputs, thus implicitly defining the antecedent in the Equation (2). The
output relations are then determined manually by inspecting the potential ties between produced

outputs and referring to the expert knowledge [STW*23].

2.2.4. search-based Software Engineering (SBSE) Solutions for Metamorphic Relation

Detection

Previously listed methodologies assumed the existence of a metamorphic relation in the code and
were searching for patterns, properties, or heuristics that would indicate the presence of an MR,
such as known metamorphic relation in a CFG [HK18; KBB15] or a presence of typical code
elements [XTZ"24]. These methods rely on having access to the source code (white box testing)
and offloading the duty of generating inputs for MRs to other tools in the testing pipeline. But
what if no initial MRs are known, or only basic MRs can be detected? In such cases, search-based
software engineering generates and tests new MRs. Similar methods were also tried when searching
for program invariants, generating classical test cases, and performing regression testing[GCOS].
Since MRs can be considered a subset of program invariants, adopting SBSE methods for MR

generation is a logical approach.

A strategy for inferring metamorphic relations through metaheuristic search algorithms, such as
particle swarm optimization, was proposed by Zhang in a project called "Metamorphic Relation
Inferrer,” or MRI. Out of 70 MRs evaluated across multiple sources, the authors of MRI concluded
that 61% of evaluated MRs are polynomial [ZCH"14]; therefore, searching for such MRs can
bring the most value. Polynomial MRs define relations between all inputs and all corresponding
outputs as polynomial equations. A typical example of such MR is a well-known property of a

sine function, as described in Formula 5.

18

The metamorphic relation between input x; and follow-up input x5 that would satisty Equation

(5) can be constructed using the following linear equation:

XT; = Z Qpj T + bn (9)
j=1

For values of a;; and by as 1, the follow-up input satisfies the MR. This means that the inference of
new metamorphic relations can be seen as a search for linear equation parameters or a higher degree
polynomial. MRI searches for a vector of parameters for a polynomial using the Particle Swarm
Optimisation algorithm. The algorithm generates N candidate solutions, known as particles. Each
particle’s velocity and location are described, and these values are stored in a D-dimensional space
with N particles. The velocity and location of each particle are then computed based on the results
of other particles, preferring results that are getting closer to the target value. PSO algorithm
makes minimal assumptions about the problem, which does not guarantee that an ideal solution
can be found. However, this allowed authors of the MRI to select weights of the algorithm based
on existing experiments with PSO, done outside of metamorphic testing|[ZCH"14]|. However,
the MRI was shown to only handle trigonometry functions with well-known base metamorphic
relations — the true mathematical equation for such functions. Unfortunately, the efficiency of

this tool in other areas or different mathematical functions could not be evaluated.

Genetic programming could also be used as a tool for detecting MRs. GenMorph discovers
numerical, boolean, and ordered sequence-based MRs in Java code. [AT]"24]. This tool uses an
evolutionary algorithm to search for possible best representations of MRs for function implemen-
tation. The search for MRs drives rewards for the algorithm with as few false positives (FP) and
false negatives (FN). It is important to define FPs and FNs in terms of metamorphic relations.

Authors of GenMorph describe them as follows:

A False Positive of a metamorphic oracle. When a pair of inputs x; and 3 for program
P(z) are correct, but output relation R,(P(xz1), P(x2)) is negative, therefore R;(x1,29) =>
R,(P(z1), P(x9)) is false.

A False Negative of a metamorphic oracle. When inputs for an incorrect version p(z) of
a program P(z) accepts the pair of inputs, and R;(x1, z2) => R,(p(x1), p(z2)) is true. An MR

which accepts false negatives cannot be used to expose mutants in the code.

GenMorph utilizes automatic test case and mutation generation tools for source input preparation
and procures required input transformations based on known patterns that represent MRs. [AT]*24].
Authors refer to such base MRs as canonical MRs. A follow-up input is computed based on MR
transformation for each source input. These input pairs produce source and follow-up outputs
for both source codes. It’s mutated versions, thus generating an array of tuples consisting of
inputs and outputs for each generated test case. Then, an evolutionary algorithm is applied to

the created data set, searching for new relations between inputs and corresponding outputs: two

19

separate populations are produced from the initial canonical MR, and they are evolving in parallel,
competing to reach better metrics for FPs and FNs, and in reaching the smallest possible MR, while
having the same semantics. The tool was tested on various software applications that operated
on numeric, boolean, and sequence values, such as arrays and strings. As a standalone testing
tool, GenMorph was not able to outperform test generators like Randoop or Evosuite, but some
mutations were only uncovered by the metamorphic tests, that is, combining both generated tests
and produced MRs have increased the amount of mutants killed to existing mutants ration, also

known as the mutation score.

As a strategy for filtering out MRs with false positives or false negatives, authors used OASIS
[JCH"16]. This tool checks the test oracle by providing inputs that would cause the false negative
to appear. If the false negative is found, the oracle, or the MR, is considered faulty and will be
removed from the tested population. OASIS uses the common tactic of generating mutants when
searching for false positives or false negatives in the MR. In case of false positives, OASIS searches
for assertions within the tested code and inverts the checks. If a test is still passing, such an
oracle is prone to generate false positives and needs to be changed. The tool can provide possible
improvements to the oracle, but this approach is unreliable enough to be used automatically.
Human intervention is still required to verify if a proposal is correct from a program specification
perspective. Although OASIS is Java-centric, it once more validates the use of mutation testing
for MR validation. Additionally, authors of OASIS propose valuable insight into test oracle
improvements: If a test oracle is more likely to produce inaccurate results, such as false positives,

it can be improved if it’s negated [JCH" 16].

SBSE-based metamorphic testing has found its use cases in industrial applications where quality
or performance metrics might be critical. For example, a tool called GAssert-MR was tested on
the elevator management system functioning in a simulation, which computes the best routes
and work distribution between multiple elevators. Apart from functional behavior, tests for such
systems care about nonfunctional aspects such as the number of engine starts, total distance
traveled, and energy used [ATA"21]. Since the automated elevator service functions in a very
dynamic environment, where a slight change of a property of an elevator call dramatically affects
the final behavior, GAssert-MR addresses the change in these metrics indirectly by modifying
existing test cases by adding extra random passengers, changing the number of available elevators
and tweaking the start position of each elevator. Significant and unexplained deviations from
the expected quality characteristics after a test run indicate a potential functional failure. This
shows that metamorphic testing can be cost-effective for cyber-physical systems, where generating

precise test data is very expensive [ASAT20; ATA"21].

Improvements in composite MR generation. One of the improvements of metamorphic
testing methodology has proposed the concept of composite MRs [LLC12]. Such metamorphic
relations are built with the idea that if source and follow-up test cases for some M Ry can always
be used as source test cases for M Ry, these two MRs are composable. This applies to more MRs;

if another MR can be added to the existing composition, it is possible to construct k-composite

20

MRs. The benefit of such an approach is that it allows the creation of a multi-property test oracle
that is capable of evaluating several qualities of an SUT in fewer test runs, and it was proven that
k-composite MRs have the same effectiveness in detecting failures as each MR executed separately
[LLC12]; The problem with this approach is that it requires substantial knowledge and additional
manual effort when constructing such MRs, especially having in mind that MR detection is a
process that is affected by human biases, which sometimes causes important MRs to be ignored.
Another crucial property of composite MRs is that this composition is not commutative. While
it might be possible to compose M R; with M Ry, it may not be possible to do it in reverse.
[XWY19] The problem of manual MR composition was addressed by utilizing a genetic algorithm.
Each individual is a collection of MRs that form a valid composite MR (CMR); these individuals
are crossed together to reach the best composite MR, which would combine as many MRs as
possible by creating the most extended sequence of composited MRs. However, always going
for the longest composite MR is not cost-effective because creating such large CMRs does not
achieve better mutation scores than shorter CMRs. In the case of the trigonometry functions
tested, the best performer was a composite MR constructed from 3 separate MRs, while longer
CMRs produced worse or similar results [XWY19]. Using a genetic algorithm has helped reduce
the problem space by filtering out poorly performing MRs and building on the compositions
that achieved better mutation scores. Performing a brute-force composition would produce more
noise and would be slower. Authors of this paper also propose a practical way of calculating the

mutation score for a follow-up test case ['T" produced by the MR:

MS(mr;, FT) = ———— (10)
N; is the number of mutants killed, NV, is the total number of mutants, and N, is the number
of equivalent mutants, which produce the same semantics as the original code. This equation
adjusts for the equivalent mutants, allowing us to obtain more precise results. The results of the
experiments conducted by the CMR authors have confirmed that composite MRs reliably increase

fault detection capabilities.

Search-based methods for metamorphic relations detection are an up-and-coming area. They
allow the discovery of new MRs specific to the code being tested while also providing quite a
high degree of automation, even though they are still incapable of being fully automated. Not
providing good initial MRs to iterate by searching for new generations of MRs from will make the
algorithm search for an extensive set of possible outcomes, thus taking a potentially vast amount of
time without providing meaningful results. Therefore, good initial MRs need to be parameterized

and optimized further.

21

2.3. Summary of methods

The methodologies found were listed in terms of their degree of automation — how much of the

manual work is needed to get the final MR for a given program. Table 2 contains a compilation of

methodologies and their respective descriptions.

Method Degree of | Main points

automation

Machine Learning-based classifica- | Partial Shows the presence of known MRs

tion in the program but does not produce
new MRs.

Natural Language Processing of au- || Partial Very large amounts of data need to

tomated docs be produced and analyzed in order
to properly handle subjective differ-
ences in the natural language.

Reinforcement Learning-based MR || Partial Can automatically find the best MR

detection for a program from a set of prede-
fined MRs, but is unable to produce
new MRs.

Test case-encoded MRs Full Capable of detecting MRs in tests
and building new test cases automat-
ically. After manual testing, some
MRs were found to be incorrect.

Software specification-based MR || Manual Systematizes the process of man-

detection ual MR detection and improves the
quality of MRs found manually.

Search-Based Software Engineering || Full Can produce completely new MRs

methods from a set of inputs, related out-
puts and their transformations. Pri-
marily adopted in scientific software
testing.

Table 2. MR detection methodologies

22

3. Feasibility Study for Metamorphic Relation Detection

Techniques

In the majority of the literature found, the tooling for test case generation, mutation testing, oracle
verification, and other related tools was applicable in the context of the Java programming language
environment [AT]"24; HK18; XTZ*24]. In this chapter, a short feasibility study was conducted
to ensure the primary goal of the future work — automated detection of MRs in the context of

programming languages like C++ (Clang).

The simple prototype of the MR constructor was written in C++. Based on the brute-force
approach, a small selection of input and output relations was conducted, assuming that only
one extra operation, chosen from four basic arithmetic operations, can be added to the source
value to produce the follow-up value. The algorithm first sets the input relation and then tries to
find the output relation closest to the outputs produced by the follow-up inputs by trying every

combination of operations on the follow-up output and inputs.

The fitness of the results is computed using the cosine similarity formula, which calculates the

distance between two vectors:

Sc(A, B) = Liz 4B (11)

VL A B

However, cosine similarity is not a reliable proof that two vectors are identical, so for close vectors,

an extra check is done that compares if the data sets are the same. The function under test was
the pow() function, which accepts two arguments: = and e. The algorithm constructed was able
to find the MR, for which the cosine similarity was closest to 1, and later checks provided that the

data vectors are identical:

pow (X, Ey)

(RA(X; = X)&(E; = B, = 1)) = (pouw(Xy. Ey) = P22

) (12)
This MR is also a valid MR found for pow() in the case study proposed by the authors of GenMorph
[AT]"24]. This outcome was expected because the prototype and its testing environment are
inspired by the approach proposed in GenMorph. However, this simplified version used cosine
similarity to guide the best MR instead of collecting false positives and negatives. Even though
it’'s very simple, this example algorithm already gives an intuition about the possible scope
of computation needed to capture more complex MRs, involving more inputs and possible
transformations, and the importance of adopting solutions that would help reduce the required
number of iterations. The proposed algorithm is listed below, and the link to the source code can

be found in the appendices.

23

Algorithm 1. Algorithm for simple MR generation

procedure MR Generation for program P(X)
transformConstants <— Array of constants to be used in input transformations
outputTransformations <— Array of operations to be used in output relation generation
canonical MRs <— Array of base MRs to derive new relations from
inputs <— Randomly generated array of inputs
outputs < Array of outputs for original inputs
followUpOutputs <— Array of outputs for transformed inputs
searchedOutputs <— Dictionary of arrays containing transformed outputs
createdMRs <—Array of created MRs
for each c € canonical M Rs do
for each = € transformConstants do
outputs <]
followUpOutputs <]
for each input € inputs do
trans formedInput <—c(input, x)
outputs.add(P(input))
followUpOutput <P (trans formedInput)
followUpOutputs.add(followU pOutput)
for each t € outputT'rans formations do
searchedOutputs[t].add(t(followUpOutput, input))

maxCosineSimilarity <0
bestOutputTrans formation <0
for each t € outputTrans formations do
cosineSimilarity <—CosineSim(searchedOutputs|t], followUpOutputs)
if cosineSimilarity > maxCosineSimilarity then
maxCosineSimilarity <—cosineSimilarity

bestOutputTrans formation <t
StoreM R(created M Rs, ¢, z, bestOutputTrans formation)

24

4. Summary of Literature Review

The majority of research in the field of metamorphic testing is conducted in the area of MR
detection and formulation. This can be explained by the fact that MRs can be used as test oracles,
the constructs for the expected values during testing. Once a test oracle is present, testing becomes
automatable, just like the typical tests with predefined oracles. This work has produced a summary
of a collection of methods, ranging from a manual process that adheres to some framework to
applying genetic algorithms to create new MRs from existing ones in a semi-automated way, and

conclusions on them that will be useful for further work.

State of the art. For a metamorphic testing strategy to be used, it must be cost-effective
regarding the effort and computing resources required. The leading contenders are SBSE-based
methods, which utilize meta-heuristic genetic algorithms that are capable of discovering the
best results over time [AT]"24; ZCH"14], and reinforcement learning methods working on
the similar principle of improving the performance of MR detection across generations [SG21].
Unfortunately, the effectiveness of these solutions cannot be compared, as the case studies
proposed were very different — while SBSE solutions improved mathematical software testing,
the reinforcement learning approach was tested on computer vision software. However, both
techniques are significantly more efficient than purely random or manual testing approaches. It
is also essential to add that search-based software engineering methodology was not adopted for
metamorphic testing only; it has served as a valuable method for test case generation outside of

MT and was proven to be, albeit generic, but effective method for new test case inference [GCO8;
McM11].

Automation friendliness. MT does not require a predefined test oracle. Contrary to data
mutation techniques, this feature automatically produces and executes new test cases. However,
due to the enormous space of possible MRs in each program under test, the risk of capturing
useless MRs is also considerable, which may cause inefficient use of computing power. It is also not
likely to rely on a default set of MRs for each program due to the very tight relation with the area
of software being tested, albeit the effective MRs for the specific problem can indeed be converted
into more abstract MR patterns and be used later. Due to this problem, it is suggested to capture
initial, good MRs manually by utilizing frameworks like METRIC for specification-based MR
detection and then build new metamorphic relations based on these findings [AT]"24; XWY19;
ZCH"'14]. A genuinely efficient autonomous MR detection procedure has not yet been proposed.
However, the lack of a universal fully automated MR generator might not be a significant problem,
as there are frameworks and methodologies for manual MR detection that have proven effective
and easy to use by beginners. The focus of the research is usually on building new MRs based on

existing ones because this problem is more critical in the current state of MT.

The variety of case studies. The substantial amount of analyzed methods for MR detection
([AT]"24; HK18; ZCH"14]) were tested only on base MRs applicable for mathematical and scien-

25

tific functions, defined by Murphy [MKH™08]. This raises some concerns about the effectiveness
of these methods outside of the scope of purely mathematical software. Conversely, it is intuitively
expected that a limited amount of MRs can be applied to a broader scope of programs. Different
fields that were used as case studies were computer vision [SG21], network simulations [FB],
and cyber-physical systems for controlling automated elevators [ATA"21], and MRs defined by
the authors of these works were not specific to mathematical libraries. GenMorph [AT]*24] has
addressed the 'sequence’ types like Java Strings. Still, the concern is that SBSE methods may be

problematic when adapting to a broader range of nonnumerical inputs, especially for custom data

types.

26

5. Proposed MR generation method

Practicality of search-based MR generation. Existing proposals for MR generation, as
discussed in the literature review, are very tightly related to a specific language environment and
tooling like automatic documentation generators, test case generators, or specific language syntax
that a model is trained to read [AT]"24; CR99; KBB15]. Proposed search-based methods only
focus on one particular domain or a use case. This restricts software engineering practitioners from
experimenting with metamorphic testing by drastically increasing the cost of this approach. For
various use cases, an individual has to create a set of tools that may be more generic, suggesting
a tooling that can be reused. This work aims to propose a strategy for such a universal tool that
would reduce the cost of entry into metamorphic testing, attracting more interest to this testing
strategy and allowing it to expand to more specialized usage scenarios by starting from a basic
yet fundamental set of tools. While metamorphic relations can be inferred by following some
heuristics and manual analysis of code, automatically generated metamorphic relations could still
provide perspective on a program from angles not considered by an engineer. Moreover, not
every engineer, even within an organization, knows the tested system deeply enough, making

metamorphic testing even less appealing since its efficiency becomes harder to measure.

MR search process for a selected function. As shown in the prototype, it is feasible to
manufacture metamorphic relations automatically by combining possible transformations and
arguments with relevant output transformations that match the defined input-output relation. The
proposed work proposes a strategy for MR generation capable of detecting metamorphic relations
in a provided abstract function, executed in a black-box manner — the caller does not need access

to the code of the tested API, allowing for direct on-platform testing, if such needs arise.

Aya is written in C++426 using template meta-programming techniques to enable support for
functions with arbitrary signatures. Moving to templates had an impact on the final size of the
library. It also increased complexity in inter-language compatibility compared to the original code

in C, which only targeted MR generation for simple functions, as shown in Listing 4.

void func(voidx*, void*, voidx)

Listing 4: Tested Function Signature

Function results are packed into states. A state is a vector of arbitrary types, containing the
function output alongside references to passed arguments. Keeping references to passed arguments
is essential because, in some cases, a function may modify passed values too, or if a function has
no return value, then the state change may only be detected by comparing initial and follow-up

arguments. Here is an illustrative example of states. Consider Function 5:

double pow(double, double)

Listing 5: cmath pow() function

27

An initial state for inputs [2, 3] would be [8,2, 3]. The output comes first because it makes it more
efficient for template code to access it in post-processing. State generation makes it straightforward
in further MR generation. First, initial states are produced with passed sample inputs, then are
altered using provided transformers, producing new follow-up states with modified inputs. Later,
such state vectors are compared predictably. Originally, the support for abstract data types was
provided using a void pointer alongside the data size variable. This has severely increased the
risk of memory bugs, reducing the confidence in the tool for more complex scenarios. Adequate
coverage for the data types covered was achieved by using the std :: any class. This is a type-safe

container for most data types in C++.

Analogous to the tested function, transformers defined using templates for a void function, but
with arbitrary arguments, at least one of which is a reference. Such transformer functions can be
applied to a given value in any order and scale, forming so called transformer chains, applied as

shown in Listing 6

Add(inputState[2], 3),
Sin(inputState[0]),
Sub (inputState[1], 10),

Listing 6: Tested Function Signature

To allow for combining transformers with different signatures, an I'T'rans former interface was
designed to apply such transformers in a polymorphic manner. Usage of templates and type-safe
alternatives to void pointers has made the MR generation for C++ code quite universal, requiring
the user only to provide the test data and generate MR generator code for their specific needs.
Omitting sample data generation, transformer function preparation, and other things that users
might want to do specifically in their use-cases, a call to Aya MR generation procedure consists

of the following calls:

// Transformers with a signature void(double&, double)
std::vector<std::shared_ptr<Aya::ITransformer>> transformers =
Aya::TransformBuilder<double, double>().GetTransformers(functionVector,
functionNameVector) ;
// Tested function double pow(double, double)
auto mrBuilder = Aya::MRBuilder<double, double, double>(testedFunction,
comparerFunction, transformers, <flags>, ...);

mrBuilder.SearchForMRs (testedInputs, <flags>, finalMRs);

Listing 7: Core functions in the API

For complete examples of the MR generation procedure, please refer to the source code listed in

the Appendices.

28

Native and managed code interfaces. Interaction between Aya library written in C++ and a
client implemented in a language is C# is possible due to cdecl calling convention. This helps
improve interoperability between different programming systems since managed languages like C#

can have a native bridge with C++ code like Platform Invoke [jko].

5.1. API design

Existing MR generation solutions [ZCH" 14] focused on synthesizing metamorphic relations for
simple scalar data types like integers, with complex data types like sequences being skipped or
partially implemented. The logic behind such a strategy is understandable — it’s easier to focus
on a single data type, and it’s more efficient to focus on scalar data types since they are more
important for numerical software. However, creating a program that would work with more data
types efficiently is harder, since there are an infinite number of such data types. Additionally, a
typical search for MR involves evaluating the state of a program. For mathematical software, the
final state of a tested function is a vector of scalars that is easy to compare against using standard
comparison mechanisms, while in case of more specific data structures or business logic, it is

harder to reason about metamorphic relations in terms of tracked states.

The creation of tools that are usable for more complex data types is a question of proper API
design that is verbose and scalable but friendly enough to justify the time spent on preparing and
using the tool. Trying to write an algorithm automatically handling every possible data type and
program state is impractical, hence state comparison, transformation functions and validation
data procurement are delegated to the user of an algorithm. By doing this, significantly larger

scalability and range of applications can be achieved.

The algorithm then operates on pointers to data without ever needing to cast them back to the
original type within the scope of the algorithm execution. Templates are only needed to construct
usable function pointers — data manipulation is done on the abstract void pointers or std :: any
types. Such a decision is expected to open the tool for extension but close it for modification,
allowing it to build algorithms and communication interfaces for it separately, as long as the API

contract is honored.

5.1.1. Usage of Aya API from C#

For inter-language communication (e.g. usage of Aya from C#), the largest and most challenging

issue revolves around creating an API that would make use of Aya template based functions.

C# programming language system performs in a managed memory context. This means that
every memory allocation, by default, is controlled by a reference-counting garbage collector.
If an allocated variable goes out of scope at some point during program execution time, that
memory will be freed. It is possible, however, to allocate raw memory using malloc wrappers like
Marshal.AllocHGlobal and to free the allocated memory using Marshal.FreeHGlobal. Such
strategy allows the use of the provided API almost as if it were a C++ context, albeit it makes the

code unsafe, with the portability and reliability of the Common Language Runtime (CLR) being
29

ignored. Moreover, such an approach will inevitably propagate the unsafe context to code we

might not want to make as such, requiring us to think of ways of containing such code.

// Define a function pointer for a testable function
public unsafe delegate void TestableFunction(
void* a, void* b, out voidx c);
[D11Import(...)]
public static extern unsafe void CallTestedFunction(

TestableFunction func, void* a, void* b, out void* c);

Listing 8: C++ Style API usage in C#

CLR provides an extensive API for data marshaling to deal with unsafe code from a managed
context. Marshaling is a term that defines data translation between different environments. In
this case, it describes a process of data preparation for movement from CLR runtime to a code
environment that is native to the underlying platform. For example, a managed interface wrapper

for a function mentioned above will look like this:

// Define a function pointer for a testable function
public delegate void TestableFunction(
UIntPtr a, UIntPtr b, out UlntPtr c);
[D11Import(...)]
public static extern void CallTestedFunction(
TestableFunction func, UIntPtr a, UIntPtr b, out UIntPtr c);

Listing 9: Marshaling based API usage in C#

Now, the pointers are converted to the UIntPtr type, which stores an address to the memory and
can be allocated using the new keyword. This allows it to remain within the managed code scope,

making such an interface easier and safer to integrate into existing projects.

Major problem related to C++ templates is that pure C++ is not compatible with C# due to
name mangling on the C++ side. This means that an external language client must define an
intermediate C-like layer that would translate C# pointers into matching C++ data structures
and functions. Practically, this means that there should be a bridge component written in cdecl

convention that would call the C# code, and is passed to Aya as a testable function.

5.1.2. Final structure of the provided API

Some components of Aya are compiled into a dynamic library, which can then be easily integrated
into a language of choice by corresponding build systems. Template code is stored in header files

that must be provided to the client code.

In the basic scenarios, setting up the interface is straightforward enough to continue work in this

area and evolve such a toolset for software testing practitioners who might not be interested in

30

Aya

T

Bridge client C++ client

e

Tested C# Code

Figure 1. Aya Interface provision. Blocks in purple indicate client code

developing MR generators from scratch. The employed strategy design pattern for the Aya API —
where we expect a consumer to provide function pointers containing the tested logic and variable
transformations, makes such a system more scalable, allowing it to be used across many use cases

and programming language systems, compatible with standard cdecl naming convention.

A model for a complete procedure of Aya MR search (Fig. 2) indicates two preparation steps
— individual transformer construction, and M RBuilder preparation. M RBuilder component
generates transform chains of a requested length from given ITransformer instances. Every
possible combination is then evaluated during SearchFor M Rs() call. CalculateM RScore()
function is required to check produced metamorphic relations against a different set of inputs. MR
score is the percentage of passed MR tests for a given input set. If MRs is valid for 5 inputs out of
10, it’s MR score is 50%.

31

Client TransformBuilder MRBuilder MetamorphicRelation

GetTransformers()

I Vector<|Transformer>

Construct(function, inputs, transformers)

By
L

MRBuilder object
Rt L
| SearchForMRs() o
< Vector<MetamorphicRelation=
CalculateMRScore(Vector<MetamarphicRelation=, samplelnputs) o
< Vector<MetamorphicRelation=

Figure 2. Complete Aya pipeline

5.2. Metamorphic relations as a data structure

In practice, the individual transform chain can be implemented as a dynamic array or a vector and
remain efficient enough for the use case. Since the code is written C++, and transform chains are
required to be dynamically changed, vectors are the natural choice. Each transformation must be

performed in a specific order, always requiring the call of every provided function.

struct MetamorphicRelation
{
vector<ITransformer> inputTransformerChain;

vector<ITransformer> outputTransformerChain;

Listing 10: Metamorphic relation data structure

An important addition to the structure of transformers is that certain metamorphic relations require
changes to be made with a specific value in the input instead of a constant. Consider Listing 11
as an example. One of the transformers requires the output value to be multiplied by any value
stored in %;. Such scenarios are tested during the MR generation phase, where user-defined input

state indices are used to produce temporary transformers.

32

(TC(Noop(i_1)),
TC(Sum(i_2, 2), Sub(i_2, 1)),
0TC(Mul(o, i_1))

Listing 11: MR for Pow() with variable transformers

5.2.1. Runtime function signature inference

The following data structure for a metamorphic relation has proven to be useful enough and
simple in the described MR generation procedure. The problems may arise when such a data
structure needs to be serialized into a file for future reuse due to the inability to effectively serialize
function pointers, leaving the main option to store MRs as strings in a file. Mapping a function
pointer to a proper function signature mostly depends on the underlying system, in the case
of C++, due to specific ABI implementations. While it is possible to use the Runtime Type
Identification (RTTI) API to extract the type name in C++, the returned string refers to a mangled
name. For demangling, the abi::__cxa_demangle function can be used. This function is not
guaranteed to work as expected on all platforms since GCC, Clang, or MSVC compilers are
implemented differently. Moreover, when the function pointer gets converted to a different type,
all function signature information is lost. This means that the function signature must be stored
together with a function pointer. Additionally, RTTI can be disabled during program compilation
with the -fno-rtti flag, killing the possibility of depending on it reliably and adding another
reason to control the function metadata separately. This is another observation made during the

development of the tool, and it must be addressed in future Aya versions.

The situation with runtime function name inference is significantly simpler in the context of
C#. It is possible to use the Reflection API, which is guaranteed to work cross-platform. For
example, having a delegate for a function, one could call fptr.GetMethodInfo() to retrieve all
the information needed to form a function call string, which could then be used to produce a

serialized test code from constructed metamorphic relations.

Because of currently observed limitations in transform chain serialization, it is required to bundle
function pointers as std :: function together with function names as human-readable strings.
Such a workaround allows for having MRs stored in text, and if some MRs are proven to be good
tests, a user would write a unit test on their own, based on the MR detected. For reference, Aya

returns MRs which look like this, the one shown in Listing 12.

Mul(Input[0], 1,) === SinSquared(initialState[1]) Add(
initialState[1], -1,) Div(initialState[1], -1,) =>
initialState[0] == followUpStatel[1]

Listing 12: Example of CosSquared() function MR returned by Aya

Such MR could then be converted into a test as shown in listing

33

void test()

{
double initiallnput = 45 * M_PI / 180.0;
std: :vector<double> initialState = {CosSquared(initialInput),
initialInput};
double followUpInput = SinSquared(initialState[1]);
followUpInput -= 1;
followUpInput *= -1;
std: :vector<double> followUpState = {CosSquared(followUpInput),
followUpInput};
ASSERT_EQUAL(initialState[0], followUpState[1]);
}

Listing 13: CosSquared test produced from MR

5.2.2. Variable state capture and result equivalency checks

An important problem with a larger variety of searched MRs lies in the fact that it is not obvious
how to capture more complex outputs and program states to find MRs. For mathematical functions,
where, for sequences of inputs, outputs are another set of scalars, one could use algorithms like
cosine similarity check to compare follow-up output and tested output transformation values. In
essence, a basic equality operator is enough to compare states. More complex equivalency checks
are needed as well for more complex data types, including sequences, to check specific properties
of a variable. For that reason, the provision of a comparer function is being delegated to the user
because it is assumed that they might be more knowledgeable about the specific value of that
property to be checked. For example, if we consider a dictionary data type like std: :map in C++,
we know that if we try adding an element with the same key, the existing value will be overwritten.
The value property of the map is different, but the size remains the same. We could formulate
a metamorphic relation stating that for any input with the existing key, the final size of the map
will remain unchanged. A user could specify that they are interested in the specific property of a
tested structure instead of comparing the total state, which, in the case of custom data structures,
may not be valid for comparison. It is also possible to overload the equality = operator for a given
structure or a class, and not pass the comparer function. This is a reasonable route if custom code

already has overloads for such an operator.

The current algorithm only checks for a state provided by the user without altering the check
function in any way, but the following aspect of MR generation is worth investigating. Systematic
mutation of a provided comparer function (or iteration over provided checks) would greatly

improve the amount of interesting metamorphic relations found. If a state comparison function is

34

described and provided, then it would have to be included in the final MR representation, too, to

make the MR reproducible.

Variable state extraction. For runtime type deduction and member location, one could use
techniques like C# reflection in runtime and wrap potential fields in comparer function code as
delegates, though a similar solution does not exist for C++. Therefore, the most straightforward
solution now is to manually provide a collection of possible comparison functions and iterate over
them, as we would do in the case of transformers and their corresponding arguments. At the time
of writing, the current version of Aya does not provide such functionality. This means that to

check various states, a user must perform separate MR generation runs.

35

6. Updated MR search algorithm

The following section contains descriptions of used methods to produce transform chains and
generate final metamorphic relations. Practically, every possible combination of input and output
transform chains must be checked because any relation might be relevant and valid. Further

optimization of created MRs can be considered in the future work.

6.1. Basic MR generation

The algorithm to combine transformations and arguments into MRs was split into several parts:
the first step is to generate transform chains that would constitute the final MR. There is an infinite
number of possible variants and combinations with which to build MRs, therefore, constraints

like a transform chain length are required.

Algorithm 2. Algorithm for Transform Chain generation

procedure Transform Chain generation in a search context
MaxTransformChainLength <—Max length of a TransformChain
TransformFunctions <—Array of function pointers to transform functions
TransformArguments <—Array of arrays of pointers to transform function arguments
TransformChains <—Storage for constructed Transform Chains
inputIndexr <—Index of input array to fill, set to O
for each args € TransformArguments do
for each func € TransformFunctions do
for each constant € args do
StoreTrans form(Trans formChainslinputIndez], func, constant)

mputindex <—inputIndex + 1

Complexity of transform chain generation. Producing transform chains with a certain
length is a task that tends to explode in scope pretty quickly. For a Pow(z,y) function, where
x and y are both of the same type, having four transformers with at least two arguments each,
generating transform chains with length 3 will create (4 % 2 x 3)? = 576 variants. In practice, the
number of iterations greatly depends on the number of sample inputs used to search for MRs.
In case of scalar data types like int, double, etc., it is reasonable to pick the typical smallest and
largest possible values alongside some random values. While the complexity of an algorithm is
subpar due to it essentially being a brute-force combination check, the area of the search can be

limited for the typical use cases.

36

Algorithm 3. Algorithm for simple MR generation v2

procedure MR Generation for program P(X)
inputArrays <— Randomly generated arrays of inputs
initialOutputs <— Array of outputs for original inputs
followUpOutputs <— Array of outputs for transformed inputs
searchedOutputs <— Array of tested outputs
InputTransformChainArrays <—Array of TransformChain arrays for inputs
OutputTransformChains <—Array of TransformChains for output
createdMRs <—Array of created MRs
testedFunction <—Pointer to a function being tested
equalityCheck <—Pointer to an equality check function
for each tcl € InputTransformChains|0] do
for each tc2 € InputTransformChains[l] do
for each firstInput € inputs|0] do
for each secondInput € inputs[l] do
fwl <= ApplyTransformChain(tcl, firstInput)
fw2 < ApplyTransformChain(tc2, secondInput)
ow « tested Function(fwl, fw?2)
for each otc € OutputTransformChains do
sampleOutputs < ApplyTrans formChain(otc, outputs)
if equalityCheck(sampleOutputs, ow) == T'rue then
ProduceM R(tcl,tc2, otc)

Generating final MRs relies on iterating over the produced transform chains and generated inputs.
Input amount can vary, but in practice, it is expected to be the largest amount of information to
work with. The expected complexity for this step is quite large: O(T'C™) x N * O(OTC'), where
T'C is the number of transform chains, N is the number of input states, and OT'C' is the number

of output transform chains.

37

7. MR generation and tests

The following section contains the description of experimentation and testing workflows, performed
to validate the Aya MR generator. Conducted experiments aimed to evaluate the performance
and validity of MR generation for selected mathematical functions, data structures, and utility
functions. The validity of produced MRs is measured by the success rate — a percentage of inputs
for which the MR was valid. Success rates help evaluate the general effectiveness of MR search
and detect changes in the results after initial setup changes — for example, a check whether the

mutation score is another transformation function is used.

Another test was conducted to check how the MR generator reacts to changes in the software under
test by employing a mutation testing strategy. The hypothesis is that automated MR generation
itself is a test that captures a program’s behavior and is reactive to changes in the logic, making

such a generator a good candidate for an additional layer of validation.

7.1. Metamorphic relation filtering and validation

Generated MRs, as described, can be executed on an array of inputs as a form of a test. Every MR
produced was also converted into such a test during the generation process. Data inputs used in
such tests were different from the inputs used to produce such MRs. MR filtering is the next step
in the production of an MR list — quite a significant number of MRs are valid for a very small

portion of inputs. To account for this, the user can specify the threshold of the success rate.

There were MRs that are valid, but at the same time, meaningless in a context of a test — for
example, if transformers are No — operation calls for both initial and the follow-up inputs, a
metamorphic relation, essentially, doesn’t change any value, and runs the test program with same
inputs, comparing same outputs. However, it is not possible to filter out such MRs during the
metamorphic relation generation phase without destroying other results. Such filtering is proposed

to be done during the post-processing of the final MR list.

7.2. Crash detection

The process of generating metamorphic relations may trigger a crash in a software under test,
leading to a potential loss of data. To handle such cases and reduce the external noise, like the
likelihood of the crash being caused by the MR generator itself, ideally, the metamorphic relation
generator should search for MRs in a controlled environment that would capture crashes. The
most common are defects related to memory handling. In managed languages with a Just In Time
(JIT) compilation process, every reference is usually checked before being accessed, allowing to
throw higher-level exceptions which can be recovered from. This leads to higher safety from
memory corruptions at the cost of lower performance [KKNOO]. The best possible strategy in
lower-level languages like C++ is to capture such crashes using signal handling. In Unix systems,
standard handling for a signal like a segfault can be overridden using sigaction() system call.

Unfortunately, not only is there a limit on the portability of such a handler, but possible usage

38

scenarios of such an override are also limited by the specification of a C++ programming language,
especially when handling fatal errors like SIGSEGV. For example, the Listing 14 shows an example
of an incorrectly handled crash capture, leading to Undefined Behavior in C++.

void crashCapture(int signal)

{
printf ("Crash!”) ;

some_global_variable++;

Listing 14: Incorrect signal handling

The signal handler function defined above is incorrect because it causes undefined behavior due
to calling an async-signal-unsafe function. Effectively, in C standard, if a signal handler does
anything other than accessing sig_atomic_t data type from within a signal handler, especially
calling an I/O operation like printf (), the outcome of such operation is considered undefined
because a signal could be caught during another I/O call, leading to unpredictable results|Man].
This makes native crash detection risky and impractical. Still, some form of crash prediction
is needed, so for now, the best bet is to perform consistent NULL checks in inputs used within
tested functions and transformers, and if NULL values are detected, report such MRs as potential

crashes.

7.3. Generating MRs for mathematical functions

A simple MR generation evaluation was performed by testing simple mathematical functions
from a standard C++ library. Beginning a test by producing MRs for mathematical functions
is a natural way of testing MR generation. The majority of such MRs depict known formulas
and rules that are valid for such functions — either it’s a trigonometric rule like sin? = 1 — cos?,
or pow(x,y + 1) = pow(x,y) * x. The following section is a compilation of results. The first

function tested was the power function. Its signature in C++ is:

double pow(double base, double exp);

Listing 15: Power function

The transformers used in MR generation were simple arithmetic functions applicable for double
type, alongside more specific mathematical functions, extracted from the cmath library. The

following is an example of such MR (Listing 16).

(TC(Noop(i_1)),
TC(Sum(i_2, 1), Div(i_2, 1), Sub(i_ 2, 1),
0TC(Noop(o, i_1))

Listing 16: MRs for pow() function

39

7.3.1. MR generation for reversible computations

Matrix multiplication was tested to test more complex scenarios encompassing bigger data struc-
tures instead of simple data types. For testing, two matrix multiplication implementations were
used — Apple Accelerate, which implements the BLAS specification, and Unity Mathematics. One
of the examples picked was the 2D rotation matrix multiplication with a target vector. A rotation

matrix has the form:

[cos(@) —sm(é’)] (13)

sin(0) cos(0)

Combining rotations of various sizes produced metamorphic tests that checked whether a set of
rotations that sum up to 360° leaves the vector in the original position within the floating point

precision limits. Here is an example of such MRs (Listing 17).

(TC(Rotatel20(), Rotatel120(), Rotate(120)),
0TC(Rotate360())

Listing 17: MR for rotation matrix

Such metamorphic relations bring up an interesting use case for metamorphic testing, which aims
at validating reversible functions — a type of computation that a mirror operation like encryption-
decryption procedure can cancel out, or when the operation is reversible to itself, such as the
NOT operator. The second variant is very valuable for quantum computing algorithm testing,
where each operation is modeled as a unitary matrix — a matrix which, if multiplied by its inverse,

returns the identity matrix [YMOS].

UxU =T (14)

Testing reversible computing scenarios may be the natural use case for metamorphic testing
techniques. Analogous to matrix multiplication, another test conducted was in text encoding-
decoding procedures, where a certain text string was converted into a specific encoding, like
UTF-8/16/32 and others. The goal was to validate such a conversion library. In the case of C++,

libiconv was evaluated.

(TC(EncodeString(input[0], UTF-8,)),

O0TC(EncodeString(initialState[0], C99,) EncodeString(
initialState[0], UTF-16,) EncodeString(initialState[0],
UTF-16,) EncodeString(initialState[0], C99,) EncodeString(
initialState[0], UTF-8,))

Listing 18: Text Encoding MR

40

As shown in Listing 18, metamorphic relation for encoding/decoding procedures can help testing
whether it is possible to make a full “round-trip” of text encoding without data loss — if both
initial and follow-up states, after encoding the text to the same type still produce the same string,

no data was lost, and the test has passed.

7.4. Generating MRs for data structures

Another use case of a proposed metamorphic relation generator is the evaluation of data structures.
Since a definition for a data structure typically contains a set of functions that can be used to
interface with said data structure, combining calls to such methods may represent many usage
scenarios, some of which may be proper metamorphic relations. A function for a data structure
could be a simple constructor function that returns an initialized and unmodified object or an
object with some default starting value. Using member functions as transformers, it is possible to

emulate the typical usage scenario, thus making MRs more representative of real-world usage.

(TC(Append(base, A) & Append(base, A) & Append(base, A) &
Append(base, A)),
OTC(Append (output, AA), Append(output, AA)))

Listing 19: Most notable MR for std::string with default value constructor

Another tested function implementation was a concatenation of two sequences. With initial values
being set to empty strings, identical sets of arguments, and transforms, input and output transform

chains were different to accommodate the tested function.

(TC(Append(i_1, A)),
TC(Append(i_2, A)),
OTC(Append (output, A), Append(output, A))

Listing 20: Most notable MR for std::string with concatenation as a tested function

7.5. Metamorphic testing of Post-Conditions

Metamorphic relation generation for a given function may indicate the existence of certain post-
conditions or a contract that is followed by the software under test. Since the generation happens
in a black-box scenario, the MR generator “predicts” the specific change to the input and the
output states, which can be later formalized. For example, one could consider a typical “Tax

Calculator” scenario, for which a post condition might look like the following (Listing 21).

if income > 60000 then tax = income/3

else if income > O then tax = income/4

Listing 21: Post-Condition for a tax calculator

41

If the current implementation of said function is considered correct, the result of MR generation for
it can also be considered valid and stored as a test oracle. For future reference, the MR generation
process becomes a test, and even the slightest change in generated metamorphic relations will
indicate a change in the business logic, which may need to be addressed. While proper unit tests
will catch glaring failures, metamorphic tests are meant to capture less obvious changes in the

logic in case of more complex conditions or a discrepancy in floating-point computations.

42

8. Results

In this work, the following results were achieved:

1. Aya, a method of generating MRs for an arbitrary function during runtime, has been proposed.

2. Aya has been tested against typical mathematical functions and more complex data types, such
as matrices and strings with encoding metadata, with produced MRs reaching mutation scores
on par with analogous solutions.

3. It was observed that the MR generation process is reactive to code mutations, opening up an
option of using such a generator as a standalone test.

4. Aya produces MRs by searching for matching input and output transform chains. It was
observed that large transform chains are not necessarily more efficient, generating a large
number of redundant MRs. Tests suggested that it’s best to start with 1-2 transforms in a chain,
then increase the size if needed.

5. It was learned that mutation testing allows for efficiently removing redundant MRs, leaving

only beneficial metamorphic relations for re-usability in automated tests.

The following topical sections present further discussion and examples of the results.

8.1. Effectiveness of MR Generator

The metamorphic relations were validated additionally by employing mutation testing techniques.
For example, the mutations used were a random comparison operator flip, a change to a constant
value, a change of a return value, or a random change to one of the arithmetic operators. It
was observed that for typical mutations, MRs generated for the original function are losing their
previous success rates when being tested against mutated code, indicating a reaction to a mutation.
Table 3 shows the average change in non-zero success rates. Mutation testing has also proven to
be a valid method of filtering redundant or ineffective MRs — if the metamorphic relation is still

valid on a mutated test, then it can be discarded.

Function Original (%) Mutated(%)
Tax 96 87

Cos 98 7

Sin 95 5
libiconv.Encode 100 70

Pow 100 80

Table 3. Average change in non 0 % Success Rate MRs

8.2. Effect of Transform Chain Lengths

Conducted measurements of transform chain length efficiency have shown that larger collections
of transformations do not necessarily lead to universally better results. The most crucial factor is

that specific transformers may cancel out. For example, mul(z, 2), div(z,2) will yield the same

43

outcome as mul(x,1) with a shorter transform chain. For example, every tested transform chain
combination could detect mutations in the tax calculator function, effectively reaching a mutation
score of 100%. However, the number of redundancies produced was very large — the vast majority
of produced MRs had a success rate of 0%. Since many more new redundant combinations are
added, the relative efficiency of larger transform chains decreases, as shown in Table 4. For this
reason, it may be best to start as small as possible, with transform chains 1-1 or 1-2, and iterate
from there. This also coincides with observations made by authors of MR scout, where certain

MRs are essentially reversible operations combined, like push and pop methods in a Stack class
[XTZ*'24].

Input TC Length | Output TC Length Redundant MRs
1 1 88%
1 2 89%
2 1 90%
2 2 90%
3 1 95%

Table 4. Relation between transform chains and mutation score for the Tax Calculator Function

8.3. Comparison With Analogous Solutions

It is hard to compare Aya to other solutions because most analogous implementations are meant
for the Java programming language, while Aya is written in C++. However, similar to GenMorph
[AT]"24], projects tested were standard mathematical functions from the cmath library used in
C++. It was decided to compare how MR generators perform to regular unit tests generated
for a given function. Tables 5 and 6 show the mutation scores for given functions, achieved by
Aya and GenM orph, alongside the mutation scores achieved by respective unit tests. Values for

GenMorph tests are retrieved from the respective paper [AT]"24].

Function Aya MS LLM-generated unit
tests (Grok 3)

sin 100% 100%

acos 90% 100%

tan 80% 100%

log10 100% 100%

pow 57% 100%

Table 5. Achieved Mutation Scores, Aya

44

Function GenMorph MS Generated Unit Tests,
Randoop

sin 60% 70%

acos 9% 93%

tan 38% 76%

log10 6% 100%

pow 69% 70%

Table 6. Achieved Mutation Scores, GenMorph, [AT]*24]

In general, Aya has performed similarly to GenMorph, considering the selected transformations

and sample inputs used. This observation suggests that the effectiveness of Aya can be on par

with the closest analogous MR generation approach.

45

Conclusions

Having the Aya prototype developed and experiments conducted, the following conclusions were

made:

1. MR generator as a test — Running MR generation during runtime allows capturing program
behavior on a real platform. The final distribution of success rates for each MR indicates
value ranges for which a particular MR is valid. This observation opens up a potential for the
generator to serve as an automated test.

2. New metamorphic relation patterns — The Fundamental problem in metamorphic testing
is that it heavily depends on how a tester perceives and understands the software they are
working with [CKL*18]. This adds bias to metamorphic relations created for the program under
test. Automated iteration over potential transformations reduces the effect of bias in MT, thus
allowing for new patterns to be discovered since different perspectives are checked.

3. Reversible computation testing — Naturally reversible operations like encoding/decoding
and matrix operations like vector rotation, by definition, are proper MRs and have been
validated as such during this work. This means the metamorphic relation generator becomes
a go-to test case generation technique capable of quickly testing reversible functions under
various conditions, minimizing the labor needed.

4. Metamorphic testing as a library — Universal runtime-based metamorphic relation detection
can be integrated into existing projects as a dynamic library, without imposing noticeable
changes in the infrastructure needed to start using metamorphic testing techniques. This makes
experimentation and spike activities related to metamorphic testing significantly easier, helping
to determine whether such a testing method suits the project.

5. Improvement of a test coverage, not a replacement — Metamorphic relation can function
as a complete test only if it matches the specification of a program. In cases where such
information is not present, nor basic test oracles are available to verify the core functionality of

a program, metamorphic relations on their own will pose a risk of false security.

46

References

[AEC22]

[ASAT20]

[ATA"21]

[AT]*24]

[BGE*21]

[CKL"18]

[CR99]

[CT21]

E. Altamimi, A. Elkawakjy, C. Catal. Metamorphic relation automation: Rationale,
challenges, and solution directions. Journal of Software: Evolution and Process. 2022,
volume 35. Available from: https://doi.org/10.1002/smr.2509.

J. Ayerdi, S. Segura, A. Arrieta, G. Sagardui, M. Arratibel. QoS-aware Metamorphic
Testing: An Elevation Case Study. In: 2020 IEEE 31st International Symposium
on Software Reliability Engineering (ISSRE). 2020, pp. 104—114. Available from:
https://doi.org/10.1109/ISSRE5003.2020.00019.

J. Ayerdi, V. Terragni, A. Arrieta, P. Tonella, G. Sagardui, M. Arratibel. Generating
metamorphic relations for cyber-physical systems with genetic programming: an
industrial case study. In: ESEC/FSE 2021: Proceedings of the 29th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. 2021, pp. 1264—1274. Available from: https://doi.org/10.
1145/3468264.3473920.

J. Ayerdi, V. Terragni, G. Jahangirova, A. Arrieta, P. Tonella. GenMorph: Automat-
ically Generating Metamorphic Relations via Genetic Programming. 2024. Available
from: https://doi.org/10.1109/TSE.2024.3407840.

A. Blasi, A. Gorla, M. D. Ernst, M. Pezze, A. Carzaniga. MeMo: Automatically
identifying metamorphic relations in Javadoc comments for test automation. Journal
of Systems and Software. 2021, volume 181, p. 111041. issn 0164-1212. Available
from: https://doi.org/https://doi.org/10.1016/j.jss.2021.111041.

T. Y. Chen, F.-C. Kuo, H. Liu, P.-L. Poon, D. Towey, T. H. Tse, Z. Q. Zhou.
Metamorphic Testing: A Review of Challenges and Opportunities. ACM Comput.
Surv. 2018, volume 51, number 1. issn 0360-0300. Available from: https://doi.
org/10.1145/3143561.

S. Cunning, J. Rozenblit. Automatic test case generation from requirements specifica-
tions for real-time embedded systems. In: IEEE SMC’ 99 Conference Proceedings. 1999
IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.99CH37028).
1999, volume 5, 784-789 vol.5. Available from: https://doi.org/10.1109/
ICSMC.1999.815651.

T.Y. Chen, T. H. Tse. New visions on metamorphic testing after a quarter of a cen-
tury of inception. In: Proceedings of the 29th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering.
Athens, Greece: Association for Computing Machinery, 2021, pp. 1487—-1490. ES-
EC/FSE 2021. isbn 9781450385626. Available from: https://doi.org/10.1145/
3468264 .3473136.

47

https://doi.org/10.1002/smr.2509
https://doi.org/10.1109/ISSRE5003.2020.00019
https://doi.org/10.1145/3468264.3473920
https://doi.org/10.1145/3468264.3473920
https://doi.org/10.1109/TSE.2024.3407840
https://doi.org/https://doi.org/10.1016/j.jss.2021.111041
https://doi.org/10.1145/3143561
https://doi.org/10.1145/3143561
https://doi.org/10.1109/ICSMC.1999.815651
https://doi.org/10.1109/ICSMC.1999.815651
https://doi.org/10.1145/3468264.3473136
https://doi.org/10.1145/3468264.3473136

[DGR17]

[Don19]

[FB]

[GCO8]

[Got23]

[HK18]

[How76]

[JCH"16]

[KB13]

A. Di Franco, H. Guo, C. Rubio-Gonzélez. A comprehensive study of real-world
numerical bug characteristics. In: 2017 32nd IEEE/ACM International Conference on
Automated Software Engineering (ASE). 2017, pp. 509-519. Available from: https:
//doi.org/10.1109/ASE.2017.8115662.

A. F. Donaldson. Metamorphic Testing of Android Graphics Drivers. In: 2019
IEEE/ACM 4th International Workshop on Metamorphic Testing (MET). 2019, pp. 1-
1. Available from: https://doi.org/10.1109/MET.2019.00008.

FB. Testing Web Enabled Simulation at Scale Using Metamorphic Testing - Meta Research
— research. facebook.com [https://research. facebook. com/publications/
testing - web - enabled - simulation - at - scale - using — metamorphic -
testing/]. [No date]. [Accessed 03-06-2024].

K. Ghani, J. A. Clark. Strengthening Inferred Specifications using Search Based
Testing. In: 2008 IEEE International Conference on Software Testing Verification and
Validation Workshop. 2008, pp. 187—194. Available from: https://doi.org/10.
1109/ICSTW.2008.39.

J. Gotborg. Influence of Automatically Constructed Non-Equivalent Mutants on Predic-
tions of Metamorphic Relations. 2023.

B. Hardin, U. Kanewala. Using Semi-Supervised Learning for Predicting Metamor-
phic Relations. In: 2018 IEEE/ACM 3rd International Workshop on Metamorphic
Testing (MET). 2018, pp. 14-17.

W. Howden. Reliability of the Path Analysis Testing Strategy. IEEE Transactions on
Software Engineering. 1976, volume SE-2, number 3, pp. 208—215. Available from:
https://doi.org/10.1109/TSE.1976.233816.

G. Jahangirova, D. Clark, M. Harman, P. Tonella. Test oracle assessment and im-
provement. In: Proceedings of the 25th International Symposium on Software Test-
ing and Analysis. Saarbriicken, Germany: Association for Computing Machinery,
2016, pp. 247-258. ISSTA 2016. isbn 9781450343909. Available from: https:
//doi.org/10.1145/2931037.2931062.

jkoritzinsky. Platform Invoke (P/Invoke) - NET — learn.microsoft.com [https://
learn.microsoft.com/en-us/dotnet/standard/native-interop/pinvoke].
[No date]. [Accessed 02-01-2025].

U. Kanewala, J. M. Bieman. Using machine learning techniques to detect metamor-
phic relations for programs without test oracles. In: 2013 IEEE 24th International
Symposium on Software Reliability Engineering (ISSRE). 2013, pp. 1-10. Available
from: https://doi.org/10.1109/ISSRE.2013.6698899.

48

https://doi.org/10.1109/ASE.2017.8115662
https://doi.org/10.1109/ASE.2017.8115662
https://doi.org/10.1109/MET.2019.00008
https://research.facebook.com/publications/testing-web-enabled-simulation-at-scale-using-metamorphic-testing/
https://research.facebook.com/publications/testing-web-enabled-simulation-at-scale-using-metamorphic-testing/
https://research.facebook.com/publications/testing-web-enabled-simulation-at-scale-using-metamorphic-testing/
https://doi.org/10.1109/ICSTW.2008.39
https://doi.org/10.1109/ICSTW.2008.39
https://doi.org/10.1109/TSE.1976.233816
https://doi.org/10.1145/2931037.2931062
https://doi.org/10.1145/2931037.2931062
https://learn.microsoft.com/en-us/dotnet/standard/native-interop/pinvoke
https://learn.microsoft.com/en-us/dotnet/standard/native-interop/pinvoke
https://doi.org/10.1109/ISSRE.2013.6698899

[KBB15]

[KKNOO]

[LAS14]

[LLC12]

[LSN18]

[Man]

[McM11]

[MKH"08]

[Nak17]

[NME19]

U. Kanewala, J. Bieman, A. Ben-Hur. Predicting metamorphic relations for testing
scientific software: A machine learning approach using graph kernels. Software Testing,
Verification and Reliability. 2015, volume 26, n/a—n/a. Available from: https://
doi.org/10.1002/stvr.1594.

M. Kawahito, H. Komatsu, T. Nakatani. Effective null pointer check elimination
utilizing hardware trap. SIGPLAN Not. 2000, volume 35, number 11, pp. 139-149.
issn 0362-1340. Available from: https://doi.org/10.1145/356989.357002.

V. Le, M. Afshari, Z. Su. Compiler Validation via Equivalence Modulo Inputs.
ACM SIGPLAN Notices. 2014, volume 49. isbn 978-1-4503-2784-8. Available from:
https://doi.org/10.1145/2594291.2594334.

H. Liu, X. Liu, T. Y. Chen. A New Method for Constructing Metamorphic Relations.
In: 2012 12th International Conference on Quality Software. 2012, pp. 59-68. Available
from: https://doi.org/10.1109/QSIC.2012.10.

X. Lin, M. Simon, N. Niu. Hierarchical Metamorphic Relations for Testing Scientific
Software. In: 2018 IEEE/ACM 13th International Workshop on Software Engineering
for Science (SE4Science). 2018, pp. 1-8.

L. Manpages. signal-safety(7) - Linux manual page — man7.org [https://man7 .
org/linux/man-pages/man7/signal-safety.7.html]|. [No date|. [Accessed
09-01-2025].

P. McMinn. Search-Based Software Testing: Past, Present and Future. In: 2011
IEEE Fourth International Conference on Software Testing, Verification and Validation
Workshops. 2011, pp. 153-163. Available from: https://doi.org/10.1109/
ICSTW.2011.100.

C. Murphy, G. E. Kaiser, L. Hu, L. Wu. Properties of machine learning applications
for use in metamorphic testing. In: Proceedings of the Twentieth International Conference
on Software Engineering & Knowledge Engineering (SEKE’2008), San Francisco, CA,
USA, July 1-3, 2008. Knowledge Systems Institute Graduate School, 2008, pp. 867—
872.

S. Nakajima. Generalized Oracle for Testing Machine Learning Computer Programs.
In: SEFM Workshops. 2017. Available also from: https://api.semanticscholar.
org/CorpusID:3496745.

A. Nair, K. Meinke, S. Eldh. Leveraging Mutants for Automatic Prediction of
Metamorphic Relations using Machine Learning. In: MaLTeSQuE 2019: Proceedings
of the 3rd ACM SIGSOFT International Workshop on Machine Learning Techniques for
Software Quality Evaluation. 2019, pp. 1-6. Available from: https://doi.org/10.
13140/RG.2.2.30163.94244.

49

https://doi.org/10.1002/stvr.1594
https://doi.org/10.1002/stvr.1594
https://doi.org/10.1145/356989.357002
https://doi.org/10.1145/2594291.2594334
https://doi.org/10.1109/QSIC.2012.10
https://man7.org/linux/man-pages/man7/signal-safety.7.html
https://man7.org/linux/man-pages/man7/signal-safety.7.html
https://doi.org/10.1109/ICSTW.2011.100
https://doi.org/10.1109/ICSTW.2011.100
https://api.semanticscholar.org/CorpusID:3496745
https://api.semanticscholar.org/CorpusID:3496745
https://doi.org/10.13140/RG.2.2.30163.94244
https://doi.org/10.13140/RG.2.2.30163.94244

[RKK20]

[SDL*23]

[SDT*17]

[SFP*21]

[SG20]

[SG21]

[STWT23]

[SZ09]

[XTZ*24]

[XWY19]

K. Rahman, I. Kahanda, U. Kanewala. MRpredT: Using Text Mining for Meta-
morphic Relation Prediction. In: Proceedings of the IEEE/ACM 42nd International
Conference on Software Engineering Workshops. Seoul, Republic of Korea: Association
for Computing Machinery, 2020, pp. 420-424. ICSEW’20. isbn 9781450379632.
Available from: https://doi.org/10.1145/3387940.3392250.

C.-A. Sun, H. Dai, H. Liu, T. Y. Chen. Feedback-Directed Metamorphic Testing.
ACM Trans. Softw. Eng. Methodol. 2023, volume 32, number 1. issn 1049-331X.
Available from: https://doi.org/10.1145/3533314.

S. Segura, A. Durén, J. Troya, A. R. Cortés. A Template-Based Approach to De-
scribing Metamorphic Relations. In: 2017 IEEE/ACM 2nd International Workshop
on Metamorphic Testing (MET). 2017, pp. 3-9. Available from: https://doi.org/
10.1109/MET.2017.3.

C.-A. Sun, A. Fu, P.-L. Poon, X. Xie, H. Liu, T. Y. Chen. METRIC"+: A Metamor-
phic Relation Identification Technique Based on Input Plus Output Domains. IEEE
Transactions on Software Engineering. 2021, volume 47, number 9, pp. 1764—-1785.
Available from: https://doi.org/10.1109/TSE.2019.2934848.

H. Spieker, A. Gotlieb. Adaptive metamorphic testing with contextual bandits. Journal
of Systems and Software. 2020, volume 165, p. 110574. issn 0164-1212. Available
from: https://doi.org/https://doi.org/10.1016/j.jss.2020.110574.

H. Spieker, A. Gotlieb. Summary of: Adaptive Metamorphic Testing with Contextual
Bandits. In: 2021 14th IEEE Conference on Software Testing, Verification and Vali-
dation (ICST). 2021, pp. 275-277. Available from: https://doi.org/10.1109/
ICST49551.2021.00037.

C.-a. Sun, H. Jin, S. Wu, A. Fu, Z. Wang, W. Chan. Identifying metamorphic
relations: A data mutation directed approach. Software: Practice and Experience. 2023,
volume 54. Available from: https://doi.org/10.1002/spe.3280.

L. Shan, H. Zhu. Generating Structurally Complex Test Cases By Data Mutation: A
Case Study Of Testing An Automated Modelling Tool. The Computer Journal. 2009,
volume 52, number 5, pp. 571-588. Available from: https://doi.org/10.1093/
comjnl/bxm043.

C. Xu, V. Terragni, H. Zhu, J. Wu, S.-C. Cheung. MR-Scout : Automated Synthesis
of Metamorphic Relations from Existing Test Cases. ACM Transactions on Software
Engineering and Methodology. 2024. Available from: https://doi.org/10.1145/
3656340.

Z. Xiang, H. Wu, F. Yu. A Genetic Algorithm-Based Approach for Composite
Metamorphic Relations Construction. Information. 2019, volume 10, p. 392. Available
from: https://doi.org/10.3390/info10120392.

50

https://doi.org/10.1145/3387940.3392250
https://doi.org/10.1145/3533314
https://doi.org/10.1109/MET.2017.3
https://doi.org/10.1109/MET.2017.3
https://doi.org/10.1109/TSE.2019.2934848
https://doi.org/https://doi.org/10.1016/j.jss.2020.110574
https://doi.org/10.1109/ICST49551.2021.00037
https://doi.org/10.1109/ICST49551.2021.00037
https://doi.org/10.1002/spe.3280
https://doi.org/10.1093/comjnl/bxm043
https://doi.org/10.1093/comjnl/bxm043
https://doi.org/10.1145/3656340
https://doi.org/10.1145/3656340
https://doi.org/10.3390/info10120392

[YMOS]

[ZCH" 14]

[Zhul5]

[ZZP*+17]

N. S. Yanofsky, M. A. Mannucci. Quantum Computing for Computer Scientists.
Ist edition. USA: Cambridge University Press, 2008. isbn 0521879965.

J. Zhang, J. Chen, D. Hao, Y. Xiong, B. Xie, L. Zhang, H. Mei. Search-based infer-
ence of polynomial metamorphic relations. In: Proceedings of the 29th ACM/IEEE
International Conference on Automated Software Engineering. Vasteras, Sweden: Associ-
ation for Computing Machinery, 2014, pp. 701-712. ASE *14. isbn 9781450330138.
Available from: https://doi.org/10.1145/2642937.2642994.

H. Zhu. JFuzz: A Tool for Automated Java Unit Testing Based on Data Mutation
and Metamorphic Testing Methods. In: 2015 Second International Conference on
Trustworthy Systems and Their Applications. 2015, pp. 8—15. Available from: https:
//doi.org/10.1109/TSA.2015.13.

P. Zhang, X. Zhou, P. Pelliccione, H. Leung. RBF-MLMR: A Multi-Label Meta-
morphic Relation Prediction Approach Using RBF Neural Network. IEEE Access.
2017, volume 5, pp. 21791-21805. Available from: https://doi.org/10.1109/
ACCESS.2017.2758790.

51

https://doi.org/10.1145/2642937.2642994
https://doi.org/10.1109/TSA.2015.13
https://doi.org/10.1109/TSA.2015.13
https://doi.org/10.1109/ACCESS.2017.2758790
https://doi.org/10.1109/ACCESS.2017.2758790

Appendices

Source Code for experiments. The prototype written in C++ can be found in this repository:

https://github.com/KernalPanik/mt-gen-poc.git

The final source code is in the GitHub environment https://github.com/KernalPanik/Aya. Please

refer to the README for the instructions on executing a program.

English-Lithuanian term glossary.

* Metamorphic Relation — Metamorfinis rysys.Programos savybés, nurodancios, kaip tam tikros
jivesCiy transformacijos, tam tikroje apibrézimo srityje keicia iSvestis, leidziancios testuoti pro-
grama be tikslaus norimos iSvesties zinojimo.

* Metamorphic Testing — Metamorfinis testavimas. Testavimo procesas, paremtas naujy testavimo
atvejy kurimu remiantis metamorfiniy sarysiy koncepcija.

* Category-Partition Method — Kategorijy-Daliy metodas. Specifikacija paremtas testavimo atvejy
gavimo metodas, paremtas programos skaidymu j buseny aprasymus vadinamus kategorijomis ir
tolimesniu kategorijy padalijimy j rézius — galimas jvesties ir iSvesties reikSmes kategorijoje.

* Search-Based Software Engineering — Paieska grindziama programy sistemy inzinerija. Pro-
gramy sistemy inzinerijos atSaka, kurioje problemos sprendziamos taikant genetinj programavima
bei optimizacijos metodus, iteratyviai pagerinant programos rezultata naudojant pradinius rezul-

tatus.

52

https://github.com/KernalPanik/mt-gen-poc.git
https://github.com/KernalPanik/Aya

	Contents
	Santrauka
	Abstract
	Introduction
	1. Preliminaries
	1.1. Test Oracle Problem
	1.2. Metamorphic Testing
	1.3. Metamorphic Relations

	2. Literature Review
	2.1. Applications of Metamorphic Testing
	2.2. Existing Metamorphic Testing Methodologies
	2.2.1. Metamorphic Relation Detection Using Machine Learning
	2.2.2. Test Case Based Metamorphic Relations
	2.2.3. Specification Based Metamorphic Relations
	2.2.4. search-based Software Engineering (SBSE) Solutions for Metamorphic Relation Detection

	2.3. Summary of methods

	3. Feasibility Study for Metamorphic Relation Detection Techniques
	4. Summary of Literature Review
	5. Proposed MR generation method
	5.1. API design
	5.1.1. Usage of Aya API from C#
	5.1.2. Final structure of the provided API

	5.2. Metamorphic relations as a data structure
	5.2.1. Runtime function signature inference
	5.2.2. Variable state capture and result equivalency checks

	6. Updated MR search algorithm
	6.1. Basic MR generation

	7. MR generation and tests
	7.1. Metamorphic relation filtering and validation
	7.2. Crash detection
	7.3. Generating MRs for mathematical functions
	7.3.1. MR generation for reversible computations

	7.4. Generating MRs for data structures
	7.5. Metamorphic testing of Post-Conditions

	8. Results
	8.1. Effectiveness of MR Generator
	8.2. Effect of Transform Chain Lengths
	8.3. Comparison With Analogous Solutions

	Conclusions
	References
	Appendices

