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Santrauka

Šiame tyrime pateikiamas kiekybinis daugiaveiksnių sistemų vertinimas, remiantis skruz-
dėlių maisto paieškos elgsena, įgyvendinta naudojant agentais pagrįstą modeliavimo sis-
temą su SimPy – „Python“ simuliacijos įrankiu. Modeliuojant pavienes skruzdėles kaip
autonominius agentus, veikiančius 2D tinkle pagrįstoje ekosistemoje, tiriama, kaip pa-
prastos elgsenos taisyklės lemia kolektyvinį intelektą. Sistema leidžia sistemingai tes-
tuoti aplinkos parametrus, tokius kaip plėšrūnų tankis, maisto pasiskirstymas ir feromonų
skilimo greitis, siekiant kiekybiškai įvertinti jų poveikį maisto paieškos efektyvumui ir
kolonijos atsparumui. Simuliacija suteikia įžvalgų apie decentralizuoto koordinavimo
atsparumą priešiškomis sąlygomis ir kaip plėšrūnų spaudimas keičia paieškos elgseną.
Galiausiai, testavimas ekstremaliomis sąlygomis patvirtina kolonijos atsparumą, tačiau
taip pat parodo našumo sumažėjimą, kai sutampa keli streso veiksniai. Apskritai, simu-
liacija patvirtina, kad paprastos vietinės taisyklės ir efektyvus bendravimas gali sukurti
tvirtas ir mastelio atžvilgiu pritaikomas maisto paieškos strategijas. Ši simuliacija ne tik
atskleidžia saviorganizacijos principus biologinėse sistemose, bet ir tarnauja kaip uni-
versali platforma spiečiaus intelekto tyrimams taikomuose kontekstuose, tokiuose kaip
robotika, dirbtinis intelektas ar optimizavimo algoritmai.

Raktiniai žodžiai: simuliacija, daugiaagentės sistemos, skruzdėlė, maisto paieška,
elgsena, autonominiai, agentai, taisyklės, kolektyvinis intelektas, feromonas, decentral-
izuotas koordinavimas, mastelio keitimas, biologinės sistemos, saviorganizacija, spieči-
aus intelektas.
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Abstract

This study presents a quantitative evaluation of multi-agent systems through the lens
of ant foraging behavior, implemented via an agent-based simulation framework using
SimPy, a Python simulation tool. By modeling individual ants as autonomous agents in-
teracting within a 2D grid-based ecosystem, we investigate how simple behavioral rules
give rise to emergent collective intelligence. The framework allows systematic testing
of environmental parameters, such as predator density, food distribution, and pheromone
decay rates, to quantify their impact on foraging efficiency and colony resilience. The
simulation provides insights into the resilience of decentralized coordination under hos-
tile conditions and how predator pressure reshapes foraging behaviors. Finally, stress-
testing under extreme conditions confirms the colony’s resilience, but also underscores
performance degradation when multiple stressors coincide. Overall, the simulation con-
firms that simple local rules and effective communication can generate robust and scal-
able foraging strategies. This simulation not only demonstrates the principles of self-
organization in biological systems but also serves as a versatile foundation for studying
swarm intelligence in applied contexts such as robotics, AI or optimization algorithms.

Keywords: simulation, multi-agent systems, ant, foraging, behavior, autonomous,
agents, rules, collective intelligence, pheromone, decentralized coordination, scalable,
biological systems, self-organization, swarm intelligence.
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General Introduction

In the realm of complex systems and artificial intelligence, the study of multi-agent sys-
tems (MAS) has gained significant attention for its potential applications in various do-
mains such as robotics, economics, and transportation. MAS, composed of autonomous
agents that interact with each other and their environment, exhibit emergent behaviors
that are often challenging to comprehend and predict [82]. To unravel the intricacies of
these systems, researchers have turned to nature-inspired models, with foraging ant algo-
rithms standing out as a fascinating paradigm[43]. This dissertation delves into the realm
of multi-agent systems, employing the innovative perspective of foraging ant models and
simulation techniques using Simpy, a powerful and versatile simulation platform[51].
The foraging behavior of ants has captivated scientists for its efficiency and adaptability,
making it an ideal inspiration for designing algorithms that can optimize resource allo-
cation, task distribution, and decision-making in complex systems [40]. The foraging
ant’s behavior in the constructed model is controlled by a set of rules that describes the
ant decision making process in specific situations and their inter-communication capa-
bilities [58]. Experimenting with different variations of these rules and evaluating the
impact these changes have on the overall behavior of the system is one of the objec-
tives of this work [15]. The integration of Simpy, a leading simulation tool, provides
a dynamic platform for modeling and analyzing the behaviors of multi-agent systems,
it is a versatile multimethod simulation framework that allows users to model and sim-
ulate complex systems using a combination of agent-based, discrete event, and system
dynamics simulation methods [79]. It relies on a wide range of simulation paradigms,
including discrete event simulation, to provide a comprehensive and flexible platform
for modeling diverse systems across various industries [81]. Leveraging its capabili-
ties, this research aims to explore the nuances of agent interactions, resource utilization,
and overall system dynamics within the context of foraging ant-inspired models. This
study aims to enhance the understanding of emergent behaviors in complex systems by
combining the adaptability of the foraging ants’ model with the simulation capabilities
of the AnyLogic framework [51]. The insights gained from this research hold promise
for improving real-world applications, ranging from optimizing supply chain logistics
to enhancing traffic flow in urban environments. In this exploration, the work aims to
connect natural inspiration and artificial intelligence, revealing the complex interactions
of autonomous agents in multi-agent systems[43].
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Objective of the Study

The primary objective of this research is to leverage the insights gained from ant foraging
behavior to enhance the capabilities of systems simulation in quantitatively evaluating
the behavior of selected multi-agent systems By employing computational models in-
spired by the decentralized mechanisms observed in ant colonies, we aim to simulate
and analyze the adaptive decision making processes within complex systems [42][25].
Ants, operating within a decentralized network, exhibit robustness, flexibility, and effi-
ciency in responding to environmental challenges, traits that are increasingly relevant in
the design of autonomous, fault tolerant and decentralized systems[27].

Scope and Significance

Through the integration of ant-inspired algorithms within automated simulation frame-
work such as Simpy, we aim to develop techniques that can optimize resource allocation,
enhance decision-making processes, and contribute to the advancement of adaptive, self-
organizing systems.

Research Goal

The primary objective of this thesis is to quantitatively assess key characteristics of Ant
foraging models through simulations within the Anylogic environment, specifically fo-
cusing on their effectiveness in efficiently transporting food to the nest within an optimal
timeframe and their survival abilities.

Research Tasks

1. Literature Review: Conduct a thorough literature review on ant foraging behav-
ior and its models, collective intelligence in ant colonies, and existing research in
systems simulation. Identify and analyze key principles and mechanisms utilized
by ants in foraging, emphasizing decentralized decision-making. Additionally,
explore various simulation tools such as UPAAL, Simpy, and AnyLogic;

2. System Modelling with Simpy: Utilize Simpy, a versatile simulation software
widely applied in diverse industries for modelling complex systems. Given its sup-
port for both discrete event simulation (DES) and agent-based modelling (ABM),



LIST OF TABLES 3

leverage AnyLogic to develop and execute simulations that reflect a broad spec-
trum of scenarios[79].

3. Identification of Critical Aspects in a Foraging Ant System: Explore the es-
sential properties and parameters of the Simpy model depicting foraging ants, in-
cluding aspects like ant communication via pheromones, the division of labor, and
distributed decision making. Analyze the crucial factors that impact the behavior
of individual ants and the overall dynamics of the colony [27].

4. Establishment of Behavioral Rules in Specific Situations: Set and formalize be-
havioral guidelines for ants in distinct scenarios within our simulated environment
using Simpy. This involves specifying how ants react to alterations (adaptabil-
ity), assess the challenges, and defend against risks, as well as seize opportunities
throughout the foraging process. Then analyze the impact of dynamic environ-
mental conditions on the emergent behavior of the foraging ant model [44];

5. Global System Simulation and Outcome Evaluation: Execute a comprehen-
sive simulation of the entire system in Simpy, integrating all identified parameters
and behavioral rules. Analyze the simulation results to evaluate the model’s per-
formance and effectiveness in returning food to the nest within an optimal time-
frame. Assess whether the outcomes align with the anticipated expectations and
objectives [44].

6. Model Refinement and Parameter Optimization: Refine and tweak the simula-
tion model based on the evaluation results to enhance its accuracy and reliability.
In particular, experiment with the behavioral rules controlling the ant decision pro-
cess to achieve the best possible outcomes, aiming for optimal results that align
with the goals of the research. Also, we optimize model parameters like the num-
ber of ants, the distance of the food from the ant to the nest and finally consider
some environmental changes.

7. Comparison with Other Methods: Compare the results obtained from the sim-
ulated model with findings from other methods discussed in the literature review.
Evaluate the effectiveness and uniqueness of the ant-inspired simulation approach
in capturing the complexities of decentralized decision-making and collective in-
telligence.



4 List of Tables

Expected Results

In the culmination of this study, we will construct models representing ant foraging sys-
tems and execute these models within the Simpy environment. Subsequently, we will
assess and scrutinize the simulated systems with respect to the predefined behavioral
(decision) rules [44]. Following this evaluation, we will fine-tune the model parame-
ters to identify optimal configurations, particularly focusing on the efficiency of the ant
colony in transporting food back to the nest and enhancing their chances of survival.
Ultimately, we will compare our research findings to those of other studies to assess the
acceptability of our outcomes [66].

Structure of the Thesis

This research will be structured as follows. It will begin with a comprehensive literature
review that delves into the existing research on ant colonies, collective intelligence, and
systems simulation. The subsequent chapters will explore the development and valida-
tion of computational models inspired by ant foraging, offering a detailed analysis of
their performance in various scenarios. The core chapters will present and evaluate our
constructed models within the automated simulation environment of Simpy, as well as
analyze and compare the obtained results.
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1 Literature Review

1.1 Introduction

Multi-agent technology is a promising approach to development of complex decen-
tralised systems that dynamically adapt to changing environmental conditions[45]. The
study of multi-agent systems (MAS) has garnered significant attention due to its ap-
plications across various domains, including supply chain management, robotics, and
collaborative frameworks[34]. In particular, the foraging ants model has emerged as a
powerful metaphor for understanding complex interactions within MAS[6]. This litera-
ture review aims to synthesize recent research findings related to the quantitative evalua-
tion of MAS, focusing on the foraging ants model and automated simulation techniques.
Also, we will discuss some of the most prominent MAS simulation environments such as
Simpy, UPPAAL and Anylogic and finally, we will highlight knowledge gaps and sug-
gest future research directions. In this research, we will examine various aspects related
to our research questions.

The remaining document is structured as follows: we begin with a background
study on Multi-Agent Systems (MAS), discussing their concept, history, and evolution.
Following this, we provide a brief overview of bio-inspired models, their connection to
MAS, and introduce one of the most prominent examples: the foraging ants model. In
the next section, we will present some theories behind the foraging ants model, exploring
its various components. We will then discuss key metrics essential for evaluating MAS.
After that, we introduce optimization algorithms and techniques such as Ant Colony
Optimization (ACO), Genetic Algorithms, Particle Swarm Optimization (PSO), among
others. The following section will address environmental factors that influence the effec-
tiveness of the foraging process. Finally, we will review the most widely used simulation
techniques in the MAS field. By the end of this study, we will have gained a clearer un-
derstanding of the subject, identified potential future research areas, and outlined the
next steps in our research.
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1.2 Background

1.2.1 Introduction to Multi-Agent Systems (MAS)

Multi agent systems are systems of multiple interacting computing elements, known as
agents. Agents are computer systems with two important capabilities. First they are at
least to some extent capable of autonomous action of deciding by themselves what they
need to do in order to satisfy their design objectives. Second they are capable of interact-
ing with other agents - not simply by exchanging data, but by engaging in analogues of
the kind social activity that we all engage in every day of our lives: cooperation, coordi-
nation, negotiation and the like [87]. MAS can manifest self-organization and complex
behaviors even when the individual strategies of all their agents are simple.Summarizes
the theory,method and the key technologies of agent and multi-agent system.The main
topics are as follows: the properties,structure and reasoning of intelligent agent;the archi-
tecture and communication method of multi-agent system;current status and developing
trends of agent oriented programming [10].

Definition and characteristics

MAS are described as macro-systems consisting of multiple agents, with each agent
considered a micro-system. The organization of multiple agents within an environment
gives rise to MAS. The key characteristics of MAS include [77]:

• Each agent in a MAS has a subjective view, limited by incomplete information due
to restrictions in its viewpoint;

• No global control is applied in a MAS; each agent maintains its own state inacces-
sible to other participants, leading to individual state changes based on behavior
rules influenced by the environment;

• Data in a MAS is fully decentralized and distributed among participating agents
and the environment;

• Agents in a MAS are designed to be concurrent, operating independently from
one another. However, actual concurrency may not always be guaranteed by the
underlying implementation;

• MAS integrate a specific organization of the environment in which agents evolve,
imposed by the model or the physical layer.
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Historical development and evolution

The historical development and evolution of Multi-Agent Systems (MAS) have been
quite fascinating. The concept of MAS originated from the field of Distributed Artificial
Intelligence (DAI) in the 1980s as a novel and promising technology[29]. The roots of
Artificial Intelligence, the broader field from which MAS emerged, can be traced back
to the 1940s. A significant milestone was the publication of Isaac Asimov’s short story
“Runaround” in 1942, which introduced the concept of intelligent machines[29].

In 1950, Alan Turing published an article that describes creating intelligent ma-
chines and testing their intelligence, known as the Turing test, which is still considered
a benchmark for artificial systems1. The term “Artificial Intelligence” was officially
coined in 1956 as a result of the Dartmouth Summer Research Project on Artificial In-
telligence[29].

MAS technology has shown rapid growth due to its intelligence and flexibility when
solving complex distributed problems. The technology comprises multiple decision-
making agents that exist in an environment to achieve common or conflicting goals.
It has marvelous features such as flexibility and intelligence that are very useful when
solving complex distributed problems[29].

The present applications of MAS are diverse, ranging from self-driving cars and
smart speakers to image recognition techniques. The future trends in MAS technol-
ogy are also promising, with ongoing research and development aimed at enhancing the
foundations or key principles of MAS such as agent taxonomy, agent communication
approaches, and MAS development frameworks[29].

1.2.2 Overview of bio-inspired models in MAS

Nature has always inspired human race in solving various problems. Bio-inspired mod-
els in Multi-Agent Systems (MAS) draw inspiration from biological processes and struc-
tures to enhance the design, coordination, and functionality of agent-based systems.
These models are particularly focused on emulating the collective intelligence and de-
centralized decision-making found in nature, such as in insect colonies, animal herds,
and cellular systems[54]. The various categories in which this has been vital include:

• Swarm Intelligence: Swarm intelligence is a principal bio-inspired model that is
derived from the behavior of social insects like ants, bees, and termites. It includes
algorithms like Ant Colony Optimization (ACO) and Particle Swarm Optimization
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(PSO), which are used for solving optimization problems by mimicking the natural
behavior of swarms[54].

• Evolutionary Computation: This model includes genetic algorithms and evolu-
tionary strategies that simulate biological evolution. Agents in MAS can use these
algorithms to evolve their strategies and adapt to changing environments[57]

• Artificial Immune Systems: Inspired by the human immune system, these mod-
els help MAS identify and respond to threats or changes in the environment. They
can be used for anomaly detection and maintaining system integrity[23].

• Artificial Neural Networks(ANN): Neural networks, inspired by the human
brain, enable MAS to learn from experience. Deep learning models can be ap-
plied within MAS for complex problem-solving and pattern recognition tasks[76].

• Bio-inspired Robotics: This involves the design of robotic agents that mimic the
physical form and function of biological organisms, leading to more adaptable and
efficient MAS in physical environments[54].

The application of these bio-inspired models in MAS aims to achieve enhanced problem-
solving capabilities, robustness, and scalability. By leveraging the decentralized control,
information sharing, and emergent behaviors observed in natural systems, MAS can
tackle a wide range of complex tasks across various domains, from autonomous robotics
to distributed computing and logistics[54].

How important are biological inspiration in MAS ?

Biological inspired models are relevant in Multi-Agent Systems (MAS) in the sense that
it gives the unique ability to take advantage of the efficiency, adaptability, and robust-
ness of natural systems for solving complex computational problems. Biological systems
have evolved over millions of years to become highly optimized and resilient. By mim-
icking these systems, MAS can achieve similar levels of performance and flexibility.
This can be particularly noticable in areas such as

• Efficient Problem-Solving: Biological systems such as ant colonies and bee
hives demonstrate efficient ways to find food and resources. Algorithms inspired
by these behaviors, like Ant Colony Optimization, help MAS to solve routing,
scheduling, and optimization problems with similar efficiency[57].
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• Adaptability: Just as organisms adapt to their environment, bio-inspired MAS can
adjust to dynamic conditions and uncertainties in real-time, making them suitable
for applications like robotics and manufacturing systems[54].

• Robustness and fault tolerance: The decentralized nature of biological systems
provides resilience against failures. Similarly, MAS that use bio-inspired models
can continue functioning even if some agents fail or behave unexpectedly[54].

• Self-Organization: Many biological systems self-organize without central con-
trol. This characteristic is useful in MAS for tasks like pattern formation, area
coverage, and collective decision-making without the need for a central coordina-
tor[70].

• Scalability: Biological systems can scale up or down efficiently. MAS that incor-
porate bio-inspired principles can manage increasing numbers of agents and tasks
without a significant drop in performance[54].

• Innovation: Studying biological systems can lead to novel approaches and solu-
tions in MAS that might not be discovered through traditional engineering meth-
ods[57].

In these days where we face challenges of a growing complexity, the biological inspira-
tion in MAS is crucial as it provides a framework for developing systems that are not just
intelligent but also capable of complex interactions and behaviors that are otherwise dif-
ficult to achieve with conventional algorithms. This is an interdisciplinary approach that
keep pushing the boundaries of what is possible in artificial intelligence and distributed

computing.

Different bio-inspired models

Bio-inspired models of multi-agent systems (MAS) leverage principles and mechanisms
observed in nature to enhance computational problem-solving capabilities. These mod-
els draw inspiration from various biological phenomena, including the social behaviors
of animals, evolutionary processes, and ecological interactions. The application of these
models spans numerous fields, including robotics, optimization, and resource manage-
ment. One prominent bio-inspired model is the Ant Colony Optimization (ACO) algo-
rithm, which mimics the foraging behavior of ants. ACO utilizes the concept of stig-
mergy, where agents communicate indirectly through the environment, marking paths
with pheromones that guide other agents towards optimal solutions. This approach has
been effectively applied in various optimization problems, demonstrating its utility in
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multi-agent systems[90]. The adaptability of ACO allows it to be integrated into MAS
frameworks, facilitating dynamic problem-solving in complex environments. Another
significant category of bio-inspired algorithms includes Particle Swarm Optimization
(PSO) and Genetic Algorithms (GA). PSO is inspired by the social behavior of birds
and fish, where individuals adjust their positions based on their own experience and
that of their neighbors. This model has been widely adopted in MAS for tasks such as
path planning and resource allocation, showcasing its effectiveness in optimizing multi-
dimensional problems[75]. Similarly, GAs, which simulate the process of natural selec-
tion, have been employed in MAS to evolve solutions over generations, making them
suitable for complex optimization tasks[22].

The Firefly Algorithm (FA) is another notable bio-inspired approach that utilizes
the flashing behavior of fireflies to attract others, facilitating the exploration of solution
spaces. This algorithm has been successfully applied in multi-objective optimization
scenarios, particularly in engineering design, where it helps balance competing objec-
tives[49]. The integration of FA within MAS frameworks allows for enhanced collabo-
ration among agents, leading to improved solution quality. Moreover, the application of
bio-inspired models extends to mobile robotics, where algorithms such as the Dragonfly
Algorithm and bio-inspired neural networks are employed for real-time path planning
and task assignment. These models utilize biological principles to enhance the effi-
ciency and adaptability of robotic systems in dynamic environments[59][60][94]. The
incorporation of such algorithms into MAS not only improves operational efficiency but
also enables robots to navigate complex terrains and avoid obstacles effectively. Bio-
inspired models of multi-agent systems harness the collective intelligence and adaptive
behaviors observed in nature to solve complex optimization problems. By employing
algorithms such as ACO, PSO, GA, and FA, these models facilitate enhanced collabora-
tion and problem-solving capabilities among agents, making them invaluable in various
applications, from engineering design to mobile robotics.

1.3 The Foraging Ants Model

1.3.1 Introduction

The foraging ants model is a prominent example of bio-inspired algorithms that leverage
the collective behavior of ants to solve complex optimization problems. This model is
primarily encapsulated in the Ant Colony Optimization (ACO) algorithm, which simu-
lates the way ants find the shortest paths to food sources by laying down pheromones.
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The pheromone trails serve as a form of indirect communication among ants, guiding
others towards optimal routes while also allowing for the exploration of new paths[21]
[93]. This decentralized approach is a hallmark of swarm intelligence, where individ-
ual agents follow simple rules that lead to complex, emergent behaviors at the group
level[93]. The ACO algorithm has been widely applied in various fields, including rout-
ing, scheduling, and resource allocation, demonstrating its versatility and effectiveness
in solving NP-hard problems. The foundational principles of ACO are rooted in the
natural foraging behavior of ants, where they exhibit a balance between exploration and
exploitation. Ants tend to explore new food sources while also returning to previously
successful locations, a behavior that can be modeled mathematically to enhance algo-
rithm performance[19][92]. This balance is crucial for ensuring that the algorithm can
adapt to dynamic environments, where the availability of resources may fluctuate over
time[89]. Research has shown that the foraging behavior of ants can be further opti-
mized by integrating additional mechanisms, such as hybrid approaches that combine
ACO with other algorithms like Genetic Algorithms (GA) or Particle Swarm Optimiza-
tion (PSO). These hybrid models can enhance the exploration capabilities of the ACO by
introducing genetic operators or swarm behaviors that allow for a more diverse search of
the solution space[21][80]. For instance, the integration of a crossover operator in a hy-
brid artificial bee colony algorithm has been shown to improve numerical optimization
outcomes, indicating that combining different bio-inspired strategies can yield superior
results[89]. Moreover, the study of ant foraging behavior has also led to insights into task
allocation within multi-agent systems. By modeling the roles of foragers, transporters,
and followers within an ant colony, researchers have developed algorithms that can effec-
tively allocate tasks among agents in a way that mimics these natural processes[92][5].
This approach not only enhances the efficiency of the agents but also allows for more
robust performance in uncertain environments, where agents must adapt to changing
conditions[3].

The foraging ants model exemplifies the power of bio-inspired algorithms in ad-
dressing complex optimization challenges. By mimicking the natural behaviors of ants
and integrating these principles into computational frameworks, researchers have de-
veloped effective solutions that leverage the strengths of collective intelligence. The
ongoing exploration of hybrid models and task allocation strategies continues to expand
the applicability of ACO and similar algorithms across various domains.
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Biological Background

Ant foraging has a social structure, The ant colonies typically consist of a queen, male
ants, and numerous sterile female worker ants. The workers are responsible for var-
ious tasks, including foraging, and they are highly organized in their roles[26] and
they have that capacity to communicate with each other using chemical signals called
pheromones. Foraging ants leave a pheromone trail on their way back to the nest after
finding food, which other ants can follow to the food source[6].

Another interesting fact about the foraging process is their ability to share work also
known as division of labor whereby, within the colony, there are often specialized groups
of ants, such as scouts and foragers. Scouts search for food sources, while foragers are
responsible for collecting the food and bringing it back to the colony[26].

Foraging process can involve hunting, often described as Predatory and Scaveng-
ing Behavior, it stipulate that Ants can be predators, scavengers, or both. They prey on
various insect species and also feed on plant exudates and secretions produced by other
insects[26]

Ants have successfully colonized almost every landmass on Earth, demonstrating
a remarkable ability to adapt to diverse environments. Their foraging strategies vary
significantly based on food availability and the presence of predators or competitors[26].
This flexibility in behavior allows ants to thrive in a wide range of ecological niches,
showcasing their exceptional adaptive capabilities. An interesting aspect of foraging
strategies is the use mass recruitment for foraging in some ants species, where many
ants are recruited to a food source once it is discovered. Others use a more solitary
approach, with individual ants foraging alone[85]

1.3.2 Pheromone evaporation model

The pheromone evaporation process can be mathematically modeled using an exponen-
tial decay function:[72]

P(t) = P0e−λ t (1.1)

where:

• P(t) is the pheromone intensity at time t,

• P0 is the initial pheromone intensity,
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• λ is the evaporation rate constant (λ > 0),

• t is the time elapsed.

Alternatively, in a discrete-time simulation, the pheromone level is updated itera-
tively as follows:

Pt+1 = (1−ρ)Pt (1.2)

where:

• Pt is the pheromone level at time step t,

• ρ is the evaporation rate (0 < ρ < 1), representing the fraction of pheromone that
evaporates at each time step.

This formulation ensures that the pheromone concentration gradually decreases
over time, preventing excessive accumulation and allowing ants to dynamically adapt
their foraging paths[72].

Mechanism of foraging behaviour in ants

The foraging behavior of ants is a complex and fascinating phenomenon that has gar-
nered significant attention in ecological and biological research. This behavior is char-
acterized by a series of interactions and mechanisms that enable ants to efficiently locate
and exploit food resources. Central to this process are several key factors, including com-
munication through pheromones, social interactions, and the division of labor among
colony members.One of the primary mechanisms underlying ant foraging is the use of
pheromones, which serve as chemical signals that guide foragers to food sources. When
an ant discovers food, it lays down a pheromone trail back to the nest, which other ants
can detect and follow. This process not only helps in the recruitment of additional for-
agers but also allows for the establishment of a network of trails that can be reinforced
or altered based on the availability of food[68] [53]. The intensity of the pheromone trail
diminishes over time, leading to a dynamic system where ants continuously evaluate the
quality of food sources and adjust their foraging efforts accordingly[69][2]. The mech-
anisms of foraging behavior in ants are a complex interplay of individual and collective
actions driven by biological instincts and environmental interactions. The article “The

ethology of foraging in ants: revisiting Tinbergen’s four questions” helps us to break it
down in these stages [85]:

• Pheromone Communication;
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• Path Integration;

• Tandem Running;

• Use of Multiple Sensory Modalities;

• Division of Labor;

• Collective Decision-Making.

Social interactions among ants play a crucial role in regulating foraging activity.
For instance, studies have shown that interactions among foragers can increase their
availability and activity levels, thereby enhancing the overall foraging efficiency of the
colony[68][67]. These interactions can include direct contact between ants, which may
stimulate foraging behavior, or indirect effects where the presence of returning foragers
influences the departure rates of those still in the nest[30][31]. This feedback mechanism
allows colonies to adapt their foraging strategies in response to environmental changes,
such as food availability and predating risks[71] [30]. The division of labor is another
critical aspect of ant foraging behavior. Different castes within an ant colony may spe-
cialize in various tasks, including foraging, nest maintenance, and brood care. This
specialization allows for a more efficient allocation of resources and efforts, as certain
ants may be better suited for specific roles based on their physical traits or behavioral
tendencies [71][61]. For example, polymorphic worker ants can exhibit different forag-
ing strategies, which can enhance the colony’s ability to exploit diverse food resources
effectively[71][63].

On another hand, the regulation of foraging activity can be influenced by environ-
mental factors and the colony’s internal state. Research indicates that variations in forag-
ing behavior can persist over time, reflecting the colony’s adaptability and resilience[69]
[30]. For instance, colonies may adjust their foraging intensity based on external con-
ditions, such as humidity and temperature, which can affect food availability and the
risk of desiccation during foraging trips[30][31]. The foraging behavior of ants is a
multifaceted process that involves the interplay of pheromone communication, social in-
teractions, and labor division. These mechanisms enable ant colonies to efficiently locate
and exploit food resources while adapting to changing environmental conditions. Under-
standing these behaviors not only provides insights into the ecological roles of ants but
also inspires the development of bio-inspired algorithms in fields such as optimization
and robotics.



1.3. The Foraging Ants Model 15

1.3.3 Application of the foraging ants to MAS

The foraging behavior of ants is a valuable model for multi-agent systems (MAS). In
MAS, decentralized and self-organized strategies inspired by ants can improve efficiency
in tasks such as resource allocation, network routing, and collaborative problem-solving.
For example, ant colony optimization algorithms leverage the principles of ant foraging
to find optimal paths and distribute tasks among agents, enhancing performance in dy-
namic and complex environments. This biologically-inspired approach leads to robust,
scalable, and adaptive solutions in various fields, from robotics to logistics.

Ants utilize a variety of cues and interactions to regulate their foraging activities.
For instance, harvester ants (Pogonomyrmex) adjust their foraging rates based on the
success of returning foragers, creating a feedback loop that optimizes resource collec-
tion[64][67]. This closed-loop system can inform MAS design by incorporating similar
feedback mechanisms, allowing agents to adapt their behavior based on the success of
their peers. Such adaptive mechanisms can enhance the efficiency of resource allocation
in robotic swarms or distributed sensor networks.

Moreover, the use of chemical cues, such as pheromones, plays a crucial role in ant
foraging. For example, patrollers in harvester ant colonies deposit secretions that guide
foragers toward food sources[33]. This behavior can be translated into MAS through
the implementation of virtual pheromones, where agents leave behind digital markers
that influence the movement of other agents towards resources. This approach has been
successfully modeled in robotic path planning, where ant foraging behavior is mimicked
to navigate complex environments[65].

The flexibility of foraging strategies among ants also highlights the importance of
adaptability in MAS. Research indicates that ants can switch between foraging strate-
gies based on environmental conditions and resource availability[20][14]. For instance,
leaf-cutting ants exhibit different foraging behaviors depending on traffic flow on trails,
allowing them to efficiently allocate foragers to either ephemeral or stable resources[20]
[18]. Implementing similar adaptive strategies in MAS can enhance their robustness in
dynamic environments, allowing agents to respond effectively to changing conditions.

The intricate foraging behaviors of ants provide valuable insights for the develop-
ment of multi-agent systems. By leveraging feedback mechanisms, chemical communi-
cation, adaptability, and collective dynamics observed in ant colonies, researchers can
design more efficient and resilient algorithms for various applications, from robotics to
distributed computing.
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1.3.4 Features and benefits of using the foraging ants in MAS

The use of foraging ants in Multi-Agent Systems (MAS) offers several features and
benefits that enhance the efficiency and adaptability of these systems. By leveraging the
collective behaviors observed in ant colonies, researchers can develop algorithms and
models that mimic these natural processes, leading to improved performance in various
applications.

Features of Foraging Ants in MAS

The model of the foraging ant exhibits the following features:

• Collective Decision-Making: Foraging ants exhibit sophisticated collective decision-
making processes that allow them to efficiently locate and exploit food sources.
This is often achieved through pheromone communication, where ants deposit
pheromones on successful paths, guiding others toward food[73]. In MAS, sim-
ilar mechanisms can be implemented to facilitate decentralized decision-making
among agents, allowing them to adapt to changing environments and optimize
resource allocation;

• Adaptability to Environmental Changes: Ants can adjust their foraging strategies
based on environmental conditions and resource availability. For instance, studies
have shown that the foraging behavior of ants is influenced by interactions with
returning foragers, which can inform potential foragers about the quality of food
sources[14]. This adaptability can be modeled in MAS to enhance the system’s
responsiveness to dynamic conditions;

• Emergent Behavior: The simple rules followed by individual ants lead to complex
and organized behaviors at the colony level, a phenomenon known as emergent
behavior. This characteristic can be harnessed in MAS to create systems that ex-
hibit robust performance without centralized control. For example, the emergent
regulation of foraging frequency through simple movement rules has been demon-
strated in ant models[9];

• Stigmergy: Ant foraging behavior is a prime example of stigmergy, where agents
communicate indirectly through modifications to their environment (e.g., pheromone
trails). This principle can be applied in MAS to enhance cooperation and coordi-
nation among agents, allowing them to work together effectively without direct
communication[9].
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Benefits of Using Foraging Ants in MAS

As a nature-inspired model of Multi-Agent Systems (MAS), foraging ants offer several
benefits, including:

• Efficiency in Resource Utilization: The foraging strategies of ants are optimized
for efficiency, allowing them to maximize food intake while minimizing energy
expenditure. By modeling these strategies in MAS, systems can achieve similar
efficiencies in resource allocation and task execution. For instance, the use of
pheromone trails in MAS can lead to more efficient routing in network optimiza-
tion problems[11];

• Robustness to Failures: Ant colonies demonstrate resilience to individual failures,
as the collective behavior can compensate for the loss of individual ants. This ro-
bustness can be beneficial in MAS, where individual agents may fail or become
less effective. The ability of the system to continue functioning despite such fail-
ures is a significant advantage in critical applications[31];

• Scalability: The principles of ant foraging can be scaled to accommodate varying
numbers of agents and changing environments. As the number of agents increases,
the collective foraging efficiency can be maintained or even improved, making
MAS suitable for large-scale applications. This scalability is particularly relevant
in scenarios such as robotic swarms or distributed sensor networks[65];

• Enhanced Learning and Adaptation: ants demonstrate learning behaviors that al-
low them to optimize their foraging routes based on past experiences. This capa-
bility can be integrated into MAS to enable agents to learn from their interactions
and adapt their strategies over time, leading to improved performance in dynamic
environments[92];

• Modeling Complex Interactions: The study of ant foraging provides insights into
complex interactions within populations, which can be modeled in MAS to un-
derstand and predict collective behaviors. For example, the interactions between
foragers and returning ants can inform decision-making processes, enhancing the
overall effectiveness of the system[68].

Incorporation of foraging ants into Multi-Agent Systems offers a range of features and
benefits that enhance their efficiency, adaptability, and robustness. Leveraging the col-
lective behaviors observed in ant colonies allows researchers to develop innovative algo-
rithms and models that address complex challenges across various domains.
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The foraging ant model demonstrates the power of nature-inspired solutions in op-
timizing and enhancing the efficiency of Multi-Agent Systems (MAS). By emulating
the decentralized, self-organizing behaviors of ant colonies, this model showcases how
simple agents can collectively solve complex problems, such as resource allocation and
path finding, with remarkable adaptability and robustness. The inherent scalability and
resilience of the foraging ant model make it a valuable approach in various domains,
providing a strong foundation for the development of more advanced MAS algorithms.

As we move forward, it becomes essential to assess the effectiveness of these mod-
els in practical applications. Evaluating the performance of a MAS is critical for iden-
tifying strengths and weaknesses, optimizing its functionality, and ensuring it meets the
demands of the task at hand. In the next section, we will introduce key metrics used
to evaluate MAS, examining how these metrics influence the system’s performance and
providing insights into how they can guide further improvements.

1.4 Quantitative Evaluation Metrics for MAS

Quantitative evaluation metrics for Multi-Agent Systems (MAS) are essential for assess-
ing their performance, efficiency, scalability, robustness, and other critical aspects

1.4.1 Importance of quantitative evaluation metrics

Quantitative metrics are crucial in evaluating Multi-Agent Systems (MAS) because they
provide objective, measurable, and data-driven insights into the performance and effec-
tiveness of the system.

It is important to establish standards and Performance Benchmarking well known
Quantitative metrics facilitate the comparison of different Multi-Agent Systems (MAS)
or various configurations of the same system. This enables benchmarking against estab-
lished performance standards, providing a clear understanding of how well each system
or configuration performs relative to benchmarks. This comparison is crucial for identi-
fying the most efficient and effective solutions[47].

We can tweak the parameters and variables to achieve system optimization. Quan-
titative metrics are invaluable in identifying areas of strength and weakness within the
MAS, guiding developers and researchers in optimizing agent behaviors and interac-
tions. Focusing specific variables that need improvement, these metrics enable targeted
enhancements, leading to more efficient and effective system performance[47]. Addi-
tionally, the metrics are important for the following aspects:
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• Decision Making: Quantitative metrics support informed decision-making by pro-
viding clear evidence of how well the MAS is performing in various scenarios[47];

• Validation and Verification: Quantitative metrics serve as essential tools for vali-
dating and verifying the MAS against its design objectives and requirements. They
provide a means to ensure that the system meets its intended goals and operates as
expected, highlighting any discrepancies and areas needing adjustment[17];

• Research and Development: In the field of MAS research, quantitative metrics
are essential for evaluating the impact of new theories, models, or algorithms.
They provide a clear and objective measure of how changes we brought in affected
system performance, enabling researchers to assess improvements and validate
their work[47].

1.4.2 Commonly used metrics in MAS evaluation

In the evaluation of Multi-Agent Systems (MAS), several quantitative metrics are com-
monly used to assess their performance and effectiveness. These metrics provide a
means to measure various aspects of MAS, such as efficiency, reliability, and scala-
bility[16].

Key performance metrics for a Multi-Agent System (MAS) include system through-
put, which measures the number of tasks completed within a given time frame; success
rate, evaluating the percentage of tasks successfully completed by agents; and resource
utilization, assessing how effectively computational resources like memory and process-
ing power are used. Additionally, response time gauges how quickly the MAS responds
to requests or completes tasks, while scalability reflects its ability to manage increas-
ing numbers of tasks or agents. Robustness measures the system’s capacity to maintain
functionality despite errors or environmental changes, and adaptability evaluates how
well it adjusts to new, changing, or uncertain conditions. Efficiency also commonly
used is defined as the ratio of output gained to input provided, offering a holistic view
of the MAS’s overall performance[47]. And finally, fault tolerance reflects the MAS’s
ability to continue functioning properly even when some of its components fail[17].

These metrics are essential for understanding the capabilities and limitations of a
MAS and for guiding future improvements.
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1.4.3 Metrics for evaluating the foraging ants

Evaluating the foraging ants model in Multi-Agent Systems (MAS) involves using spe-
cific metrics that can measure the efficiency, effectiveness, and adaptability of the agents’
behaviors.

• Path Efficiency: Measures how effectively the ants find the shortest path to food
sources. This can be quantified by comparing the length of the path taken by the
ants to the shortest possible path[41].

• Pheromone Utilization: Assesses the effectiveness of pheromone communication
by measuring how quickly and accurately other ants follow the pheromone trails
to find food[39].

• Foraging Success Rate: The percentage of foraging ants that successfully find food
and return it to the nest[36].

• Search Time: The time it takes for ants to locate a food source. This metric is
important for understanding the efficiency of the exploration strategies used by
the ants[41].

• Food Return Rate: The rate at which food is returned to the nest, which reflects
the overall productivity of the foraging process[39].

• Adaptability to Changes: The ability of the ant agents to adapt their foraging
strategies in response to changes in the environment, such as the introduction of
new food sources or obstacles[41].

• Robustness: The resilience of the foraging process in the face of individual ant
failures or disruptions in the pheromone trails[36].

• Scalability: How well the foraging process scales with an increasing number of
ants or food sources[41].

These metrics help in understanding the dynamics of the foraging ants model and in
making comparisons with other models or algorithms[36].

Quantitative evaluation metrics play a crucial role in assessing the performance of
Multi-Agent Systems (MAS). These metrics provide a structured way to measure various
aspects of MAS, such as efficiency, scalability, adaptability, and robustness. By applying
these metrics, researchers can identify strengths and weaknesses, ensuring that the sys-
tem performs optimally under different conditions. Metrics also serve as a benchmark
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for comparing different MAS implementations, guiding improvements and fostering the
development of more efficient systems.

With a solid understanding of evaluation metrics, the next step is to explore opti-
mization techniques that further enhance MAS performance. In the upcoming section,
we will introduce several key optimization algorithms, such as Ant Colony Optimiza-
tion (ACO), Genetic Algorithms (GA), and Particle Swarm Optimization (PSO). We will
discuss how these techniques are applied in MAS to solve complex problems, improve
decision-making processes, and increase overall system efficiency.

1.5 Environmental Factors Influencing MAS Performance

Environmental factors play a crucial role in influencing the performance of Multi-Agent
Systems (MAS), particularly in the context of foraging behaviors observed in ant colonies.
The interplay between environmental conditions and ant foraging strategies can provide
insights into how these systems adapt and optimize their collective behavior. This syn-
thesis examines various studies that highlight the impact of environmental factors on ant
foraging performance, drawing from the provided references.

1.5.1 Description of various environmental factors

One significant environmental factor affecting ant foraging activity is climate, particu-
larly temperature and humidity. Research indicates that harvester ants (Messor andrei)
exhibit increased recruitment to food sources under humid conditions, suggesting that
moisture levels directly influence foraging behavior[30]. Additionally, the regulation
of foraging activity in response to humidity is critical for managing water loss, which
is particularly important in arid environments [31]. This adaptability to environmen-
tal moisture levels illustrates how external conditions can shape the collective foraging
strategies of ant colonies.

Another critical aspect is the influence of geographical variation on foraging behav-
ior. A study by highlights how climate and net primary productivity drive geographical
differences in ant foraging activity and resource use[46]. This suggests that the availabil-
ity of resources, influenced by environmental factors, can dictate the foraging patterns
and efficiency of ant colonies across different regions. Such findings emphasize the im-
portance of understanding local environmental conditions when studying the foraging
dynamics of ant species.
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The structural characteristics of the environment also play a significant role in shap-
ing foraging behavior. For example, the presence of obstacles and the asymmetry of
trails can affect how ants choose their paths during foraging[24]. Environmental disrup-
tions, such as obstacles on pheromone trails, can lead to changes in exploration patterns,
which in turn influence the overall foraging efficiency of the colony. This highlights
the need for MAS to adapt their strategies based on the physical characteristics of their
environment. Furthermore, the interactions among foraging ants are influenced by envi-

Figure 1.1: An obstacle appears and the
ants try to avoid it Figure 1.2: Ants select the shorter route

Figure 1.3: Ant Behavior Around Obstacles

ronmental conditions. found that the daily patterns of foraging activity in harvester ants
are affected by temperature and humidity, which in turn influence the rate of interactions
necessary for ants to leave the nest [14]. This suggests that environmental factors not
only affect individual foraging decisions but also the collective dynamics of the colony,
as ants adjust their behavior based on the prevailing conditions.

Environmental factors such as climate, geographical variation, and structural char-
acteristics significantly influence the performance of Multi-Agent Systems in foraging
scenarios. The adaptability of ant colonies to these factors underscores the importance of
considering environmental conditions when studying collective behavior and optimizing
foraging strategies in MAS. Future research should continue to explore these interactions
to enhance our understanding of how environmental dynamics shape the performance of
foraging agents.
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1.6 Simulation Techniques for MAS

Simulation techniques for Multi-Agent Systems (MAS) are essential for understand-
ing and optimizing the collective behaviors of agents, particularly in contexts such as
foraging. This chapter explores several key simulation techniques relevant to MAS, par-
ticularly in the context of foraging behaviors inspired by ant colonies.

One prominent technique is the use of agent-based modeling (ABM), which allows
for the simulation of individual agents and their interactions within a defined environ-
ment. This approach is particularly effective in studying the foraging behaviors of ants,
as it enables researchers to model the actions of individual ants while considering their
interactions with both the environment and other agents [64]. For example, highlight
the importance of closed-loop excitable systems in regulating foraging activity, demon-
strating how ABM can track individual behaviors and collective dynamics[64]. This
level of detail is crucial for understanding how environmental factors influence foraging
efficiency and decision-making processes.

Another significant simulation technique is the application of Ant Colony Opti-
mization (ACO) algorithms, which are inspired by the foraging behavior of real ants.
ACO algorithms utilize pheromone trails to guide agents toward optimal solutions in
various optimization problems, such as routing and scheduling[38]. The simulation of
ACO can be enhanced by incorporating dynamic environmental factors, allowing for
the adaptation of foraging strategies in response to changing conditions. For instance,
describe a variable sampling ACO algorithm that improves performance in continuous
optimization scenarios, showcasing the versatility of ACO in different contexts [38].

1.6.1 Importance of simulation in MAS research

Hybrid approaches that combine ACO with other optimization techniques, such as ge-
netic algorithms, can further enhance the performance of MAS. present a hybridized ant
colony algorithm for solving the Multi Compartment Vehicle Routing Problem, demon-
strating how integrating multiple methodologies can lead to improved outcomes in com-
plex optimization tasks[1]. Such hybrid models can leverage the strengths of different
algorithms to optimize foraging strategies effectively.

Simulation techniques can also be applied to study the impact of environmental
factors on foraging behavior. For example, investigate how climate and body size influ-
ence the foraging performance of seed-eating ants, revealing the importance of environ-
mental conditions in shaping foraging strategies[78]. By simulating these interactions,
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researchers can gain insights into how ants adapt their foraging behaviors based on re-
source availability and competition.

Simulation techniques for Multi-Agent Systems, particularly in the context of for-
aging behaviors, are vital for understanding and optimizing collective decision-making
processes. By employing agent-based modeling, Ant Colony Optimization algorithms,
and hybrid approaches, researchers can effectively simulate the complex interactions
between agents and their environments. These techniques not only enhance our under-
standing of natural foraging behaviors but also provide valuable insights for developing
efficient algorithms applicable to various optimization problems.

1.6.2 Overview of automated simulation techniques

Multi-Agent Systems (MAS) have gained significant attention in recent years due to
their ability to model complex systems composed of interacting autonomous agents.
Automated simulation techniques for MAS are essential for understanding the dynam-
ics of these systems, particularly in applications such as traffic management, resource
allocation, and social behavior modeling.

One of the foundational techniques in MAS simulation is Agent-Based Modeling
and Simulation (ABMS). ABMS allows for the representation of individual agents with
distinct behaviors and decision-making processes, enabling researchers to study how
these agents interact within a given environment. emphasize that ABMS is particu-
larly useful for modeling complex adaptive systems, where agents can self-organize and
exhibit emergent behaviors[50]. This approach facilitates the exploration of individual-
level interactions and their collective outcomes, making it a powerful tool for simulating
MAS.

In addition to traditional ABMS, hybrid approaches that incorporate data mining
techniques can enhance simulation studies. highlight how data mining can improve the
analysis of emergent behaviors in agent-based simulations, allowing for a deeper un-
derstanding of the underlying phenomena[74]. By integrating data mining with ABMS,
researchers can uncover hidden patterns and relationships within the simulation data,
leading to more informed decision-making and model refinement.

Another significant aspect of MAS simulation is the use of specialized frameworks
and tools designed for specific applications. For instance, the FLAME GPU framework
enables mesoscopic and microscopic simulations, allowing for the modeling of vehicle
interactions in traffic systems[37]. This framework supports the development of detailed
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simulations that can capture the complexities of real-world scenarios, making it particu-
larly valuable for traffic management and urban planning.

Additionally, the application of ABMS in various fields demonstrates its versatil-
ity. For example, developed an agent-based simulation model for dynamic real-time
traffic signal control, showcasing how MAS can be employed to address challenges in
heterogeneous environments[4]. Similarly, the use of ABMS in studying the spread of
radicalism and extremism illustrates its applicability in social and political contexts[62].

Validation techniques are also crucial in ensuring the reliability of MAS simula-
tions. discuss the importance of validation methods for agent-based models, particularly
in geospatial simulations, where accuracy is paramount[13]. By employing robust vali-
dation strategies, researchers can enhance the credibility of their simulations and ensure
that they accurately reflect real-world dynamics.

Automated simulation techniques for Multi-Agent Systems are essential for model-
ing and analyzing complex interactions among agents. The integration of Agent-Based
Modeling and Simulation, data mining techniques, specialized frameworks, and vali-
dation methods provides a comprehensive approach to understanding the dynamics of
MAS. As research continues to evolve, these simulation techniques will play a critical
role in advancing our knowledge of complex systems across various domains.

Agent-based modeling

Agent-based modeling (ABM) is a powerful simulation technique that allows researchers
to model complex systems composed of autonomous agents that interact with one an-
other and their environment. This approach is particularly useful in various fields, in-
cluding economics, ecology, and social sciences, as it enables the exploration of emer-
gent behaviors resulting from individual interactions.

One of the primary advantages of agent-based modeling is its ability to capture the
heterogeneity of agents and their behaviors. Each agent in an ABM can have distinct
characteristics, decision-making processes, and interaction rules, allowing for a more
nuanced representation of real-world systems. For instance, demonstrate the application
of a multi-agent-based model for distributed fault diagnosis systems, highlighting how
such models can be integrated into existing automation architectures without significant
modifications[88]. This flexibility makes ABM suitable for a wide range of applications,
from industrial processes to social dynamics.
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Moreover, ABM facilitates the study of complex adaptive systems where agents
adapt their behaviors based on their interactions and environmental conditions. This
adaptability is crucial for understanding how systems evolve over time. For example,
review the use of multi-agent systems to simulate environmental pollution issues, em-
phasizing how ABM can forecast the impact of human activities on ecosystems[28]. By
simulating various scenarios, researchers can gain insights into how changes in agent
behavior or environmental conditions can lead to different outcomes.

The integration of ABM with other methodologies can enhance its effectiveness.
For instance, the combination of ABM with data mining techniques can improve the
analysis of emergent behaviors within simulations. This hybrid approach allows for the
extraction of meaningful patterns from simulation data, leading to better understanding
and decision-making.

Furthermore, ABM can be utilized to explore the influence of environmental factors
on agent behavior and system performance. For example, the study by discusses the need
to identify variables that reflect the environmental dimension of performance in utility
sectors, which can be modeled using ABM to simulate how agents respond to different
environmental conditions[52]. This capability is particularly relevant in contexts where
environmental dynamics significantly impact agent interactions and system outcomes.

Validation of agent-based models is also a critical aspect of ensuring their reliability
and applicability. emphasize the importance of validation techniques in agent-based
modeling, particularly in geospatial simulations, where accuracy is essential for effective
decision-making. By employing robust validation methods, researchers can enhance the
credibility of their models and ensure that they accurately reflect real-world dynamics.

Real-time simulation frameworks

Real-time simulation frameworks are essential for modeling complex systems where
timely responses to dynamic changes are crucial. These frameworks enable the inte-
gration of real-time data into simulations, allowing for more accurate predictions and
decision-making.

One prominent application of real-time simulation frameworks is in transportation
systems. present an agent-based modeling and simulation approach for real-time col-
lision handling in railway transport networks. Their framework, implemented in the
JADE environment, demonstrates how real-time datasets can be utilized to enhance the
safety and efficiency of train operations by simulating various scenarios involving trains,
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stations, and junctions[12]. This highlights the potential of real-time simulations to im-
prove operational decision-making in critical infrastructure.

Another significant area of application is in the calibration of agent-based models
(ABMs) using real-time data assimilation techniques. discuss the dynamic calibration
of ABMs, emphasizing the importance of integrating real-time data to track changes
in system dynamics accurately. This approach allows for a better understanding and
prediction of human behavior, ultimately leading to more reliable decision-making in
various contexts[86]. The ability to adapt models based on real-time data is crucial for
applications in fields such as urban planning and emergency response.

Real-time simulation frameworks are also employed in scientific visualization. ex-
plore interactive steerable scientific visualization techniques for free surface flow, demon-
strating how real-time simulations can enhance the understanding of fluid dynamics in
avionics[48]. By providing real-time visual feedback, such frameworks can improve per-
formance in safety-critical tasks, making them valuable tools in engineering and design.

In the context of energy management, frameworks that support real-time simula-
tions are vital for optimizing the operation of microgrids. discuss a real-time simulation
technique for microgrid models, emphasizing the advantages of hardware-in-the-loop
simulations. This approach allows for the testing and validation of electrical properties
of power system devices in real-time, facilitating the integration of renewable energy
sources and enhancing grid reliability[55]. Such frameworks are essential for managing
the complexities of modern energy systems.

Real-time simulation frameworks play a pivotal role in enhancing the understand-
ing and management of complex systems across various domains. By integrating real-
time data, these frameworks enable more accurate modeling, dynamic calibration, and
improved decision-making. As technology advances, the development of more sophis-
ticated real-time simulation techniques will continue to enhance their applicability in
critical fields such as transportation, energy management, and scientific research.

1.6.3 Simulation tools for the foraging ants model

UPPAAL

UPPAAL is an integrated tool environment designed for modeling, validation, and ver-
ification of real-time systems. It uses networks of timed automata extended with data
types like bounded integers and arrays[83]. Developed collaboratively by Uppsala Uni-
versity in Sweden and Aalborg University in Denmark, UPPAAL is particularly useful
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for systems that can be modeled as a collection of non-deterministic processes with finite
control structures and real-valued clocks[84]. The latest version, UPPAAL 5.0 (Figure

Figure 1.4: Simulation with UPPAL

1.4), includes enhanced features from tools like TIGA and Stratego1. It’s available for
free for academic use, but commercial use requires a license[83]. Using UPPAAL for
Multi-Agent System (MAS) simulation is a powerful approach to model and analyze the
interactions between multiple agents in a system. In UPPAAL, agents are modeled as
timed automata, where each agent is defined by a set of states, transitions, and clocks to
capture time-dependent behavior. Communication between agents is facilitated through
the use of channels and shared variables, enabling interaction and data exchange. To
ensure coordinated behavior among agents, synchronization primitives are employed,
allowing actions to be aligned across different components. UPPAAL is designed with
scalability in mind, making it suitable for modeling complex systems composed of mul-
tiple interacting agents[84]. Here is a compiled list of steps needed to simulate MAS in
UPPAAL:

1. Define Agents: Create individual models for each agent, specifying their behavior
and interactions.

2. Set Up Communication: Use UPPAAL’s channels to model message passing be-
tween agents.
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3. Run Simulations: Execute the simulation to observe how agents interact over time.
You can set breakpoints, inspect variables, and step through the execution.

4. Analyze Behavior: Use UPPAAL’s verification tools to check properties such as
deadlock-freedom, reachability, and timing constraints.

Example Scenario To simulate a traffic system with multiple autonomous vehicles
(agents). Each vehicle can be modeled as an agent with states like “moving,” “waiting,”
and “stopped.” You can use channels to model traffic signals and shared variables to
represent road conditions.

SimPy

SimPy is a process-based discrete-event simulation framework written in Python. It’s de-
signed to model real-world processes and systems, such as customer service operations,
traffic systems, and manufacturing processes[79].

In Python, you can use the simpy framework for event simulation. First, take a
quick look at how a simulated process would run in Python. Below is a code snippet
from a simulation of a security checkpoint system. The following three lines of code set
up the environment, pass all necessary functions, and run the simulation[91]: as a very

Figure 1.5: Simulation with Simpy

powerfull simulation tool, Simpy has amazing features making the process seamless
among which the most popular are:

1. Process-Based Simulation: SimPy models dynamic systems as processes, where
each process represents a component of the system. Processes are functions or
generators that yield at specific points in time, representing events like resource
requests, waits, or releases.
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2. Discrete-Event Simulation: SimPy operates on the principle of discrete-event sim-
ulation, where system state changes occur at discrete points in time, triggered by
events such as arrivals, departures, or completions.

3. Resources Management: SimPy provides tools for managing resources like servers,
machines, or workers. These resources can be requested, used, and released by
processes. The framework supports a variety of resource-sharing mechanisms to
simulate real-world systems effectively. These include general shared resources
with limited capacity, containers that store quantities like fuel or materials, and
stores used to model storage systems such as warehouses or inventories. It also
offers Priority Resources, which handle requests based on priority levels. Ad-
ditionally, SimPy enables flexible event scheduling, allowing users to manage
timelines by scheduling future events and letting processes wait for specific dura-
tions or conditions, thus capturing dynamic time-based behaviors.

4. Inter-Process Communication: Processes can interact with each other using sig-
nals and shared resources. SimPy provides event constructs to synchronize and
coordinate these interactions.

5. Ease of Use: Written entirely in Python, SimPy is easy to integrate with other
Python libraries. Its syntax is simple and intuitive, making it accessible for both
beginners and experienced developers.

6. Extensibility: SimPy is highly extensible and can be customized or extended to
fit various simulation needs, including more complex systems such as multi-agent
systems, supply chains, or business processes.

7. Real-Time Simulation: Although SimPy is mainly for discrete-event simulation,
it can simulate real-time processes or be combined with real-time systems.

SimPy’s flexibility and ease of use make it a powerful tool for creating simulations in
a wide variety of fields, including operations research, engineering, and computer sci-
ence[79].

Anylogic

AnyLogic is a powerful simulation modeling software used for business applications
across various industries. It supports multiple simulation methodologies, including agent-
based, discrete event, and system dynamics[7]. the key features of anylogic include
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• Multimethod Modeling: Combine different simulation methods in one model to
capture complex system behaviors[7].

• Visualization: Create 2D and 3D animations to visualize your models and make
them more understandable[8].

• Industry-Specific Libraries: Utilize libraries tailored for specific industries, such
as logistics, healthcare, and manufacturing[8].

• Integration: Connect with GIS maps, databases, and other external systems to
enhance your models[8].

• Cloud Support: Run simulations in the cloud for scalability and collaboration[8].

Figure 1.6: Anylogic simulation software

Using AnyLogic for Multi-Agent System (MAS) simulation is a powerful way to model
and analyze the interactions between multiple autonomous agents. AnyLogic supports
agent-based modeling, which is ideal for MAS due to its flexibility and ability to capture
complex behaviors and interactions.

1.6.4 Evaluation of simulation accuracy and efficiency

Evaluating the accuracy and efficiency of Multi-Agent Systems (MAS) simulations, par-
ticularly those inspired by foraging ants, is crucial for understanding their performance
in real-world applications. This evaluation can be approached through various dimen-
sions, including the fidelity of the models, the robustness of the algorithms, and the
adaptability of the systems to dynamic environments.
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Accuracy of MAS Simulations

• Model Fidelity: The accuracy of MAS simulations largely depends on how well
the model represents the underlying biological processes. emphasize that the adap-
tive value of tandem communication in ants is highly dependent on environmental
factors and colony composition, suggesting that simulations must accurately cap-
ture these dynamics to yield valid results[32]. Accurate parameterization and vali-
dation against empirical data are essential for ensuring that the simulation reflects
real-world behaviors.

• Parameter Sensitivity: The performance of ant foraging models can be sensi-
tive to specific parameters, such as pheromone decay rates and foraging rates.
demonstrate that variations in these parameters can significantly influence the for-
aging activity of ant colonies, highlighting the need for careful calibration in sim-
ulations[69]. Sensitivity analysis can help identify critical parameters that affect
model outcomes and improve the accuracy of predictions.

• Behavioral Representation: Accurate representation of individual ant behav-
iors, such as decision-making processes and communication strategies, is vital for
simulation fidelity. show that factors like bifurcation angles can affect collective
decision-making in ants, suggesting that simulations should incorporate such be-
havioral nuances to achieve realistic outcomes[35]. This level of detail enhances
the model’s ability to predict how ants will respond to various environmental con-
ditions.

Efficiency of MAS Simulations

• Computational Efficiency: The efficiency of MAS simulations is often measured
by the computational resources required to run the models. discuss how foraging
distance influences the search strategies of ants, indicating that efficient algorithms
can lead to faster convergence in simulations[56]. Optimizing algorithms, such as
Ant Colony Optimization (ACO), can significantly reduce computation time while
maintaining solution quality.

• Scalability: The ability of a simulation to scale with the number of agents is
a critical factor in its efficiency. ’s work on chemotaxis approaches highlights
how effective modeling of trail-laying and foraging behavior can lead to scalable
solutions that adapt to larger populations of agents[5]. Efficient algorithms must
maintain performance as the number of agents increases, ensuring that simulations
remain practical for large-scale applications.



1.7. Conclusion 33

• Dynamic Adaptability: The adaptability of MAS simulations to changing envi-
ronments is a key aspect of their efficiency. propose an active inference framework
that allows for dynamic adjustments in foraging behavior based on environmen-
tal feedback[25]. This adaptability can enhance the efficiency of simulations by
allowing agents to optimize their strategies in real-time, reducing the need for ex-
tensive recalibration.

• Algorithmic Improvements: The development of improved algorithms, such as
the enhanced ACO proposed by , can significantly boost the efficiency of simu-
lations by optimizing search processes and reducing computational overhead[38].
These advancements can lead to faster convergence and better solution quality,
making simulations more effective for practical applications.

The evaluation of MAS simulation accuracy and efficiency, particularly in the con-
text of foraging ants, is essential for developing robust models that can be applied to
real-world problems. By focusing on model fidelity, parameter sensitivity, behavioral
representation, computational efficiency, scalability, dynamic adaptability, and algorith-
mic improvements, researchers can enhance the performance of MAS simulations. The
integration of empirical data and advanced algorithms will continue to drive improve-
ments in the accuracy and efficiency of these systems.

1.7 Conclusion

As demonstrated by the reviewed literature sources, the quantitative evaluation of multi-
agent systems using foraging ant models and automated simulation techniques involves
a multifaceted approach that incorporates various performance metrics, communication
strategies, and adaptive behaviors. By leveraging these methodologies, researchers can
gain valuable insights into the effectiveness and efficiency of MAS in achieving complex
tasks. This approach represents a promising area of research with significant implica-
tions for various applications. While substantial progress has been made, addressing the
identified knowledge gaps and pursuing the suggested future research directions will be
crucial for advancing the field and enhancing the effectiveness of multi-agent systems.

In the upcoming phase of our research, we plan to utilize the SimPy simulation
framework to conduct a series of controlled experiments involving the various approaches
and tools previously discussed. This simulation environment will enable us to model
complex system behaviors and evaluate the performance of each method under diverse
conditions. Through iterative testing and comparative analysis, we aim to identify the
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most effective solutions tailored to the specific requirements of our tasks. The outcomes
of these simulations will serve as foundational results, providing critical insights that can
be further analyzed, validated, and expanded upon in subsequent stages of the research.
This process will not only guide our methodological choices but also contribute to the
development of a robust and adaptable framework for future applications.
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2 Methodology

2.1 Introduction

Social insects, such as ants, demonstrate remarkably efficient collective behaviors de-
spite their limited individual capabilities. One of the most fascinating examples of such
type of cooperative behavior is foraging, the process by which ants locate, retrieve, and
distribute food resources across their colony. A decentralized coordination of their activ-
ities needed to achieve the overall goal emerges from simple local interactions, including
pheromone-based communication and response to environmental challenges. Studying
these mechanisms not only deepens our understanding of biological systems but also
inspires algorithms in robotics, optimization, and distributed artificial intelligence.

Figure 2.1: Foraging in the nature

Ant foraging behavior depicted in Figure (2.1) is a complex and highly organized
activity driven by both individual actions and collective intelligence. Ants leave their
nest in search of food, navigating through diverse and often challenging terrains that may
include physical obstacles such as rocks, vegetation, and uneven ground. The presence
of predators adds further complexity, as foraging ants must balance exploration with
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caution to ensure survival. A key element in this process is the use of pheromones,
chemical signals that ants deposit along their paths to communicate with nestmates.
When a food source is discovered, ants often detect it initially through food odor, which
helps them orient toward the source. Upon returning to the nest, they reinforce the trail
with pheromones, enabling others to follow the established route. Over time, as more
ants use and strengthen this path, a highly efficient foraging trail emerges.

The environment itself, including temperature, humidity, and terrain structure, in-
fluences pheromone longevity and detection, thereby affecting the success of trail for-
mation. The nest serves as the central hub of activity, where resources are collected and
distributed. Ant foraging demonstrate an adaptive, decentralized system relying on local
information and simple behavioral rules to achieve collective goals in a dynamic and
often hostile world.

2.1.1 Goals and objectives

The primary objective of this study is to develop a computational framework for sim-
ulating ant foraging behavior using agent-based modeling (ABM) and discrete-event
simulation (DES) with SimPy, a Python-based simulation tool. By modeling ants as
autonomous agents interacting within a structured environment, we investigate how
simple individual rules such as pheromone deposition, predator avoidance, and food
retrieval—give rise to emergent colony-level behavior leading to efficent food forag-
ing. Furthermore, we conduct a quantitative analysis of key system parameters such as
pheromone decay rates, predator probability, food distribution to evaluate their impact
on foraging outcomes. This simulation not only demonstrates the principles of self-
organization in biological systems but also serves as a versatile foundation for studying
swarm intelligence in applied contexts such as robotics, AI or optimization algorithms.

Our objective in this study is to use a well-known Python-based simulation tool to
create a foraging ant simulation framework and make a quantitative study of properties
which could having a major impact on the outcome of the process. This simulation
models the emergent foraging behavior of ant colonies using agent-based modeling and
discrete-event simulation with SimPy. The implementation demonstrates how simple
individual behaviors can produce complex collective intelligence through environmental
interactions.
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2.1.2 Plan of work

To provide a clear roadmap for this study, the rest of this document will be structured
as follows. In the next section, we present the architecture of the simulation framework,
detailing the main components, core classes, and the interaction dynamics that govern
agent behavior within the environment. After that, we will present the methodology used
to conduct the experiments, including the established metrics to evaluate ant’s commu-
nication efficiency, the simulation parameters, and the different scenarios implemented
to evaluate the system’s performance. Once this is done, we will present, analyze and
discuss various results obtained from these experiments, focusing on key aspects such
as food collection, agent efficiency, survival rates, and discovery dynamics, along with
a discussion of the findings and any notable anomalies. Finally, we concludes the quan-
titative evaluation by summarizing the main contributions and suggesting directions for
future research.
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2.2 Simulation Framework structure

2.2.1 Simulation Overview

This study presents an agent-based model of ant foraging behavior, implemented in
Python using the SimPy discrete-event simulation framework. The simulation captures
key aspects of colony-level foraging dynamics, including pheromone-mediated com-
munication, predator avoidance, and adaptive resource collection in a variable en-
vironment. By modeling individual ants as autonomous agents interacting within a 2D
grid-based ecosystem, we investigate how simple behavioral rules give rise to emergent
collective intelligence. The framework allows systematic testing of environmental pa-
rameters—such as predator density, food distribution, and pheromone decay rates—to
quantify their impact on foraging efficiency and colony resilience.

2.2.2 Core components of the simulation

The simulation is designed using a class diagram (Figure 2.2) to model the interactions
between key entities: the Grid, Ants, Predator, Pheromones, and Food Source. The
environment is represented as a 2D square grid of fixed dimensions, where autonomous
agents (ants) navigate in search of food while avoiding obstacles and predators. The grid
may contain one or more food sources, which are modeled as SimPy containers with
a finite capacity. Upon locating food, an ant releases pheromones—chemical signals
that guide other ants toward the discovered resource. Additionally, the grid includes
predators that pose threats by hunting and eliminating ants. The core components of the
simulation are defined as follows:

1. The Grid: a 2D plane serving as the spatial foundation for the simulation;

2. Ant: an agent that explores the grid, collects food, and avoids hazards;

3. Predator: a dynamic hazard capable of attacking ants;

4. Pheromone: a chemical marker deposited by ants to influence colony behavior;

5. Food Source: a resource node that dispenses a unit of food when accessed by an
ant.

These elements collectively form the basis of the foraging simulation, enabling the study
of emergent colony behavior under varying environmental conditions.
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Figure 2.2: System class diagram

2.2.3 Description of core classes

FoodSource class

Role : The class represents food patches in an environment with limited capacity. An
ant can come close to the food source and trigger an event that decreases the amount of
food available. FoodSource is modeled as a Simpy shared resource of type Container.
Using this type, Simpy allows one to model the production and consumption of a homo-
geneous, undifferentiated bulk. It may be either continuous (like water) or discrete (like
apples).

Figure 2.3: FoodSource class in python

Attributes: Table 2.1 below presents the list of class attributes

Key Methods: The FoodSource class has a constructor which initializes a food source
object within the simulation environment. It takes two parameters: env, which represents
the SimPy simulation environment, and location, a coordinate or identifier indicating
where the food source is placed in the simulation space. The self.env and self.location
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Attribute Type Description

location (int, int) Grid coordinates (x, y)
remaining simpy.Container Track available food units (capacity: 30)
discovery_time float Simulation step when first discovered (None if untouched)

Table 2.1: FoodSource class attributes

attributes store these values for later use. The self.remaining attribute is defined as a
simpy.Container, which models the quantity of food available at the source. It is ini-
tialized with a fixed capacity (FOOD_CAPACITY) and a starting amount equal to that
capacity, simulating a full food source at the beginning. Finally, self.discovery_time is
initialized as None and will be used later in the simulation to record the time at which
the food source is first discovered by an ant. This setup enables dynamic tracking of
food consumption and discovery events throughout the simulation.

Predator Class

Role : The class simulates predators that hunt ants based on pheromone trails and
proximity. The predator can detect and kill ants within its attack range if the ants do not
demonstrate or execute an escape behavior.

Attributes: Table 2.2 below lists the key attributes of a predator, their types and de-
scription.

Attribute Type Description

id int Predator’s unique identifier
location (int, int) Grid coordinates (x, y)
energy int Energy level (decreases with every movement on the grid)
kill_count int Tracks the number of successful kills
hunting_range int Detection radius (the number of cells)

Table 2.2: Predator class attributes

Key Methods: The Predator class initializes a predator agent in the simulation. It
takes five parameters: env (the SimPy simulation environment), grid (the environment
in which movement and interactions occur), pheromone_grid (a grid storing pheromone
levels left by ants), ants (a reference to the list of ant agents), and predator_id (a unique
identifier for the predator). The constructor assigns these to corresponding instance at-
tributes. The predator’s initial position is randomly determined by calling the _ran-

dom_location() method and stored in self.location. It starts with an initial energy level



2.2. Simulation Framework structure 41

(self.energy) and a kill_count of 0 to track how many ants it has captured. Finally,
self.env.process(self.hunt_cycle()) initiates the predator’s autonomous behavior in the
simulation by launching its hunt_cycle process, which allows it to act over simulated
time, moving through the grid, interacting with pheromones, and attempting to capture
ants.

Ant Class

Role : The class simulates individual ant agents with foraging, navigation, and energy
management. Ants can move in the grid either randomly or following the pheromone
trails that they can perceive from the grid.

Attributes: Table 2.3 below represents the list of key attributes of the ant’s class.

Attribute (%) Type Description

id int ant unique identifier
has_food bool Whether carrying food to nest
energy int Current energy (depletes at 1.5/step when carrying food)
pheromone_grid np.ndarray(numpy) Shared environment pheromone map
location (int, int) ant’s position in the nest

Table 2.3: Ant class attributes

Key Methods: The Ant class sets up an individual ant agent within the simulation
environment. It accepts six parameters: env (the Simpy simulation environment), grid

(the spatial grid in which the ant moves), pheromone_grid (used to track and update
pheromone trails), nest_loc (the fixed location of the nest), ant_id (a unique identifier
for the ant), and food_sources (a list or collection of available food sources in the en-
vironment). The constructor initializes the position of the ant in the nest by assigning
self.location = nest_loc, and stores its ID and the list of food sources. The boolean at-

tribute self.has_food tracks whether the ant is currently carrying food, and self.survived

indicates whether it is still alive. The initial energy of the ant is set using a predefined
constant ANT_ENERGY. Finally, the behavior of the ant is launched by initiating the
life_cycle process with self.env.process(self.life_cycle()), which allows the ant to begin
autonomous actions based on time such as exploring, foraging, depositing pheromones,
and reacting to environmental events throughout the simulation.

Python code snippet: The definition of life_cycle is shown in Figure 2.4.
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Figure 2.4: Ant life-cycle function

Explanation The life_cycle method defines the main behavioral loop of an ant through-
out the simulation. It is implemented as a generator function using yield, allowing it to
interact with the SimPy event-based simulation timeline. The loop continues to execute
as long as the ant is alive (self.survived is True) and has energy remaining (self.energy

≥ 0). Within each cycle, the ant checks whether it is currently carrying food:

• If it’s not carrying food (i.e. not self.has_food), it calls the _forage() method,
which contains logic for searching for food, moving through the environment, and
possibly reacting to pheromones or encountering obstacles;

• If the ant has food, it calls the _return_home() method, which handles navigation
back to the nest, possibly reinforcing the pheromone trail and finally, depositing
food in the nest.

After each of these actions, the ant waits for one time unit using yield self.env.timeout(1),
simulating the passage of time in the environment before starting the next decision cycle.
This design models realistic, time-stepped behavior and allows the ant to act indepen-
dently within the broader multi-agent simulation.

ForagingSimulation Class

Role : The class serves as the central controller and environment manager for the entire
ant foraging simulation. Its primary role is to encapsulate the high-level orchestration of
the simulation, coordinating the environment, agent initialization, and time progression,
making it the backbone of the simulation framework. The class attributes are listed in
Table 2.4.



2.2. Simulation Framework structure 43

Attribute Type Description

grid np.ndarray 20×20 grid tracking objects (’empty’, ’obstacle’...)
pheromone_grid np.ndarray Matrix of pheromone concentrations
data list Records simulation metrics per timestep, which will be used at the end

Table 2.4: ForagingSimulation class attributes

Key Methods: ForagingSimulation class initializes the entire foraging simulation en-
vironment. It begins by creating a new SimPy Environment instance (self.env), which
serves as the central scheduler for all time-based events in the simulation. The simulation
space is represented by self.grid, a 2D NumPy array of size GRID_SIZE × GRID_SIZE,
initialized with the value ’empty’ to indicate that all cells are unoccupied at the start.
In parallel, self.pheromone_grid is created as a 2D array of the same size, initialized
with zeros to represent the absence of pheromone trails at the beginning. The attribute
self.data is initialized as an empty list to store data collected during the simulation, such
as performance metrics or event logs. Finally, the _setup() method is called to populate
the environment with initial elements such as ants, predators, food sources, and the nest,
effectively preparing the simulation for execution.

Foraging behavior implementation: Advanced Pheromone class

Role : The class introduces different types of pheromones such as food, danger or
explore needed for advanced communication between ants. Improve pheromones com-
munication to inform the colony of the presence of hazards.

Attributes : The list of class attributes is presented in Table 2.5

Attribute Type Description

Type PheromoneType ′ f ood′, ′danger′ or ′explore′

Strength int the strength of the pheromones which evaporates over time

Table 2.5: Pheromone class

2.2.4 Interaction Dynamics

This section outlines the key interaction mechanisms between ants, the grid environ-

ment, and predators in our agent-based simulation. Ants interact dynamically with their
surroundings by navigating the grid, sensing pheromone levels, avoiding obstacles, and
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responding to food odors. Their movement decisions are influenced by the local con-
centration of pheromones, which guide them toward food sources and back to the nest.
Interactions between ants are indirect but critical and occur primarily through pheromone
trails that serve as a shared medium of communication. The grid environment itself acts
as a spatial framework that constrains movement, stores environmental features includ-
ing food sources and nest, but also supports pheromone diffusion and decay. Predators
introduce a layer of threat, actively hunting ants based on proximity and possibly re-
acting to ant density or pheromone presence. These predator-ant interactions create a
survival pressure that forces ants to adapt their paths and behaviors. Collectively, these
interaction dynamics contribute to the emergent behavior of the colony, balancing ex-
ploration, exploitation, and survival within a shared and dynamic environment.

Ant-Ant Interaction Mechanisms

Pheromone Communication In the simulation, pheromone signaling plays a central
role in coordinating ant behavior and allowing efficient foraging. Trail laying occurs
when ants find food; they deposit pheromones along their return path, forming chemical
gradients that help guide other ants to the discovered resource. In addition to foraging
signals, ants also engage in danger signaling by releasing alarm pheromones near preda-
tors, causing nearby ants to initiate evasive behavior and avoid threat. The pheromone
dynamics are governed by both deposition and evaporation processes. When ants return
to the nest, they deposit pheromones based on context: +40 units if they carry food,
to reinforce successful paths, and +20 units if they return empty handed, which can
still indicate explored terrain. To ensure adaptability and prevent the persistence of out-
dated information, pheromone trails evaporate at a rate of 7% per time step, managed
through the SimPy’s timing mechanism (Figure 2.5). In addition, pheromone levels are
capped at a maximum of 100 units to avoid over-saturation, maintaining balance in the
chemical signaling system. This dynamic interplay ensures that the colony collectively
adapts to changing environmental conditions and resource availability.

Figure 2.5: Pheromone evaporation in python
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Local Coordination Ants probabilistically alter paths in high-density areas (crowd
avoidance) to reduce congestion. Also, direct encounters (grid cell overlaps) between
ants(food recruitment) can amplify food retrieval efforts.

Conflict Resolution Ants may engage in brief contention for food access(resource
competition), this is modeled via SimPy priority queues. And regarding trail conflicts,
overlapping trails from multiple food sources are resolved through pheromone strength
comparisons.

Ant-Grid Interactions

Ants navigate a discrete 2D grid, perceiving local cell states (pheromones, food, preda-
tors). The grid enforces spatial constraints (e.g., obstacle avoidance) and mediates
pheromone diffusion/evaporation. Food sources are grid-located containers; ants reduce
their capacity upon retrieval.

Ant-Predator Interactions

Predators patrol the grid, stochastically attacking ants within their detection radius. Ants
employ evasion strategies like pheromone-based danger signals or random directional
changes. Predator success rates modulate colony foraging risk/reward trade-offs.

Energy Model

Represents the energy consumption of an ant’s activity during the foraging process and
specify how energy is restored upon returning to the nest. Ants spend energy as they
move through the environment, with 1 energy unit consumed per time step while ex-
ploring and a higher rate of 1.5 units per step when carrying food (Figure 2.6), this
represents the added effort of transport. This consumption creates a natural limit on
how long ants can remain active in the field and introduces a strategic trade-off between
exploration and return efficiency. When ants return to the nest, their energy is fully
replenished to a maximum of 250 units(simulation parameter), regardless of whether
they are carrying food. This simple yet effective energy mechanism ensures that forag-
ing behavior is controlled by physiological limits, adding realism to the simulation and
encouraging timely returns to the nest to sustain individual survival and colony produc-
tivity.
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(a) 1 unit of energy consumed when foraging
(without food)

(b) 1.5 units of energy consumed when return-
ing home(with food)

Figure 2.6: Ant metabolic cost with and without food

2.3 Methodology and Experiments

The simulation is initialized with standardized baseline parameters to establish con-
trol conditions. During execution, we systematically measure and analyze primarily
pheromone utilization efficiency in food localization, and secondly, the navigation effec-
tiveness during nest return journeys. This dual-metric approach allows for quantitative
assessment of the collective foraging performance of the colony.

2.3.1 Metrics for Assessing Pheromone Communication Efficiency

To assess the effectiveness of pheromone-based communication in guiding ant behavior,
several quantitative metrics are employed in the simulation. The Time to First Food
Discovery measures how quickly the first ant locates a food source, indicating the re-
sponsiveness of the colony’s initial exploration efforts. The Time to Collect All Food
captures the overall foraging efficiency by recording how long it takes for the colony
to fully deplete all available food sources. The Pheromone Trail Strength is evalu-
ated as the average concentration of pheromones along the shortest successful paths to
food, reflecting how well pheromone signals guide movement. Exploration Efficiency
is calculated as the percentage of ants that choose to follow existing pheromone trails
compared to those engaging in random, unguided movement, providing insight into the
colony’s reliance on chemical communication. Lastly, Redundancy in Paths measures
the number of unique routes ants take to reach food, highlighting the degree of path op-
timization or dispersion within the colony. Collectively, these metrics provide a robust
framework for evaluating the performance and adaptability of the pheromone communi-
cation system under varying environmental and experimental conditions.

1. Time to First Food Discovery: How quickly the first ant finds food;

2. Time to Collect All Food: Total time for all food to be collected;
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3. Pheromone Trail Strength: Pheromone concentration along the shortest path to
food;

4. Exploration Efficiency: Percentage of ants following trails vs. random explo-
ration;

5. Redundancy in Paths: Number of unique paths ants take to reach food.

2.3.2 Simulation Parameters

The model’s behavior is governed by a set of configurable parameters that define the
environment, agent properties and system dynamics. These variables control the simu-
lation’s scale, complexity, and emergent behaviors, allowing for systematic experimen-
tation with different foraging scenarios. Below, we describe each parameter and its role
in shaping the ant colony’s collective behavior, independent of their specific assigned
values.

This setup enables controlled testing of the efficiency of the pheromone commu-
nication, predator-prey interactions, and resource allocation strategies in a reproducible
simulation framework.

2.3.3 Simulation Setup (Baseline)

The baseline configuration establishes standard experimental conditions for investigating
ant foraging dynamics. This parameter set will serves as a reference point for compara-
tive studies, ensuring reproducibility while capturing essential aspects of collective food
retrieval behavior.

Specifically, the system parameters are set to the following vales:

• GRID_SIZE = 100;

• NUM_ANTS = 200;

• NUM_PREDATORS = 1;

• NUM_FOOD_SOURCES = 5;

• FOOD_CAPACITY = 300;

• BASE_EVAPORATION = 0.07;

• PHEROMONE_DEPOSIT = 20;

• MAX_PHEROMONE = 100;
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Table 2.6: Simulation Parameters and Their Descriptions

Parameter Description

GRID_SIZE
Defines the edge length (in cells) of the square 2D simu-
lation environment. Governs spatial resolution and com-
putational scale.

NUM_ANTS
Specifies the initial population of autonomous ant agents
in the colony. Determines foraging density and collective
behavior complexity.

NUM_PREDATORS
Sets the count of predator agents that actively hunt ants.
Influences environmental risk and adaptive colony strate-
gies.

NUM_FOOD_SOURCES
Controls the number of discrete resource locations avail-
able in the environment. Affects foraging competition
and trail network topology.

FOOD_CAPACITY
Represents the total units of food each source can pro-
vide before depletion. Impacts simulation duration and
resource scarcity dynamics.

BASE_EVAPORATION
Determines the rate at which pheromones decay per sim-
ulation step. Regulates trail persistence and information
freshness.

PHEROMONE_DEPOSIT
Specifies the pheromone units deposited by ants when
traversing paths. Affects trail strength and gradient steep-
ness.

MAX_PHEROMONE Imposes an upper bound on pheromone concentration per
grid cell. Prevents unbounded signal accumulation.

ANT_ENERGY Defines the lifespan metric for individual ants (in steps or
energy units). Introduces mortality constraints.

PREDATOR_SENSE_RANGESets the radial distance (in cells) at which predators detect
ants. Governs predation pressure spatial extent.

OBSTACLE_DENSITY Specifies the probability of grid cells being impassable
obstacles. Modifies navigation complexity.

SIM_TIME Determines the total duration (in simulation steps) for ex-
perimental runs. Ensures standardized temporal bounds.

NUM_TRIALS Determines the total number of times we run the simula-
tion with a fixed number of parameters.

• ANT_ENERGY = 250;

• PREDATOR_SENSE_RANGE = 4;

• OBSTACLE_DENSITY = 0.1 (10% of grid cells);

• SIM_TIME = 500;
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• NUM_TRIALS = 100;

• Metrics:

– Foraging Efficiency: Food collected per ant per time unit;

– Survival Rate: % ants surviving simulation;

– Discovery Time: Time to find food sources.

2.3.4 Experimental Scenarios

To systematically evaluate emerging foraging behaviors, we designed multiple experi-
mental conditions that modify key parameters from the baseline configuration. These
scenarios isolate specific aspects of colony-environment interactions while maintaining
controlled comparison conditions. The simulation explores five distinct experimental
scenarios, each targeting a specific aspect of environmental or behavioral complexity.

Scenario 1: The variation of Pheromone Dynamics tests how changes in pheromone
evaporation rates and deposition amounts affect communication efficiency and path op-
timization. Scenario 2: Predator Pressure Gradients introduces varying levels and
distributions of predator presence to observe how ants adapt their movement patterns
and survival strategies under threat. Scenario 3: Resource Distribution Tests manipu-
lates the spatial placement and quantity of food sources - clustered, uniform, or sparse
- to assess how the layout of the resources influences the discovery time and collection
efficiency. Scenario 4: Population scaling investigates the effects of colony size by
varying the number of ants, providing information on scalability, congestion, and coop-
eration under different population densities. Finally, Scenario 5: Extreme Conditions
simulates high-stress environments, such as rapid pheromone decay, high predator den-
sity, or minimal resources, to test the limits of the system’s resilience and behavioral
flexibility. Together, these scenarios offer a comprehensive view of the multi-agent sys-
tem’s performance across diverse and realistic challenges.

Scenario 1: Pheromone Dynamics Variation

Pheromone Dynamics Variation investigates how different pheromone behaviors in-
fluence the efficiency and structure of foraging. This scenario explores the effects of
varying evaporation rates (low, medium, or high) alongside changes in pheromone
deposit quantities, ranging from weak to strong. These modifications directly affect
the persistence and strength of chemical trails laid by ants. By analyzing how these
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variations influence key metrics such as trail network stability, latency in discover-
ing food, and the formation of redundant or inefficient paths, the experiment aims to
understand the trade-offs between responsiveness and consistency in pheromone-based
communication. Lower evaporation may lead to more stable but potentially outdated
trails, while higher rates encourage fresher paths at the cost of faster information decay.
Similarly, stronger deposits can accelerate convergence on productive routes but may
also increase the risk of overcommitment. This scenario provides insight into how finely
tuned pheromone dynamics affect colony-wide coordination. In particular, it

• Tests trail persistence effects by modifying: Evaporation rates (low/medium/high)
and Deposit quantities (weak/standard/strong).

• Measures impact on: Trail network stability, Food discovery latency and Redun-
dant path formation.

Table 2.7 below outlines the attributes to be adjusted along with their corresponding
values.

Condition BASE_EVAPORATION PHEROMONE_DEPOSIT

Weak/Transient Trails 0.03 10
Baseline 0.07 20
Strong/Persistent Trails 0.01 40
No Pheromones N/A 0

Table 2.7: Pheromone Trail Parameters

Scenario 2: Predator Pressure Gradients

Predator Pressure Gradients examines the colony’s behavioral adaptations in response
to varying levels of external threat by systematically varying the number of predators,
hunting range, and attack frequency. These parameters simulate different intensities
of predation risk within the environment. The experiment focuses on how ants assess
and respond to danger, evaluating their risk assessment strategies, such as rerouting or
hesitating near high-risk areas. It also investigates trail abandonment patterns, where
previously active foraging paths may be deserted due to predator presence, affecting the
overall efficiency of food retrieval. Futhermore, this scenario analyzes the mortality-
recovery tradeoffs, considering how the loss of foragers impacts the colony’s ability
to maintain productivity and re-establish efficient trails. By observing these dynamics,
the scenario provides insights into the resilience of decentralized coordination under
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hostile conditions and how predator pressure reshapes foraging behavior. In particular,
it performs the following actions:

• Examines threat response by varying: Predator population density, Hunting range
parameters and Attack frequency.

• Evaluates colony: Risk assessment strategies, Trail abandonment patterns and
Mortality-recovery tradeoffs.

Table 2.8 below outlines the attributes to be adjusted along with their corresponding
values.

Condition NUM_PREDATORS PREDATOR_SENSE_RANGE

No Predators 0 0
Baseline 1 4
High Predation 3 6
Wide Detection 1 8

Table 2.8: Predator Parameters

Scenario 3: Resource Distribution Tests

Resource Distribution Tests explores how different spatial configurations and availabil-
ity patterns of food sources affect collective foraging behavior. This scenario introduces
variations such as clustered versus dispersed food placement, heterogeneous source ca-
pacities, and dynamic replenishment patterns to simulate a range of environmental re-
source distributions. The experiment aims to analyze how these factors influence the
colony’s division of labor, particularly how ants self-organize to cover multiple sources
efficiently. It also examines the balance of exploration and exploitation, assessing how
ants allocate effort between searching for new resources and exploiting known ones. In
addition, it evaluates the efficiency of load distribution, determining whether food re-
trieval is evenly shared among foragers or concentrated along a few dominant paths. By
observing how the colony adapts to varying resource landscapes, this scenario provides
valuable insights into the flexibility and scalability of foraging strategies under realistic
environmental heterogeneity. In particular, it performs the following actions:

• Investigates spatial allocation through: Clustered vs dispersed food placement,
Variable source capacities and Dynamic replenishment patterns.

• Analyzes effects on: Division of labor, Exploration-exploitation balance and Load
distribution efficiency.
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Table 2.9 below outlines the attributes to be adjusted along with their corresponding
values.

Condition NUM_FOOD_SOURCES FOOD_CAPACITY

Centralized 1 1500
Baseline 5 300
Distributed 10 150
High Obstruction N/A N/A

Table 2.9: Food Source and Obstruction Parameters

Scenario 4: Population Scaling

Population Scaling tests the robustness of the simulation by progressively increasing
colony size and adjusting ant-to-predator ratios to capture density-dependent effects.
As the number of agents rises, the scenario tracks emergent traffic patterns on shared
trails, shifts in communication efficiency as pheromone signals potentially saturate or
dissipate, and any scaling limitations that appear—such as congestion around the nest,
heightened predator impact at lower ant-to-predator ratios, or diminishing returns in
collective efficiency. By illuminating how foraging performance evolves with population
growth and changing ecological pressures, this scenario reveals the thresholds at which
the decentralized coordination of the colony begins to falter or adapt. In particular, it
performs the following actions:

• Assesses system robustness via: Colony size increments, Ant-predator ratios and
Density-dependent effects.

• Monitors emergent: Traffic patterns, Communication efficiency and Scaling limi-
tations.

Table 2.10 below outlines the attributes to be adjusted along with their corresponding
values.

Condition NUM_ANTS ANT_ENERGY

Sparse And Long-Lived 50 500
Baseline 200 250
Dense/Short-Lived 500 100
High Density 200 N/A

Table 2.10: Ant Colony Parameters
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Scenario 5: Extreme Conditions

Extreme Conditions serves as a stress test to evaluate the resilience and adaptability of
the ant colony under highly challenging environments. This scenario introduces com-
pounded difficulties such as accelerated pheromone evaporation, minimal food avail-
ability, high predator density, and unfavorable terrain layouts to push the system to
its limits. The aim is to observe how the colony’s foraging strategies degrade or adapt
under pressure, examining critical behaviors such as survival prioritization, fallback
mechanisms, and emergency trail formation. By monitoring foraging success rates,
mortality levels, and behavioral shifts, this scenario provides insight into the colony’s ca-
pacity to maintain function and recover in adverse conditions. It highlights the strengths
and potential failure points of the decentralized, pheromone-driven coordination model
when subjected to extreme ecological stressors.

Table 2.11 below outlines the attributes to be adjusted along with their corresponding
values.

Condition Param 1 Param 2

HostileEnv OBSTACLE_DENSITY = 0.3 NUM_PREDATORS = 3
Baseline OBSTACLE_DENSITY = 0.3 NUM_PREDATORS = 3
Poor_comms BAS_EVAPORATION = 0.2 PHEROMONE_DEPOSIT = 5
Scarce_resources NUM_FOOD_SOURCES = 2 FOOD_CAPACITY = 100

Table 2.11: Stress Test Parameters

Operation mode Each scenario is executed by 100 simulation runs with randomized
initial conditions to ensure statistical significance. Between scenarios, we maintain iden-
tical environmental parameters (grid size, obstacle layout) while systematically altering
target variables. Performance metrics are normalized against baseline results to highlight
differential effects.
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3 Simulation results & Discussion

In this chapter, we aim to present and analyze the results of simulation experiments car-
ried out in the five scenarios mentioned above. Each scenario highlights specific aspects
of the foraging system, including pheromone communication, predator avoidance, re-
source allocation, population dynamics, and stress resilience. We will use a combination
of tables and visual charts, to provide a clear and comparative overview of key perfor-
mance metrics such as food discovery time, trail stability, survival rates and path ef-
ficiency. The results are then discussed in detail, with observations on behavioral trends,
unexpected outcomes, and notable differences across experimental conditions. Through
this analysis, we aim to draw meaningful conclusions about the strengths, limitations,
and adaptability of the ant-based multi-agent system in varying environmental contexts.

For each unique configuration, we executed 100 simulation runs to gather data. After
each set of simulations, we leveraged the Numpy Python library to compute the mean
and standard deviation of the collected metrics. This statistical analysis allowed us to
understand both the central tendency and the variability of our results. Finally, to ef-
fectively communicate our findings and achieve our visualization objectives, we utilized
the Matplotlib Python library to generate appropriate charts and diagrams.

3.1 Scenario 1: Pheromone Dynamics Variation

In this scenario, we have four distinct parameter configurations: Baseline, No Pheromones,
Strong and Persistent Trails, and Weak Transient Trails.

3.1.1 Food discovery latency

Table 3.1 presents a compilation of the total quantity of food collected by the agents
within the simulation environment for each of the tested configurations. This metric is
crucial for understanding the efficiency and success of different parameter settings in
terms of resource acquisition.

The results of Table 3.1 clearly demonstrate the impact of pheromone behavior on
the colony’s foraging performance, particularly in terms of the total amount of food
collected. The baseline setup, which uses default pheromone parameters, produced
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the highest mean food collection (67.83) but also showed significant variability (std
= 106.43), suggesting occasional high-performance runs and frequent inconsistencies.
The No Pheromones condition drastically reduced efficiency, with a low average of
15.22 food units collected and a much smaller standard deviation, indicating limited
success and consistent under-performance due to the absence of guided trail formation.
In contrast, both Strong Persistent Trails and Weak Transient Trails showed mod-
erate improvements over the no-pheromone case, collecting means of 41.37 and 45.99
respectively (Figure 3.1), though both still fell short of the baseline. The higher stan-
dard deviations in these two cases suggest instability in trail formation, either due to
excessive reinforcement (in Strong Persistent Trails) or rapid decay (in Weak Transient
Trails). Overall, these results highlight the importance of balanced pheromone dynamics
in allowing effective food discovery and consistent performance.

Table 3.1: Food Collected Across Different Scenarios

Parameters Configuration mean std

Baseline 67.83 106.428907
No Pheromones 15.22 24.078818
Strong and Persistent Trails 41.37 69.280232
Weak Transient Trails 45.99 87.723451

Figure 3.1: Food Collected Across Different Scenarios
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3.1.2 Foraging Efficiency & Discovery time

Table 3.2 below presents a compilation of the Foraging Efficiency measurement within
the simulation environment for each of the configurations.

Table 3.2: Foraging Efficiency Across Different Scenarios

Parameters Configuration mean std

Baseline 0.006783 0.010643
No Pheromones 0.001522 0.002408
Strong Persistent Trails 0.004137 0.006928
Weak Transient Trails 0.004599 0.008772

The results from Table 3.2 for foraging efficiency in Scenario 1 further support
the critical role of pheromone signaling in optimizing collective behavior. The baseline
configuration achieved the highest mean efficiency (0.006783), indicating a relatively
effective conversion of movement and effort into successful food collection. However,
the high standard deviation (0.010643) once again reflects variability across runs. The
No Pheromones setup, which lacks any trail guidance, performed the worst with a mean
efficiency of only 0.001522, showing how random exploration leads to poor coordination
and minimal resource return. Strong Persistent Trails and Weak Transient Trails
yielded moderate efficiencies (0.004137 and 0.004599, respectively), confirming that
both overly persistent and rapidly evaporating trails can hinder optimal performance.
The elevated standard deviations in these two cases suggest inconsistent exploitation of
pheromone paths, possibly due to overcrowding or unstable trail dynamics. Overall,
these findings emphasize that a well-balanced pheromone system not only boosts the
amount of food collected but also improves the overall efficiency of foraging efforts.

The scatterplot (see Figure 3.1) likely exhibits a downward trend, indicating a negative
correlation where longer discovery times correspond to lower foraging efficiency. Base-
line appears in the top-left, representing optimal performance with high efficiency and
minimal discovery time. In contrast, NoPheromones is positioned at the bottom-right,
reflecting the poorest performance with the lowest efficiency and the longest discovery
time. StrongPersistentTrails and WeakTransientTrails fall between these extremes,
forming a gradient toward the bottom-right. While they demonstrate an improvement
over the no-pheromone scenario, their performance remains inferior to Baseline.
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Figure 3.2: Foraging Efficiency vs average discovery time

3.2 Scenario 2: Predator Pressure Gradients

In this scenario, we have 4 different configurations: Baseline, High Predation, No
Predators, and Wide Detection.

3.2.1 Mortality-recovery tradeoffs

Table 3.3 presents a compilation of the number of ants that survived after running
the simulation with various environmental and behavioral parameters. The results from
Table 3.3 clearly illustrate how varying levels of predation pressure and detection ca-
pabilities impact the survival rates of the ant colony. The results from Table 3.3 clearly

Table 3.3: Ants Survived Across Different Scenarios

Scenario ants_survived

Value

Baseline 191±18.3
High Predation 156±38.1
No Predators 200±0.0
Wide Detection 184±25.5

illustrate how varying levels of predation impact the survival of ants within the colony.
The No Predators setup resulted in perfect survival, with an average of 200 ants and
zero variability, serving as a control benchmark. In contrast, the High Predation sce-
nario showed the most severe impact, with an average of only 156 ants surviving and
a large standard deviation (±38.1), indicating frequent and significant mortality across
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runs. This suggests that high predator density introduces unpredictability and substantial
risk to foraging ants.

The baseline condition, with standard predator parameters, achieved 191 survivors
on average (±18.3), showing moderate threat and manageable losses. The Wide Detec-
tion scenario, where predators have a larger hunting range but not necessarily greater
frequency, led to 184 survivors with a slightly higher variance (±25.5), indicating that
broader threat zones do increase risk but may not be as deadly as sheer predator numbers.
Overall, these results demonstrate that both predator density and detection range signif-

Figure 3.3: Ants Survived Across Different Scenarios

icantly influence colony survival, and that ants exhibit better resilience when threats
are moderate or spatially limited. The increasing standard deviations across higher-risk
scenarios also reflect the greater uncertainty and challenge posed by aggressive or wide-
ranging predators.

3.2.2 Food collection dynamics with predator Gradient

Table 3.4 analyze the impact of varying the level of predation on the quantity of food
agents can bring back to the nest.

The food collection results from Table 3.4 present an interesting perspective on how
predation pressure influences foraging success. Surprisingly, the No Predators condi-
tion did not yield the highest food collection, although it achieved a relatively high mean
(49.04) with a substantial standard deviation (±87.38), indicating that while some runs
were highly productive, others were not, possibly due to other limiting factors like trail
formation or food distribution.
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Table 3.4: Food Collected Across Predation Scenarios

Scenario mean std

Baseline 28.66 48.226155
High Predation 45.84 88.905207
No Predators 49.04 87.377611
Wide Detection 42.49 80.724059

Interestingly, High Predation led to a slightly lower mean (45.84) but a similarly
high variability (±88.91), suggesting that while more ants were lost (as seen in survival
data), the survivors may have optimized their routes out of necessity, leading to concen-
trated and efficient exploitation of known food paths in some runs. This could reflect an
adaptive tradeoff where reduced numbers force more efficient behavior among remain-
ing ants.

The Wide Detection setup yielded slightly lower performance (42.49, std ±80.72),
likely due to increased spatial pressure from predators causing frequent trail disruptions
and evasive behavior. Finally, the Baseline scenario produced the lowest food collec-
tion (28.66) with the least variability (±48.23), indicating more consistent but modest
performance under balanced threat levels.

Figure 3.4: Food Collected Across Predation Scenarios

These results (Figure 3.4) suggest that moderate or even high predation does not
necessarily suppress foraging output and in some cases, may pressure the system into
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more efficient behavior. However, high variability across all predator-exposed scenarios
highlights the instability and unpredictability introduced by dynamic threats.

3.3 Scenario 3: Resource Distribution Tests

Under this specific scenario, we explore the influence of food placement strategies on
simulation outcomes. We investigate four distinct configurations: Centralized, Dis-
tributed and High Obstruction with Baseline serving as a control for comparison.

3.3.1 Exploration-exploitation balance

We analyze pheromones deposit on the grid in the various configurations

Figure 3.5: Pheromones coverage trail

3.3.2 Resource Distribution and Food Collected

Table 3.5 below compiles the quantity of food collected in the various configurations
related to food distribution in the grid The results from Table 3.5 highlight how the spatial
arrangement and accessibility of food sources influence foraging performance. The High
Obstruction scenario achieved the highest mean food collection (63.30) with relatively
low variability (±64.22), indicating that despite obstacles in the environment, ants were
still able to exploit food effectively—possibly due to improved trail reinforcement or
localized specialization in certain accessible routes.
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Table 3.5: Food Collected Across Different Food Placement Configurations

Scenario mean std

Baseline 45.60 95.514238
Centralized Food Sources 21.76 64.236325
Distributed Food Sources 58.31 72.135912
High Obstruction (obstacles) 63.30 64.224433

The Distributed setup followed closely with a mean of 58.31 and slightly higher
variance (±72.14), suggesting that when food is spread across the environment, ants can
exploit multiple fronts, leading to more balanced load distribution and higher overall
yield. However, the variability reflects occasional inefficiencies in coordinating across
distant locations.

In contrast, the Centralized condition, where food is clustered in one region, re-
sulted in the lowest mean (21.776) and lower variability (±64.24), likely due to con-
gestion, over reinforced paths, and limited exploitation opportunities when competition
between ants is high or access is disrupted. The baseline scenario produced a moderate

Figure 3.6: Food Collected Across Different Food Placement Configurations

mean of 45.60 with the highest variability (±95.51) (see Figure 3.6), serving as a con-
trol with standard food layout and conditions. In general, these findings suggest that
distributed or obstructed environments may actually enhance colony foraging by
encouraging exploration, decentralization, and more efficient division of labor, while
centralized resources can lead to bottlenecks and reduced collection performance.
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3.4 Scenario 4: Population Scaling

We gradually increase the number of our foraging agents. In this scenario, we have four
main configurations: Baseline, Sparse and long-lived, Dense and short-lived and finally
High Density.

3.4.1 Foraging Efficiency

3.4.2 Food collected

Table 3.6: Food Collected Across Different Ant Longevity and Density Configurations

Scenario mean std

Baseline 50.51 97.525184
Dense/Short-Lived 39.58 78.074580
High Density 98.66 121.250656
Sparse/Long-Lived 19.90 52.272885

The results from Table 3.6 demonstrate how variations in colony size and population
density influence food collection efficiency. The High Density scenario clearly stands
out, achieving the highest mean food collected (98.66) despite a high standard deviation
(±121.25). This suggests that larger colonies can harvest significantly more food, but
their performance is more variable—possibly due to congestion effects or uneven trail
formation under crowded conditions.

The Baseline scenario had a moderate performance (50.51, std ±97.53), serving as
the reference point for balanced colony size and density. Interestingly, the Dense and
Short-Lived setup, which likely involves a high initial population with shorter lifespans
or quicker exhaustion, underperformed relative to the baseline (39.58, std ±78.07), sug-
gesting that sheer numbers are insufficient if individuals lack endurance or sustainability.

On the opposite end, the Sparse And Long-Lived colony collected the least food
(19.90, std ±52.27), highlighting the limitations of having too few ants even if they per-
sist longer. The lower variance here also suggests more consistent—but modest—performance
due to the limited capacity for parallel exploration and exploitation.

Overall, the results (see Figure 3.7) indicate that scaling up population size can dra-
matically boost resource collection, but only up to a point. Beyond that, efficiency may
suffer from coordination challenges, making population composition and trail dynamics
critical to balancing performance and stability.
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Figure 3.7: Food Collected Across Different Ant Longevity and Density Configurations

3.5 Scenario 5: Extreme Conditions

The results from Scenario 5: Extreme Conditions provide a compelling stress test
of the colony’s resilience under compounding or limiting environmental factors. Each
condition isolates a major challenge to the foraging system—communication breakdown,
environmental hostility, and resource scarcity.

3.5.1 Foraging efficiency

Extreme conditions impacts are clearly reflected in the food_collected metric. Table 3.7
compile the figures of foraging effciency The Scarce_resources scenario performed the

Table 3.7: Food Collected Across Different Environmental Configurations

Scenario mean std

Baseline Configuration 45.77 80.482115
Hostile Environment 52.75 93.815893
Poor ants communication (limited pheromones strength) 24.41 59.056743
Scarce resources 3.80 8.061631

worst by far, with a mean food collection of only 3.80 and very low variance (±8.06).
This outcome is expected, as limited food availability sets a hard ceiling on what the
colony can achieve, regardless of behavior or strategy. The consistency (low standard
deviation) suggests that performance is uniformly poor, constrained more by environ-
mental scarcity than by behavioral variability.
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The Poor_comms scenario, where pheromone signaling is likely weakened or dis-
abled, resulted in a significant drop in performance (mean 24.41, std ±59.06) com-
pared to the Baseline (mean 45.77). This highlights how essential effective communi-
cation is for guiding foragers and reinforcing productive trails.

Interestingly, the HostileEnv condition, which likely includes more obstacles or
increased predator pressure, showed slightly better performance than the Baseline
(52.75 vs. 45.77), though with higher variability (±93.81 vs. ±80.48). This may re-
flect adaptive behaviors such as trail rerouting or risk-based evasion that, under certain
runs, lead to more efficient resource exploitation. It also suggests that a well-configured
colony can maintain—and sometimes exceed—baseline performance even in dangerous
environments, thanks to its decentralized flexibility and distributed redundancy.

Figure 3.8: Food Collected Across Different Environmental Configurations

These results (see Figure 3.8) affirm that resource abundance and communication fi-
delity are critical drivers of foraging success, while environmental hostility, although
challenging, can be mitigated through adaptive swarm behavior. The findings underscore
the robustness of ant-inspired systems but also reveal their limits when core mechanisms
like pheromone signaling or resource presence are impaired.

3.5.2 Ants Survival rates

These ants_survived results (Table 3.8) reflect how different extreme conditions affect
colony survival
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Table 3.8: Ants Survived Across Different Environmental Configurations

Scenario ants_survived

Value

Baseline 171±35.7
Hostile Environment 167±34.4
Poor_communication 156±35.9
Scarce_resources 169±34.1

Figure 3.9: Ants Survived Across Different Environmental Configurations

• The Baseline scenario shows the highest average survival (171 ants), serving as a
reference point for normal system behavior.

• Hostile Environment (i.e., with more obstacles or predators) results in only a
slight decrease in survival (167), indicating that the colony exhibits robust threat-
avoidance mechanisms and can maintain most of its members even in unsafe
surroundings.

• Scarce_resources has a surprisingly high survival rate (169), despite very poor
food collection (from earlier data). This suggests that ants can survive long periods
without successfully retrieving food, likely due to the simulation allowing survival
without immediate energy needs being met or due to ants reaching the nest to
recharge.

• Poor_communication leads to the lowest survival (156 ants), highlighting that
communication breakdown has a tangible impact not just on foraging effi-
ciency, but also on survivability, likely due to inefficient exploration, increased
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exposure to threats, or energy depletion.

Overall, colony survival remains relatively high across all scenarios (see Figure
3.9), indicating resilience in the face of various stressors. However, communication
plays a more critical role in both performance and survival compared to resource scarcity
or environmental hostility.

3.6 Conclusion

This study presented a quantitative evaluation of multi-agent systems through the lens
of ant foraging behavior, implemented via an agent-based simulation framework using
SimPy. By modeling realistic foraging dynamics—including pheromone-based commu-
nication, predator threats, energy constraints, and environmental variability—we were
able to analyze how collective behavior emerges under diverse operational conditions.
The simulation incorporated core biological principles such as pheromone deposition
and evaporation, energy replenishment cycles, and dynamic interactions among agents,
food sources, and threats.

Our experimental scenarios revealed key insights into the efficiency and adaptability
of ant-inspired systems. Scenario 1 demonstrated that pheromone dynamics significantly
influence trail stability and foraging efficiency, with balanced evaporation and deposition
rates yielding optimal results. Scenario 2 highlighted the impact of predator presence,
showing that ants can maintain performance under threat, but with increased variability
in survival and food retrieval. In Scenario 3, distributed and obstructed resource layouts
improved colony performance by promoting decentralized exploration and reducing bot-
tlenecks. Scenario 4 emphasized that population scaling boosts food collection, though
it introduces coordination challenges at higher densities. Finally, in Scenario 5 stress-
testing under extreme conditions confirmed the colony’s resilience, but also underscored
performance degradation when multiple stressors coincide.

Overall, the simulation confirms that simple local rules and effective communica-
tion can generate robust and scalable foraging strategies. These findings have broader
implications for the design of decentralized algorithms in robotics, logistics, and swarm
intelligence. Future work may incorporate learning-based adaptations, more diverse
agent roles, or real-world environmental data to further bridge biological inspiration and
engineered systems.
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Conclusions

This research presented a simulation-based analysis of multi-agent systems inspired by
ant foraging behavior, using a custom agent-based model built with SimPy. By system-
atically varying environmental conditions, pheromone dynamics, predator threats, and
colony characteristics, we quantitatively evaluated the efficiency and adaptability of de-
centralized foraging strategies. The model captured key interaction mechanisms such
as pheromone communication, energy consumption, and predator avoidance while en-
abling the measurement of foraging performance through metrics like food collection,
trail efficiency, and survival rates.

Several findings aligned with biological expectations. As an illustration of this, we
found out that strong pheromone trails significantly improved food collection, con-
firming the critical role of stigmergic coordination in ant foraging. Similarly, predator
presence reduced survival and altered path usage, validating the impact of external
threats on colony behavior. Some results, however, were surprising. In scenarios with
scarce resources, ants maintained relatively high survival despite collecting minimal
food, suggesting that colony endurance may not always correlate with resource in-
take, a nuance that may be attributed to model assumptions such as energy replenishment
rules. Furthermore, communication breakdowns (Poor_comms) had a more detrimen-
tal effect on both performance and survival than expected, highlighting the importance
of efficient information flow in decentralized systems.

Despite its insights, the simulation has notable limitations. The behavioral models
are simplified abstractions, lacking the full biological complexity of real ant colonies,
such as learning, role specialization, or real-time adaptive behavior. Spatial and tem-
poral resolutions are also constrained by computational resources and granularity of the
model. Additionally, while stochasticity is introduced to mimic natural variability, the
lack of sensory noise or learning dynamics may underestimate the complexity of nat-
ural exploration strategies.

Future work could focus on integrating adaptive behaviors, heterogeneous agent
roles, or multiple nest competition to better mirror ecological dynamics. Nevertheless,
this study demonstrates how agent-based simulations can provide valuable insights into
collective behavior and the emergent properties of simple rule-based interactions.
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