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Santrauka

Pusiau prižiūrimas mokymasis (SSL) siūlo perspektyvų būdą spręsti žymėtųjų duomenų trūkumo
medicininių vaizdų segmentavime problemą – tai itin svarbus iššūkis atliekant tokias užduotis kaip
kasos vėžio nustatymas kompiuterinės tomografijos (KT) tyrimuose. Šiame magistro darbe vertina-
mas dviejų žinomų SSL algoritmų – „Mean Teacher“ ir „MixMatch“ – efektyvumas 2D kasos KT
vaizdų segmentavimui. Tyrime lyginamas jų našumas su patikimu prižiūrimu „U-Net“ pradiniu
lygiu, kai jie apmokyti naudojant labai ribotą žymėtųjų duomenų rinkinį ir didesnį nežymėtųjų
duomenų telkinį, gautą iš „Medical Segmentation Decathlon Pancreas-CT“ duomenų rinkinio.

Eksperimentai parodė, kad nors prižiūrimas pradinis lygis po išsamių mokymų pasiekė gerą
našumą su ribotais žymėtais duomenimis, nei „Mean Teacher“, nei „MixMatch“, esant išbandytoms
konfigūracijoms, neparodė reikšmingo pagerėjimo, palyginti su šiuo pradiniu lygiu. Buvo nustatyti
pagrindiniai iššūkiai, įskaitant mokytojo modelio nestabilumą „Mean Teacher“ sistemoje ir prastos
kokybės pseudožymių generavimą, dėl kurio sumažėjo našumas naudojant „MixMatch“ metodą.
Šios problemos buvo ypač ryškios esant mažai duomenų.

Šis tyrimas prisideda prie griežto šių SSL metodų įvertinimo sudėtingoje klinikinėje prak-
tikoje, išryškinant praktinius modelio stabilumo ir pseudoetikečių patikimumo apribojimus, kai
trūksta anotacijų. Išvados pabrėžia, kaip sudėtinga efektyviai panaudoti nepažymėtus duomenis
šiai užduočiai atlikti, ir suteikia įžvalgų apie būsimą patikimesnių pusiau prižiūrimų medicininio
vaizdavimo metodų kūrimą.

Raktiniai žodžiai: pusiau prižiūrimas mokymasis, kasos vėžys, KT vaizdų segmentavimas,
vidurkio nustatymas mokytoju, „MixMatch“, gilusis mokymasis, medicininis vaizdavimas, riboti
žymėti duomenys.

2



Abstract

Semi-supervised learning (SSL) offers a promising avenue to address the scarcity of labeled data
in medical image segmentation, a critical challenge for tasks like detecting pancreatic cancer from
Computed Tomography (CT) scans. This Master’s thesis evaluates the efficacy of two prominent
SSL algorithms, Mean Teacher and MixMatch, for 2D pancreatic CT image segmentation. The
study compares their performance against a robust supervised U-Net baseline when trained with a
severely limited set of labeled data and a larger pool of unlabeled data derived from the Medical
Segmentation Decathlon Pancreas-CT dataset.

Experiments revealed that while the supervised baseline achieved strong performance with
limited labeled data after extensive training, neither Mean Teacher nor MixMatch, under the tested
configurations, demonstrated a significant improvement over this baseline. Key challenges were
identified, including teacher model instability in the Mean Teacher framework and the generation of
poor-quality pseudo-labels leading to performance degradation in the MixMatch approach. These
issues were particularly pronounced in the low-data regime.

This research contributes a rigorous evaluation of these SSL techniques in a challenging clinical
application, highlighting practical limitations concerning model stability and pseudo-label reliabil-
ity with scarce annotations. The findings underscore the complexities of effectively leveraging unla-
beled data for this task and provide insights for future development of more robust semi-supervised
methods for medical imaging.

Keywords: Semi-Supervised Learning, Pancreatic Cancer, CT Image Segmentation, Mean
Teacher, MixMatch, Deep Learning, Medical Imaging, Limited Labeled Data.
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1. Introduction

Machine learning, particularly deep learning, has demonstrated significant potential in transforming
medical image analysis. However, many state-of-the-art models rely on supervised learning, which
necessitates large, meticulously annotated datasets. In the medical domain, acquiring such labeled
data is often a formidable challenge due to the high cost, time-consuming nature of annotation, and
the requisite involvement of clinical experts [Pei+18]. This data scarcity bottleneck can impede the
development and deployment of robust diagnostic and prognostic tools.

Semi-Supervised Learning (SSL) emerges as a compelling paradigm to address this limitation.
Operating at the confluence of supervised and unsupervised learning, SSL techniques are designed
to leverage information from both a small set of labeled examples and a typically much larger pool
of unlabeled data [Wu+22]. This dual approach is particularly advantageous in fields like medi-
cal diagnostics, where unlabeled medical images are often abundant but labeled counterparts are
scarce [RVR18]. By effectively utilizing unlabeled data, SSL aims to enhance model performance,
improve generalization, and reduce the dependency on extensive manual annotation efforts.

1.1. The Challenge of Pancreatic Cancer and the Role of CT Imaging

Pancreatic cancer remains one of the most lethal malignancies worldwide, primarily due to its often
late-stage diagnosis and consequently low five-year survival rates [MKT+18]. Early and accurate
detection is paramount for improving patient prognosis and enabling effective treatment strategies.
Computed Tomography (CT) imaging plays a crucial role in the diagnostic pathway for pancre-
atic cancer, providing detailed cross-sectional anatomical information that can reveal the presence,
extent, and characteristics of tumors.

However, the manual or even automated segmentation of pancreatic tumors from CT scans is
a notably challenging task due to several intrinsic factors. The pancreas itself is an anatomically
complex organ, situated deep within the abdomen and often exhibiting indistinct boundaries with
adjacent organs and soft tissues. Furthermore, pancreatic tumors can present with significant vari-
ability in their appearance, including shape, size, texture, and contrast enhancement patterns, which
complicates the development of universally robust segmentation algorithms. Compounding these
issues is the limited availability of large, high-quality, publicly annotated CT datasets specifically
for pancreatic cancer segmentation, a consequence of the expert-driven and labor-intensive nature
of medical image annotation [Jia+23].

1.2. Semi-Supervised Learning for Pancreatic Cancer Segmentation

Given the challenges in data acquisition and the critical need for improved diagnostic tools, SSL
offers a promising avenue for advancing pancreatic cancer segmentation in CT images. By learning
from a combination of limited labeled data and more abundant unlabeled CT scans, SSL algorithms
have the potential to develop models that are more accurate and robust than those trained solely on
small labeled datasets. Enhanced segmentation accuracy can directly contribute to earlier and more
reliable tumor detection, precise localization for treatment planning (such as surgical resection or
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radiotherapy), and better monitoring of treatment response. Ultimately, improvements in segmen-
tation facilitated by SSL could play a vital role in improving clinical outcomes for patients with
pancreatic cancer [SCH+24].

1.3. Aim and Objectives of This Thesis

The primary aim of this thesis is to evaluate and enhance semi-supervised learning algorithms
for pancreatic cancer segmentation in CT images, particularly within a context of limited labeled
data. This work seeks to understand the efficacy and practical challenges of applying established
SSL techniques to this specific medical imaging problem.

The key objectives of this thesis are:

1. To establish robust supervised learning baselines for 2D pancreatic CT segmentation using
a U-Net architecture with varying amounts of labeled data from the Medical Segmentation
Decathlon (MSD) Pancreas-CT dataset [ARB+22].

2. To implement and evaluate two prominent SSL algorithms, namely Mean Teacher [TV17]
and MixMatch [BCG+19], for the pancreatic segmentation task, utilizing a small set of la-
beled data supplemented by a larger pool of unlabeled data.

3. To conduct a comparative analysis of the supervised and semi-supervised approaches, focus-
ing on segmentation accuracy (Dice Similarity Coefficient), training dynamics, and model
behavior.

4. To identify key challenges and limitations encountered during the application of these SSL
methods and to discuss potential reasons for their observed performance.

5. To propose future research directions for enhancing the effectiveness of SSL techniques for
this and similar medical image segmentation tasks based on the insights gained.

1.4. Thesis Outline

This thesis is organized as follows: Chapter 2 provides a review of relevant literature on super-
vised learning for medical image segmentation, the limitations thereof, recent advances in SSL for
medical image analysis, and specific SSL algorithms pertinent to tumor segmentation. Chapter 3
details the dataset used, the image preprocessing and data augmentation pipeline, the evaluation
framework, and the specific implementation details of the supervised baseline, Mean Teacher, and
MixMatch algorithms. Chapter 4 presents the empirical results from all conducted experiments,
including performance metrics and analysis of training dynamics for each approach. Chapter 5.1
offers a comprehensive discussion of the findings, including a comparative analysis, challenges
encountered, limitations of the study, and detailed future research directions. Finally, Chapter 6
summarizes the key contributions and conclusions of this thesis.
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2. Scientific Literature Review

The accurate segmentation of medical images is a cornerstone of modern diagnostics and treatment
planning, particularly in oncology. For challenging cases like pancreatic cancer, precise delineation
of tumors and affected tissues from Computed Tomography (CT) scans is crucial for staging, sur-
gical planning, and monitoring therapeutic response. While supervised deep learning models, es-
pecially U-Net architectures [RFB15], have achieved remarkable success in medical image seg-
mentation [AAR+24], their performance is heavily contingent on the availability of large, expertly
annotated datasets. The creation of such datasets is notoriously time-consuming, expensive, and
requires specialized clinical expertise, posing a significant bottleneck in translating these advanced
models into widespread clinical practice [Pei+18].

Semi-Supervised Learning (SSL) has emerged as a promising paradigm to mitigate this data
scarcity problem. SSL methods aim to effectively utilize information from both a limited set of
labeled samples and a more extensive collection of unlabeled data, thereby enhancing model per-
formance, robustness, and generalization capabilities without a proportional increase in annotation
effort [Wu+22]. This chapter reviews foundational SSL techniques, discusses their application and
evolution within medical imaging, and highlights specific advancements and considerations rele-
vant to the segmentation of pancreatic cancer from CT images, setting the context for the experi-
mental evaluations conducted in this thesis.

2.1. Core SSL Paradigms and Their Relevance in Medical Imaging

Several core SSL strategies have been widely explored, with pseudo-labeling and consistency reg-
ularization being particularly prominent in medical image segmentation contexts [Lee13; SJT16;
YTW+23].

2.1.1. Pseudo-Labeling and Self-Training

Pseudo-labeling, often used interchangeably with self-training, is an intuitive yet powerful SSL
technique. In this approach, a model initially trained on available labeled data is used to generate
predictions (pseudo-labels) for unlabeled samples. High-confidence pseudo-labels are then treated
as if they were true labels and are incorporated into the training set for subsequent model iterations
[CTQ+21]. This iterative process allows the model to progressively learn from the unlabeled data
distribution, effectively expanding its training data.

The primary advantage of pseudo-labeling lies in its simplicity and its ability to leverage large
amounts of unlabeled data. However, its main challenge is the risk of error propagation: if the
initial model generates incorrect pseudo-labels with high confidence, these errors can be reinforced
in subsequent training rounds, potentially leading to performance degradation or confirmation bias.
Therefore, the quality and reliability of the generated pseudo-labels are critical.

To address this, various enhancements have been proposed. Chaitanya et al.[CEK+23] intro-
duced an approach for medical image segmentation that integrates a local contrastive loss with
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pseudo-label-based self-training (Figure 1). This method encourages similar feature representa-
tions for pixels sharing the same pseudo-label or ground truth label while promoting dissimilarity
for pixels with different labels. By focusing on learning discriminative pixel-level features, this
technique aims to improve the precision of segmentation, particularly for delineating fine struc-
tures or tumor boundaries. The application of such refined pseudo-labeling techniques is highly
relevant to pancreatic cancer segmentation, where accurate boundary definition is crucial.

Fig. 1. Conceptual overview of a semi-supervised method integrating pixel-level contrastive loss
with pseudo-labels from unlabeled data and ground truth from limited labeled data, as proposed by
Chaitanya et al. [CEK+23].

2.1.2. Consistency Regularization

Consistency regularization is a cornerstone of many successful SSL algorithms. It operates on the
principle that a model’s predictions should be invariant to small, semantics-preserving perturba-
tions applied to its input or its internal structure. For an unlabeled sample, the model is encouraged
to produce consistent outputs for different augmented versions of that sample, or consistent outputs
between different model states (e.g., student vs. teacher models). This forces the decision boundary
to lie in low-density regions of the input space, leading to smoother and more robust models that
generalize better from limited labeled data [SJT16].

In medical imaging, where data can exhibit significant variability due to acquisition proto-
cols, patient anatomy, and noise, consistency regularization is particularly valuable. For pancreatic
cancer segmentation, it can help models become more resilient to variations in CT scan quality
and subtle differences in tumor appearance. The Mean Teacher algorithm [TV17], which is eval-
uated in this thesis, is a prime example. It maintains two models: a student model that is trained
conventionally, and a teacher model whose weights are an exponential moving average (EMA) of
the student’s weights. Consistency is enforced between the student’s predictions on augmented
unlabeled data and the more stable predictions from the teacher model on differently augmented
versions of the same data. This EMA teacher provides more reliable targets than methods relying
on the student’s own past predictions. Enhancements often involve incorporating uncertainty esti-
mation to weight the consistency loss, ensuring that the student learns more from confident teacher
predictions [PBB+19; YYZ+21].

Lu et al. [LZY+23] (Figure 2) proposed a framework for semi-supervised medical image seg-
mentation that refines consistency regularization by combining it with pseudo-labeling and dual
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consistency guided by uncertainty awareness. Their approach uses a cycle-loss mechanism for
improved uncertainty estimation, leveraging these estimates to selectively apply pseudo-labels and
enhance consistency between student and teacher networks (or multiple decoders within the student
branch). Such sophisticated consistency mechanisms aim to improve the quality of learning from
unlabeled data, which is critical for challenging tasks like pancreatic cancer segmentation where
tumor boundaries can be ambiguous.

Fig. 2. Overview of the framework proposed by Lu et al. [LZY+23] for semi-supervised medical
image segmentation, employing a variant of the Mean Teacher architecture with dual consistency
regularization and uncertainty awareness.

2.1.3. Graph-Based SSL

Graph-based SSL techniques construct a graph where nodes represent data samples (labeled and un-
labeled) and edges encode their relationships or similarities. Label information is then propagated
from labeled nodes to unlabeled nodes through this graph structure [CDY+20]. Graph Convolu-
tional Networks (GCNs) have extended this concept by enabling deep learning directly on graph-
structured data, allowing for the learning of node representations that incorporate information from
their neighborhood.

For medical image segmentation, GCNs can model complex spatial and contextual relation-
ships within images. For instance, Liu et al. [LLH+22] proposed the Graph-Enhanced Pancreas
Segmentation Network (GEPS-Net), which integrates a 3D U-Net with GCNs for pancreatic tu-
mor segmentation from CT scans. This model leverages an uncertainty-guided iterative refinement
strategy for pseudo-label generation. By explicitly modeling relationships between image regions or
superpixels as a graph, GCNs can capture long-range dependencies and contextual cues that might
be missed by standard CNNs operating on local receptive fields. While promising for tasks requir-
ing understanding of intricate anatomical structures, graph-based methods can be computationally
intensive and the construction of meaningful graphs from image data remains a key challenge. As
this thesis focuses on consistency-based and pseudo-label/mixing approaches, graph-based SSL is
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noted here for completeness but not experimentally evaluated.

2.2. Advanced SSL Frameworks and Applications in Oncological Imaging

Building upon core SSL paradigms, more advanced frameworks have been developed, often com-
bining multiple techniques or tailoring them for specific challenges in oncological imaging.

2.2.1. Adaptive and Hybrid Pseudo-Labeling Strategies

To improve the reliability of pseudo-labels, adaptive strategies have been explored. Zhang et al.
[ZZH+23] introduced the BoostMIS framework (Figure 3), which synergizes adaptive pseudo-
labeling with active learning for medical image segmentation. BoostMIS dynamically adjusts
thresholds for accepting pseudo-labels based on model confidence and incorporates consistency
regularization. Its active learning component identifies informative unlabeled samples charac-
terized by low confidence or high uncertainty (estimated via virtual adversarial perturbation and
density-aware entropy). These selected samples are then prioritized for expert annotation and inte-
grated into the training set, creating a closed-loop system that iteratively refines the model by focus-
ing annotation efforts where they are most needed. While demonstrated on MESCC and COVIDx
datasets, the principle of adaptive pseudo-label refinement and targeted annotation is highly relevant
for improving SSL in data-scarce scenarios like pancreatic cancer segmentation.

Fig. 3. Overview of the BoostMIS framework by Zhang et al. [ZZH+23], illustrating modules for
task model training, consistency-based adaptive label propagation, and active learning via adver-
sarial unstability and balanced uncertainty selection.

Another approach to enhance pseudo-labeling is reference-guided generation. Seibold et al.
[SRK+22] proposed a method for semi-supervised semantic segmentation where a small set of
labeled reference images guides the pseudo-labeling of unlabeled images by finding best-matching
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pixels or regions in the reference set. This technique showed strong performance, achieving results
comparable to fully supervised models with substantially fewer labels on X-ray and retinal datasets.
Adapting such exemplar-based strategies to the complex intensity profiles and textural variations
in pancreatic CT scans could offer a way to generate more reliable pseudo-labels, although the
computational cost of dense matching across reference sets needs careful consideration.

2.2.2. Robust Consistency and Auxiliary Task Learning

Enhancing consistency regularization often involves designing more robust perturbation strategies
or incorporating auxiliary tasks to improve feature representation. The work by Lu et al. [LYF+23]
(Figure 4), previously mentioned for its dual consistency, also highlights the use of uncertainty-
aware consistency loss (via KL-divergence) to dynamically adapt to pseudo-label quality, particu-
larly in multi-modal settings (e.g., CT and MRI). Their framework, evaluated on the NIH Pancreas-
CT dataset [RFT+16], demonstrated the benefits of such robust consistency for improving segmen-
tation accuracy.

Fig. 4. Detailed overview of the uncertainty-aware pseudo-label and consistency framework pro-
posed by Lu et al. [LYF+23], utilizing V-Net based student-teacher models and KL-divergence for
semi-supervised medical image segmentation.

Auxiliary task learning can also regularize the shared encoder in an SSL framework, encour-
aging it to learn more generalizable features beneficial for the primary segmentation task. Myro-
nenko [Myr19], in the context of brain tumor segmentation (BraTS 2018 challenge), augmented an
encoder-decoder network with a variational autoencoder (VAE) branch. This VAE branch, sharing
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the encoder, reconstructed the input MRI scans, acting as a regularizer that helped the encoder learn
robust features from limited data and mitigate overfitting, leading to state-of-the-art results. While
not strictly SSL in the consistency/pseudo-labeling sense, the principle of using reconstruction or
other self-supervised auxiliary tasks to improve the encoder’s representations is a valuable strategy
that can be combined with SSL approaches for tasks like pancreatic cancer segmentation.

2.2.3. SSL Specifically for Pancreatic Cancer Imaging

The unique challenges of pancreatic cancer imaging—such as the organ’s complex anatomy, vari-
able tumor appearance, subtle early signs, and often indistinct boundaries on CT—necessitate SSL
approaches that are particularly robust and effective at extracting meaningful features from limited
labeled data. While many general SSL techniques are applicable, their direct translation requires
careful consideration of these domain-specific issues.

The studies by Lu et al. [LYF+23] using the NIH Pancreas-CT dataset and Liu et al. [LLH+22]
with their GEPS-Net for pancreatic tumor segmentation directly address this application area, high-
lighting the potential of uncertainty-aware consistency and graph-based modeling, respectively.
Shao et al. [SCH+24] developed a semi-supervised 3D segmentation framework specifically for
pancreatic tumors using PET/CT images (Figure 5). Their MIM-CMFNet leverages mutual in-
formation minimization and cross-modal fusion, achieving a Dice coefficient of 73.14% on their
pancreatic cancer dataset. This work underscores the benefit of multi-modal data and sophisticated
feature fusion in SSL for this challenging anatomy, though it also notes the increased computational
demands.
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Fig. 5. Structure of the MIM-CMFNet for semi-supervised 3D segmentation of pancreatic tumors
from PET/CT images, proposed by Shao et al. [SCH+24]. It incorporates modules for EasyFusion
(EF), Cross-Modal Fusion (CMF), and Mutual Information Minimization (MIM).

The Mean Teacher [TV17] and MixMatch [BCG+19] algorithms, which form the core of the ex-
perimental investigation in this thesis, represent two distinct and influential SSL paradigms. Mean
Teacher focuses on temporal ensembling and consistency between a student and an EMA-updated
teacher, while MixMatch provides a holistic approach combining data augmentation, pseudo-label
sharpening, and MixUp for consistency. Evaluating their performance and limitations on 2D pan-
creatic CT slice segmentation provides critical insights into their applicability and potential areas
for enhancement in this specific, challenging context. The study by Kurasova et al. [KMŠ+23],
which implemented a framework combining pseudo-labeling with consistency regularization for
pancreatic cancer detection on CT scans (including data from Vilnius University Hospital Santaros
Klinikos), further reinforces the interest in these hybrid SSL strategies for this clinical problem,
reporting high F1 scores and accuracy.

2.3. Relevant Datasets for Pancreatic Cancer Imaging Research

The advancement of SSL algorithms for pancreatic cancer segmentation is critically dependent on
the availability of suitable public datasets. Key resources include The Cancer Imaging Archive
(TCIA) Pancreas-CT dataset [RFT+16], which provides contrast-enhanced CT scans from 82 pa-
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tients with detailed annotations, making it valuable for SSL due to its mix of annotated and unan-
notated data potential. The Medical Segmentation Decathlon (MSD) - Task07 Pancreas dataset
[ARB+22], utilized in this thesis (forming the basis of the preprocessed dataset), offers a larger
cohort of 281 CT scans and has facilitated standardized evaluations. These datasets, among oth-
ers, are instrumental for developing, validating, and comparing SSL techniques aimed at improving
pancreatic cancer diagnosis and treatment planning.

2.4. Common Strategies for Optimizing and Enhancing SSL Algorithms

Beyond the core SSL paradigms, various strategies are employed in the literature to optimize their
performance and enhance their robustness, particularly when applied to challenging medical imag-
ing tasks. These often involve algorithmic refinements, meticulous hyperparameter tuning, special-
ized loss functions, and leveraging external knowledge through transfer learning.

2.4.1. Algorithmic Adjustments and Hybrid Approaches

Standard SSL algorithms are frequently adapted or combined to better address specific dataset char-
acteristics or task requirements. As discussed previously, adaptive pseudo-labeling strategies,
such as in BoostMIS [ZZH+23] (Section 2.2.1), refine the basic pseudo-labeling concept by dy-
namically adjusting label acceptance criteria, thereby improving label quality and mitigating error
propagation.

Similarly, enhanced consistency regularization techniques seek to generate more potent con-
sistency signals. This can involve designing domain-specific data augmentations or enforcing con-
sistency across multiple scales or representations. For instance, Li et al. [DL24] proposed a curricu-
lum consistency learning scheme (Figure 6) that enforces consistency between predictions derived
from the full input image and those from dynamically cropped patches. This multi-scale approach
guides the model to learn features robust to variations in object scale and context, which can be
beneficial in semi-supervised medical image segmentation. The integration of graph-based meth-
ods with CNNs, as seen in GEPS-Net [LLH+22], also represents a hybrid approach to better capture
spatial context.
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Fig. 6. Illustration of a curriculum consistency learning scheme, adapted from Li et al. [DL24],
enforcing consistency between global image predictions and local patch predictions to guide semi-
supervised learning.

2.4.2. Hyperparameter Optimization and Training Strategies

The performance of SSL algorithms is often sensitive to the choice of hyperparameters. Learn-
ing rate optimization is critical; while adaptive optimizers like Adam are common, advanced
schedules (e.g., cosine decay with restarts) or methods like LipschitzLR [MCK+23; YSP21], which
calculates learning rates based on the Lipschitz constant for faster and more stable training, are be-
ing explored. Batch size selection also impacts learning dynamics, with trade-offs between update
stability (larger batches) and finer detail capture or resource constraints (smaller batches) [SK22].

Standard regularization techniques such as L2 regularization (weight decay) and dropout re-
main important in SSL to prevent overfitting to the limited labeled data and to improve general-
ization from unlabeled data [ZG23]. The choice of optimizer itself (e.g., Adam, SGD with mo-
mentum, RMSprop) can influence convergence and final performance. Rigorous hyperparameter
selection, often guided by k-fold cross-validation on the available labeled data, is essential for find-
ing optimal configurations, though this can be challenging with very small labeled sets [Ben12].

2.4.3. Loss Function Engineering

Customizing or weighting loss functions can significantly improve SSL performance by directing
the model’s attention to clinically relevant regions or by addressing class imbalance. For instance,
in segmentation tasks, assigning higher weights in the loss calculation to tumor regions or difficult
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boundary areas can enhance the model’s sensitivity and delineation accuracy. Specialized loss
functions like the Tversky loss [SEG17] or boundary-focused losses [KBD+19] have been developed
to better handle imbalances and improve performance on specific aspects of segmentation, and their
integration into SSL frameworks is an active area of research.

2.4.4. Leveraging Transfer Learning

Transfer learning, where a model is pre-trained on a large, often general-purpose dataset (e.g., Im-
ageNet for natural images, or a large diverse medical imaging dataset) and then fine-tuned on a
smaller, task-specific dataset, is a powerful technique. In the context of SSL for medical imaging,
pre-training can provide a strong feature extractor [KCS+22]. The SSL phase can then fine-tune
this pre-trained model using a combination of limited task-specific labeled data and abundant un-
labeled data from the target domain. This approach allows the model to benefit from generalized
features learned from the source domain while adapting to the nuances of the specific medical task,
potentially leading to better performance than training from scratch, especially when labeled data
is extremely scarce.

The various strategies discussed for enhancing SSL performance underscore the complexity
of optimizing these algorithms for specific applications like pancreatic cancer segmentation. The
effectiveness of any given enhancement is often task-dependent and typically requires careful em-
pirical evaluation, which forms a core motivation for the experimental work undertaken in this
thesis.
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3. Methodology

This chapter details the dataset utilized, the comprehensive image preprocessing pipeline, data aug-
mentation strategies, the experimental framework including data partitioning and evaluation met-
rics, and the common model architecture. Subsequently, it elaborates on the specific implementa-
tions of the supervised baseline, Mean Teacher, and MixMatch algorithms, including their distinct
configurations and training protocols.

3.1. Dataset Description and Challenges

This study utilizes the publicly available Medical Segmentation Decathlon (MSD) Pancreas-CT
dataset [ARB+22]. This dataset comprises 281 contrast-enhanced abdominal CT scans from mul-
tiple institutions, representing a diverse patient population. Each CT scan consists of a series of
axial slices with varying in-plane resolution and slice thicknesses (typically 1.5–2.5 mm). The
primary task is the binary segmentation of pancreatic tissue (including tumors, consolidated as a
single positive class) against the background. Pancreatic segmentation from CT images presents
inherent challenges (Table 1), including the organ’s small and variable size, anatomical variability,
poorly defined boundaries, pathological alterations, and image artifacts [JSD24; RFL+15].

Table 1. Inherent Challenges in Pancreas Segmentation from CT Images.

Challenge Description
Small and Variable Size The pancreas typically occupies a small fraction (e.g.,

1–2%) of the abdominal cavity volume, with considerable
inter-patient variation in size and morphology.

Anatomical Variability Significant differences in pancreatic shape, orientation, and
position relative to other abdominal organs exist across in-
dividuals.

Poorly Defined Boundaries The pancreas is often isodense with adjacent soft tissues
(e.g., duodenum, spleen, blood vessels) and surrounding
adipose tissue, making its boundaries ambiguous on CT
imaging.

Pathological Alterations The presence of tumors, cysts, or inflammation can further
distort the normal pancreatic anatomy and alter tissue ap-
pearance, complicating segmentation.

Image Artifacts CT scans can be susceptible to motion artifacts, beam hard-
ening, and noise, which can degrade image quality and ob-
scure tumor boundaries.
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3.2. Image Preprocessing and Data Augmentation

3.2.1. Standardized Preprocessing Pipeline

A standardized preprocessing pipeline was applied to all 3D CT volumes from the MSD dataset to
ensure data consistency and prepare inputs for the 2D segmentation models. This pipeline, imple-
mented in Python (using NiBabel, SimpleITK, NumPy, TensorFlow), involved:

1. Orientation and Voxel Spacing Standardization: Each NIfTI volume was reoriented to
a canonical RAS (Right-Anterior-Superior) coordinate system and resampled to a uniform
isotropic in-plane voxel spacing of 1.0 × 1.0 mm and an axial slice thickness of 2.5 mm,
using B-spline interpolation for images and nearest-neighbor for masks.

2. Intensity Normalization: Pixel intensities within each 3D volume were clipped to the 1st
and 99th percentiles and then linearly scaled to the range [0, 1].

3. Slice Extraction and 2D Formatting: After 3D normalization and resampling, each pro-
cessed 3D patient CT volume (image and corresponding segmentation mask) was saved as
a distinct NumPy (.npy) file. The image data within each file was stored as a stack of 2D
axial slices with dimensions (D×H×W ), where D represents the number of slices for that
specific patient case, and H and W are the height and width, uniformly 256×256 pixels after
this preprocessing stage. The corresponding binary segmentation mask for each patient case
was saved in an identical (D × 256 × 256) format. During model training and validation,
the data loading pipeline is responsible for reading these per-patient .npy files and yielding
individual 256× 256× 1 2D slices for input to the segmentation models.

This processed dataset, consisting of per-patient .npy files containing stacks of 2D slices, is referred
to as the preprocessed dataset throughout this thesis.

3.2.2. Data Augmentation Strategies

Various data augmentation techniques were applied per 2D slice during training:

• Labeled Data Augmentation: Geometric augmentations were applied identically to images
and masks.

• Unlabeled Data Augmentation (for SSL): Differing policies (weak vs. strong) generated
distinct views for Mean Teacher or pseudo-label generation in MixMatch.

The common augmentation pipeline included:

1. Geometric Transformations: Random horizontal/vertical flips (50% probability each) and
random 90-degree rotations. For SSL distinct views, unique random seeds were used.

2. Intensity and Noise Perturbations:

• Weak Augmentation: Random brightness (±10%) and contrast (factor [0.9, 1.1]).
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• Strong Augmentation: More aggressive brightness (±20%), contrast (factor [0.8, 1.2]),
Gaussian noise (mean 0, stddev 0.05), and Cutout (25% patch, 30% probability).

All augmented pixel values were clipped to [0, 1] [SK19; WLC+22].

3.3. Experimental Framework and Evaluation

3.3.1. Ground Truth Data

Binary segmentation masks from the MSD Pancreas-CT dataset, delineating pancreatic tissue (in-
cluding tumors) as 1 and background as 0, served as ground truth.

3.3.2. Experimental Design and Data Partitioning

For all experiments focusing on the evaluation of semi-supervised learning in a limited data regime,
the preprocessed dataset (derived from 281 unique patient CT scans as described in Section 3.1)
was partitioned based on patient cases. A fixed random seed of 42 was used for all splitting pro-
cedures to ensure reproducibility. The partitioning resulted in the following sets, with each patient
case contributing multiple 2D axial slices after preprocessing (Section 3.2):

• Labeled Training Set (L): Comprised 50 distinct patient cases. Assuming an average of
approximately 102 processed 2D slices per patient case, this set provided roughly 50× 65 =

5100 individual labeled 2D slices for direct supervised training signals.

• Labeled Validation Set (V): Consisted of 30 distinct patient cases, yielding approximately
30× 65 = 3060 individual 2D slices used for model validation during training.

• Unlabeled Training Pool (U): Contained the remaining 201 distinct patient cases (calculated
as 281− 50− 30 = 201). This pool provided approximately 201× 65 = 20,502 individual
2D slices available as unlabeled data for the semi-supervised learning frameworks.

A direct supervised baseline was established by training a model exclusively on all 2D slices
derived from the 50 Labeled Training Set patient cases and validating it on all 2D slices from the 30
Validation Set patient cases. This ensures a fair comparison for assessing the benefits of leveraging
the Unlabeled Training Pool via SSL techniques. The test set defined in the original MSD challenge
(139 cases) was held out and not used during the model development or validation phases reported
in this thesis, being reserved for potential future final model evaluation.

3.3.3. Evaluation Metrics

The performance of the segmentation models was quantitatively assessed using standard metrics
widely adopted in the field of medical image segmentation. These include the Dice Similarity
Coefficient, Precision, and Recall.
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1. Dice Similarity Coefficient (DSC): The DSC is a common metric for evaluating the spa-
tial overlap between two segmentations. It measures the similarity between the predicted
segmentation mask (X) and the ground truth segmentation mask (Y ) [Dic45]. The DSC is
calculated as:

DSC =
2× |X ∩ Y |
|X|+ |Y |

(1)

where:

• X represents the set of pixels belonging to the predicted segmentation mask (e.g., pre-
dicted pancreatic tissue).

• Y represents the set of pixels belonging to the ground truth segmentation mask (e.g.,
actual pancreatic tissue).

• |X ∩ Y | denotes the number of pixels common to both the predicted and ground truth
masks (i.e., the true positives for the foreground class).

• |X| denotes the total number of pixels in the predicted segmentation mask.

• |Y | denotes the total number of pixels in the ground truth segmentation mask.

A DSC value ranges from 0 (indicating no overlap between the prediction and ground truth)
to 1 (indicating perfect overlap). Higher DSC values signify better segmentation accuracy.

2. Precision and Recall: Precision and Recall offer complementary insights into the model’s
classification performance for the foreground class (pancreatic tissue), particularly its ability
to correctly identify positive pixels while minimizing false classifications [MSK22]. They
are defined based on the concepts of True Positives (TP), False Positives (FP), and False
Negatives (FN):

• True Positives (TP): The number of pixels correctly identified by the model as belong-
ing to the pancreatic tissue (i.e., pixels that are part of the pancreas in both the ground
truth and the prediction).

• False Positives (FP): The number of pixels incorrectly identified by the model as pan-
creatic tissue, which are actually background pixels in the ground truth (also known as
Type I error).

• False Negatives (FN): The number of pixels belonging to the pancreatic tissue in the
ground truth that the model failed to identify (i.e., pixels missed by the model, also
known as Type II error).

Using these definitions, Precision and Recall are calculated as:

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)
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Precision measures the proportion of correctly predicted positive pixels among all pixels
predicted as positive by the model (i.e., of all pixels the model called ”pancreas,” how many
actually were pancreas?). High precision indicates a low false positive rate. Recall (also
known as sensitivity or true positive rate) measures the proportion of actual positive pixels
that were correctly identified by the model (i.e., of all actual pancreas pixels, how many did
the model find?). High recall indicates a low false negative rate.

3.3.4. Common Model Architecture and Training Protocol

• Model Architecture: All models used the PancreasSeg U-Net class (Figure 7), with 4
encoder-decoder levels, filter doubling (32 to 512 at bridge), halving in decoder, and skip
connections.

Fig. 7. Schematic of the U-Net architecture (PancreasSeg) employed. Input/output dimensions
are 256× 256× 1 (logits). Filter details are as described in the text.

• Optimization: Adam optimizer (tf.keras.optimizers.Adam) was used.

• Performance Monitoring and Model Selection: Validation DSC was monitored post-
epoch. Early stopping terminated training if validation DSC did not improve for a specified
patience (detailed per experiment). Best DSC epoch weights were saved.
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3.4. Implementation of Supervised and Semi-Supervised Learning Algo-
rithms

3.4.1. Supervised Learning Baseline Implementation

The primary supervised baseline, designed for direct comparison with the SSL methods, utilized all
constituent 2D slices derived from the 50 designated labeled patient cases (from the preprocessed
dataset) for training. Similarly, all 2D slices from the 30 distinct patient cases allocated to the
validation set were used for performance monitoring.

The PancreasSeg model, incorporating a dropout rate of 0.1, was employed. Training was
conducted using the Adam optimizer with an initial learning rate of 1×10−4 and the DiceBCELoss
function. The model was trained for a target of 150 epochs, with early stopping triggered if the
validation DSC did not improve for 25 epochs. A ReduceLROnPlateau learning rate scheduler was
also active. The batch size for training was 8. Steps per epoch were determined by one full pass
through all available training 2D slices (i.e., all slices from the 50 labeled patient cases).

3.5. Mean Teacher Method Implementation

Fig. 8. Conceptual diagram of the Mean Teacher model application, adapted from [LYC+21].

The Mean Teacher SSL algorithm [TV17] was implemented as follows:

1. Student-Teacher Architecture: Identical PancreasSeg U-Nets. Student trained with su-
pervised and consistency loss; teacher weights are EMA of student’s. Dropout p = 0.1 was
applied to student’s encoder/bridge during training.

2. Teacher Model Update Mechanism:

• Initial Direct Copy Phase: For Ncopy = 10 epochs, teacher weights explicitly syn-
chronized with student’s at epoch start.

• EMA Phase: Subsequently, and per-batch within copy phase, teacher weights updated
with EMA decay α = 0.999. Batch Normalization statistics copied directly.

3. Loss Functions: Ltotal = LS + λC(t) · LC .
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• Supervised Loss (LS): DiceBCELoss (wdice = 0.5, wbce = 0.5).

• Consistency Loss (LC): MSE between student’s predictions on strongly augmented
unlabeled views (xuS) and sharpened teacher’s predictions on weakly augmented views
(xuT ). Sharpening used Tsharp = 0.5, logits clipped to [-15, 15].

4. Consistency Weight Schedule (λC(t)): Linearly ramped from 0 to λC,max = 10.0 over
Eramp = 50 epochs, starting after Ncopy epochs.

5. Training Configuration and Hyperparameters (Mean Teacher Experimental Run):
The student model was initialized from a 20-epoch supervised pre-training phase, which
used all 2D slices from the 50 designated labeled patient cases (achieving a validation
DSC of 0.7223 on slices from the 30 validation cases). The subsequent Mean Teacher
SSL phase also utilized all 2D slices derived from the 50 Labeled (L), 30 Validation (V),
and 201 Unlabeled (U) patient cases. This phase targeted 50 epochs. Key hyperparame-
ters, consistent with the experimental run detailed in Section 4.2.2 included: Adam opti-
mizer with a learning rate of 2 × 10−5; batch processing involving 4 labeled and 4 unla-
beled 2D slices per conceptual step; student dropout rate of 0.2; random seed 42. Early
stopping monitored the validation DSC with a patience of 30 epochs. The number of
steps per epoch was calculated as d(Total 2D slices from 50L cases)/4e. Other SSL-specific
parameters such as TEACHER_DIRECT_COPY_EPOCHS (10), BASE_EMA_DECAY (0.999),
SHARPENING_TEMPERATURE (0.5), CONSISTENCY_MAX (10.0), CONSISTENCY_RAMPUP (50
epochs), and the DELAY_CONSISTENCY_FLAG were set as defined in the corresponding ex-
ecution script.

3.6. MixMatch Method Implementation

Fig. 9. Conceptual diagram of the label guessing process in MixMatch, adapted from [BCG+19].

3.6.1. MixMatch Framework.

The MixMatch SSL algorithm [BCG+19] was implemented as follows:

1. Pseudo-Label Generation for Unlabeled Data: For each xu: K = 2 weakly augmented
views averaged, then sharpened with T = 0.5.
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2. Data Augmentation and MixUp: Labeled (Xl) and unlabeled (Xu) data strongly aug-
mented. MixUp αmixup = 0.75 applied separately: Xl with Pl (ground truth), Xu with
Qu (sharpened pseudo-labels).

3. Loss Functions: L = LS + λu(t) · LU .

• Supervised Loss (LS): BCE with logits on mixed labeled data.

• Unsupervised Consistency Loss (LU ): MSE on mixed unlabeled data.

4. Consistency Weight (λu(t)): Linearly ramped from 0 to λu,max = 25.0 over Sramp ≈ 525

steps.

5. Training Configuration (MixMatch Experimental Run): The student model was initial-
ized from the same 20-epoch supervised pre-training on all 2D slices from the 50 labeled
patient cases (validation DSC: 0.7223). The MixMatch SSL phase utilized all 2D slices
from the 50L/30V/201U patient case split and targeted 150 epochs. Key hyperparameters,
consistent with the experimental run detailed in Section 4.3.1, included: Adam optimizer
with an initial learning rate of 5× 10−4 and a cosine decay schedule. The batch size for both
the labeled and unlabeled data iterators was 8. Assuming approximately [Total L Slices,
e.g., 2000] labeled 2D slices from the 50 patient cases, this resulted in steps_per_epoch of
d[Total L Slices]/8e = [Calculated Steps, e.g., 250]. Student dropout rate was 0.1. Early
stopping (patience 30 epochs was active. The random seed was 42. Other MixMatch-
specific parameters such as MIXMATCH_K (2), MIXMATCH_T (0.5), MIXMATCH_ALPHA (0.75),
MIXMATCH_CONSISTENCY_MAX (25.0), and MIXMATCH_RAMPUP_STEPS (∼525 steps, calcu-
lated based on 75 effective epochs) were set as defined in the corresponding execution script.

This implementation strategy aims to harness the core strengths of MixMatch while adapting it for
2D medical image segmentation.
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4. Experimental Results and Analysis

This section presents the empirical evaluation of the supervised learning baseline and two semi-
supervised learning (SSL) algorithms—Mean Teacher and MixMatch—for the task of 2D pan-
creatic segmentation from CT slices. All experiments were conducted using the consistently
preprocessed dataset, where each patient file corresponds to a single 256 × 256 × 1 2D ax-
ial slice, as detailed in Section 3.2.1. Model performance was primarily assessed using the Dice
Similarity Coefficient (DSC) on the designated validation set of 30 slices. The underlying model
architecture for all experiments was a U-Net [RFB15] (the PancreasSeg model, detailed in Sec-
tion 3.3.4) incorporating a dropout rate of 0.1. The Adam optimizer was utilized for all training
procedures.

4.1. Supervised Learning Baseline Performance with Limited Labeled Data

To establish a robust performance benchmark directly comparable to the semi-supervised learning
approaches utilizing limited labeled data, a supervised learning experiment was conducted using
50 labeled 2D slices from the preprocessed dataset for training and 30 slices for validation.

4.1.1. Experimental Configuration for Supervised Baseline (50 Labeled Slices)

The PancreasSeg model was trained using 50 patient files (each a 256× 256× 1 2D slice) for the
training set and 30 distinct patient files for the validation set. The model architecture incorporated
a dropout rate of 0.1. Training employed the Adam optimizer with an initial learning rate of 1 ×
10−4 and the DiceBCELoss function. Standard data augmentation techniques (Section 3.2.2) were
applied. The model was trained for a target of 150 epochs, with early stopping (patience of 25
epochs on validation DSC) and a ReduceLROnPlateau learning rate scheduler.

4.1.2. Performance and Training Dynamics (50 Labeled Slices)

The training dynamics for this supervised baseline are illustrated in Figure 10.
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Fig. 10. Supervised learning training metrics using 50 labeled slices from the preprocessed
dataset. Left: Training and Validation Loss. Right: Training and Validation Dice Coefficient.
Training proceeded for approximately 61 epochs before early stopping (confirm exact epoch from
logs).

The training loss (Figure 10, left panel, blue line) demonstrated a consistent decrease from
approximately 0.58 to about 0.15 by epoch 61. The validation loss (orange line) initially decreased
from 0.55 but plateaued around 0.27–0.30 after epoch 20–25, exhibiting increased volatility and
indicating the onset of overfitting. The training Dice score (right panel, blue line) steadily rose
from ∼0.52 to ∼0.87. The validation Dice score (orange line) showed rapid initial improvement
from below 0.55 to over 0.80 by epoch 15–20, eventually reaching a peak validation Dice score of
0.8453 at epoch 58 (value and epoch from experimental logs). Training was terminated by early
stopping after 61 epochs. This DSC of 0.8453 serves as the primary supervised benchmark for
evaluating SSL methods using the same 50 labeled slices.

A separate, shorter 20-epoch supervised run on these same 50 labeled slices (serving as pre-
training for SSL models) achieved a peak validation DSC of 0.7223. This highlights that extended
training, even with limited data, can significantly improve supervised performance up to a point.

4.2. Semi-Supervised Learning: Mean Teacher

The Mean Teacher algorithm [TV17] was investigated for its potential to improve pancreatic seg-
mentation by leveraging unlabeled data. The core methodological details, including the U-Net
architecture, phased teacher updates, and consistency mechanisms, are described in Section 3.5.
This section details an iterative experimental process undertaken to evaluate and understand the
behavior of the Mean Teacher framework under conditions of limited labeled data (50 patient cases
for labeled training, 30 for validation, and 201 for unlabeled data, unless otherwise specified for
a particular experiment). All student models for the Mean Teacher phase were initialized from a
20-epoch supervised pre-training on the 50 labeled patient cases, which achieved a peak validation
DSC of 0.7223.
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4.2.1. Initial Exploration and Emergence of Teacher Model Instability

Initial experiments with the Mean Teacher framework, employing standard configurations (e.g.,
moderate sharpening temperature, significant consistency weight ramp-up, and a 15-epoch direct
teacher-student copy phase followed by EMA updates with α = 0.999), revealed a critical challenge
early on: the instability of the teacher model.

Fig. 11. Early Mean Teacher experiment, Student pre-train with 15 epoch and 30 labeled dataset
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Fig. 12. Early Mean Teacher experiment showing rapid teacher model validation DSC artifact.

Across several initial configurations, a common pattern emerged where the student model, ben-
efiting from pre-training, would exhibit reasonable initial validation performance. However, the
teacher model’s validation Dice score would often rapidly converge to an artifactual 1.0, particu-
larly after the direct copy phase concluded and EMA updates began. Concurrently, the calculated
consistency loss between student and teacher predictions on unlabeled data would remain very low,
suggesting that either both models were converging to similar (potentially trivial, e.g., background-
dominant) predictions, or the teacher was not providing a useful learning signal. This behavior
indicated that the teacher model was failing to maintain robust foreground segmentation capabili-
ties and was likely collapsing to a state of predicting predominantly background, with the 1.0 DSC
arising from evaluation on background-only validation slices or slices with minimal, incorrectly
predicted foreground. This observation necessitated a more detailed investigation into the interplay
of hyperparameters and the teacher update mechanism.
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4.2.2. Investigating Mean Teacher with Phased Updates and Tuned SSL Parameters (50 La-
beled Cases)

Building on initial observations, a key experiment was conducted using 50 labeled patient cases,
with specific attention to the teacher update strategy and SSL hyperparameter settings.

4.2.3. Experimental Configuration

The student model was initialized from the 20-epoch supervised pre-training (validation DSC:
0.7223). The Mean Teacher phase utilized slices from 50L/30V/201U patient cases and was tar-
geted for 50 epochs. Key hyperparameters included: a 10-epoch direct teacher copy phase, EMA
decay α = 0.999 , sharpening temperature Tsharp = 0.5 , and a consistency loss weight λC(t) ramp-
ing to a maximum of 10.0 over 50 epochs , with the ramp-up delayed until after the copy phase .
The Adam optimizer with a learning rate of 2 × 10−5 and student dropout of 0.2 were employed.
Early stopping (patience 30 epochs) was active. The random seed was 42.

4.2.4. Performance and Training Dynamics

The learning curves for this experiment are presented in Figure 13.
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Fig. 13. Mean Teacher training metrics (50 Labeled patient cases, 45 epochs). Top: Losses (Total
Train - blue, Supervised - orange, Consistency - green, Val - red). Bottom: Dice Scores (Train
Student - blue, Val Student - orange, Val Teacher - green). Teacher Val DSC shows an artifactual
1.0.

The student model’s validation Dice score (Figure 13, bottom panel, orange line) started at
approximately 0.69–0.70. It exhibited considerable volatility throughout the 45 epochs of training,
fluctuating primarily between 0.66 and 0.70. While early peaks reached towards 0.75 (e.g., approx-
imately 0.75 at epoch 9, confirm from logs), no sustained improvement beyond its pre-training level
(0.7223) was achieved. The training terminated at epoch 45 due to early stopping, with a final vali-
dation DSC of approximately 0.69. This performance did not surpass the more extensively trained
50-slice supervised baseline (0.8453, Section 4.1.2).

The teacher model’s validation Dice score (green line) mirrored the student’s performance dur-
ing the initial direct copy phase but rapidly converged to and persistently remained at an artifactual
1.0 thereafter. The (weighted) consistency loss (top panel, green line) was very low throughout
training after an initial value, indicating a weak SSL signal. The validation loss (red line) remained
high and flat (∼0.50).
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4.2.5. Interpretation of Teacher Model Behavior (Artifactual DSC)

The persistent validation Dice score of 1.0 for the teacher model, after its initial synchronization
with the student, is a critical observation. This artifact does not indicate perfect segmentation of
pancreatic tissue. Instead, it likely arises from a combination of factors:

1. Teacher Model Collapse: The teacher model, updated via a slow EMA and influenced by
potentially noisy gradients from the student on unlabeled data (even with sharpening), ap-
pears to collapse towards a trivial solution, predominantly predicting background.

2. Dice Coefficient Properties: When evaluating on validation slices that are entirely back-
ground, if the teacher correctly predicts all background (TP=0, FP=0, FN=0 for foreground),
the Dice score becomes 0/0, often handled as 1.0 or 0.0 depending on implementation. More
likely, if many validation slices are truly background-only, and the teacher predicts them per-
fectly as background, these contribute a DSC of 1.0 (for the background class, if it were multi-
class) or are handled such that empty prediction on empty ground truth yields 1.0 in some
Dice implementations for binary cases when focusing on foreground. Given your ‘DiceCoef-
ficient‘ class calculates Dice for the foreground, an empty prediction on an empty foreground
ground truth (all background slice) would lead to (2*0+smooth) / (0+0+smooth) = 1.0.

3. Averaging Effect: If a significant portion of the validation set consists of slices with no
pancreatic tissue (all background), and the teacher correctly identifies these, these high DSC
values (1.0) can dominate the average validation Dice score, masking poor performance on
slices that do contain pancreatic tissue.

This artifactual performance means the teacher is not providing reliable pseudo-labels for fore-
ground structures on unlabeled data, undermining the core mechanism of Mean Teacher.

4.2.6. Exploratory Run with Reduced Labeled Data (30 Labeled Cases)

To observe the algorithm’s behavior under even more stringent data limitations, an exploratory run
was conducted using only 30 labeled patient cases for pre-training and for the supervised compo-
nent of Mean Teacher training (Figure 14). While specific hyperparameters for this run were not
identical to the 50L experiment (e.g., different random seed, potentially different SSL parameter
tuning during debugging), the general trends observed were informative.
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Fig. 14. Mean Teacher training metrics with 30 Labeled patient cases (33 epochs). Top: Losses.
Bottom: Dice Scores. Teacher Val DSC (red dashed line) also exhibits an artifactual 1.0.

In this 30L scenario, the student model’s validation Dice score (Figure 14, bottom panel, cyan
line) again showed volatility, generally performing in the 0.60–0.75 range after an initial pre-training
phase (details of pre-training for this specific 30L run are not shown but would be lower than the
50L pre-training). The teacher model’s validation Dice (red dashed line) also rapidly achieved and
maintained an artifactual 1.0. The consistency loss component (top panel, green dotted line) was
again observed to be very low. This experiment, despite the different labeled data count, reinforced
the observation that the teacher model’s instability and the subsequent ineffectiveness of the con-
sistency signal were persistent challenges, potentially exacerbated by further reducing the labeled
set size.

4.2.7. Analysis of Mean Teacher Performance and Challenges (Overall Summary)

Across various configurations and data conditions (50L and exploratory 30L) for Mean Teacher,
including student pre-training and phased teacher updates, a consistent set of challenges emerged,
preventing the SSL framework from significantly enhancing segmentation performance over a well-
established supervised baseline or even its own pre-training.

The pivotal issue was the ”teacher model’s instability and collapse”. While initialized effec-
tively through pre-training and direct copy mechanisms, the teacher model consistently failed to
maintain robust foreground segmentation capabilities once its weights were updated via EMA. It
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rapidly converged to a state of predominantly predicting background, as evidenced by its artifac-
tual validation Dice score of 1.0. This rendered the ”consistency regularization mechanism largely
ineffective”. The student model, when regularized towards the teacher’s predictions on unlabeled
data, was essentially being guided by pseudo-labels that were either uninformative (all background)
or incorrect for foreground regions. Consequently, the very low observed consistency loss did not
translate into improved student generalization for the primary task.

Several factors likely contribute to this outcome:

• Pseudo-Label Quality from Unstable Teacher: An unstable or collapsed teacher cannot
generate reliable pseudo-labels, breaking the SSL learning loop.

• Sensitivity in Low-Data Regimes: With only 30-50 patient cases for labeled data, the initial
models may not be robust enough to guide the SSL process effectively on diverse unlabeled
data. The teacher might be overly influenced by ambiguous unlabeled samples or by noise in
the student’s gradients.

• 2D Slice Limitations: Isolated 2D slices may lack sufficient context for the teacher to make
confident predictions on unlabeled data, especially for an anatomically complex and variable
organ like the pancreas. This ambiguity could make it easier for the teacher to settle into a
low-complexity solution (e.g., predict background).

• Hyperparameter Effects: While parameters like sharpening temperature (Tsharp = 0.5) and
consistency weight (λC,max = 10.0) were chosen based on common practices and initial tun-
ing, their interaction with an already struggling teacher model might not have been optimal.
Aggressive sharpening of poor pseudo-labels can be detrimental.

These findings underscore the significant difficulty in successfully applying the standard Mean
Teacher algorithm to this specific 2D pancreatic CT segmentation task under severe data scarcity.
The primary bottleneck appears to be the challenge of ensuring the teacher model generates and
maintains high-quality, reliable supervisory signals from unlabeled data throughout the training
process. Without a dependable teacher, the consistency mechanism fails to provide a beneficial
learning gradient.

4.3. Semi-Supervised Learning: MixMatch

The MixMatch algorithm [BCG+19], known for its holistic approach to SSL by combining data
augmentation, pseudo-label sharpening, and MixUp consistency, was evaluated. Methodological
details are provided in Section 3.6.1. This section presents findings from several experimental
configurations aimed at understanding MixMatch’s efficacy for 2D pancreatic CT segmentation
with limited labeled data.
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4.3.1. Initial MixMatch Configuration and Performance (50 Labeled Cases)

4.3.2. Experimental Configuration.

The primary MixMatch experiment utilized 50 labeled patient cases (all constituent 2D slices) for
the supervised component, 30 validation cases, and 201 unlabeled cases from the preprocessed
dataset. The student model was initialized from a 20-epoch supervised pre-training on the 50 la-
beled cases (achieving a validation DSC of 0.7223). Key MixMatch hyperparameters for this run
included: K = 2 weak augmentations for pseudo-label guessing, sharpening temperature T = 0.5,
MixUp αmixup = 0.75, a maximum consistency weight λu,max = 25.0 (ramped over ∼525 training
steps), and an Adam optimizer with an initial learning rate of 5× 10−4 (cosine decay). A dropout
rate of 0.1 was used. Early stopping (patience 30 epochs) was active, and steps per epoch were 13
(based on slices from 50L cases and a labeled stream batch size of 4, BATCH_SIZE_MM=8 in the
script implied 4L+4U streams).

4.3.3. Performance and Training Dynamics

The learning curves for this 50L MixMatch experiment are presented in Figure 15.

Fig. 15. MixMatch training metrics (50 Labeled patient cases, 21 epochs post-pre-training). Top-
left: Losses (Total, Lx, Lu). Top-right: Validation Dice. Bottom-left: λu(t). Bottom-right: Learn-
ing Rate. Validation Dice rapidly degrades.

Training terminated after 21 epochs due to early stopping. The supervised loss (Lx) on mixed
labeled data decreased (e.g., to ∼0.16 by epoch 21). However, the unsupervised consistency loss
(Lu) remained effectively zero throughout, despite λu(t) ramping up. Most critically, the validation
Dice score (Figure 15, top-right) catastrophically declined from its pre-training level (starting∼0.68
at the beginning of the MixMatch phase) to near-zero values (best during SSL phase ≈ 0.0114)
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within the first few epochs.

4.3.4. Initial Analysis

This primary configuration demonstrated a significant failure of the MixMatch SSL component.
The near-zero Lu coupled with the validation Dice collapse strongly suggests that the pseudo-labels
generated for unlabeled data were of extremely poor quality (likely predicting background or other
trivial solutions). The model then effectively learned to replicate these incorrect targets, making
the SSL component detrimental.

4.3.5. Exploring MixMatch with Varied Labeled Data and Pre-training Durations

To further investigate the behavior of MixMatch and its sensitivity to the amount of initial super-
vised signal, additional exploratory experiments were conducted with different numbers of labeled
cases and corresponding pre-training durations, while keeping other core MixMatch hyperparam-
eters (K = 2, T = 0.5, αmixup = 0.75, λu,max = 25.0, LR 5× 10−4) largely consistent.

4.3.6. Experiment with 30 Labeled Cases (10 Epochs Pre-training).

In this setup, 30 patient cases were used for labeled data, and the student model was pre-trained for
10 epochs. The subsequent MixMatch phase (Figure 16) ran for 21 epochs before early stopping.

Fig. 16. MixMatch training metrics (30 Labeled patient cases, 10 epochs pre-training, 21 MixMatch
epochs). Panels show Losses, Validation Dice, Consistency Weight, and Learning Rate. Validation
Dice remains at pre-training level.

The validation Dice score (Figure 16, top-right, purple line) started at approximately 0.65–0.68
(reflecting its 10-epoch pre-training on 30L cases) and remained essentially flat at this level through-
out the 21 epochs of MixMatch training. The unsupervised loss (Lu, top-left, green dotted line)
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again started very low and stayed negligible. This indicates that even with fewer initial labels and
shorter pre-training, the MixMatch SSL component did not provide any positive learning signal to
improve upon the pre-trained baseline.

4.3.7. Experiment with 40 Labeled Cases (20 Epochs Pre-training).

The number of labeled cases was increased to 40, and pre-training was extended to 20 epochs. The
MixMatch phase (Figure 17) ran for 15 epochs.

Fig. 17. MixMatch training metrics (40 Labeled patient cases, 20 epochs pre-training, 15 MixMatch
epochs). Panels show Losses, Validation Dice, Consistency Weight, and Learning Rate. Validation
Dice remains at pre-training level.

Similar to the 30L experiment, the validation Dice score (Figure 17, top-right, purple line)
started around 0.68–0.70 (reflecting its 20-epoch pre-training on 40L cases) and showed no im-
provement during the MixMatch phase, plateauing at this level. The unsupervised loss (Lu) also
remained consistently near-zero.

4.3.8. Analysis of Varied Setups.

These exploratory runs with 30 and 40 labeled cases, despite different pre-training intensities,
consistently showed that the MixMatch SSL phase did not enhance performance beyond the level
achieved by supervised pre-training alone. The persistent near-zero Lu across these experiments
reinforces the hypothesis that the pseudo-label generation process within MixMatch, under these
conditions, failed to produce useful targets for the unlabeled data. The model achieved trivial con-
sistency with likely background-dominant pseudo-labels. Increasing the initial labeled set from 30
to 40 (and the pre-training duration) resulted in a slightly better starting validation DSC, but the
SSL component was still unable to capitalize on this.
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4.3.9. Overall Analysis of MixMatch Performance and Challenges

Across all tested configurations for MixMatch, including the primary run with 50 labeled cases and
exploratory runs with 30 and 40 labeled cases, the algorithm failed to leverage unlabeled data to
improve segmentation performance. In the 50L case, it was markedly detrimental, while in the 30L
and 40L cases, it led to stagnation at the pre-training performance level.

The consistent observation of a near-zero unsupervised consistency loss (Lu), irrespective of
the number of labeled samples (30, 40, or 50) or the strength of pre-training, is the most critical
finding. This strongly suggests a fundamental failure in the pseudo-labeling pipeline of MixMatch
for this specific 2D pancreatic CT segmentation task with limited data. It is hypothesized that:

• Poor Quality of Initial Pseudo-Labels: The student model, even after pre-training, likely
generates pseudo-labels for unlabeled data that are heavily biased towards the background
class or are otherwise uninformative for segmenting the relatively small and complex pan-
creatic structures.

• Ineffectiveness of Averaging and Sharpening: The process of averaging predictions from
K = 2 weak augmentations and then applying temperature sharpening (T = 0.5) was in-
sufficient to correct or refine these poor initial pseudo-labels into useful supervisory signals.
Instead, sharpening might have amplified confidence in incorrect (e.g., background) predic-
tions.

• Trivial Consistency: The student model could easily achieve very low Lu by predicting out-
puts consistent with these flawed pseudo-labels on the mixed unlabeled data, without actually
learning meaningful foreground features from the unlabeled set.

• Impact of 2D Slice Input: The lack of 3D context in isolated 2D slices likely makes it
harder for the model to generate reliable pseudo-labels, especially for an organ with complex
inter-slice continuity and variable appearance.

The MixMatch framework, therefore, in its current implementation and under these challeng-
ing low-data 2D conditions, provided a strong but ultimately misdirected learning signal from the
unlabeled data, either leading to performance collapse or stagnation. This underscores the critical
dependence of MixMatch on the generation of at least moderately reliable pseudo-labels for the
SSL mechanism to be beneficial.
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5. Discussion

The empirical evaluations detailed in Chapter 4 offer significant insights into the application of
supervised and semi-supervised learning (SSL) methodologies for the challenging task of 2D pan-
creatic CT image segmentation, particularly under the constraints of severely limited labeled data.
This chapter synthesizes these experimental findings, provides a comparative analysis of the evalu-
ated learning approaches, delves into the broader implications and inherent difficulties encountered,
candidly outlines the limitations of the current study, and proposes actionable directions for future
research in this domain.

5.1. Comparative Analysis of Learning Approaches with Limited Labeled
Data

All semi-supervised learning experiments presented in this thesis were conducted utilizing 50
labeled patient cases (comprising all their constituent 2D slices after preprocessing) from the
preprocessed dataset. The performance of these SSL methods was critically benchmarked against
a direct supervised U-Net model, which was also trained on the identical set of 50 labeled pa-
tient cases and subjected to extensive training to establish its optimal performance. A consolidated
summary of the peak validation Dice Similarity Coefficient (DSC) achieved and key observational
takeaways for each learning approach is presented in Table 2.
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Table 2. Performance Summary: Supervised vs. Semi-Supervised Learning with 50 Labeled Pa-
tient Cases from the preprocessed Dataset.

Training Approach Peak Validation
DSC

Key Observations Summary

Supervised U-Net 0.8453 Robust and stable learning; estab-
lished the performance benchmark
for limited labeled data.

(50 Labeled Cases) (at epoch 58)a

Mean Teacher ∼0.75 (initial peak)b Teacher model rapidly collapsed to
an artifactual DSC (≈ 1.0); SSL
phase did not yield sustained im-
provement over pre-training perfor-
mance.

(50 Labeled + 201 Unlabeled Cases) ∼0.69 (at early
stop)c

MixMatch 0.7223 (from
pre-training)d

Validation DSC catastrophically
declined to ≈0.0114 during SSL
phase; SSL component proved
highly detrimental to overall perfor-
mance.

(50 Labeled + 201 Unlabeled Cases) ≈ 0.0114 (during
SSL)

aPeak validation DSC and corresponding epoch for the 50-labeled-case supervised baseline run (Figure 10).

bApproximate peak validation DSC observed during the initial phase (reflecting pre-training and direct teacher copy)
of Mean Teacher training.

cApproximate validation DSC at termination of Mean Teacher training due to early stopping (Figure 13).

dValidation DSC after 20-epoch supervised pre-training, serving as initialization for MixMatch SSL phase.

The direct supervised baseline, when trained comprehensively using all 2D slices derived from
the 50 labeled patient cases (as detailed in Section 4.1.2), achieved a strong peak validation Dice
score of 0.8453 at epoch 58. This result effectively established a high-performance benchmark,
clearly indicating the segmentation accuracy attainable by the PancreasSeg U-Net architecture
with this specific limited dataset under optimized, fully supervised conditions.

The Mean Teacher algorithm, despite being initialized with a student model pre-trained to a
validation DSC of 0.7223 (from 20 epochs on the same 50 labeled cases), did not yield sustained
improvements through the semi-supervised learning phase. While the student’s validation DSC
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exhibited an early peak (e.g., approximately 0.75, largely influenced by its pre-training and the ini-
tial direct teacher-copy phase), it subsequently failed to consistently surpass this level, ultimately
settling around 0.69 at the point of early stopping (Figure 13). The primary impediment, as ana-
lyzed in Section 3.5, was identified as the teacher model’s rapid convergence to an artifactual state
(validation DSC ≈ 1.0), which rendered the consistency loss mechanism ineffective for guiding
meaningful foreground segmentation.

Similarly, the MixMatch algorithm, also initialized from the identical pre-trained student model
(validation DSC 0.7223), demonstrated a markedly counterproductive effect during its SSL training
phase. The validation Dice score experienced a catastrophic decline from its pre-training level,
plummeting to near-zero values (best recorded DSC during the SSL phase was ≈ 0.0114). The
consistently negligible unsupervised loss (Lu ≈ 0), as detailed in Section 3.6, suggested that while
the model achieved superficial consistency with its generated pseudo-labels, these pseudo-labels
were of extremely poor quality, likely reflecting trivial solutions such as predominantly background
predictions.

In essence, under the specific configurations and data conditions tested, neither the Mean
Teacher nor the MixMatch algorithm successfully leveraged the 201 unlabeled patient cases (and
their constituent slices) to improve upon the performance achieved by a direct supervised model
trained with only the 50 labeled patient cases from the preprocessed dataset.

5.2. Computational Efficiency Analysis

An analysis of the computational overhead associated with each training approach revealed dif-
ferences in per-epoch processing times. The supervised baseline training on data from 50 labeled
patient cases required approximately 230 seconds per epoch on an Tesla A100 GPU. The Mean
Teacher algorithm, which involves operations for both student and teacher models alongside con-
sistency loss computation, exhibited a per-epoch training time of approximately 340 seconds. The
MixMatch algorithm, with its K-augmentations for pseudo-label guessing and subsequent MixUp
operations, required a comparable time of approximately 346 seconds per epoch.

While the SSL methods inherently introduce additional computational steps per epoch com-
pared to direct supervised training, the observed per-epoch time differences are not excessively
prohibitive for research or offline training scenarios. The primary factor influencing total train-
ing duration in these experiments was the number of epochs executed before convergence criteria
were met or early stopping was triggered. Given the performance outcomes, where SSL methods
did not demonstrate superior efficacy, the choice between these approaches, in their current imple-
mentations for this task, would be predominantly driven by segmentation performance rather than
marginal differences in per-epoch computational cost.
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5.3. Challenges in Semi-Supervised Learning for 2D Pancreatic Slice Seg-
mentation

The experimental outcomes from this study highlight several significant challenges inherent in the
application of established SSL methods to 2D slice-based pancreatic CT segmentation, particularly
when operating with a severely limited pool of labeled data. A recurrent primary issue observed
across both Mean Teacher and MixMatch was the instability and suboptimal quality of the teacher
model’s predictions or the generated pseudo-labels. With only 50 labeled patient cases (provid-
ing a limited set of 2D slices), which may inadequately represent the full spectrum of pancreatic
and tumor appearances, as well as the considerable surrounding anatomical variability, the models
struggled to develop a sufficiently robust and generalizable internal representation. This difficulty
manifested as a functional collapse of the teacher model in the Mean Teacher framework and likely
contributed to the generation of poor-quality, uninformative pseudo-labels in MixMatch, thereby
preventing the SSL mechanisms from imparting beneficial learning signals for accurate foreground
segmentation.

Furthermore, SSL methods often introduce a complex array of new hyperparameters, includ-
ing consistency weights, sharpening temperatures, and parameters for auxiliary mechanisms like
MixUp. The optimization of this expanded hyperparameter space can be particularly arduous in
low-data regimes. Validation signals derived from a small validation set may themselves be noisy,
and the learning signals from unlabeled data can be misleading if not properly regularized or guided.
For instance, the aggressive sharpening temperatures and high consistency pressures explored in
some Mean Teacher configurations might have inadvertently exacerbated teacher model instability
rather than promoting robust learning.

The inherent nature of 2D slice-based segmentation, which discards valuable 3D contextual
information, further complicates the learning task. Pancreatic boundaries are frequently ambiguous
on isolated 2D CT slices, making it more challenging for models to learn robust distinguishing
features from a few examples. This ambiguity may also render it easier for SSL models to converge
to trivial solutions, such as predicting all background, when processing unlabeled data where no
ground truth constraint is present to penalize such behavior. Lastly, the pancreas is a relatively small
organ, and tumor characteristics can be subtle and highly variable. Without a sufficient number of
diverse labeled examples covering this variability, models may struggle to differentiate foreground
pancreatic tissue from complex surrounding background textures—a problem that SSL, if reliant
on flawed pseudo-signals derived from these same challenging inputs, may not readily overcome.

5.4. Limitations of the Current Study

While this research provides valuable insights into the application of SSL for pancreatic cancer seg-
mentation, several limitations inherent to the study’s scope and execution must be acknowledged.
Firstly, the exploration of the SSL hyperparameter space, while guided by common practices and
initial experiments, was not exhaustive. A comprehensive grid search or more advanced auto-
mated hyperparameter optimization for all respective parameters of Mean Teacher and MixMatch
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(e.g., various ramp-up schedules, EMA decay rates, MixUp α values, number of K-augmentations
for pseudo-labeling) was beyond the practical computational scope of this Master’s thesis. It re-
mains plausible that alternative, meticulously tuned configurations might yield improved SSL per-
formance.

Secondly, the evaluation was focused on two prominent SSL algorithms. Other SSL paradigms,
such as various forms of self-training employing more sophisticated pseudo-label selection crite-
ria, or advanced uncertainty-guided consistency methods beyond those implicitly part of the Mean
Teacher framework, were not investigated. The choice was made to deeply evaluate two distinct,
influential methods rather than superficially survey a larger number.

A third significant limitation is the inherent 2D slice-based approach adopted for model archi-
tecture and data processing. This methodology, while common for initial explorations and compu-
tationally more tractable, fundamentally limits the models’ ability to leverage 3D spatial context,
which is widely recognized as beneficial, if not essential, for robust volumetric medical image
segmentation tasks. Fourthly, all experiments were conducted on a single, albeit publicly available
and relevant, dataset (MSD Pancreas-CT), processed through a specific, standardized pipeline. The
generalizability of the findings to other pancreatic CT datasets, or to datasets subjected to different
preprocessing and data representation strategies, was not assessed.

Finally, the ’enhancement’ aspect of the thesis objectives—beyond the systematic evalua-
tion—was constrained by available computational time and resources. This limited the breadth and
depth of iterative algorithmic modifications and re-evaluations that could be performed for Mean
Teacher and MixMatch specifically to optimize their performance under the identified challenges
within the timeframe of this project.

5.5. Future Directions

The findings and limitations of this study illuminate several promising and critical directions for
future research aimed at improving the efficacy of semi-supervised learning for medical image
segmentation, particularly in challenging low-data scenarios such as pancreatic cancer. A primary
and overarching focus should be on enhancing the robustness of teacher models in EMA-based
frameworks like Mean Teacher, and more generally, improving the quality and reliability of pseudo-
label generation processes in methods like MixMatch and self-training. For Mean Teacher, this
could involve investigating techniques to stabilize the teacher, such as adaptive EMA decay rates
that respond to training dynamics, exploring alternative student-teacher architectural relationships
(e.g., different capacities or regularization), or dynamically incorporating uncertainty estimates
to modulate the teacher’s influence on the consistency loss, thereby down-weighting less reliable
pseudo-signals. For MixMatch and related self-training paradigms, future work should explore
more sophisticated pseudo-label generation and selection strategies, potentially integrating model
confidence scores, predictive uncertainty metrics, or ensemble-based predictions to filter or refine
the pseudo-labels that are used for training on unlabeled data.

Exploring advanced consistency regularization strategies beyond simple Mean Squared Error
loss on output probabilities is another important avenue. This could include enforcing consistency
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at intermediate feature levels within the network, employing adversarial training techniques to align
the distributions of predictions on labeled and unlabeled data, or developing regularization terms
based on higher-order statistical properties or invariances under various image transforms (e.g., in
the Fourier domain). A particularly significant step forward for this specific application would likely
be the transition from 2D to 3D segmentation models, such as 3D U-Nets or V-Nets, for both su-
pervised and SSL approaches. Utilizing full volumetric information may inherently improve model
robustness and reduce slice-level ambiguity, potentially creating a more favorable environment for
SSL techniques to generate reliable signals from unlabeled data.

Furthermore, the development of hybrid SSL approaches warrants thorough investigation. Such
methods could aim to combine the strengths of different SSL techniques (e.g., integrating ro-
bust pseudo-labeling with strong consistency regularization) or integrate SSL with other learning
paradigms. For instance, leveraging transfer learning from models pre-trained on larger, related
medical imaging datasets could provide a stronger initialization for SSL fine-tuning. Incorporating
contrastive self-supervised pre-training on the available unlabeled data itself, prior to commencing
the SSL phase, could also help learn more discriminative initial features. Investigating methods
for adaptive hyperparameter tuning for SSL, where critical parameters like consistency weights
or sharpening temperatures are dynamically adjusted during training based on the evolving model
state or data characteristics, could also prove beneficial over fixed schedules, especially in non-
stationary learning environments. Finally, to robustly assess generalizability and clinical relevance,
any developed or enhanced SSL methods must be rigorously evaluated on larger and more diverse
datasets, potentially including multi-modal imaging data if pertinent to the clinical application and
data availability.

The insights gained from this work, despite the challenges encountered with the direct appli-
cation of standard SSL implementations, contribute to the broader understanding of applying these
techniques to complex medical image segmentation tasks where annotated data is scarce. The iden-
tified failure modes provide a clear and empirically grounded basis for targeted research into more
robust and effective semi-supervised learning strategies for the medical domain.
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6. Conclusion

This thesis undertook an evaluation of semi-supervised learning (SSL) algorithms, specifically
Mean Teacher and MixMatch, for the task of 2D pancreatic tumor segmentation from CT images,
with a primary focus on scenarios constrained by limited labeled data. The research aimed to assess
the efficacy of these SSL methods in leveraging unlabeled data to achieve segmentation accuracy
comparable to or exceeding that of fully supervised models, thereby addressing the challenge of
costly and time-consuming data annotation in medical imaging. Through systematic experimen-
tation using the preprocessed dataset derived from the MSD Pancreas-CT challenge, this work
has provided insights into both the theoretical promise and the significant practical challenges of
applying these SSL techniques.

The principal conclusions drawn from this research are as follows:

• SSL Performance in Low-Data Regime: Under the tested configurations and with only
50 labeled patient cases (and their constituent 2D slices) for training, neither Mean Teacher
nor MixMatch demonstrated an ability to outperform a robustly trained supervised U-Net
baseline that utilized the same limited labeled dataset. The supervised baseline, after exten-
sive training, achieved a peak validation Dice Similarity Coefficient (DSC) of approximately
0.8453.

• Mean Teacher Challenges: The Mean Teacher algorithm, while benefiting from student pre-
training, was significantly hampered by teacher model instability. The teacher model rapidly
converged to an artifactual state (yielding a DSC near 1.0), rendering the consistency reg-
ularization mechanism ineffective for improving foreground segmentation. This highlights
a critical vulnerability in the student-teacher knowledge transfer process under severe data
scarcity.

• MixMatch Inefficacy and Detrimental Effects: The MixMatch algorithm proved detri-
mental to performance, causing a catastrophic decline in validation DSC from its pre-trained
initialization to near-zero values. This failure was attributed to the generation of extremely
poor-quality pseudo-labels, with which the model achieved trivial consistency, leading to a
strong but misdirected learning signal.

• Criticality of Pseudo-Signal Quality: A core finding across both SSL methods is the
paramount importance of the quality and stability of the supervisory signals derived from
unlabeled data (i.e., teacher predictions or pseudo-labels). In low-data regimes, the genera-
tion of reliable pseudo-signals is exceptionally challenging, and flawed signals can nullify or
reverse any potential benefits of SSL.

• Impact of Pre-training: Supervised pre-training on the limited labeled set provided a strong
initial performance (e.g., 0.7223 DSC after 20 epochs). However, the SSL mechanisms, as
implemented, were not robust enough to build upon or even consistently maintain this initial
knowledge, particularly in the case of MixMatch.
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• Computational Considerations: While SSL methods introduced a moderate increase in
per-epoch computational time compared to supervised training, the overall training duration
was more significantly influenced by convergence behavior and early stopping. Performance
and stability, therefore, remain more critical factors than marginal per-epoch costs in selecting
an appropriate method for this task.

The contributions of this research lie in the rigorous empirical evaluation of these standard SSL
techniques within a challenging clinical application, the identification of specific failure modes re-
lated to teacher stability and pseudo-label quality in data-scarce environments, and the establish-
ment of relevant performance benchmarks for 2D pancreatic segmentation on the preprocessed
dataset configuration.

The insights gained, particularly concerning the difficulties in generating reliable supervisory
signals from unlabeled data with limited initial supervision, underscore the need for more robust
SSL mechanisms. Future research, as detailed in Section 5.5, should focus on strategies to enhance
model stability, improve pseudo-label generation and refinement, explore advanced consistency
techniques, and investigate the potential of 3D architectures to better leverage contextual informa-
tion.

In summary, while this thesis highlighted significant practical challenges in applying Mean
Teacher and MixMatch to 2D pancreatic CT segmentation with very limited labeled data, the de-
tailed analysis of their performance provides valuable lessons and a clear impetus for future research
aimed at developing more effective and reliable semi-supervised learning solutions for medical
imaging.
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